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Chapter 1

Introduction

The purpose of the present document is to provide a broad overview to the AIMS program
as well as a technical supplement to the documentation included in the AIMS program. It
explains in more detail where some of the formulas comes from. For a description on how
to use AIMS or what file formats are accepted by AIMS, please refer to the documentation
included in the AIMS program.

The “Asteroseismic Inference on a Massive Scale” (AIMS) program uses a Bayesian
approach to estimate stellar properties and associated error bars from a set of seismic and
non-seismic constraints. It relies on various components:

• a pre-calculated grid of stellar models and associated pulsation frequencies

• an unstructured interpolation scheme within the grid of models

• a Monte Carlo Markov Chain (MCMC) approach for finding the probability distri-
bution functions (PDFs) of the various stellar properties

It is up to the user to calculate the grid of stellar models and their pulsation spectra,
using the evolution and pulsation code of their choice. Some adaptations may be needed
in order for AIMS to read the files which contain the pulsation spectra (see documentation
within the AIMS code). Once this grid is supplied, AIMS reads the pulsation spectra and
stores the information in a binary file which can then be used in subsequent runs using
AIMS.

Model interpolation will be described in Chapter 4. It is a two step process which
involves interpolation along an evolutionary track followed by interpolation between evo-
lutionary tracks.

As will be described in the following chapter, the MCMC algorithm is based on the
python package emcee (Foreman-Mackey et al., 2013). This algorithm finds a representa-
tive sample of stellar models which follow the PDFs of the various stellar properties.

Figure 1.1 provides an overview of what AIMS needs as inputs, and the sort of outputs
it produces.
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Chapter 2

A Bayesian approach

AIMS uses a Bayesian approach to finding the probability distribution function (PDF) of
the stellar parameters. In order to find a representative sample of models, an Monte Carlo
Markov Chain (MCMC) approach based on the python package emcee.py (Foreman-
Mackey et al., 2013) is used.

When applying a Bayesian approach, it is necessary to define the likelihood function
as well as priors. Indeed, the PDF is proportional to the product of the two:

p(θ|O) ∝ p(O|θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
priors

(2.1)

where θ is stellar parameters and O various seismic and classic observables. The priors
and likelihood functions will be described in the following sections.

2.1 The priors

The priors represent the a priori assumptions on various stellar parameters. In AIMS,
these priors will apply to the underlying stellar grid parameters, i.e. the ones involved in
the interpolation process, and the amplitude(s) of surface corrections.

The priors are specified through analytically defined probability distributions. Cur-
rently, AIMS allows uniform, Gaussian, and a simple version of truncated Gaussian distri-
butions (c.f. documentation for the Distribution class in AIMS.py). At some point in the
future, it may be worth introducing new probability distributions if one wants to include,
e.g., an initial mass function (IMF). For now, it is probably best applying uninformative,
i.e. uniform, priors.

2.2 The likelihood function

The likelihood function describes how likely it is to obtain a set of observables for a given
set of model parameters. Typically, this function will be a product of probability functions
for each of the observables. At this point, we distinguish between classic and seismic
observables. These will be specified in an input file as described in the documentation
within the AIMS code. The format of this file is closely related to that used for the
Asteroseismic Modelling Portal (AMP, e.g. Metcalfe et al., 2014).
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2.2.1 Classic observables

These typically are the luminosity, L, the effective temperature, Teff , the metallicity,
Z, and any other parameter provided by AIMS (see documentation and source code for
the string to param() method in model.py). AIMS allows the users to apply various
probability distributions for these quantities (the same ones as for the priors).

2.2.2 Seismic observables

These typically correspond to anything deduced from the pulsation frequencies1 (indi-
vidual frequencies, average and individual frequency separations, frequency ratios). The
errors on individual frequencies are assumed to be Gaussian, and independent for now,
but inclusion of correlations should not be too difficult (one would have to decide on an
input format for the correlation matrix, and would have to modify the find covariance

method in AIMS.py). When using frequency combinations, AIMS automatically calculates
the correlations and takes this into account when calculating a χ2 value based on these.
The relevant formulas are given in Chapter 3 (these also include the case where correla-
tions are present between different frequencies, even if these are not currently implemented
in AIMS).

When calculating the seismic contribution to the likelihood function, AIMS proceeds
in two steps. The first step involves matching the individual model frequencies to the
observations. The use can specify whether the match should be made according to n
values, or nearest frequencies, thanks to the use n parameter in AIMS configure.py. If
one or more of the observed frequencies are unmatched, the model is rejected. The second
step involves calculating the relevant theoretical frequency combinations and comparing
this to the observed ones, while taking into account the relevant correlations. This step
can be done efficiently and consistently thanks to the mapping found in the first step.

2.3 Initialisation of walkers

The emcee program relies on a number of walkers to explore the parameter space. These
walkers should be initialised in some way. AIMS provides two choices:

1. initialise according to the priors: with this option AIMS initialises the walkers
through random realisations of the priors. This will lead to a very broad explo-
ration of the parameter space if the priors are uninformative, but could take a long
time to converge. Furthermore, the priors for surface effects can be difficult to set
up properly (we recommend doing a trial run beforehand).

2. initialise according to a tight ball around the best solution in the grid: with this
option AIMS scans through the entire grid and finds the best solution. Walkers
close to this solution (i.e. in a tight ball around this solution) are then initialised
using Gaussian realisations with user-specified 1σ values. AIMS also automatically
determines relevant ranges on the surface correction amplitudes based on the values
obtained for the best solution.

1This doesn’t include νmax which instead should be included as a “classic” observable.
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In both cases, AIMS filters out solutions that fall outside the grid, or are rejected
because of missing modes. If the relevant ranges for the realisations are too broad, then
the selected parameters will have a high probability of falling outside the grid and will
be rejected. This will make the program stall. Accordingly, the max iter parameter was
introduced in AIMS configure.py and limits the number of attempts per walker. If this
number is exceeded, AIMS terminates with an error message.



12 CHAPTER 2 : A Bayesian approach



Chapter 3

Frequency combinations and
correlations

3.1 Initial assumptions and notation

In what follows, we will assume that we have a spectrum of pulsation frequencies, νi,
where i is shorthand for (n, `). These frequencies are typically extracted from a noisy
spectrum, so typically a include noise term (or realisation), εi. At this point, we will
distinguish two cases:

1. the noise realisations are uncorrelated between the different frequencies, and are
characterised by 1σ error bars, which we will denote σi.

2. the noise realisations are correlated (this is the more general case). We therefore
introduce the covariance matrix, Eij. If the noise was, in fact uncorrelated, then
Eij = σ2

i δ
j
i .

3.2 Frequency combinations

We first start by calculating the error properties of a frequency combination (for example
the large for small frequency separations). This can be expressed through the following
generic formula:

s =
∑
i

aiνi (3.1)

Given that s is calculated from noisy data, we explicitly include the error realisations
in the following formula:

s+ εs =
∑
i

ai (νi + εi) =
∑
i

aiνi +
∑
i

aiεi (3.2)

where εs is the noise realisation on s. Hence, the 1σ error bar on s, σs, is given by:

σ2
s =

∑
i

a2
iσ

2
i (3.3)
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14 CHAPTER 3 : Frequency combinations and correlations

if the individual errors are uncorrelated. Otherwise, one has the following formula:

σ2
s =

∑
i,j

aiajEij (3.4)

If one considers the correlation between s, and another frequency combination s′ =∑
i a
′
iνi, then it is necessary to consider the product between the two.

ss′ + εss′ = (s+ εs)(s
′ + εs′) ' ss′ + s′εs + sεs′ = ss′ + ss′

(εs
s

+
εs′

s′

)
(3.5)

where we have assumed that εs � s and εs′ � s′.
Hence,

Var(s, s′) =
∑
i

(s′ai + sa′i)
2
σ2
i = (ss′)2

∑
i

(
ai
s

+
a′i
s′

)2

σ2
i (3.6)

if the errors are uncorrelated, or

Var(s, s′) =
∑
i,j

(s′ai + sa′i)
(
s′aj + sa′j

)
Eij = (ss′)2

∑
i,j

(
ai
s

+
a′i
s′

)(
aj
s

+
a′j
s′

)
Eij (3.7)

in the general case.

3.3 Frequency ratios

We now turn our attention to frequency ratios, which may be put under the following
generic form:

r =

∑
i aiνi∑
i biνi

(3.8)

The noise realisation is given by the following approximate formula:

r + εr =

∑
i ai (νi + εi)∑
i bi (νi + εi)

=

(
∑

i aiνi)

(
1 +

∑
i

ai

(
∑

j ajνj)
εi

)
(
∑

i biνi)

(
1 +

∑
i

bi

(
∑

j bjνj)
εi

)

' r + r
∑
i

 ai(∑
j ajνj

) − bi(∑
j bjνj

)
 εi (3.9)

Hence, the 1σ error bar is:

σ2
r = r2

∑
i

 ai(∑
j ajνj

) − bi(∑
j bjνj

)
2

σ2
i (3.10)
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or in the general case:

σ2
r = r2

∑
i,j

(
ai

(
∑

k akνk)
− bi

(
∑

k bkνk)

)(
aj

(
∑

k akνk)
− bj

(
∑

k bkνk)

)
Eij (3.11)

Correlations on the noise realisation between two frequency ratios is given by:

rr′ + εrr′ ' rr′ + r′εr + rεr′ = rr′ + rr′
(εr
r

+
εr′

r′

)
(3.12)

This leads to

Var(r, r′) = (rr′)
2
∑
i

 ai(∑
j ajνj

) − bi(∑
j bjνj

) +
a′i(∑
j a
′
jνj

) − b′i(∑
j b
′
jνj

)
2

σ2
i (3.13)

if the errors are uncorrelated, or

Var(r, r′) = (rr′)
2
∑
i,j

(
ai

(
∑

k akνk)
− bi

(
∑

k bkνk)
+

a′i
(
∑

k a
′
kνk)

− b′i
(
∑

k b
′
kνk)

)
(

aj
(
∑

k akνk)
− bj

(
∑

k bkνk)
+

a′j
(
∑

k a
′
kνk)

−
b′j

(
∑

k b
′
kνk)

)
Eij (3.14)

in the general case.

3.4 Surface correction recipes

Another typical manipulation when comparing theoretical frequencies with observed ones
is to introduce surface corrections (e.g. Kjeldsen et al., 2008). This is because stellar
models and associated pulsation calculations do not correctly reproduce the structure
near the surface in a star. Schematically, such surface corrections take on the following
form:

δνsurf = af(ν, ~ξ) (3.15)

where a is a coefficient which needs to be determined, and f a function which depends on
frequency and in some cases on the pulsation mode. Two possible expressions for f are
(Kjeldsen et al., 2008):

f(ν) =

(
ν

ν0

)b
(3.16)

where ν0 is a reference frequency and b an exponent (typically 4.9, based on the solar case
Kjeldsen et al. 2008), and (Ball & Gizon, 2014):

f(ν) =
1

I

(
ν

ν0

)3

(3.17)

where I is the normalised mode inertia. A two-term surface correction is also given in
Ball & Gizon (2014). We note, in passing, that Kjeldsen et al. (2008) expresses f as a
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function of the observed rather than model frequency. However, the two are very similar
if the model is a good match to the observations. In what follows (and in AIMS), we will
use the model frequency for reasons which will become clear later on.

In AIMS, the coefficient a (or coefficients if applying the two-term surface correction
from Ball & Gizon 2014) are treated as supplementary parameters or dimensions when
applying the MCMC algorithm. This approach does not introduce any supplementary
correlations on the frequencies. If however, one were to automatically determine optimal
coefficient(s) through linear regression, then they would have to take into account sup-
plementary correlations between the now “corrected” observed frequencies. To illustrate
this, we start by determining a through a linear regression:

a =

∑
i f(νi, ~ξi)

(
νobs
i − νi

)
∑

i

[
f(νi, ~ξi)

]2 , (3.18)

where quantities with the superscript “obs” come from the observations, and those with-
out from the reference model. These expressions are a linear combination of the observed
frequencies, so the 1σ error bar is straightforward to calculate using Eqs. (3.3) or (3.4).

Had we used f(νobs
i , ~ξ) instead, this would have led to a much more complicated depen-

dence of a on the observed frequencies and made it more difficult to calculate its 1σ error
bars.

For convenience, we now “correct” the observed frequencies so as to group all of the
observational error bars together. This leads to:

νobs
corr,i = νobs

i − af(νi, ~ξi) (3.19)

The 1σ error bars on νcorr.
obs are:

σ2
corr,i =

(
1− f 2

i∑
j f

2
j

)2

σ2
i +

∑
j 6=i

(
fifj∑
k f

2
k

)2

σ2
j (3.20)

or, in the general case:

σ2
corr,i =

(
1− f 2

i∑
j f

2
j

)2

Eii−2
∑
j 6=i

fifj∑
k f

2
k

(
1− f 2

i∑
k f

2
k

)
Eij+

∑
j 6=i

∑
j′ 6=i

f 2
i fjfj′

(
∑

k f
2
k )

2Ejj′ (3.21)

where fi ≡ f(νi, ~ξi). Analogous expressions are also obtained for the variance between
these quantities.

If one takes the error bars into account when determining a, the following expression
is obtained:

a =

∑
i fi
(
νobs
i − νi

)
/σ2

i∑
i f

2
i /σ

2
i

(3.22)

This then leads to:

σ2
corr,i =

(
1− f 2

i /σ
2
i∑

j f
2
j /σ

2
j

)2

σ2
i +

∑
j 6=i

(
fifj/σ

2
j∑

k f
2
k/σ

2
k

)2

σ2
j (3.23)
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If, furthermore, the errors are correlated, the following cost function must be minimised
when calculating the value of a:

J =
∑
i,j

(
νobs
i − νi − afi

) (
νobs
j − νj − afj

)
E−1
ij , (3.24)

where (E−1
ij ) is the inverse of (Eij), the covariance matrix. Minimising J leads to the

following expression:

a =

∑
i,j fi

(
νobs
j − νj

)
E−1
ij∑

i,j fifjE
−1
ij

(3.25)

The corresponding corrected frequency is:

νobscorr,i = νobs
i −

∑
j

∑
k fifkE

−1
jk∑

j′,k′ fj′fk′E
−1
j′k′

(νobs
j − νj) (3.26)

which leads to the following 1σ error bar:

σ2
corr,i =

(
1−

∑
j fifkE

−1
ik∑

j′,k′ fj′fk′E
−1
j′k′

)2

Eii − 2
∑
j 6=i

∑
k fifkE

−1
jk∑

j′,k′ fj′fk′E
−1
j′k′

(
1−

∑
k fifkE

−1
jk∑

j′,k′ fj′fk′E
−1
j′k′

)
Eij

+
∑
j 6=i

∑
k 6=i

f 2
i

∑
k′ fk′E

−1
jk′
∑

k′ fk′E
−1
kk′(∑

j′,k′ fj′fk′E
−1
j′k′

)2 Ejk (3.27)

3.5 The large frequency separation, ∆ν

The large frequency separation is a particular frequency combination which asymptotically
gives the inverse of twice the acoustic radius. A numerical value can by obtained by
minimising the following cost function:

J =
∑
i

(
νi − ni∆ν − ε`i

σ2
i

)2

, (3.28)

where νi are the observed frequencies, and (ni, `i) the associated radial orders and har-
monic degrees, respectively. The parameters ∆ν and ε` correspond to the large frequency
separations and ` dependant offsets, to be determined via the least-squares calculation.
Deriving J with respect to ∆ν and ε`, and setting these partial derivatives to zero leads
to the following system:

〈n2〉 〈n〉`=0 〈n〉`=1 . . . 〈n〉`=L
〈n〉`=0 〈1〉`=0 0 . . . 0

〈n〉`=1 0 〈1〉`=1

. . .
...

...
...

. . . . . . 0
〈n〉`=L 0 . . . 0 〈1〉`=L




∆ν
ε`=0

ε`=1
...

ε`=L

 =


〈nν〉
〈ν〉`=0

〈ν〉`=1
...

〈ν〉`=L

 , (3.29)
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where 〈1〉 =
∑

i 1/σ
2
i , 〈n〉 =

∑
i ni/σ

2
i , etc. The subscripts ` = 0, ` = 1, etc. signify

that quantity has been summed only over modes with the corresponding ` value. Using
Cramer’s rule, it is possible to solve for ∆ν:

∆ν =
〈nν〉 −

∑
`
〈ν〉`〈n〉`
〈1〉`

〈n2〉 −
∑

`
〈n〉2`
〈1〉`

, (3.30)

where we have divided the top and bottom by
∏

` 〈1〉`. The quantities ε` are immediately
deduced as follows:

ε` =
〈ν〉` − 〈n〉` ∆ν

〈1〉`
. (3.31)

At this point, is worth noting that if a particular ` value has no modes associated with
it, then including it in the above solution leads to divisions by 0. If a particular ` value
has only 1 mode associated with it, then it’s contribution cancels out. This is logical,
since only 1 point is not enough to determine the line of a slope. Hence, AIMS only works
with ` values associated with at least 2 modes.

If we want to calculate the 1σ value of ∆ν and correlations with other frequency
combinations, we need to extract the coefficients of the individual modes. This can be
done by expanding Eq. 3.30:

∆ν =
∑
i

ciνi =
∑
i

ni −
〈n〉`i
〈1〉`i(

〈n2〉 −
∑

`
〈n〉2`
〈1〉`

)
σ2
i

νi (3.32)

These coefficients can then be inserted into Eq. (3.3) to obtain the 1σ value:

σ2
∆ν =

∑
i

c2
iσ

2
i =

1

〈n2〉 −
∑

`
〈n〉2`
〈1〉`

(3.33)

One can also apply Eq. (3.6) to find the covariance between ∆ν and other seismic con-
straints.

It is important to stress that Eq. (3.33) only gives the propagation of observational
error into the final result, and in no way offers a measure of the dispersion of the frequencies
around a straight line. A more complete measure would include both effects.



Chapter 4

Model interpolation

When considering interpolation between models, there are two very important aspects to
consider:

1. how does one actually combine two or more models?

2. how does one obtain the appropriate interpolation coefficients?

These questions are addressed in the following sections. It is important to bear in mind
that in AIMS, these two steps are separate, i.e. AIMS obtains the interpolation coefficients
from the outset, then combines the models using the interpolation coefficients thus ob-
tained. Although slightly more complicated to implement, such an approach is more
computationally efficient than applying some interpolation procedure (for example from
numpy) to each individual parameter within a model, as it avoids calculating the coeffi-
cients multiple times.

4.1 Linear interpolation between two models

When interpolating between two stellar models, AIMS only interpolates the global proper-
ties and the frequencies (by matching frequencies with the same (`, n) values). Nonethe-
less, the global parameters are interpolated in such a way as to be coherent with a full
interpolation of the acoustic structure of the two models, which can be carried out in a
separate program using the interpolation coefficients provided by AIMS. Therefore, it is
important to start with a description of the interpolation of the acoustic structure and
then see what consequences this has on the interpolation of global properties.

Let us start by considering two models, Models 1 and 2. We wish to interpolate
between the two, thereby producing a third model, Model 3. Specifically, Model 3 will be
a weighted “sum” of Models 1 and 2, the coefficients being a and b, respectively, where
a+ b = 1. In what follows, we will use the indices 1, 2 and 3 to designate these models.

4.1.1 Acoustic variables

Let Ri be the photospheric radii of the different models. A first approach is to consider
that the density and Γ1 profiles of Model 3 is simply the weighted sum of these profiles

19
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from Models 1 and 2. This leads to:

ρ3(xR3) = aρ1(xR1) + bρ2(xR2), (4.1)

Γ1,3(xR3) = aΓ1,1(xR1) + bΓ1,2(xR2), (4.2)

where x ∈ [0, 1]. Furthermore, we want to make sure that if the masses of Models 1 and
2 are identical, than the mass of Model 3 is also the same. A simple way of achieving this
is by imposing:

M3 = aM1 + bM2 (4.3)

If we combine Eqs. (4.1) and (4.3) this uniquely defines the radius of Model 3:

M3 = R3
3

∫ 1

0

4πρ3(xR3)x2dx

= R3
3

∫ 1

0

4π [aρ1(xR1) + bρ2(xR2)]x2dx

= aR3
3

∫ 1

0

4πρ1(xR1)x2dx+ bR3
3

∫ 1

0

4πρ2(xR2)x2dx

= R3
3

[
a
M1

R3
1

+ b
M2

R3
2

]
. (4.4)

This can be put in the following form:

M3

R3
3

= a
M1

R3
1

+ b
M2

R3
2

, (4.5)

and leads to:

R3 = 3

√
M3

aM1

R3
1

+ bM2

R3
2

. (4.6)

Before going on to describe how the remaining global parameters are obtained, it is
useful to discuss the relationship between the non-dimensional density profiles ¯ρ(r) =
ρ(r)/ρref , where ρref = M/R3. A few simple calculations show that:

ρ̄3(xR3) = āρ̄1(xR1) + b̄ρ̄2(xR2), (4.7)

where

ā = a
M1

R3
1

R3
3

M3

, b̄ = b
M2

R3
2

R3
3

M3

. (4.8)

One can show that ā+ b̄ = 1 by dividing Eq. 4.5 by M3/R
3
3.

The pressure can then be obtained by hydrostatic equilibrium, provided a surface value
is calculated. We arbitrarily define it as follows:

P̄ surf
3 = aP̄ surf

1 + bP̄ surf
2 (4.9)

where P̄ surf is the non-dimensional surface values. This is calculated at xsurf , the minimum
between xsurf

1 and xsurf
2 to avoid extrapolating beyond the end of either model. Using the

above values of M3 and R3, it is straightforward to convert P̄ surf
3 into its dimensional

counterpart.
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4.1.2 Other variables

We interpolate other quantities as follows:

x0,3 = ax0,1 + bx0,2, (4.10)

z0,3 = az0,1 + bz0,2, (4.11)

t3 = at1 + bt2, (4.12)

Teff,3 = aTeff,1 + bTeff,2, (4.13)

where x0 and z0 are the initial hydrogen and metal abundances, t the age of the star, and
Teff the effective temperature. The effective temperature is related to the luminosity via
the following relation:

L = 4πσR2T 4
eff . (4.14)

Hence, one could calculate directly the luminosity of model 3 from its radius and effective
temperature. In what follows, however, we instead apply the less restrictive law L ∝ R2T 4

eff

and allow for differences in the proportionality constant between Models 1 and 2. By
interpolating this coefficient, we obtain the following expression for the luminosity of
model 3:

L3 =

(
a

L1

R2
1T

4
eff,1

+ b
L2

R2
2T

4
eff,2

)
R2

3T
4
eff,3. (4.15)

4.2 Finding interpolation coefficients

In AIMS, the grid of models is stored as a multi-dimensional grid of evolutionary tracks.
Each track is described by a set of variables such as mass and metallicity. Each model
along a track is characterised by an age. Accordingly, interpolation has been broken down
into two steps:

1. age interpolation: interpolate to the appropriate age along the relevant tracks.

2. track interpolation: interpolate between the relevant tracks using the models
from step 1.

One could envisage combining both steps into a single interpolation step. However, it
was decided that the above procedures offers a better way of controlling the age param-
eter, to make sure one doesn’t interpolate beyond the end of the grid. Furthermore, it
may potentially be more accurate as models are not expected to change much between
consecutive steps of an evolutionary sequence.

4.2.1 Age interpolation

Interpolating according to age is a simple 1D interpolation problem. This is done by
searching for the closest matching models using dichotomy (in AIMS, the models are sorted
according to age), then finding the appropriate linear combination coefficients for the two
closest models.

What is slightly less trivial is choosing the best age to which to interpolate on a given
track. Two options are implemented in AIMS, as described in the following 2 paragraphs.
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“Simple” age interpolation In this approach, one simply interpolates to the target
age on each track. This is the simplest and most naive approach. One disadvantage is
that if the target age is beyond the end of any of the relevant tracks, then no result will
be obtained. This is illustrated in the right panel of Fig. 4.1.

“Scaled” age interpolation In this approach, one interpolates to the scaled target
age. For a given evolutionary track, the scaled age, η, can be defined as follow:

η =
t− ti

tf − ti
(4.16)

where t is the physical age, ti and tf are the initial and final ages along the track. Hence,
this linear transformation maps the age to the interval [0, 1]. In this scheme, one there-
fore finds the initial and final ages of the interpolated track (based on the interpolation
coefficients which will be described in the following section), use these to find the scaled
age, then calculate the physical age on each track using the reverse transformation:

tj = tij + η(tfj − tij) (4.17)

where the index “j” represents each (non-interpolated) track. It is straightforward to see
that the linear combination of the tj, using the interpolation coefficients associated to
each track, does agree with the original target age:∑

j

ajtj =
∑
j

ajt
i
j + η

∑
j

aj(t
f
j − tij)

= ti + η(tf − ti)
= t

where the parameters without the index “j” denote the parameters of the interpolated
track.

Figure 4.1 illustrates both approaches, and gives an example where the “simple” age
interpolation fails.

4.2.2 Track interpolation

In AIMS, an approach based on Delaunay tessellation has been adopted for carrying out
interpolation between evolutionary tracks. A tessellation is a partition of an n-dimensional
space into a set of simplices (i.e. n-polytopes with n + 1 nodes) using the input set of
points as nodes. An example of a 2D tessellation is illustrated Fig. 4.2. Interpolation
based on a tessellation has the advantage of not requiring a structured grid and also
facilitates working in an arbitrary number of dimensions provided this is greater or equal
to 2 (excluding the age dimension). It may also be more computationally efficient as
fewer tracks are combined than if one interpolates along each direction (i.e. parameter)
separately. Nonetheless, this may also lead to a decrease in the accuracy of the results.
Figure 4.2 illustrates a 2D tessellation obtained for the grid of models used in Coelho
et al. (2015).

The tessellation is calculated via numpy’s Delaunay() method, which comes from the
Qhull library. Along with the tessellation, numpy provides methods for determining in

http://www.qhull.org/
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Figure 4.1: Comparison of “simple” and “scaled” age interpolation.
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Figure 4.2: An example of a Delaunay tessellation carried out on the grid of models from
Coelho et al. (2015).
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which simplex (or triangle in the 2D case) a given point lies. The interpolation then
consists in carrying out a linear combination of the nodes of the simplices. The relevant
coefficients, known as barycentric coordinates1, are not given directly in numpy and must
therefore be worked out from the relevant transform matrix included in the tessellation.
In what follows, we sketch how such barycentric coordinates are obtained and what some
of the properties are.

We start with a 2D simplex, i.e. a triangle, as illustrated in the left panel of Fig. 4.3.
In order to find the barycentric coordinates for point P , we need to set up a linear
system. Let us denote (a, b, c) the barycentric coordinates based on nodes (A,B,C).
Accordingly, (a, b, c) obey the following condition (as based on the interpolation of the x
and y coordinates):

−→
OP = a

−→
OA+ b

−−→
OB + c

−→
OC (4.18)

where O is the origin. Furthermore,

1 = a+ b+ c (4.19)

in order to have a proper average of the three nodes. An immediate consequence of this
is:

~0 = a
−→
PA+ b

−−→
PB + c

−→
PC (4.20)

which is obtained by subtracting
−→
OP = (a+b+c)

−→
OP from Eq. (4.18). This equation along

with Eq. (4.19) forms a system of 3 equations and 3 unknowns, which can subsequently
be solved via Cramer’s rule. For the coordinate a, this leads to:

a =

∣∣∣∣∣∣
1 1 1
0 Bx − Px Cx − Px
0 By − Py Cy − Py

∣∣∣∣∣∣∣∣∣∣∣∣
1 1 1

Ax − Px Bx − Px Cx − Px
Ay − Py By − Py Cy − Py

∣∣∣∣∣∣
=

∣∣∣∣ Bx − Px Cx − Px
By − Py Cy − Py

∣∣∣∣∣∣∣∣∣∣
1 0 0

Ax − Px Bx − Ax Cx − Ax
Ay − Py By − Ay Cy − Ay

∣∣∣∣∣∣
=

det
(−−→
PB,

−→
PC
)

det
(−→
AB,
−→
AC
) (4.21)

where Ax is the x coordinate of point A, Ay the y coordinate of A etc. One will notice
that the numerator is twice the area2 of triangle PBC and that the denominator is twice
the area of triangle ABC. Hence is the barycentric coordinate a is simply the ratio of the
area of these two triangles as illustrated in the right panel of Fig. 4.3. Such a geometrical
interpretation is easily generalised to n dimensions.

One more property which is useful to point out is that the barycentric coordinates
are all positive or zero if and only if the point P lies within the triangle (or simplex in

1This is numpy’s terminology. According to Wolfram, these would be called areal coordinates because
of the normalisation condition given in Eq. (4.19, whereas barycentric coordinates could have an arbitrary
normalisation.

2This is an algebraic value, the sign of which depends on the orientation of
−−→
PB with respect to

−−→
PC.
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A
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C

P

A
B

C

P

Figure 4.3: (Left panel) A triangle with an arbitrary point within where we would like
to carry out interpolation. (Right panel) The barycentric coordinate, a, associated with
node A, is the ratio between the surface area of triangles PBC and ABC.

dimension n). Intuitively, one can expect the signs of the numerator and denominator in
Eq. (4.21) to be the same of the point P lies within the simplex.

As pointed out above, in AIMS, the barycentric coordinates are obtained via the the
transform matrix associated with the simplex in which a given point lies (c.f. numpy

documentation for this transform matrix). However, this procedure yields all but one of
the coordinates. To deduce the last coordinate, AIMS applies Eq. (4.19).

Extrapolation

Sometimes, the MCMC algorithm chooses points which lie outside the grid. In such
a situation, it is then necessary to choose the most appropriate simplex (typically the
nearest one) and carry out extrapolation (since the point lies outside the simplex) in
much the same way as the interpolation described above. When the first version of AIMS
was released, it was mistakenly thought that numpy is also able to find an appropriate
simplex for outside points. This turns out to be false. Instead, numpy returns the index -1
in such situations. However, given the python convention according to which -1 represents
the last element of a list, tuple, or array, this mistake did not cause any errors during the
execution of AIMS and escaped detection. Further tests, however, revealed this behaviour
and the need for an new strategy for finding an appropriate simplex.

In the current release of AIMS, it was decided to use the nearest simplex (or more
simply the one with the nearest facet) as the most appropriate choice for carrying out
extrapolation. The distance between a point, P , and facet is defined as the distance
between P and the nearest point within the facet. It can be calculated via the recursive
algorithm described in Golubitsky et al. (2015). In some cases, this does not lead to a
unique solution but rather 2 or more closest simplices. Such a situation is illustrated
in Fig. 4.4. As explained in the caption, the search algorithm then selects the facet
with the smallest angle, or equivalently, the largest height, which can be calculated as
the ratio between the volume of the simplex formed of the point and the outside facet
of the nearest simplex, and the surface area of this facet. This approach for selecting
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appropriate simplices for outside points is implemented in ImprovedTessellation.py, a
Python module which extends the scipy.spatial.Delaunay class.

�
�

�
�

�����
�

�����
�

Figure 4.4: Figure illustrating the search for the nearest facet. The red dot is closest to
facet 1 and the green dot to facet 2. The light blue shaded area shows the set of points
which are at the same distance from both facets. The dark blue dot is one such point.
The algorithm which searches for the nearest facet will select facet 2, because the angle
between this facet and the dot is smaller. Equivalently, the height h2 is larger.

Once the nearest simplex has been selected, extrapolation can proceed in much the
same way as interpolation (for instance, the extrapolation coefficients will take on the same
expressions as the interpolation coefficients). Given that the point lies outside the simplex,
at least one of the coefficients involved in the linear combination associated with the
extrapolation will be negative, and one can expect the quality of the result to be somewhat
worse. Also, it is important to bear in mind that although the interpolation scheme leads
to a continuous function within the convex hull, there is no guarantee that this function
remains continuous outside the convex hull, where extrapolation is used instead. This
could potentially be a source of error. Hence, AIMS incorporates a user-defined threshold
on the absolute value of negative extrapolation coefficients which limits the region where
the extrapolation is allowed to take place. Beyond this limit, no extrapolation is carried
out and the point is rejected.
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