RT-C with intensity only

- Intensity surges due to interference in multiple scattering for a spherical medium
- Monte Carlo for radiative transfer and coherent backscattering
- Full angular profiles for the scattering phase function
- Double- and triple-Henyey-Greenstein single scattering

Muinonen et al., Light Scattering Reviews 5, 377, 2010

Stochastic Surface Geometry

Densely-packed random media of spheres, fractional-Brownian-motion boundary surface

Stochastic Surface Geometry

Dependence of shadowing on angles of incidence and emergence, as well as on the azimuthal angle

Stochastic Surface Geometry

Slices in constant azimuthal angle and in constant emergence angle

Double-Henyey-Greenstein P₁₁ for lunar volumeelement phase function

Coherent-backscattering radiativetransfer method vs. T-matrix method

- Coherent backscattering by a spherical medium of spherical particles
- RT-C equivalent to computing multiple scattering using amplitude scattering matrices and exponential attenuation
- Preliminary comparison to superposition *T*matrix computations by Mishchenko et al. (2009)

First comparisons

- RT-C and superposition *T*-matrix computations for a spherical cloud of 500 spheres with packing density 6.25%
- Cloud size parameter is X = 40 or $X = 10^{7}$ (RT-C)
- Constituent spheres have a size parameter x = 2and refractive index 1.31 (X = 40) or 1.31+i0.01 (X = 10⁷)
- 10⁵ rays utilized in Monte Carlo computations
- Lumme, Penttilä, and Muinonen (2005) compared exact and RT-C computations for media of a small number of constituent spheres (size parameter x = 7) - results discouraging

 $P = -P_{21}/P_{11}$

 $\mu_{\rm L} = (P_{11} - P_{22})/(P_{11} + 2P_{21} + P_{22})$ $\mu_{\rm C} = (P_{11} + P_{44})/(P_{11} - P_{44})$

Conclusions

- Exact negative polarization and opposition effect explained to large extent with RT-C for microscopic scattering media
- Angular widths of the backscattering phenomena are rather insensitive to porosity because of the forward-scattering tendency of the constituent spheres
- In the same spirit, wavelength dependence can be small for clouds with size distributions of spheres

Conclusions

- Lunar photometry to be modeled together with polarimetry
- Coherent backscattering by a close-packed medium of spherical media (regolith)
- TNO polarimetry re-modeled using a novel more complicated single-scattering matrix
- Interrelation of interference phenomena at size parameters ~5 and ~50 open

