Coherent backscattering in planetary regoliths

Karri Muinonen (1) Department of Physics, University of Helsinki, Finland (2) Finnish Geodetic Institute, Masala, Finland

Acknowledgments: Evgenij Zubko, Jani Tyynelä, Hannakaisa Lindqvist, Gorden Videen, Hannu Parviainen, Jyri Näränen, Kari Lumme, Antti Penttilä, Timo Nousiainen, Tuomo Pieniluoma

Regolith on Solar System Bodies, Paris, France, December 1-3, 2010

Contents

- Introduction to single and multiple scattering
- Radiative-transfer coherent-backscattering method (RT-C)
- Modeling for transneptunian objects (TNOs) and Centaurs
- Modeling for lunar disk-resolved photometry from SMART-1/AMIE
- RT-C vs. *T*-matrix method
- Conclusions

Introduction

- Physical properties of atmosphereless solarsystem objects (asteroids, Moon, transneptunian objects)
- Polarimetric and photometric observations
- Direct problem of computing scattering by regolith particles with varying size, shape (structure), and refractive index (optical properties)
- Inverse problem of retrieving physical properties of particles based on observations

Courtesy: Timo Nousiainen

Muinonen et al., MAPS 44, 1937, 2009, obs. ref. therein

- Model based on coherent backscattering and radiative transfer
- References:
 - Muinonen et al., Light Scattering Reviews 5, 377, 2010
 - Muinonen, Waves in Random Media 14, 365, 2004

Multiple scattering from a particulate medium is a function of

- surface roughness
- volume density of the particulate medium
- size of small particles
- shape (structure) of small particles
- refractive index of small particles

Interpreting polarization:

- Phase angles ~0-30°: interference in transverse internal fields of single scatterers
- ~30-150°: interference in longitudinal internal fields of single scatterers
- ~0-180°: Rayleigh scattering (small scatterers)
- ~0-180°: Fresnel reflection/refraction (large scatterers)
- ~0-20°: coherent backscattering (multiple scattering; wider angular range for embedded media)
- ~20-180°: multiple scattering (interference omitted)

Interpreting brightness:

- Phase angles ~0-10°: mutual shadowing among particles
- ~0-180°: shadowing due to surface roughness
- ~0-20°: coherent backscattering (multiple scattering)
- ~20-180°: multiple scattering (interference omitted)
- ~0-30°: interference in transverse internal fields of single scatterers
- ~30-150°: interference in longitudinal internal fields of single scatterers

RT-C with polarization

- Polarization and intensity surges due to interference in multiple scattering for a spherical medium
- Monte Carlo for radiative transfer and coherent backscattering
- Full angular profiles for the complete scattering matrix
- Diametrical optical thickness approaching infinity

Muinonen et al., Light Scattering Reviews 5, 377, 2010

Ixion and Quaoar

Bagnulo et al., A&A 450, 1239, 2006

Chiron

Table 5. The best-fit coherent-backscattering model parameters for Ixion, Quaoar, and Chiron. We give the single-scattering albedos $\tilde{\omega}$ and dimensionless mean free paths $k\ell$ for the dark (subscript *d*) and bright components (*b*), the weight of the dark component w_d , the rms values of the polarimetric fits, as well as the *R*-band absolute magnitudes H_R and slope parameters k_R .

	Ixion	Quaoar	Chiron
$\tilde{\omega}_d$	0.45	0.35	0.15
ℓ_d	250	300	120
$ ilde{\omega}_b$	0.80	0.50	0.60
ℓ_b	20	10	500
w_d	0.74	0.46	0.14
rms	0.029%	0.069~%	0.067~%
H_R	3.25	2.15	5.41
k_R	$0.12/deg^{-1}$	$0.11/deg^{-1}$	$0.041/deg^{-1}$

Ixion and Quaoar

Bagnulo et al., A&A 450, 1239, 2006

Chiron

