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ABSTRACT 

High-contrast imaging (HCI) techniques appear like the best solutions to directly characterize the atmosphere of large 
orbit planets and planetary environments. In the last 20 years, different HCI solutions have been proposed based on 
coronagraphs. Some of them have been characterized in the laboratory or even on the sky.  The optimized performance 
of these coronagraphs requires a perfect wavefront unreachable without active control of the complete electrical field 
(phase and amplitude) at the entrance of the instrument. While the correction of the phase aberrations is straight forward 
using deformable mirrors (DM), correcting amplitude defects is complex and still under study at the laboratory level. 
The next generation of HCI instrument either for ground-based (PCS instrument for ELT) or space-based (LUVOIR, 
HabEx) telescopes will require a practical and operational solution for amplitude corrections. The implementation of a 
DM located at a finite distance from the pupil is a simple solution that has been chosen by most of the projects. There 
have been only a few investigations on the optimization of the mirror positions for dedicated optical designs. In this 
paper, we give an intuitive approach that helps defining the best deformable mirror position in an instrument. Then, we 
describe its application to the THD2 and the performance in the laboratory that reaches a contrast level below 10-8 at 
distance larger than 6 λ/D. 
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1. INTRODUCTION 
High-contrast imaging (HCI) techniques are promising ways to allow a physico-chemical characterization of planets. It 
allows theoretically rejecting the light of the host star in order to observe directly planets that are up to 10 billion times 
fainter. But to achieve light rejection large enough to image rocky planets, minimizing the phase and amplitude defects 
upstream of the coronagraph is mandatory. This is possible with adaptive optics that compensate for atmospheric and 
instrumental aberrations. These active wavefront correction techniques are routinely used on large ground-based 
telescopes1 and studies are pursued to apply them to space-based instruments2. A critical point of wavefront correction is 
the ability to make an unbiased measurement of wavefront errors upstream of the coronagraph. We have demonstrated in 
recent years that we were able to do this unbiased measurement with the technique called self-consistent camera or Self-
Coherent Camera (SCC)3,4,5. This solution has been demonstrated on a test bench set up at LESIA-Observatoire de Paris 
(THD bench) by reaching contrast levels of the order of a few 10-8 both in monochromatic and for large spectral 
bandwith6,7. 

However, the level reached on the THD bench is limited by amplitude aberrations at the level of the order of 10-6 over 
the Full Dark Hole8 (FDH), ie the full field of view where the Deformable Mirror (DM) should be able to correct phase 
effects. Since a DM creates only phase, we cannot correct for both phase and amplitude aberrations at the same time. To 
reach 10-8 level, we apply phase on the DM to correct the effects of the phase and the amplitude only in a half Dark Hole, 
ie half of the correcting area of the DM7. A few studies9,10 have been pursued so far on the simultaneous correction of 
phase and amplitude but with relatively limited contrast levels11. In this paper, we study the implementation of a DM 
located at a finite distance from the pupil to optimize the correction on the THD bench. In this context, we first give a 
general approach to define the best mirror position in an instrument. Using this simplified analysis, we present the 
optimized solutions found for the upgraded THD2 design using 2 or 3 mirrors. After describing the method used to 
correct amplitude aberrations over the full field of view, we present performance in FDH. 
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2. FORMALISM FOR ELECTRIC FIELD AT FINITE DISTANCE Z 

 
2.1 Electric field at finite distance z and Talbot length 

First, we want to estimate the effect of a DM as a function of the distance to this DM to better understand how to take 
advantage of Fresnel propagation to correct for phase and amplitude aberrations. 
 
The complex amplitude describing the electric field at the origin z = 0 of the propagation distances is: 
 

𝐸!!!(𝑥) = 𝐸!(𝑥) = (1+ 𝐴 𝑥 )𝑒!" !      (1) 
 
with 𝐴 𝑥  describing the amplitude aberrations (𝐴 is of zero mean) and 𝜙(𝑥) the phase aberrations. The variable 𝑥 is a 2-
D variable. 
 
Assuming the aberrations of phase and amplitude are small enough to consider that we can develop at first order the 
effects of these aberrations. 
 

𝐸!(𝑥) = 1+ 𝐴 𝑥 + 𝑖𝜙(𝑥)    (2) 
 
This hypothesis is rather true for the THD bench. Without DM correction, phase aberrations were estimated around 10-
15 nm before correction. After correcting these phase aberrations using 1 DM, the level of amplitude aberrations is of the 
order of 6% RMS on the amplitude (11% on the intensity). 
 
The correction of the aberrations will be based on 2-D sine and cosine applied to the different DMs12. In this Fourier 
basis, each sine or cosine of period 𝑝 applied in the pupil plane corresponds to two speckles offset by 𝑝𝜆/𝐷 and –𝑝𝜆/𝐷 
of the optical axis in the focal plane. The total phase can be described as a linear sum of these sines and cosines: 
 
 

𝜙 𝑥 = 𝛼! sin
!!"
!
+ 𝛼!! cos

!!"
!! = 𝜙! + 𝜙!!!

   (3) 

 
To understand how a phase aberration converts into amplitude aberration, we only need to study a purely sinusoidal 
phase aberration introduced in z = 0:   𝜙! 𝑥 = α! sin !!"

!
  with αp small enough to remain on the small defects 

assumption described above. 
 
At z = 0, the electric field is a pure phase aberration: 
 

𝐸!
! 𝑥 = 1+ 𝑖 𝛼! sin

!!"
!
= 1+ 𝑖𝜙!(𝑥)    (4) 

 
Assuming small aberrations, Zhou & Burge 201013 calculate the electric field at the distance z: 
 

𝐸!
! 𝑥 = 1+ 𝛼! sin

!!"
!
. sin !!"

!!
+ 𝑖 cos !!"

!!
    (5) 

 
with 𝑧!, Talbot length defined by: 
 

𝑧! =
!!!

!
         (6) 

with λ the wavelength. In the case of a periodic grating, Talbot discovered that an image of a grating was repeated at 
regular distances as one moved away from it. This regular distance is called the Talbot length.  
For all distances z such that 𝑧 = ! !!

!
, we find the same pure phase variation than at z=0: 
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𝐸!!! !
! 𝑥 = 1+ 𝑖 𝛼! sin

!!"
!
= 𝐸!

!(𝑥)     (7) 

 
On the other hand, the phase vanishes and 𝐸!

! 𝑥  is changed into a pure amplitude for the distances z such that 
𝑧 = (!!!!) !!

!
: 

 
𝐸(!!!!)!! !
! 𝑥 = 1+ 𝛼! sin

!!"
!

       (8) 

 
We therefore have a conversion of the phase in amplitude, which depends on the propagation distance z and on the 
period 𝑝 of the aberration.  
 
2.2 Talbot length in converging beam 

We can also use the above equations in a convergent beam. Let’s assume a telecentric system with large F/D (F/D>30) as 
described in Figure 1. The equivalent propagation distance for a converging beam can be calculated by applying Newton 
lens formula : 
 

𝑧!" =
!!

!
= ! !

!
      (9) 

 
 
With L the distance between the plane of the aberrations and the focal plane and F the focal length of the lens placed 
downstream of the focal plane to re-image the pupil. The diameters D and d correspond to the diameter of the 
geometrical beam at the distance F and L respectively (D is the diameter of the pupil and d is the diameter of the DM 
required at the distance L from the focal plane). We can also define the equivalent period: 
 

𝑝!" =
!
!
𝑝 = !

!
𝑝     (10) 

 

The amplitude of the aberration remains obviously unchanged for L >> λ.   
Note that the position upstream or downstream of the focal plane will not change the absolute value of the propagation 
distance but only the position of the equivalent plane upstream or downstream of the pupil. We see in Equation 5 that the 
sign of z will simply change the electric field to its conjugate.  
 

 
 

Figure 1: Geometry used to compare convergent beam aberrations and collimated beam aberrations. The lens is perfectly thin and can 
be replaced by a concave mirror. 
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2.3 Application to Amplitude correction  

By placing a deformable mirror (DMz) at a distance z from the pupil, it is therefore possible to create phase and 
amplitude in the pupil plane using DMz as described in Equation 5. Choosing the right distance z for a given period of 
sine aberration, it is even possible to convert the pure phase introduced by a DMz to pure amplitude as shown in 
Equation 8. However, for a given distance z and another period p, part of the p-periodic phase induced by DMz will be 
converted into amplitude but the rest will remain phase and this phase will be multiplied by cos !!"

!!
= cos !"#

!!
. Thus, the 

remaining phase shows a chromatic variation that cannot be fully corrected by another deformable mirror DMpup that is 
located in the pupil plane. This effect can be used to correct for chromatic variation of the phase. Since the conversion 
from phase to amplitude is faster than the chromatic phase change (sinus versus cosinus for 𝑧 ≪ 𝑧!), this chromatic 
effect should be low if amplitude aberrations to be corrected are not too strong. In this paper, we will focus our study on 
amplitude correction in short spectral bandwidth. 
 
It is impossible to find a distance z that satisfies this need for a continuous range of period since zT depends on the period 
p. In a real case, introducing sinusoids on a DMz far from the pupil plane will therefore introduce both phase and 
amplitude. We will assume that the phase introduced can always be compensated by another DMpup that is located in the 
pupil plane. We are therefore interested only in the amplitude effects that can be introduced by positioning a DMz at a 
distance z from the pupil. This DMz will introduce pure phase sine functions as defined in Equation 4. From Equation 5, 
we can define the amplitude correction that such a DMz can create at the level of the pupil: 

𝐴!
!"! 𝑥 = 𝛼! sin

!!"
!
. sin !!"

!!
=  𝜙!

!"! 𝑥 . sin !!"
!!

   (11) 

 
The phase-amplitude conversion is weighted by an efficiency term (in sine) which vanishes for z = 0 and 𝑧 = ! !!

!
 with n 

an integer. 
In Figure 3, we plot the conversion efficiency as a function of the period of the aberrations and for different distances z. 
We also overlay in red the range of periods that can be corrected by a 30x30 DM. This range is defined for a DM with N 
actuators by: 

𝑑!"# 2 < 𝑝! < 𝑁.𝑑!"#        (12) 
 

With 𝑑!"# the pitch separating 2 actuators. For a 30x30 DM and a pupil of 9 mm (THD bench values), N = 30, 𝑑!"# = 0.3 
mm, thus, 0.42 mm < 𝑝!" < 9.0 mm. 
 

 
Figure 2: Efficiency of phase-amplitude conversion as a function of the sinusoid period for 3 propagation distances (25 cm, 50 cm, 1 
m). λ = 635 nm. 
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The Figure 2 shows that the conversion efficiency reaches zero for several frequencies reachable by a 30x30 DM if the 
propagation distance is greater than 25 cm. Thus, 25 cm is the largest propagation distance if we want to correct 
completely the amplitude in the FDH. We also see that the efficiency is very low (few %) for the largest periods (low 
spatial frequencies) even for z= 1m. Therefore, for small z, correction of low frequencies amplitude defects requires 
large phase on the DMz. Since our study is based on the assumption of linearity of the introduced defects, the phase 
introduced by the DMz should stay well below 1 radian. As noted earlier, large phase outside of the pupil will also 
introduce strong chromatic phase variation. Besides, it is simpler for the correction to remains in the linear zone 
(recording of interaction matrix, closed-loop behavior).  

3. AMPLITUDE CORRECTION ON THE THD2 BENCH 
3.1 Estimation of the amplitude level to be corrected on THD2 

To estimate the level of phase required to correct a given amplitude aberration, we first estimate the amplitude 
aberrations to be corrected. Using the intensity measured on the THD2 bench, we estimate the amplitude of the sine and 
cosine necessary for the correction. The aberrations of measured amplitudes are of the order of 6% RMS (on the 
amplitude, 11% RMS on the intensity) and explain very well the limitation in contrast for the THD bench (that used only 
one DMpup in pupil plane and could does not correct for these aberrations in FDH12).  

Let 𝐴! 𝑥 = 𝐴!! sin
!!"
!

 represents an amplitude aberration of period p measured on the bench.  We assume a pure 
phase sine here but we can handle cosine the same way. 𝐴!!  is estimated using the Fourier transform of the modulus of 
the electric field which is measured on the bench (the modulus is estimated from the recorded intensity). The mean and 
maximum 𝐴!!  are shown in Figure 3. 

 
Figure 3: Right: Intensity measurement of the amplitude errors in the pupil plane of the THD bench. Left: Level of the measured 
amplitude aberration projected on the Fourier basis (sines and cosines). In blue, azimuthal average value. In black, maximum value. 
Pupil image recorded at λ = 635 nm. 
 
We will have a perfect correction if: 

𝐴! 𝑥 =  𝐴!
!"! 𝑥  ↔ 𝐴!! = 𝛼!. sin

!!"
!!
= !!!!

!
. sin !!"

!!
   (13) 

With 𝛿!, the maximum stroke amplitude of the actuators of the DMz for a period p. 

We see that the distortion of the mirror depends on the distance of Talbot and 𝐴!! . 

𝛿! = !!!  !

!! !"#!!"!!

        (14) 

By replacing 𝐴!!  in equation 14 by the measurements presented in Figure 3, we can deduce the stroke required on the DMz 
for different propagation distances z (Figure 4). Note that for a small propagation distance (25cm), very strong strokes (> 
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1000 nm, > 10 radians) are required to correct the low spatial frequencies (large periods). In this case, we have 
deformations greater than the radian, which is no longer compatible with the assumption of the linearity of the defects. 
To correct the low frequencies, it is preferable to place the mirror at a much greater propagation distance but for these 
long distances, the high frequencies are no longer correctable because of the local minima of the phase-amplitude 
conversion efficiency function. 

  
 

Figure 4: Value of the maximum deformation of the DMz as a function of the period of the sinusoid (or spatial frequency) for 
three different propagation distances (0.25 m, 2.5 m, 25 m). λ = 635 nm. 

 

3.2 Multi-DM configuration of the THD2 bench 

We propose a solution to limit the non-linearity by splitting the correction of the amplitude aberrations on two 
deformable mirrors, DM1 correcting the high spatial frequencies (small periods) and DM2 correcting the low frequencies 
(large periods). The phase introduced by these mirrors and the phase due to the optics of the bench are corrected with a 
third mirror in a pupil plane (DM3). The solution proposed for THD2 can be described as below: 

- 1 DM for high spatial frequencies (requiring many actuators) and placed at about 30 cm from the pupil (DM1)  

- 1 DM for low spatial frequencies (requiring few actuators) and placed more than 2m away from the pupil 
(DM2)  

- 1 DM to correct the phase aberrations only (with many actuators) and placed in the pupil plane (DM3) 

To limit the size of the instrument, we choose to place DM2 in a converging beam. It has 2 advantages:  

1) The effective pupil distance reaches 2.5m without increasing the size of the instrument.  

2) In term of price, since we do not need a large number of actuators for this DM, we can use a smaller (less 
expensive) DM in the converging beam. 

The optical design of the THD2 bench is then simply an upgrade of the THD bench where we add a reflection on DM1 
located at 26.9 cm after the pupil plane and folding again the beam with DM2 located at 29.8 cm from the first focal 
plane of the bench (Figure 5). The bench has been upgraded with a Boston Micromachines 34x34 actuators at the location 
of DM1. DM2 will be a 12x12 actuators Boston Micromachines mirror but a flat mirror initially replaces it. The THD2 
bench optical design is described in details in Baudoz et al. 201714. The main components used for the tests described 
below are quickly recalled:  

1. An optical fiber source that is fed by a laser diode fiber (@ 637 nm, 705 nm or 783.25 nm) or a white light 
source coupled with bandwidth filter. The tests performed in the paper used the 783.25 nm laser. 

2. A fully reflective optical design creating 3 pupil planes where we place:  
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. (a)  An unobscurated entrance pupil plane of 8.23 mm and a tip-tilt mirror   

. (b)  A Boston Micromachines deformable mirror of 32x32 actuators with a pitch of 0.3 mm. 

. (c)  Lyot stops of 8.1mm (98% filtering) or 6.5 mm (79% filtering) and several reference holes to allow  
SCC measurements 

3. And 3 focal planes, two of which include:  

. (a)  For the tests described in the paper, a monochromatic Four Quadrant phase mask(FQPM15) 
optimized for a wavelength of  783.25 nm   

. (b)  A sCMOS camera of 2560x2160 pixels (400x400 used) with a readout noise of 2 e- and a Full 
Well capacity  of 15 000 e-   

4. A Boston Micromachines deformable mirror of 34x34 actuators with a pitch of 0.3 mm located at 26.9 cm away 
from the pupil 

5. Simultaneous recording of the photometric flux injected on the bench to calibrate the photometry of the 
coronagraphic images.   

6. A Lyot-based low-order wavefront sensor16 used to stabilize the beam when recording the interaction matrix 
and during closed-loop correction.  

7. A software (labview) that control all the elements of the bench (computer interaction, DM, motors, control loop, 
spectrometer, fluxmeter,…)   

 

 
Figure 5: Physical implementation of the elements on the THD2 bench  

 
3.3 Practical correction method with two DM 

To test the correction capabilities of the multi-DM configuration, we need to estimate precisely the phase and amplitude 
aberrations upstream of the coronagraph. We have already proven that the focal plane wavefront sensor called Self-
Coherent Camera (SCC) is very efficient to estimate very precisely the complete electric field6,8. The SCC uses part of 
the light diffracted by a focal mask outside of the Lyot stop to create fringes that encode the electric field in the focal 
plane. This encoding allows retrieving the effects of phase and amplitude of the beam upstream of the coronagraph6. To 
link the measured complex amplitude in the focal plane with the applied voltages on the DM, we build interaction matrix 
as described in Baudoz et al. 201214. We chose to build an interaction matrix based on sine and cosine for each DM (here 
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DM1 and DM3). A control matrix can be calculated inversing both interaction matrix with a least square minimization 
using Singular Value Decomposition (SVD).  

While correction of high frequency amplitude aberration is working with DM1 and DM3, we could not correct the low 
frequency aberrations with such an interaction matrix. Without DM2, it requires strong strokes from the DM1 mirror to 
correct low frequency amplitude aberrations. As only a small part of the phase introduced by DM1 is converted into 
amplitude for low spatial frequency, we need to use strong strokes when recording the interaction matrix. Doing so, 
DM1 also introduces a strong phase aberration in the pupil plane and thus, bright speckles in the focal plane. 
Measurement noise from these speckles prevents the measurement of the small amplitude effect in the focal plane. Thus, 
measuring the low frequency amplitude effect of DM1 requires the correction of the phase aberrations in the pupil plane 
so that the intensity of the bright speckles is minimized. 

It is possible to perform this measurement if we record an interaction matrix of the amplitude effects of DM1 while DM3 
is correcting the phase aberrations introduced by DM1. We applied this solution to record a non-linear interaction matrix 
for DM1 and then correct in the full field even the lowest amplitude frequencies. The correction steps are described 
below: 

1. Recording Interaction matrix with DM3 (as described in Baudoz et al. 201214 using 960 Fourier modes) 

2. Full Dark Hole correction with DM3 

3. Nonlinear interaction matrix of DM1 for low order aberrations (30 Zernike modes) with DM3 correcting phase 
in closed loop. The amplitude of the DM1 voltages is applied as a ramp during a 20 to 50 iterations of the DM3 
loop, then we record the electric field for each mode (Figure 6, Left) 

4.  Correction of low amplitude aberrations with DM1 to correct the low amplitude aberrations while DM3 correct 
the phase introduced by DM1 (Figure 6, Right) 

5. Linear interaction matrix of DM1 (using 960 Fourier modes) 

6. Correction of high frequencies with both DM1 and DM3 (Figure 6, Right also but with a different control matrix 
for DM1) 

 
Figure 6: Left: Recording of a non-linear interaction matrix by applying strong phase defects on DM1 to measure the amplitude effect. 
The LOWFS16 loop is also closed during interaction matrix recording to keep the beam well stabilized. Right: Closed-loop correction 
separating the estimated phase and amplitude to control one DM per effect. LOWFS loop is open to be able to optimize the centering 
of the beam on the coronagraph. 
 
3.4 Performance with two DM on the THD2 

We applied the process of correction described above for two bench configurations, both using a FQPM coronagraph 
with a laser at 783.25 nm with either a filtering of the Lyot stop of 98% or 79% in diameter. A linear polarizer is located 
at the entrance of the camera to suppress limitation from instrumental polarization. The performance reached is estimated 
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by measuring the azimuthal standard deviation of the coronagraphic images that were normalized with the maximum 
value of the PSF image when shifted away from the coronagraph center. The correction is better for 78% filtering with 
the Lyot stop (Figure 7). We reach a level below 10-8 over the FDH at a distance larger than 6 λ/D. This is an 
improvement by a factor 20 to 100 compared to the typical Full Dark Hole limitations with one DM that is drawn also in 
Figure 7. Compared to Half Dark Hole performance8, we are reaching the same contrast at the same distance of the 
coronagraph axis but with the access to the full field of view. 

Figure 7: Left-top: 1 DM correction (Lyot=98%). Left-bottom: 2 DM correction (Lyot=98%). Right: Azimutal standard deviation on 
the coronagraph image normalized with the maximum value of the PSF image when shifted away from the coronagraph center. Black 
line corresponds to the top-left image. Blue line corresponds to the bottom-left image. Red line corresponds to a configuration where 
the Lyot stop has been reduced to 79% of filtering. 

4. CONCLUSION
We defined the basis of a simple and intuitive approach for the correction of amplitude aberrations using multi 
deformable mirrors. We applied this analysis to upgrade our test bench and conclude that an interesting solution was to 
use using two deformable mirrors to correct of amplitude effects, one being dedicated to low spatial frequencies and the 
other to the median and high spatial frequencies and a third DM located in the pupil for the correction of the phase. The 
upgraded bench with two DM initially showed that the performance is improved by two orders of magnitude in Full 
Dark Hole correction with contrast better than 10-8 reached at distance larger than 6 λ/D.  
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