SURPRISES OF THE HAPKE PHOTOMETRIC MODEL

Yuriy Shkuratov and Vadym Kaydash

Astronomical Institute of Kharkov V. N. Karazin National University, 35 Sumskaya St., Kharkov, 61022, Ukraine

Regolith on SSB, Meudon, 1-3 Dec., 2010

Planetary photometry: models

Hapke model (H-model): main points

- Most developed and popular in planetary photometry
- Works within a framework of geometrical optics approximation
- Accounts for the shadow-hiding effect
- 8 parameters:
 - (1) the single-scattering albedo of a medium ω_{1}
 - (2) the packing density of a regolith medium ρ ($\rho < 1$)
 - (3) the typical angle of relief inclination $\overline{\theta}$,

 - (4) the amplitude of the opposition peak B_{0s} , (5),(6) the parameters of single-particle scattering indicatrix, **b** and **c**,
 - (7), (8) the parameters of the effect of coherent backscattering enhancement, B_{0c} and h_{c}
- B_{0c} and B_{0s} are actually empirical and, hence, the H-model suggests a semi-empirical description of the lunar surface

Apparent albedo of a particulate surface with a macroscopic random topography:

$$A(\alpha, i, e, \omega, B_0, \rho, b, c, \overline{\theta}) = \frac{\omega}{4} \frac{B_{CB}(\alpha, B_{0c}, h_C) \cos e}{\cos i + \cos e} \times (B_{SH}(\alpha, B_{0s}, \rho) p(\alpha, b, c) + M(i, e, \omega, b, c)) S(\alpha, i, e, \overline{\theta})$$

Single scattering indicatrix (double Henyey-Greenstein function):

$$p(\alpha, b, c) = \frac{1+c}{2} \left[\frac{1-b^2}{\left(1+2b\cos\alpha+b^2\right)^{3/2}} \right] + \frac{1-c}{2} \left[\frac{1-b^2}{\left(1-2b\cos\alpha+b^2\right)^{3/2}} \right]$$

Apparent albedo of a particulate surface with a macroscopic random topography:

$$A(\alpha, i, e, \omega, B_0, \rho, b, c, \overline{\theta}) = \frac{\omega}{4} \frac{B_{CB}(\alpha, B_{0c}, h_C) \cos e}{\cos i + \cos e} \times (B_{SH}(\alpha, B_{0s}, \rho) p(\alpha, b, c) + M(i, e, \omega, b, c)) S(\alpha, i, e, \overline{\theta})$$

Term describing the interparticle shadow-hiding effect:

$$B_{SH}(\alpha, B_{0s}, \rho) = 1 + \frac{B_{0s}}{1 - \frac{8}{3\ln(1 - \rho)}} \tan\frac{\alpha}{2}$$

Apparent albedo of a particulate surface with a macroscopic random topography:

$$A(\alpha, i, e, \omega, B_0, \rho, b, c, \overline{\theta}) = \frac{\omega}{4} \frac{B_{CB}(\alpha, B_{0c}, h_C) \cos e}{\cos i + \cos e} \times (B_{SH}(\alpha, B_{0s}, \rho) p(\alpha, b, c) + M(i, e, \omega, b, c)) S(\alpha, i, e, \overline{\theta})$$

Term describing the coherent backscattering enhancement:

$$B_{CB}(\alpha, B_{0c}, h_C) = 1 + B_{0c} \frac{1 + \left(1 - \exp\left(-\frac{1}{h_C}\tan\frac{\alpha}{2}\right)\right) / \frac{1}{h_C}\tan\frac{\alpha}{2}}{2\left(1 + \frac{1}{h_C}\tan\frac{\alpha}{2}\right)^2} \qquad h_C = \frac{\lambda \sigma n Q_S}{4\pi}$$

 λ - wavelength, *n* - number of particles per unit volume, σ - mean particle cross-sectional area, Q_S - mean particle scattering efficiency

Incoherent multiple scattering term :

$$M(i,e,\omega,b,c) = \Re(i,b,c)(H(e,\omega)-1) + \Re(e,b,c)(H(i,\omega)-1) + \\ + \Re_0(b,c)(H(e,\omega)-1)(H(i,\omega)-1)$$

where:

$$H(x,\omega) = \left(1 - \omega x \left(\frac{1 - \sqrt{1 - \omega}}{1 + \sqrt{1 - \omega}}\right) + \frac{1}{2} \left(1 - 2x \frac{1 - \sqrt{1 - \omega}}{1 + \sqrt{1 - \omega}}\right) \ln \frac{1 + x}{x}\right)$$

$$\Re(t,b,c) = 1 + \sum_{n=1}^{15} A_n \rho(n,b,c) P_n(t) \qquad \Re_0(b,c) = 1 + \sum_{n=1}^{15} A_n^2 \rho(n,b,c)$$

$$A_n = \begin{cases} 0, & \text{if } n \text{ is even} \\ \frac{(-1)^{(n+1)/2}}{n} \frac{1 \cdot 3 \cdot 5 \dots n}{2 \cdot 4 \cdot 6 \dots (n+1)}, & \text{if } n \text{ is odd} \end{cases}$$

$$\rho(n,b,c) = c(2n+1)b^n$$

Chandrasekar's function $H(x, \omega)$ represent multiple scattering for isotropic scatterers, $P_n(t)$ – Legendre functions

if *e* < *i*

The term describing shadow-hiding on the planetary surface random relief (topography) :

$$S(\alpha, i, e, \overline{\theta}) = \frac{\mu_e(i, e, \varphi)}{\mu_e(0, e, 0)} \frac{\cos i}{\mu_{0e}(i, 0, \pi)} C(\overline{\theta}) \left\{ 1 - f(\varphi) \left[1 - C(\overline{\theta}) \frac{\cos i}{\mu_{0e}(i, 0, \pi)} \right] \right\}^{-1}$$
$$\mu_{0e}(i, e, \varphi) = C(\overline{\theta}) \left[\cos i + \sin i \tan \overline{\theta} \frac{E_2(e) \cos \varphi + \sin^2(\varphi/2)E_2(i)}{2 - E_1(e) - (\varphi/\pi)E_1(i)} \right]$$
$$\mu_e(i, e, \varphi) = C(\overline{\theta}) \left[\cos e + \sin e \tan \overline{\theta} \frac{E_2(e) - \sin^2(\varphi/2)E_2(i)}{2 - E_1(e) - (\varphi/\pi)E_1(i)} \right]$$

$$f(\varphi) = \exp\left(-2\tan\left(\frac{\varphi}{2}\right)\right)$$
 $C(\overline{\theta}) = \left(1 + \pi \tan\overline{\theta}\right)^{-1/2}$

$$E_1(t) = \exp\left(-\frac{2}{\pi}\cot\overline{\theta}\cot t\right) \qquad E_2(t) = \exp\left(-\frac{1}{\pi}\cot^2\overline{\theta}\cot^2 t\right)$$

if $i \leq e$

The term describing shadow-hiding on the planetary surface random relief (topography) :

$$S(\alpha, i, e, \overline{\theta}) = \frac{\mu_e(i, e, \varphi)}{\mu_e(0, e, \pi)} \frac{\cos i}{\mu_{0e}(i, 0, 0)} C(\overline{\theta}) \left\{ 1 - f(\varphi) \left[1 - C(\overline{\theta}) \frac{\cos e}{\mu_e(0, e, \pi)} \right] \right\}^{-1}$$
$$\mu_{0e}(i, e, \varphi) = C(\overline{\theta}) \left[\cos i + \sin i \tan \overline{\theta} \frac{E_2(i) - \sin^2(\varphi/2)E_2(e)}{2 - E_1(i) - (\varphi/\pi)E_1(e)} \right]$$
$$\mu_{0e}(i, e, \varphi) = C(\overline{\theta}) \left[\cos e + \sin e \tan \overline{\theta} \frac{E_2(i)\cos\varphi + \sin^2(\varphi/2)E_2(e)}{2 - E_1(i) - (\varphi/\pi)E_1(e)} \right]$$

$$f(\varphi) = \exp\left(-2\tan\left(\frac{\varphi}{2}\right)\right)$$
 $C(\overline{\theta}) = \left(1 + \pi \tan \overline{\theta}\right)^{-1/2}$

$$E_1(t) = \exp\left(-\frac{2}{\pi}\cot\overline{\theta}\cot t\right) \qquad E_2(t) = \exp\left(-\frac{1}{\pi}\cot^2\overline{\theta}\cot^2 t\right)$$

Alternative model of the photometric function?

• Lommel-Seeliger law :

 $D_{LS} = \cos i / (\cos i + \cos e).$

"Lunar-Lambert function" (McEwen, 1996):

$$D_{LZ+L}(\alpha,\beta,\gamma) = L(\alpha) \frac{2\cos\gamma}{\cos(\gamma-\alpha) + \cos\gamma} + (1 - L(\alpha))\cos\beta\cos(\gamma-\alpha)$$

Balance factor $L(\alpha)$ decreases from 1 to 0:

$$L(\alpha) = 1 + A\alpha + B\alpha^2 + C\alpha^3$$

 $A = -1.9 \ 10^{-2}, B = 2.42 \ 10^{-4}, and C = -1.4 \ 10^{-6}$

 α, β, γ – phase angle, luminance longitude, luminance latitude

Alternative model of the photometric function

Photometric function of planetary surface F:

 $F(\alpha,\beta,\gamma)=f(\alpha)\cdot D(\alpha,\beta,\gamma),$

 α, β, γ – phase angle, luminance longitude, luminance latitude,

 $f(\alpha)$ - phase function $D(\alpha, \beta, \gamma)$ - disk function

• $f(\alpha) \rightarrow$ complexity of the structure of light scattering surface

• $D(\alpha,\beta,\gamma) \rightarrow$ global brightness trend from the limb to terminator on the planetary disk (sphericity of the planet)

Alternative model of the photometric function

Relation of (α, β, γ) to (i, e, φ) ,

i -incidence, ε -emergence , φ -azimuth angle

 $\cos\alpha = \cos i \cos e + \sin i \sin e \cos \varphi$

$$\cos \beta = \sqrt{\frac{(\sin(i+e))^2 - \left(\cos\frac{\varphi}{2}\right)^2 \sin 2e \sin 2i}{(\sin(i+e))^2 - \left(\cos\frac{\varphi}{2}\right)^2 \sin 2e \sin 2i + (\sin e)^2 (\sin i)^2 (\sin \varphi)^2}}$$
$$\cos \gamma = \frac{\cos e}{\cos \beta}$$

Alternative model of the photometric function Semi-empirical equation:

[Akimov, Soviet Astron., 1976;19(3):385–88; Akimov, Kinem Phys Celest Bodies, 1988;4(1):3–10; Shkuratov et al., Icarus 1994;109:168-190;

Shkuratov et al., JOSA 2003;20(11):2081-92]

$$A(\alpha,\beta,\gamma) = A_{eq} \frac{e^{-\mu_1 \alpha} + m e^{-\mu_2 \alpha}}{1+m} \cos \frac{\alpha}{2} \cos \left(\frac{\pi}{\pi - \alpha} \left(\gamma - \frac{\alpha}{2}\right)\right) \frac{(\cos \beta)^{\alpha/2(\pi - \alpha)}}{\cos \gamma}$$

Four parameters:

 μ_1 - associated with surface roughness, *m* and μ_2 - the amplitude and the width of the opposition peak,

 A_{eq} –equigonal albedo (at standard geometry)

Alternative model by Akimov & Shkuratov

Disk function:

$$D(\alpha, \beta, \gamma) = \cos\frac{\alpha}{2} \cos\left(\frac{\pi}{\pi - \alpha} \left(\gamma - \frac{\alpha}{2}\right)\right) \frac{(\cos\beta)^{\alpha/2(\pi - \alpha)}}{\cos\gamma}$$

Phase function:

$$f(\alpha) = \frac{e^{-\mu_1 \alpha} + m e^{-\mu_2 \alpha}}{1+m}$$

Practical importance of H-model

Test base:

set of 30 maps of the lunar apparent albedo A(a, i, e) $\lambda = 603$ nm, $a = 1.7-73^{\circ}$.

Velikodsky et al., LPSC 41-st 2010;1760 LPI Houston USA. Velikodsky et al. Electromagnetic and Light Scattering XII, 2010, Finland, Conf. Proc. pp. 302-305.

http://astrodata.univer.kharkov.ua/ moon/albedo/

Apparent albedo, α =22.2°

Practical importance of H-model Correction of the ratio of albedos *A*(-16.2°)/*A*(+16.2°)

A(+16.2°)

A(-16.2°)

Effect of luminance longitude

Practical importance of H-model Correction of the phase ratio: results

Practical importance of H-model

Correction of the phase ratio: results

Practical importance of H-model Correction of the ratio of albedos $A(63.3^{\circ})/A(2.7^{\circ})$

A(63.3°)/A(2.7°)

A(63.3°)

Effect of luminance latitude

 $A(2.7^{\circ})$

Practical importance of H-model Correction of the phase ratio: results

Akimov

Hapke

McEwen

Practical importance of H-model

Meridional profile of the ratio

H-model parameters: $\omega = 0.4$, h = 0.06, $B_0 = 1$, and $\theta = 25.5^{\circ}$ (Helfenstein et al., Icarus 1997;128:2–14, Hillier et al., 1999;141:205–25), typical for the Moon

Set of 30 maps of the lunar apparent albedo $A(\alpha,i,e)$ at 603 nm, $\alpha = 1.7-73^{\circ}$.

Fitting a theoretical curve to the observed phase dependence for each point of the lunar disk

Space of 6 dimensions with homogeneous grid:

 $0 < \omega < 1$ $0 < \theta < 50^{\circ}$ $0 < B_0 < 1$ 0 < h < 1 0 < b < 1 -1 < c < 1

Maps of model parameters, best fitted the source data

Ĥ

Radiance factor

Phase angle, deg.

• • Ratio: Source data / Best Hapke's Fit

Phase angle, deg.

• • • Ratio: Source data / Best Hapke's Fit

Alternative model of the photometric function (A&S) Semi-empirical equation:

[Akimov, Soviet Astron., 1976;19(3):385–88; Akimov, Kinem Phys Celest Bodies, 1988;4(1):3–10; Shkuratov et al., Icarus 1994;109:168-190;

Shkuratov et. JOSA 2003;20(11):2081-92]

$$A(\alpha,\beta,\gamma) = A_{eq} \frac{e^{-\mu_1 \alpha} + m e^{-\mu_2 \alpha}}{1+m} \cos \frac{\alpha}{2} \cos \left(\frac{\pi}{\pi - \alpha} \left(\gamma - \frac{\alpha}{2}\right)\right) \frac{(\cos \beta)^{\alpha/2(\pi - \alpha)}}{\cos \gamma}$$

Four parameters:

 μ_1 - associated with surface roughness, *m* and μ_2 - the amplitude and the width of the opposition peak,

 A_{eq} –equigonal albedo (at standard geometry)

 μ_1 - surface roughness, *m* and μ_2 - the amplitude and the width of the opposition peak, $A_{\rm eq}$ –equigonal albedo at standard geometry

 μ_2

Phase angle, deg.

Phase angle, deg.

Conclusion

- H-model poorly describes the latitude brightness trend
- H-model does not suggest a physically meaningful distribution of the model parameters, excepting only single-particle albedo
- Hapke parameters are mutually dependent; some of them are empirical.
- In the case of the Moon, we found very close anticorrelation between the parameters of the single-particle indicatrix *b* and *c*.