Accueil > Publications > Catalogue POP > 2019

Catalogue POP – Notice individuelle de publication

Assafin Marcelo, Camargo J. I. B., Vieira Martins Roberto, Braga-Ribas F., Sicardy Bruno, Andrei Alexandre Humberto, Da Silva Neto D. N.

Candidate stellar occultations by large trans-Neptunian objects up to 2015

Astronomy and Astrophysics, 2012, vol. 541, pp. 142

Référence DOI : 10.1051/0004-6361/201118349
Référence ADS : 2012A&A...541A.142A

Résumé :

Context. We study large trans-Neptunian objects (TNOs) using stellar occultations. <BR /> Aims: We derive precise astrometric predictions for stellar occultations by Eris, Haumea, Ixion, Makemake, Orcus, Quaoar, Sedna, Varuna, 2002 TX<SUB>300</SUB>, and 2003 AZ<SUB>84</SUB> for 2011-2015. We construct local astrometric catalogs of stars complete to magnitudes as faint as R = 18 - 19 in the UCAC2 (Second US Naval Observatory CCD Astrograph Catalog) frame covering the sky path of these objects. <BR /> Methods: During 2007-2009, we carried out an observational program at the ESO2p2/WFI (2.2 m Max-Planck ESO telescope with the Wide Field Imager) instrument. The observations covered the sky path of the selected targets from 2008 to 2015. We performed the astrometry of 316 GB images using the Platform for Reduction of Astronomical Images Automatically (PRAIA). With the help of field distortion patterns derived for the WFI mosaic of CCDs, we reduced the overlapping mosaics of CCDs. <BR /> Results: We derive positions in the UCAC2 frame with 40 mas precision for stars up to the catalog magnitude completeness limit (about R = 19). New stellar proper motions are also determined with 2MASS (Two Micron All Sky Survey) and the USNO B1.0 (United States Naval Observatory B 1.0) catalog positions as a first epoch. Astrometric catalogs with proper motions were produced for each TNO, containing more than 5.35 million stars covering the sky paths with 30' width in declination. The magnitude completeness is about R = 19 with a limit of about R = 21. We predicted 2717 stellar occultation candidates for all targets. Ephemeris offsets with about from 50 mas to 100 mas precision were applied to each TNO orbit to improve the predictions. They were obtained during 2007-2010 from a parallel observational campaign carried out with telescopes from 0.6 m to 2.2 m in size. <BR /> Conclusions: This extends our previous work for the Pluto system to large TNOs, using the same observational and astrometric procedures. The obtained astrometric catalogs are useful for follow-up programs at small to large telescopes used to improve the candidate star positions and TNO ephemeris. They also furnish valuable photometric information for the field stars. For each TNO, updates on the ephemeris offsets and candidate star positions (geometric conditions of predictions and finding charts) are made available by the group at

Retour au catalogue