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The fall of a body through a planetary atmosphere is analyzed in a relatively simple, essentially
analytic, manner, emphasis being placed on the physical processes involved. © 1995 American

Association of Physics Teachers.

L. INTRODUCTION

The collision of a series of massive cometary objects with
Jupiter has rekindled interest in the problem of atmospheric
entry: what happens to an object impinging on a planetary
atmosphere?

A thorough treatment of atmospheric entry looks like a
prime candidate for numerical simulation; however, the basic
qualitative conclusions can be arrived at analytically by
means of a simple but very useful artifice, while approximate
quantitative assessments require only the services of a rea-
sonably complete hand calculator. This allows one to con-
centrate on a number of interesting physical phenomena, and
indeed to suspect that since the values of certain critical pa-
rameters are taken virtually ad hoc, the construction of a
detailed numerical model constitutes little more than an in-
teresting computer physics exercise.

II. THE FLIGHT OF A METEORITE

Consider an object of mass m (we shall refer to it as a
“meteorite” for linguistic convenience; it could just as well
be an asteroid or a comet) passing through a planetary atmo-
sphere towards the surface. At an altitude y, it will be subject
to a number of forces: planetary gravity—I shall write the
acceleration due to gravity as g; atmospheric drag—I shall
write this as D; and the centrifugal force arising from motion
around the planetary center.

We note first that a planet is a large body compared to the
altitude over which its atmosphere is significant. This allows
one at the outset to introduce two important simplifications.
First, the curvature of the surface will be neglected, and the
fall will be analyzed in a Cartesian coordinate system, the
x-axis lying in the plane of the now flat planet, the altitude y
thus becoming the vertical coordinate. Second, the gravita-
tional acceleration can be taken to be a constant, equal to its
superficial value.

Suppose that an altitude y the meteorite is moving at ve-
locity v in a direction inclined at an angle  with respect to
the vertical. The motion is determined by the following.

(1) The horizontal velocity component

dx .

F7RL sin . (1)
(2) The vertical velocity component

y

d

?};- =—v cos ¢. 2)
(3) The balance of forces along the velocity vector

dv Dt m(dx/dt)? 3
mz— mg cos WOSI/I, (3)
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where R is the planetary radius. The third term on the
right-hand side takes into account the centrifugal force
due to motion around the planetary center; we can in
this way (if we wish) take proper account of all the
forces, while continuing to use the flat planet approxi-

mation.
(4) The balance of forces perpendicular to the velocity
vector
dy ) m(dx/dt)?
my — - =mg sin Y- —_R+y 4)

The second term of this equation again takes account of
the centrifugal force.

A number of further simplifications are in order.

We are assuming that the moving body does in fact de-
scend; this implies that the centrifugal force must be smaller
than the weight, and we shall in fact assume that it is small
enough to be negligible. Consequently, Eqs. (3) and (4) be-
come

dv
m——=—D+mg cos i,

7 )
d
mv —Jl—t/j=mg sin . (6)

Now, entry velocities are typically in the tens of km/s,
while gravitational accelerations are of the order of 10 m/s%;
consequently, over most of the flight trajectory g/uv is a neg-
ligible number of inverse seconds, and we can consider the
flight to occur at essentially constant angle ¢ since ballistic
descent times are never very long. This of course will not be
true close to the planetary surface; therefore the details of
what happens at low altitudes and for small velocities should
be taken with a pinch of salt.

The drag force D is produced by two distinct processes.

(1) The air flow in the immediate vicinity of a moving sur-
face must be at rest with respect to it; viscous interac-
tions act therefore as a force opposing motion, while
transferring energy to the surface, heating it; this is
known as “slip friction” in the aerodynamic community,
and is obviously a rising function of the surface over
which the air flow occurs.

As air flows around the moving obstacle, a pressure dif-
ference builds up fore-aft, again opposing motion. This
is often called “pressure drag.”

)

The relative importance of these two components is a
function of the shape of the obstacle; slip friction will be
relatively small for a short disc moving perpendicular to its
surface, but relatively large for a wide, flat winglike structure
moving in a direction parallel to the surface.
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One expects that for an irregular object such as a meteor-
ite, the pressure drag will be the dominant factor. Consider a
surface oriented perpendicular to the velocity vector; in the
most extreme case, atmospheric molecules will be reflected
from the surface, perfectly and perfectly perpendicular, so
that (neglecting what happens behind the disc) the drag is
just the rate of transfer of momentum from the atmosphere to
the object

D=2p,v°S, (7

where p, is the atmospheric density and S the cross-sectional
surface area.

In practice, of course, material flows around the body, and
pressure builds up behind, reducing the fore-aft pressure dif-
ference; the pressure drag is more generally written as

D=r1p,v?Ss, (8)

where 7=<2 takes into account the complexities of turbulent
flow around an arbitrary obstacle, and is a function of veloc-
ity. At the speeds in which we shall be interested (largely
supersonic):

7—0.5.

Readers might note that in the meteoritic and aerodynamic
community, the right-hand side of Eq. (8) is conventionally
divided by two, so that the conventional drag parameter is
twice as large as the value of 71 shall be using here. To
minimize the bookkeeping of unimportant constants, I shall
not follow this convention here. And in the same spirit, I
shall consider in the rest of this paper a cubic body, so that

§=(m/p)*", )

where p is its density; an unimportant factor close to 1 mui-
tiplies the right-hand side of Eq. (9) for noncubical bodies
whose principal axes are all of the same order of magnitude.

Now, within an atmosphere and for masses less than, say,
a few million kg, so long as the velocities are in the km/s
range or over we can see that the drag force is much more
important than the weight, allowing one to simplify the equa-
tions still further by neglecting the weight term in Eq. (5).
Even for much larger masses, this term is of little impor-
tance, since its cumulative effect is small compared to the
cumulative effect of the drag over the distance that a projec-
tile travels in the atmosphere.

The drag force is a function of the atmospheric density p, ;
in an isothermal atmosphere, the density follows an exponen-
tial law

P.=po exp(—y/H), (10)

where H is called the scale height and is equal to
kTR*/GMu; k and G are, respectively, Boltzmann’s con-
stant and the gravitational constant, T is the temperature, M
is the mass of the planet, and u is the molecular weight of
the atmosphere. py is the atmospheric density at the planetary
surface. Planetary atmospheres are not isothermal; neverthe-
less, it is useful to characterize an atmosphere over a certain
altitude range by an exponential law of the type of Eq. (10),
in which case p, and H are simply best-fit parameters to a
measured (or modelized) density variation. The scale height
does not exceed a very few tens of km for the known planets.

Finally, therefore, the equations describing the fall of a
(not too massive) meteorite through a planetary atmosphere
reduce to the much simplified (but of course only approxi-
mate) form
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dy
= 1
ar v cos i, (11)
dv Tov?:
@ e (12
where we obtain the very useful

dv vt

= —n eVH, (13)

dy mPp?P cos ¢
And this is where the fun begins; it will be useful to keep
in mind certain vital statistics pertaining to the Earth and
Jupiter.
The Earth:

atmospheric scale height H~6.7 km,

atmospheric density p, at y=0~1.7 kg/m>,

atmospheric molecular weight~30Xproton mass,
typical entry velocity~15 km/s,
$~45° on average.

The y =0 level corresponds of course to the terrestrial sur-
face; although the actual superficial density is closer to 1
kg/m®, these parameters represent a good fit to an exponen-
tial atmosphere up to an altitude of well over 100 km.
Jupiter:

atmospheric scale height H~22 km,

atmospheric density p, at y=0~0.2 kg/m’,

atmospheric molecular weight~2Xproton mass,

parabolic entry velocity~60 kmy/s.

Note that in the case of Jupiter, the y =0 level is merely a
convenient reference altitude, where the pressure is equal to
1 bar (10° N/m?); the solid surface of Jupiter (if it exists) is
of course buried at depths considerably greater than this.
Consequently, negative values of y are perfectly legitimate in
calculations involving Jupiter—they simply correspond to
depths below the reference level. Strictly speaking, the above
figures apply to altitudes extending to about 100 km above
the 1 bar pressure level; for the phenomena which take place
higher up, it is preferable to take a 32 km scale height, with
an equivalent “1 bar level” density of about 0.03 kg/m®.

III. ENERGY LOST BY THE METEORITE

Drag slows the meteorite down; its kinetic energy is trans-
ferred to the atmosphere via three distinct paths.

(1) The atmosphere through which the object is moving is
heated directly by an adiabatic compression.

(2) The body is heated; its subsequent reradiation also heats
the atmosphere, while its surface will lose material.

(3) The material which is lost from the projectile through
vaporization and/or melting ultimately mixes its kinetic
energy into the atmosphere.
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These three contributions are of course not unrelated,
since their ultimate source is the descending object’s kinetic
energy. It is however useful in the spirit of a simplified
analysis to separate certain components.

The total rate of change of kinetic energy, the ballistic
power lost by the meteorite W, is given by

totW___ i mvz =my — dv U d__dragw+evW
dt\ 2 dt 2 dt ’
where the first term on the right-hand side represents the
contribution from a change in velocity for a constant mass,
and so can be considered the power source for items (1) and
(2) above. From the previous section, we know its value to
be

dragy = 7p,038.

The second term represents the energy contribution to the
atmosphere from material ejected by the moving meteorite,
and so is the source for item (3) above.

A. Direct atmospheric heating

It is important to note first that meteorite entry velocities
can be in the tens of km/s, while the velocity of sound in a

gas, ~ VykT/up (y being the ratio of specific heats of the
atmospheric gas), is typically in the hundreds of meters per
second range: much of the atmosphere is thus penetrated
supersonically. Under such conditions, a shock forms in front
of the moving object: in front of the bow shock, the atmo-
sphere is largely undisturbed, while within the shock the gas
is compressed and heated. The reason is not hard to fathom:
the atmosphere immediately in front of the obstacle must
adjust itself so that its local sound speed is higher than the
relative velocity of the meteorite and the gas flowing towards
it, in order that the atmosphere be able to react to the pres-
ence of the object. This implies that the gas is compressed
and heated, raising the local sound speed, while the flow
velocity is lowered locally.

The compression is adiabatic; however, the transition oc-
curs over such a short distance (on the order of the mean free
path of the atmospheric molecules) that it cannot be consid-
ered even quasistatic, and so conditions on either side of the
shock are controlled essentially just by the continuity equa-
tions for mass, momentum, and energy flow, augmented by
the perfect gas law. Standard texts such as Anderson,’ should
be consulted for a detailed general account of shock flows; a
somewhat simpler analysis, limited to (in the present con-
text) the relevant case where the specific heat ratio vy is equal
to the monatomic value of 5/3, can be found in Celnikier.?

The important results to note for the present purpose con-
cern the asymptotic behavior of the shock when the flow
velocity is several times the local velocity of sound; writing
P,p,n, T, u, and v for the pressure, density, particle number
density, temperature, molecular mass, and flow velocity, re-
spectively, and distinguishing conditions within and without
the shock by the subscripts “in”” and “out,” respectively, it
turns out that

Uin _ Pout 1

- 14
Vou P 4 (14)
ik T 3p v
Pu= P Ty =5 as)
mn
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Uow and p,, are of course the instantaneous speed of the
meteorite v and the local atmospheric density p,, respec-
tively.

Substituting 15 km/s for the flow velocity (it makes no
difference whether the body is moving with respect to the
gas, or vice versa) and 30 proton masses for the molecular
weight, we find from Eq. (15)

2
3vout Pout

=

T~ B, Ham
=3u;,v2/16k
~10° K in the case of the Earth. (16)

Thus, a meteorite entering the terrestrial atmosphere will be
surrounded by a region of very hot gas; of course, the tem-
perature will drop as the meteorite’s speed decreases, but
even at a few km/s, the temperature will still be above 1000
K. This is why it is perfectly legitimate to use y=>5/3: at
these temperatures the molecules will be dissociated into at-
oms, which at the higher speeds will even be ionized. Taking
into account dissociation and ionization, the highest tempera-
tures are lowered by a factor of about 4. The meteorite is
thus surrounded (at least for a significant part of its trajec-
tory) by a medium at about 25 000 K—which is still pretty
hot. This is largely the source of the light emitted as the
meteorite descends.

Note that for Jupiter, the mean molecular mass of the un-
dissociated atmosphere is about 15 times lower; however, the
entry velocity is about 4 times higher, and so the final con-
clusions are substantially the same.

These estimates are of course upper limits, for the case
where the flow velocity is very much higher than the local
sound velocity. Moreover, no account has been taken of vari-
ous cooling mechanisms which will inevitably be acting, nor
of the effect on the surrounding medium of the hot material
shorn off the meteoritic surface. Nevertheless, this crude es-
timate already gives an inkling of what is in store for the
meteorite.

B. Meteoritic heating

The hot atmosphere surrounding the descending body will
heat its surface, either through the absorption of part of the
radiation emitted by the shocked gas, or through frictional
interaction with the gas flow.

Now, very roughly, the maximum rate at which kinetic
energy can be transferred to the obstacle will be a function of
v Xv;cv®, while the rate at which radiation energy will be
absorbed is a function of T‘,‘nfxv (in practice, note that radia-
tion energy is absorbed at a rate which depends on a power
of the velocity which lies in the range 5-12, according to the
object’s shape, see Anderson).?

In principle, the total energy transferred is the sum of fric-
tional and radiative contributions; however, since these two
terms are very different functions of v, they presumably
cross at some limiting value of the velocity, sufficiently far
below which the main source of heat will be friction, while
at sufficiently high speeds radiation heating will dominate.
Frictional heating is relatively inefficient; when radiative
heating dominates, the transfer of energy is rather more effi-
cient, since on the order of one-half of the radiation emitted
by the shocked gas can illuminate the meteoritic surface.

The speed vy, at which the contributions are equal is the
intersection of the two energy functions, and we may locate
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this crossover point by equating the kinetic power absorbed
by the meteorite, W (some fraction f of dgw), to the power
radiated by the shocked gas towards the object, S oTH/2
(where o is Stefan’s constant, and the factor 2 takes rough
account of the fact that the shocked gas radiates not only
towards the meteorite but also away from it). Thus

W=f W= frp.v°S, 17)

while the radiative power absorbed by the surface, assuming
that the shocked gas is dissociated and jonized, is given by

SoT} eSa 3uv?
€ ~ (18)
2 2\ 64k

where € is the absorption coefficient of the surface. Equating
these two expressions gives us an expression for the limiting
velocity vy, beyond which radiation rapidly becomes the
dominant influence

2 frp,\ 13 64k
Ulim™ co W

It might perhaps be worthwhile emphasizing that the
equality of Egs. (17) and (18) is not implied over the entire
velocity range, and thus does not impose a particular func-
tional dependence of f7/e on v, but merely fixes the velocity
Uyjm Where the two energy terms make an equal contribution
to the power absorbed.

Now, the ratio f/e is likely to be in the range 0.1-0.01, but
this particular result is not unduly sensitive to its exact value
since it appears raised to the power 1/5. A more important
factor is the atmospheric density, through its exponential
variation with altitude. Putting (2 f7/€)"2~0.5, one finds
that in the case of the Earth, the limiting velocity works out
to about 4 km/s at an altitude of 50 km, rising to a little under
8 km/s at 25 km. In the case of Jupiter, it turns out to be
about 0.1 km/s at 1000 km above the reference level, rising
to about 40 km/s at 100 km and 60 km/s at 50 km.

We thus see that radiative heating will certainly dominate
in the upper parts of the atmosphere for objects entering with
at least a parabolic velocity; however, the power actually
dissipated at very high altitudes is in fact very small. As the
meteorite penetrates the atmosphere, its speed decreases and
the limiting velocity rises; a relevant altitude to consider is
that at which power dissipation is a maximum, which for a 1
ton nonevaporating body in the case of the Earth [see below,
Eq. (22)] turns out to be in the region of 10 km. A re-entering
astronaut might justifiably be wary of trusting his life to such
a rough and ready analysis; interestingly enough, Anderson,’
states that radiation heating was in fact slightly less than
friction for the Apollo command module returning from the
Moon.

Be that as it may, the power absorbed by the meteorite
from whatever source will (almost) always be some fraction
f of the kinetic power W dissipated during the descent;
the maximum value of f will be about (0.5Xthe absorption
coefficient of the surface)~0.2 when radiative heating by the
shocked gas dominates, but f is in general somewhat less,
and will often be a function of speed.

For our purposes (atmospheric entry of cosmic matter),
f=0.1is a reasonable compromise value biased strongly to
the higher speeds which favor radiation heating.

One exception to this rule should be noted. It can conceiv-
ably happen that as the projectile penetrates to the lower
atmosphere, the increased energy dissipation is consumed by

4/5
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increased ionization of the shocked gas (in the case of atmo-
spheres whose atoms can be multiply ionized); in such a
case, the temperature of the shocked gas may well stabilize,
and if its radiation dominates the meteoritic heating, the
power absorbed by the meteorite in this regime will no
longer depend on velocity. 1 shall ignore this possibility,
which should not in any case play a significant role for Ju-
piter.

The heated surface of the meteorite, at temperature T,
will

(1) radlate energy, essentlally at a rate given by Stefan’s law
6SoT?, assuming for simplicity that the entire surface
radiates uniformly—the surface area of a cube is six
times that of a face;

(2) sublimate and/or melt, depending on the temperature
reached.

Thus, even if the meteorite does not break up under the
action of the dynamic pressure, it will always gradually lose
material. _

It is essential to assess the relative importance of various
processes, and to do this we shall first assume that the ma-
terial loss is negligible; this allows one to integrate Eq. (13)
trivially, obtaining

TpoH

— —y/H
b
mi;§p2;3 cos ¢ (19)

v=v, exp
where v, is the entry velocity. Notice that the object’s mass
appears in this expression only to the power 1/3 (albeit as the
argument of an exponential); the qualitative behavior of the
descent trajectory is not expected to be a sensitive function
of the mass, nor of the way it changes during the flight.

Substituting in Eq. (17), the meteorite absorbs energy at
the rate W:

m 2/3
P
37poH
Xexp) — —rar—— e Y.
exp{ o7 cos 0 e (20)

This quantity is a product of an exponential which rises with
decrease in altitude, and another which falls; consequently,
there must be a maximum W,, which is essentially located in
the usual way

fmvz cos
m— 3 H e o (21)
The maximum occurs at an altitude y,, given by
37poH
Ym=H In 7 cos 4 (22

We shall find these parameters useful to simplify notation
later on.
It is similarly easy to show that the deceleration dv/dt

suffered by the meteorite during its descent goes through a
maximum

dv vf cos
dt| ~—~ 2He °

at an altitude equal to
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27poH
Hin s o s v (23)

The deceleration is a measure of the mechanical stresses to
which the object will be subjected; in this constant mass
case, the altitude of maximum deceleration differs from that
of maximum power absorption by a fixed (small) constant.

The appllcatlon of these results i in the context of spacecraft
re-entry is discussed in Celnikier,” as is also an amusing
analogy with the way the electron density varies with altitude
in an ionosphere.

Using W,, and y,,, the power loss Eq. (20) can be ex-
pressed in the very compact parametric form

—— =eUn ™V exp[]1—em=yV/H], (24)
m

Let us continue to ignore possible sublimation and melting
processes, and merely assume that thermal equilibrium has
been established between the radiation of the heated surface
and its absorption of energy; this will give an estimate of the
highest temperature Tp,. to which the meteorite can ever

aspire:

fmcosy

6SaT: ~ v,,

max” 3He
so that

1/4
1712176, 3/4 feosy
Tmax~m ™ p 0, (180'He

The maximum temperature is clearly a sensitive function
only of the entry velocity; even for kg masses (which in fact
may not survive to reach y,, but that is irrelevant for the
present illustrative purpose) and an entry velocity of around
15 kmy/s in the terrestrial atmosphere, the superficial tempera-
ture of the body would reach on the order of 10* K if the
body could eliminate the absorbed energy only by radiation.

However, even an ordinary piece of iron does sublime
(albeit poorly at room temperature). Could a meteorite be
cooled significantly by the ejection of material from its sur-
face?

This problem can be studied in much the same way as the
evaporation of a comet under the 1nﬂuence of solar
radiation—see, e.g., Celnikier and Meyer.*

Writing the latent heat of vaporization per unit mass of the
meteoritic material as L, the power needed to maintain a
mass flux F,, (mass per unit surface area per unit time) from
the entire surface, *’W, is given by

W=6SLF,,,

the factor 6 again taking into account the fact that the total
surface area of a cube (the chosen shape) is six times that of
a single face. Thus, assuming that evaporation has not taken
away so much material along the trajectory that Eq. (21) for
the maximum power has been invalidated, equating power
absorbed and power “used” to radiate and to evaporate, one
finds

W, =6SoT*+6SLF,,, (25)

Suppose that from the point of view of the meteorite’s
surface, the vapor remains in equilibrium with it (surely not
a very good assumption, but quite adequate for our present
purpose which is just to obtain a rough idea of the thermal
conditions); the numerical flux of evaporating particles, F,
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(number per unit surface per unit time), is then propomonal
to the saturation vapor pressure P, , with (see Tabor)’

F,~n(u)/4, (26)
P =nkT, (27)
where

n=number density of evaporated particles,

(u)=mean thermal velocity of evaporated particles

_[&kT
- I ] (28)

m

and u, is the molecular mass of the evaporated particles.
Consequently the mass flux is given by

M
F o= piFn~P ey \/ﬁ,’:-f : (29)

Consider two very different materials—iron and ice. The
latter is very volatile; the former is its antithesis. The satura-
tion vapor pressure of any material increases with tempera-
ture in an approximately exponential way (see Tabor);” fit-
ting the appropriate exponential law to the values tabulated
in Gray,® one obtains in a straightforward way

p 7X 10! exp(—4.7X10*T) N/m? for iron
sat” | 1,8x 10 exp(—5.5%10%T) N/m? for ice.
(30)

Note that although the saturation vapor pressures of differ-
ent materials are very different, and have a very sensitive
dependence on temperature, the latent heats per unit mass (of
vaporization and melting) cover a much smaller range, and
are much less dependent on temperature; for example,

6x10° J/kg for the vaporization of iron
"~ |2Xx10° J/kg for the vaporization of ice.

This fact is related to the molecular structure of matter.

Finally, substituting Eq. (29) in the power balance equa-
tion, Eq. (25), and rearranging, we obtain at the point where
energy is being dissipated at a maximum rate

113,213
m cos LP -
f ¢v3—0'T4 bt sa M ' (31)
18He /T 27k

The saturation vapor pressure is an exponential function of
temperature; consequently, at sufﬁc1ently low temperatures,
the thermal radiation term, o7, dominates the right-hand
side of this expression, but at some value of temperature the
two terms are equal, and thereafter the second term rapidly
becomes, by an overwhelming factor, the more important of
the two. The two terms are equal, for the case of iron, at
T~2000 K, and at T~200 K for the case of ice. Now, the
value of the left-hand side of the above expression is several
times 10® even for kg masses (and for finite values of cos ¥
and f ), which is very much larger than the value of aT* at
these temperatures—the radiative term may therefore be
safely neglected, since the second term rises rapidly with
temperature. Thus, in practice, the power balance equation
reduces to

fm”3 23 cos 3=LPSat Mom 32)
18He ¢ T N 27k’
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where the appropriate expression for P, is taken from Eq.
(30). Equation (32) is solved easily either by graphical
means or iteratively. We find immediately that a 1 kg mass of
iron entering the Earth’s atmosphere will reach a maximum
equilibrium temperature of between 3000 and 4000 K for a
value of f in the range 0.002—0.2 respectively; the equivalent
equilibrium temperatures in the case of ice are ~350 and 500
K. It is amusing to note how different these temperatures are
from the nominal tens of thousands of degrees that the me-
teorite’s surface would have reached in the terrestrial atmo-
sphere in the absence of vaporization, even for the case of a
relatively nonvolatile material such as iron. One can thereby
appreciate how useful and efficient are the ablative shields
on the front surfaces of ‘“traditionally” constructed re-
entering spacecraft—suitable materials have a saturation va-
por pressure between that of ice and iron.

These temperatures are of course a rising function of mass
and entry velocity; however, mass only appears to the 1/3
power, and the equilibrium temperature is in any case very
insensitive to even quite large changes on the left-hand side
of Eq. (32), since evaporation serves as a rather good ther-
mostat. One might expect the temperature range calculated to
be typical for a wide variety of conditions, but this can be so
only up to a point, because the rapid rise of the saturation
vapor pressure, Eq. (30), starts to flatten out above a critical
temperature; thereafter, evaporation is increasingly less able
to brake the temperature rise so that the meteorite is forced to
rely on reradiation (a much less efficient process) to elimi-
nate the power absorbed.

Note also that even when vaporization is taken into ac-
count, the maximum equilibrium temperatures are above the
melting points of both materials; ice melts at 273 K, of
course, and iron at ~1500 K. And in effect, the surfaces of
meteorites which reach the Earth’s surface show signs of
melting. In principle, melting could lead to a more rapid
wastage of the meteorite, since the latent heat of melting is
lower than that for vaporization; however, the melted mate-
rial can only be carried away by the atmospheric gas flow,
whose coupling to the meteoritic surface is far from elemen-
tary; in the spirit of simplicity, we shall limit ourselves to
vaporization as the only ablative process, keeping in mind,
however, that a complete analysis should take into account
material run-off due to melting.

1V. MASS LOST BY THE METEORITE

We have seen that, at the point where the meteorite is
losing its kinetic energy the fastest, that fraction f which is
absorbed by the body is “used” for the most part to evapo-
rate superficial mass. Let us assume that this remains essen-
tially true over most of the descent trajectory. In that case the
total mass loss rate dm/dt is given by

dm f““‘gW_fmv dv

@ L L ar (33)
whence
vi—v?
m/m,=exp f T (34)

where the index e indicates entry values.
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With this relation, we can now aspire to a better estimate
of the way the descent velocity varies with altitude. The most
rigorous way to do this is via a special function Ei(u), which
is tabulated for various values of the argument u; this is
explained in Ref. 7.

However, 1 see little virtue in rigor when the fundamental
data on which the final result depends are flawed (we shall
see below that f/L is a critical parameter whose value deter-
mines everything, but about which we really know very little
in the particular context of asteroidal and cometary bodies,
and certainly not as much as one would like in the case of
meteoritic parent bodies); Zahnle,® shows one way to analyze
the meteor problem in an analytic way (essentially in the
context of the Venusian atmosphere), but I shall use here a
rather different technique which also circumvents the neces-
sity of finding a table of Fi(u), and allows all the calcula-
tions to be carried out sufficiently accurately on a scientific
calculator (albeit preferably equipped with a rudimentary
graphics capability). Analytical expressions have the su-
preme advantage that one can see immediately how various
quantities scale.

To begin with, we substitute the above mass variation into
the differential equation for v, Eq. (13), giving

dv PoUT

dy 13,213 oS (WP —0)/6L

eV, (35)

cos i

This equation has no solution in closed form. We can “con-
struct” an approximate solution; however, any such approxi-
mation must at the very least satisfy the boundary conditions
that dv/dy—0 in the limits of v —0 and v —¢, and of course
that v itself tends to 0 and v, in the limit of y ——o and +oo,
respectively. One can invent many ways to do this; the easi-
est is to simply modify the constant mass solution, Eq. (19),
by introducing a multiplicative parameter y in the exponent

XTpoH

minZ/3 cos Y

v=uv, exp( - e'y/”). (36)

To find ““the best” value for the parameter, we first substitute
this “modified” solution back into Eq. (35), obtaining after a
little manipulation

2
[4

x=exp{ % (1 ~v2/v2)]. 37

Now, by its construction, the modified solution (36) certainly
has the correct asymptotic behavior; of course, it will strictly
satisfy Eq. (35) at only one particular altitude, but since the
boundary conditions are also satisfied (and since one does
not expect unpleasant discontinuities or other exotica), it can
be considered a reasonable approximation to the exact solu-
tion of the original nonintegratable Eq. (35). We are in some
sense ““fitting” a plausible parametrized guess. The point at
which we force (or “collocate”) the solution to be exact is a
rather delicate matter; it should be done if possible at a point
where the parameters of the falling body are changing par-
ticularly rapidly. A reasonable compromise is to collocate at
the point where the kinetic energy of the meteorite is chang-
ing fastest—in this way we take optimal account of changes
in both mass and velocity.
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The time rate of change in kinetic energy is given by
dragW

dragy = rp,038

2/3
me .
(5] i

37peH x
Xex —rar—— e 'H
p[ m,”p* cos ¢
2xpoTH -
Xexp{ [ ( R cos¢e YH| 114,

(38)

This function is a product of an exponential which rises as
the projectile penetrates the atmosphere, and two exponen-
tials which decrease; consequently there must be a maximum
along the trajectory. To locate its position, it is advantageous
to simplify the appearance of the function by writing it in
parametric form using the quantities W, and y, of Sec.
III B, giving

dragyy e(y,,,—Y)/H fvg
W =—f——exp{1—x 3L
2xe(ym-y)/H
X exp( I w— 1
2
u fve 2
= _ 4+ — —2xuf3 _,
fexp[l xu+ 37 [e 1]], 39)
where

u=e(ym_Y)/H_

In the form of Eq. (39), the time rate of change of the
bolide’s kinetic energy is really much easier to manipulate.
Differentiating with respect to u and equating to zero, we
find immediately that the maximum (the point where I have
chosen to collocate) occurs at u.,, where

2 fv?
Xucol+ 9L XuCO zxucol/3 = 1 * (40)
This transcendental equation is easily solved, iteratively or
graphically. Note that the value of yu (and so also of y and
U, individually) is independent of the mass and density of
the projectile, but depends only on quantities related to the
entry trajectory, the latent heat of vaporization L of the ma-
terial, and on the fraction f of the bolide’s kinetic energy
which goes into evaporating. Substituting the solution from
this equation into Eq. (36) gives us the velocity at the collo-
cation point

and so allows the value of x to be calculated trivially from
Eq. (37).

For example, the value of  for a piece of iron entering the
Earth’s atmosphere (assuming f=0.2) is about 1.4; it rises to
about 1.6 for the same piece of iron entering the jovian at-
mosphere. Of course, the smaller the value of f, the closer
we are to the constant mass case, and so the closer y is to
unity.
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Note that the heuristic technique employed here to obtain
an approximate analytical solution to an equation which has
no solution in closed form is very powerful, but its success
does hinge on some a priori knowledge of the way the so-
lution should behave asymptotically, and of course on an
absence of dlscontmultles, the reader is encouraged to con-
sult Action and Squire,’ for a general survey of the method,
while some examples related to stellar structure are given in
Celnikier.'

V. TOTAL ENERGY TRANSFERRED TO THE
ATMOSPHERE

In Sec. III A, we saw how the immediate environment of
the projectile was affected. It is now opportune to reflect in a
little more detail upon the total power transferred to the at-
mosphere by the descending object, since ultimately that is
what one might expect to be able to measure.

The atmosphere is energized by two (related) processes.

Drag: the change in speed of the descending body leads to
a transfer of energy into the bow shock, and a transfer of a
(lesser) amount of energy to the body, whose surface reacts
by vaporizing. Even if the radiation from the shock domi-
nates, the former contribution is rather larger than the latter,
so that drag will essentially transfer to the atmosphere the
power YW,

Vaporized material: matter which is ejected at the instan-
taneous speed of the meteorite mixes with the ambient atmo-
sphere and transfers its kinetic energy to it. This corresponds
to the power ““W:

2 2
ev =v_dm=drag fl)

2 dt 2L

using Eq. (33).
Thus ultimately, the atmosphere receives a total power
tOtW:

fv?
2L

fv?
totyg7 — drag +  drag —
W Wil W 3L

since over much of the trajectories resultmg from planetary
encounters and for typical materials, fv*/2L is very much
greater than 1. Consequently (taking into account the mass
variation along the descent)

2/3
f 70V,
tot —y/H
"= (P) N

S5TpoH x
x T A3 23 e o v
exp{ mPp? cos ¢e
2
U, 2xpotH -
Xexp{ 3L [e p( We yH| 1]},
e

(41)

As one might expect, this function is similar to Eq. (38); it
has a maximum which is found in much the same way. As
before, we simplify the appearance of the function by writing
it in parametric form using the quantities W,, and y,, of Sec.
III B, giving
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tot 2
w _De eOm—YWH exp[ 1- STX eUm—YVH

W, 2L
2xem YVH
SR T

v S5xu fu?
Eu—eexp{l—i-+f—-e-[e—2’("/3—1]], (42)

fol
3L

with as before
u= e(Ym—Y)/H.

Differentiating and equating to zero, we find immediately
that the maximum occurs at ., , where

3 9L

This transcendental equation is as easy to solve as Eq. (40);
indeed, to all intents and purposes, it is identical to it, since
in practice 5/3<2 fv?/9L. Finally, therefore, the altitude at
which the power dissipation is a maximum, y ., , taking into
account mass loss from the descending projectile is given by

37poH

173 273 :
m,” p“ Uy COS Y

At this altitude, the power dissipation to the atmosphere is
given by

5x 2 fxvl
umu(—’f+ 2 Jxve e—ZX"max/3) =1, (43)

Ymax=H In (44)

Ml gV COS U
_ emax" e e

Wmax HL =5 XUpax /3
2
ve
Xexp[];—L (e_zx"mx/s—l)]. (45)

With these quantities, the power delivered to the atmo-
sphere, Eq. (41), is conveniently written in the form

w u Sa u fvle=243
=——exp| 5 l—u— exp| — ——%+—

Woax  Ymax 3 max 3L
2a u
X l—exp?(l—a)“, (46)
where
a=XUpay-

Beyond the maximum, the power delivered to the atmo-
sphere drops precipitously. Defining a “terminal” altitude as
one where the power delivered to the atmosphere has
dropped to some sufficiently small fraction, say 107>, of the
maximum, the corresponding value of the ratio w/u,,,,
which is in fact equal to exp(y,,.,—¥)/H, can be found from
Eq. (46). As for all the numerical applications here, this can
be done graphically or iteratively; in the latter case, however,
since the equation has some peculiarities, the easiest and
most efficient technique turns out to be a simple “stepping”
procedure, where the value of u/u,, is simply increased
from 1 by suitably arranged steps until the desired value of
W/W .y is reached.

Another useful quantity is the altitude of maximum decel-
eration, easily found to be

27poH x

Hln_'ﬂg—"‘—*‘—'.
m,”p*? cos
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Comparing this expression with the altitude of maximum
power transfer to the atmosphere, y ., , one notes that there
is no a priori reason why they should be similar, in contrast
to the constant mass case [compare with Egs. (22) and (23)].

Finally, a useful “figure of merit” definable at each point
on the descent trajectory is the ratio of the instantaneous
kinetic energy of the projectile to the instantaneous rate at
which energy is being dumped into the atmosphere: this
gives an idea of the time scale ¢.,4 for which the process
could continue from that point if the conditions remained the
same. One finds

va/z m1/3p2/3L

t = =
end totW prav 3

Clearly, this time scale decreases as the projectile penetrates
the atmosphere; at the altitude y.,, where power is being
transferred maximally, the time left to “terminate” from the
maximum, f..., is given by

47)

t term— maxtend
3HL fv?

= —2xUmax /3
= X¥max gx e max/Z— 1],
fumal, COS W Pl 6L [ ]

(48)

One notes that this figure is completely independent of mass;
however, it is rather sensitive to the value of f.

VL. SOME COMMENTS

The technique used here to find an approximate solution to
what is essentially a nonintegratable problem allows one to
judge immediately the sensitivity of the meteoritic (or what-
ever) trajectory to various parameters.

Consider for the sake of argument a 500 kg iron sphere,
entering the terrestrial and jovian atmospheres at 45 degrees
to the local vertical. Using the above relations, it is easy to
evaluate the salient features of the trajectory; some figures
are given in Table I.

A number of interesting points emerge.

As one would expect from the analytical expressions, the
results are critically dependent on the value of f (or rather,
on the ratio f/L), particularly so for the jovian conditions.

The descent trajectory is thus a sensitive function of f, v,
and L. However, while the entry velocity can be known rela-
tively well, the latent heat of vaporization is in general not
known to better than a few hundred percent since the exact
composition of the objects is poorly understood, and the
value of f is known to at best an order of magnitude, since it
depends on the surface of the object -+ of which we can only
surmise the nature. A conventional value of 0.05 is often
quoted for low velocities: it has little practical justification.
However, choosing the wrong value of f can completely alter
our picture of meteoritic penetration; we can see from Table
1 that the point of maximum power transfer is moved by
nearly 60 km (3 scale heights) in the jovian case over the f
range considered. Indeed, we usually know neither the mass
nor the density of entering bodies; the altitude of maximum
power transfer (important for assessing how the atmosphere
itself will be affected) depends on p“>m?/ 3 U max » and SO quite
plausible swings in the density and mass easily accommo-
date the changes in u,, produced by changes in f. Similarly,
the value of the power dissipation itself (which one might
expect to observe and measure) depends on both m, and u,,
(but not, interestingly enough, on the density).
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Table I. The salient parameters describing the descent of a 500 kg iron sphere through the terrestrial and jovian-type atmospheres, as parametrized in this

paper.
Planet Earth Jupiter
v, 15 km/s 60 km/s
f 0.01 0.1 0.2 0.01 0.1 0.2
% 1.03 1.2 1.4 13 1.6 1.6
Upnax 0.6 0.4 0.2 0.3 4x1072 2%X1072
W max 2x10° 1.4x10%° 1.9X10" 3.3x10" 5.4x101 5.6x10"
¥ max 17 21 23 52 93 108
¥ max 12 13 13 53 59 59
My 470 311 240 260 129 120
Vierm -1 0.7 1.9 -16 24 44
tierm 15 19 1 1 0.4 0.4
Uterm 0.7 0.9 1 4 35 48
Mierm 415 77 12 25 2x107° 2x1077

Note: I have assumed that the drag parameter 7 takes the value 0.5, and the terminal altitude is taken to be that where the power delivered to the atmosphere
has fallen to 1075 of its maximum value. Velocities are in km/s, distances in km above the reference level, power in watts, and masses in kg; the time ¢,

is in s.

Another interesting feature is the distance between the al-
titude of maximum power transfer and the terminal altitude:
it hovers at a very few scale heights, whatever the value of f,
entry velocity, and atmosphere. Of course, its exact value
depends on the precise criterion used to define y .., but it is
clear that for a given choice, the variation of this distance
will not be very great. Moreover, since Eq. (46) is indepen-
dent of the mass of the falling object, this distance is also
independent of mass -+ at least to within the approximations
of this paper: certainly, some variation with mass is to be
expected in practice, since different masses penetrate to dif-
ferent depths and so encounter in practice different atmo-
spheric structures, but the effect should not be greater than
the variation in the local scale height. All this has an inter-
esting consequence: the time to extinction from the maxi-
mum turns out in all cases to be on the order of a very few
seconds, depending of course on the entry velocity.

A perfectly equivalent way to see this is from the value of
temm> Eq- (48); as already noted, this quantity is effectively
not a function of mass, but does depend explicitly on the
local atmospheric scale height. Note that the numerical re-
sults are not necessarily the same as those based on the time
to extinction, since the criteria are quite different and the
conditions at the maximum used to evaluate £, are not
representative of the subsequent flight.

Comparing the published results of complex numerical
models with simplified analytical ones is generally a tricky
business, since the exact numbers used in the former are
rarely available in print—noteworthy exceptions are Zahnle,®
Chyba et al.,"! Hills and Goda.'?> Another reasonably well-
documented paper, which we shall use here, is Baldwin and
Sheaffer,® where the fall of meteorites of various composi-
tions was traced numerically through the terrestrial atmo-
sphere, taking very detailed account of the interaction of the
atmosphere and the meteoritic surface. A material called
“bronzite” furnishes a fairly “clear” example for compari-
son; its density is 3600 kg/m3, with a latent heat of vapor-
ization of 8.6X10% J/kg. All calculations were done for an
entry angle of 52°, the object being supposed spherical cor-
responding to a value of 7~0.7; tabulated values were used
for the atmospheric structure.

The first quantity of interest is the mass surviving at
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ground level for various entry speeds. We saw in Sec. III B
that one should distinguish between two extreme regimes:
relatively low speeds (say less than several km/s) where at-
mospheric friction is the essential heat source, and high
speeds, where radiation from the shock dominates. For the
former case, the value of f (the fraction of the incident ki-
netic energy used to ablate material) is conventionally taken
to be ~0.05; it will rise gradually as the speed rises, but in
any case cannot much exceed 0.2 so that 0.1 is probably a
reasonable compromise value for an entire trajectory.

At 20 km/s, the analytical results of this paper (with
f=0.1) suggest that only a fraction ~0.1 of a 1000 kg bolide
reaches the terrestrial surface, while at 40 km/s (f=0.1) the
fraction drops to ~107*. From Fig. 1 of Baldwin and
Sheaffer,'*> one finds a few times 0.1 and 10™* for these
numbers. Iron has the same thermal constants, but the higher
density of 7900 kg/m’. One can see immediately from Eq.
(36) that the higher the density, the more rapidly the super-
ficial velocity approaches zero, and therefore [Eq. (34)] the
smaller the fraction of the mass surviving at ground level.
Note that this is counterintuitive and one would expect a
larger fraction of a denser object to survive; however, the
numerical analysis confirms the analytical result. In short,
only a vanishingly small fraction of the fastest bodies can
reach the surface.

The rate of ablation constitutes another interesting point of
comparison. This is given by Eq. (33); taking, as in Baldwin
and Sheaffer,”® a 500 kg bronzite projectile entering with a
speed of 14.2 km/s (f=0.1) inclined at 52° to the vertical, I
find that the maximum ablation rate occurs at just 24 km,
where the object is moving at just over 12 km/s and is losing
mass at close to 100 kg/s. Figure 15 of Baldwin and
Sheaffer,'> shows a maximum at 25 km, with a loss rate of
100 kg/s; the speed there is a little over 10 kmy/s.

The agreement seems quite satisfactory; one can clearly
obtain useful results from the simple analytical relations of
the present paper, and with much less effort than is required
to build a full scale simulation. Of course, the reliability of
the answers (be it from the analytical relations or the simu-
lations) depends on the reliability of the basic data -+ which
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is poor; indeed, the differences from the numerical model are
much smaller than differences arising from plausible changes
in the fundamental data.

VII. METEORITIC BREAKUP

In all the analysis, I have so far assumed that the projectile
is perfectly rigid; mass is supposedly removed gradually.

This is hardly likely to be true beyond some point on the
trajectory; melting due to the high temperatures reached and
breakup due to the aerodynamic (sometimes called “ram”
pressure could completely alter the conclusions.

A. Melting

The maximum superficial temperature attained by a body
which is evaporating, but whose mass loss is a negligible
fraction of its mass, was estimated in Sec. III B. The resuits
obtained since then can be applied in much the same way to
obtain an expression for the surface temperature at any point
along the trajectory of a body losing a significant fraction of
its mass; the power absorbed by the meteorite is still given
by Eq. (17), while the expression for the velocity should be
that in which account has been taken of the mass loss, Eq.
(36), so that

3xTpoH
W=prasz exp( - m e

The power used to evaporate material is, as before

| tm
6SLPw\ 5T

where the saturation vapor pressure P, is given by Eq. (30),
and the factor 6 accounts as before for evaporation from all
six faces of the falling cube. Finally therefore

3xTpoH

3 —y/H
prOSvee Y CXp(—me

M
=6LPy\/ ﬁ

Each value of y corresponds to a simple transcendental equa-
tion for the temperature; the easiest way to avoid some te-
dious calculation is simply to plot the left- and right-hand
sides of the above relation, and just read off the temperature
at each altitude—great precision is not required since we
only need at this stage an idea of the solution. Taking for the
sake of argument a 500 kg piece of iron entering the terres-
trial atmosphere at 15 km/s (and so with f=0.05, the con-
ventional value), one finds that already at an altitude of 100
km, the surface temperature exceeds several thousand de-
grees, reaching a maximum of about 7000; falling through
the jovian atmosphere (with an initial speed of 60 km/s), the
iron would again have reached several thousand degrees at
500 km above the 1 bar level, and about 8000 at maximum.
The temperatures are roughly an order of magnitude lower
for a piece of ice.

Such results are of course only indicative, because at these
temperatures the saturation vapor pressure relation used is at
best very approximate; however, it is clear that surface melt-
ing must be a significant feature over a considerable fraction
of the descent trajectory.

The first consequence could be a much higher rate of ero-
sion, since the latent heat of melting can be an order of

—y/H

—-y/H
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magnitude lower than that of vaporization. Indeed, changing
the latent heat by as little as a factor of 5 changes the termi-
nal altitude by between one and two scale heights (depending
on trajectory details)}—using an inappropriate value for the
latent heat has consequences as catastrophic, and is as easy,
as using a faulty value of f. Although we usually know the
latent heats of a pure material, we know very little about the
thermal properties of the composite structures that make up
asteroids and comets; while laboratory measurements of the
properties of meteorites have been done (see, e.g.,
Ceplecha),'* one should bear in mind that these are merely
the surviving, and to my mind hardly representative, frag-
ments of much larger parent bodies. In practice, the ratio f/L
is sometimes referred to as the “ablation coefficient;”” how-
ever, this nomenclature does not make its value any more
reliable for the bodies in which we are really interested.

Melting can be catastrophic if there is an efficient removal
mechanism; however, even if there is not, melting could pro-
ceed right through the object, fatally weakening its coher-
ence and causing it to break up well before it has been
eroded away.

For global melting to take place, the internal temperature
must rise sufficiently. Consider an analogous, but much sim-
pler problem: a rod of mass m and length x is heated at one
end by a power W incident on one face. As a consequence.

(1) There is a temperature gradient AT/Ax, such that
w AT

s M ax
where A is the thermal conductivity.

(2) The characteristic temperature of the mass will rise at
the rate AT/At:

W AT

cm  At’
where c is the specific heat of the material.
Thus:

AT SN AT

At cm Ax’
Now, over the depth of the meteorite, evaporation maintains
a maximum temperature difference of several thousand de-
grees. For metals, the thermal conductivity is several tens of
W/m/K, while the specific heat is several hundred J/kg/K, so
that A/c is of the order of 0.1. Finally, therefore, for masses
larger than several kg, the temperature rise is less than about
a degree per second. The estimate is crude, but it suffices to
show that the characteristic internal temperature of even a
metallic meteorite rises so slowly in spite of the imposed
heat flux that global melting is hardly an eventuality for
which it is worthwhile carrying out a detailed calculation.

Meteorites of any significant mass will not fall apart

through global melting.

B. Mechanical deformation and fragmentation

The drag force responsible for the heating process also
represents a pressure difference across the object, and one
expects therefore mechanical stresses to be set up. In es-
sence, the deforming force is given by Eq. (8); once its value
exceeds some critical number, one can expect pieces to fly
off the falling object. The problem is not only that we have
little idea of what this critical point might be; we also have
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no idea by what process the object will disintegrate. A het-
erogeneous body such as a meteorite may simply fragment
along fault lines as soon as the imposed shear becomes too
large (this is known to have happened to meteorites penetrat-
ing the terrestrial atmosphere); it may shatter into a multitude
of minute pieces when the deceleration becomes too high; in
the unlikely event of a perfectly homogeneous body, it may
change its shape plastically until it becomes so fragile some-
where that pieces break off. The former two possibilities,
while realistic, cannot be assessed in any serious way since
we do not possess the fundamental data for realistic objects,
and indeed the models which have been calculated, in spite
of their apparent completeness and numerical rigor (see, e.g.,
Baldwin and Sheaffer,'> and Hills and Goda)'? are based on
very particular assumptions of breakup; the latter possibility,
plastic deformation, can be evaluated, but is so unrealistic
that one wonders whether the effort is worthwhile: composite
materials will surely not flow mechanically, and in any case
falling objects will tumble, so that deformations cannot be
maintained for even short intervals of time.

Nevertheless, suppose that at some point during the de-
scent, the aerodynamic pressure has exceeded the elastic
limit for the material; since the force acts on the leading
edge, it will tend to “squeeze” together the opposing sides of
the object, which will react by becoming flatter and broader.
Very crudely, half the mass will be accelerated by the force
7Sp,v? with respect to the other half; one can thus define at
each point along the trajectory a “time scale” ¢, needed to
force the front-half over the space occupied by the backhalf,
so that in the case of our cube of side  (assuming that forces
and faces are well aligned and that there is no rotation):

2
2 Lerush “

r
Sp,U > w2

whence

m3pl/6gyi2H
= Adcrush ’
V27pg
Now, at the instantaneous speed v, Uf ., is 2 measure of the
distance Ad,,q, farther traveled by the object before being
“flattened,” i.e., before something nasty happens to it. The
distance d_,,, corresponds to an altitude change Ay ., Te-
quired to crush the object

vt crush™

Ay crush™ Adcrush cos ‘//
1/3 1/6

Nme p'° cos ‘//ey/zﬂ
V27po
fo? 2xporHe Y
e Lt e . (4
Xexp[ 6L €xp ml‘/3p2/3 cos l,b 1 ( 9)

This reasoning is only valid (inasmuch as it is at all valid) for
values of Ay, such that atmospheric conditions change
little, i.e., over a fraction of the scale height. We can then
claim that something special has happened to the falling ob-
ject at around an altitude y ., in the range Ay .-

A number of points are worth noting.

(1) Ay e is 2 (slowly) rising function of density. Conse-
quently, all other parameters being equal, a denser object will
be “crushed” (in the sense outlined here) at a lower altitude
than a less dense one. However, this conclusion should be
tempered by the knowledge that denser objects are eroded
faster—there may not be much left to crush.
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(2) Ay is a rising function of cos ¢. Therefore, the
more inclined the incoming trajectory of a given mass, the
higher up it will be crushed. This is perhaps counterintuitive;
it is in fact a projection effect, since by fixing Ay ., We are
in fact allowing objects on inclined trajectories more time to
be crushed.

(3) The full significance of this “crushing distance” can
only be appreciated when compared to the competing ““ero-
sion distance” Ay, on defined using the time ¢4 Eq. (47)

ml/3 p2/3 I

AY crosion=Utend €OS Y= Frpn?
This leads, after a little manipulation, to

2
Aycmsh . Uef 2Tp0 e_y/2H
Ay erosion L Y
2T
‘ exp{ __2reoflx J (50)
m,”p'” cos

Mechanical destruction, as opposed to erosion, plays a sig-
nificant role when this ratio is much less than 1. Now in the
case of the Earth, fv2/L usually falls in the range 1-10,

except for the highest speeds, while \27py/p ~ 0.1 except
for the lowest densities. Therefore, mechanical destruction
will effectively be favored over erosion, once the elastic limit
of the material has been exceeded, except for extremely rapid
and low dense bodies.

In the case of Jupiter, the lowest possible value for the
entry speed is sufficiently higher for the situation to be not so
clear cut; in fact, crushing (in the sense described here) and
erosion might well be processes of comparable importance.

(4) A final instructive and easily calculated parameter is
the difference between the altitude at which crushing is ini-
tiated, y .. » and the altitude at which the power transfer to
the atmosphere is maximal, y,,.; from Egs. (49) and (44),
one obtains (almost) immediately

2Ay2 sh max f
Yerush ™ Ymax=H In 3Tcn,:1;/§_—_ 3_L (vgmsh_vg)’ (51)

where U, is the speed when crushing begins. Depending
on the conditions, this difference can be positive or negative;
if negative, crushing occurs beyond the point where the at-
mosphere has been maximally perturbed. Very roughly, the
sign depends on the initial speed; the higher v, the lower
Upax and so the closer v, is to v,—at sufficiently high
speeds, ¥ crusn—Ymax 1S always negative. Thus, for example,
objects entering the terrestrial atmosphere at a low speed will
be crushed well before being maximally eroded, while the
opposite is true at very high speeds. On the other hand, since
entry speeds into the jovian atmosphere are always very
high, one expects crushing to occur close to and, for suffi-
ciently massive objects, beyond the altitude of maximum
power transfer.

The effect on the atmosphere of crushing the meteorite in
this way is not clear. In one scenario, the phenomenon is
likened to an “explosion,” the residual kinetic energy of the
meteorite being supposedly released to the atmosphere on a
shorter time scale than if ablation had continued. However,
energy will be transferred rapidly to the atmosphere only if
crushing has instantly reduced the remaining mass to a near
gaseous state; if (as seems intuitively more likely) the result
is merely the production of a set of finite fragments, say
pebble-sized, the energy transfer will occur on the erosion
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time scale of each fragment which is relatively long and in
the final stages is essentially independent of mass [see Eqs.
(47) and (48)]. This latter conclusion is confirmed by the
numerical simulation of Baldwin and Sheaffer,!*> where me-
teoritic breakup in the sense of fragmentation was included
in the simulation: compared to a rigid mass, the “terminal
altitude” is higher, but the time scale for a significant energy
transfer to the atmosphere is quite comparable.

This is the essence of a model presented in Chyba et al.,"!
where moreover the braking effect of the increasingly de-
formed projectile was taken into account through a numeri-
cal procedure. The model of course assumed that the gradu-
ally squashed body remained permanently with its large face
facing the direction of motion—it is far from clear to me that
such a hypothesis is justified, but its effect must be to raise
altitudes as compared to the results of the above “hand-
waving” approach. Nevertheless, in spite of the radically dif-
ferent techniques used, the conclusions are substantially
similar. For example, taking a limiting value for Ay of 2
km gives the following.

(1) An iron mass (5.6X10® kg, 7900 kg/m®, L =8X10° J/kg,
entering with a speed of 15 km/s at an angle of 45°) just
about reaches the terrestrial surface without being
crushed.

(2) A “long geriod comet” (5X107 kg, 1000 kg/m’,
L=2.5X10" J/kg, entering with a speed of 50 km/s at an
angle of 45°) will find itself in a “delicate situation” at
an altitude of about 20 km.

The corresponding values in Chyba et al.M (see Fig. 1 in that
paper) are 0 and 30 km, respectively.

Note however that in the case of the long period comet,
the altitude at which power is being transferred maximally
by a nonfragmenting body is about 25 km (assuming f=0.1),
the terminal altitude falling at about 4 km; thus, the altitude
at which the atmosphere is perturbed maximally by this type
of object is hardly altered by fragmentation; however, as a
consequence of mechanical failure, the terminal altitude is
somewhat higher, and so the power transferred to the atmo-
sphere could be greater, depending on just what is left (see
above).

The paper of Chyba ez al.,!! also considers the effect of
entry angle on a “stony asteroid” (5.6X10° kg, 3500 kg/m’,
L=8x10° J/kg, entering with a speed of 15 km/s); at =75,
60°, and 0°, “crushing altitudes” work out to be 15, 7, and 2
km, respectively, while the corresponding figures in that pa-
per are 15, 12, and 6 km.

While an exact comparison is virtually impossible, since
the criteria are so different, the agreement is quite satisfying,
and certainly within the intrinsic uncertainties of this type of
model.

VIII. FINAL COMMENTS

I have shown in this paper that the fall of a meteorite
through a planetary atmosphere, taking into account mass
erosion and a kind of fragmentation process, is perfectly
amenable to a simple analytical treatment, highlighting the
sensitivity of the results to just the parameters whose values
are poorly known.
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The detailed quantitative observation of a fall could, how-
ever, allow some parameters to be determined. One can see
from Eq. (48) that the time to extinction .., is a function
only of the following.

(1) Atmospheric parameters, in principle knowable for a
given planet.

(2) The entry trajectory parameters v, and ¢, in principle
knowable if the object were followed before impact.

(3) The ablation coefficient f/L, the only unknown quantity.

Of course, once the ablation coefficient has been deter-
mined, one can make a good guess at the value of L, and thus
identify of which material the object is made; moreover,
other parameters of interest follow:

(1) m, from Eq. (45);
(2) p from Eq. (44), since 7 is reasonably well determined.

The impact with Jupiter of comet Shoemaker—Levy could
provide a textbook case :-- providing that we can separate
the light emitted during the descent from the effect of the
subsequent atmospheric “fireball.” For this we must await
the full data from the Galileo spacecraft, the only instrument
which was able to observe the impact “face-on,” since it
occurred on the far side of the planet with respect to the
Earth.
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