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Parc Valrose 06108 Nice Cedex
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Physical basis of optical imaging

Image formation with a telescope

The semi-classical theory of image formation and photodetection

I A coherent process:
The PSF is obtained using Fourier optics.

I An incoherent addition in intensity:
The object image relationship is a convolution (or a Fredholm integral
for space-variant response).

I Photodetection:
A Poisson process p(n/m) describes the observed number of
photoelectrons n from the mean expected value m).

For a basic course in optics with illustrations (by Eric Aristidi, in French):
http://www.unice.fr/DeptPhys/optique/optique.html
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Physical basis of optical imaging The Huygens - Fresnel model

Free space propagation: the Huygens-Fresnel model
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Physical basis of optical imaging The Huygens - Fresnel model

The Fresnel integral

With r = (x, y), expanding the 2D convolution, we have:
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where = r
λz

means the Fourier transform for the ”frequency” r/λz .
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Physical basis of optical imaging The Huygens - Fresnel model

Lenses as quadratic phase terms.

Converging lens

L+F (x , y) = e−iπ x2+y2

λF

Diverging lens

L−F (x , y) = e+iπ x2+y2

λF

These expressions can be obtained very simply.

Note that L−F (x , y)× L+F (x , y) = 1
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Physical basis of optical imaging The Huygens - Fresnel model

Back to the Fresnel diffraction

We can write:
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Physical basis of optical imaging The Huygens - Fresnel model

Propagation of a wave after a converging lens

!"#$%" #"
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Physical basis of optical imaging The Huygens - Fresnel model

In the focal plane at z=F

!"#$ !"%$
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Converging and diverging lenses cancel, and we have simply the Fourier
transform of the wave on the lens (to a quadratic phase term):

ΨF (r) =


iλF
exp(iπ

r

λF
)Ψ̂(

r

λF
) (5)
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Physical basis of optical imaging Point Spread Function and Optical transfer function

Point Spread Function

For a wave Ψ0(r) arriving on the aperture P0(r), we denotes P (r):

P (r) = Ψ(r)P(r), (6)

in the focal plane:

|ΨF (r)| =


λF 
|P̂ (

r

λF
)| (7)

It is convenient to use angular units α = (αx , αy ), and define the PSF:

H(α) =
1

λ2S
|P̂(

α

λ
)|2 (8)

where S is the telescope area, and H is normalized so that H(α) ∗ 1 = 1.
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Physical basis of optical imaging Point Spread Function and Optical transfer function

Object - image relationship: the Fredholm integral

For a point source in the angular direction β (intensity O(β)), the
elementary observed focal plane intensity is:

dI (α) = O(β)H(α, β) (9)

Summing for all β directions, the intensity in the focal plane becomes:

I (α) =

∫
O(β)H(α, β)dβ (10)

which is a Fredholm integral.
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Physical basis of optical imaging Point Spread Function and Optical transfer function

The convolution relationship

Assuming a space-invariant response, we have

I (α) =

∫
O(β)H(α + β)dβ (11)

and there is a simple relation of convolution between the image, object
and the PSF.

I (α) = O(α) ∗ H(−α) (12)

where we recall that the convolution is 2D. The minus sign comes from
the inversion of the geometrical image by the lens.
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Physical basis of optical imaging Point Spread Function and Optical transfer function

The optical transfer function T(u)

In the Fourier space, with u = (ux , uy )

Î (u) = Ô(u).T (u) (13)

where

T (u) =
1

S

∫
P(r)P∗(r − λu)dr (14)

is a low pass 2D filter, or a band-pass filter for diluted apertures.
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Physical basis of optical imaging Point Spread Function and Optical transfer function

PSF and OTF: perfect circular aperture.

Figure: 3D representation of the Airy function and corresponding OTF. Cut-off
frequency: |uc | = D/λ
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Physical basis of optical imaging Point Spread Function and Optical transfer function

Aberrated circular aperture, OTF and PSF
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Physical basis of optical imaging Point Spread Function and Optical transfer function

Diluted apertures, OTF and PSF
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Physical basis of optical imaging Examples on a test object

Example of an object and its Fourier transform: log scale
modulus and phase
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Physical basis of optical imaging Examples on a test object

Characteristic sizes: cuts of the object and modulus of its
Fourier transform

!"

Object

!"#$

Modulus of the Fourier transform
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Physical basis of optical imaging Examples on a test object

Blurred image

Low pass filter effect of the telescope MTF
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A preliminary introduction to the inverse imaging problem The inverse filter: a band limited constraint

The inverse filter: a linear approach
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A preliminary introduction to the inverse imaging problem The inverse filter: a band limited constraint

The inverse filter

From:

Î (u) = Ô(u).T (u) (15)

One may consider the following simple procedure:

Ôest(u) =
Î (u)

T (u)
for T (u) 6= 0, and = 0 otherwise

Oest(r) = =−1[Ôest(u)]

(16)

As a result, Ôest(u) is non-zero only where T (u) 6= 0.
Moreover Î (u) may be contaminated by noises: photon noise, additive
noise ...which will be amplified by the division....
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A preliminary introduction to the inverse imaging problem The inverse filter: a band limited constraint

Inverse filter on a noiseless image: Gibbs effects

The reconstructed PSF has
negative parts
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A preliminary introduction to the inverse imaging problem The inverse filter: a band limited constraint

Example of an image with 5× 104 photons

Photodetected image, modulus and phase of the spectrum.

The number of photons in a pixel is obtained using the Poisson law:
p(n/m) = e−mmn

n!
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A preliminary introduction to the inverse imaging problem The inverse filter: a band limited constraint

Inverse filter applied to the noisy image

The result may be somewhat improved using optimal Wiener filter....
See Brault, J. W., & White, O. R. 1971, A&A, 13, 169, for example
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A preliminary introduction to the inverse imaging problem Non-linear approches: impainting the Fourier space

Non-linear approaches

On the example of diluted apertures (example of OTF)
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A preliminary introduction to the inverse imaging problem Non-linear approches: impainting the Fourier space

Focal plane image with replica

4 C. Aime et al.: Deconvolution of hypertelescope images

Fig. 4. Fizeau PSF of the 25 apertures non-redundant array of Fig. 3.

are the astronomical object O(α) and the aperture array P(r) =∑K
k=1 P0(r−rk), leading to theMTF T (u) through the autocorrela-

tion function of the aperture, in units of wavelength. The product
T (u)Ô(u) gives the image transform Î(u), which is the common
point from which the two simulations separate. Taking the in-
verse Fourier transform of Î(u) gives directly the (dirty) image
I(α) that can be observed at the focus of a perfect turbulence
free stellar interferometer. The densified image I ′(α) is obtained
through the transformations described by Eq.5 and Eq.6.

To simulate realistic images obtained by a diluted array
of telescopes, it is necessary to have a sufficiently large num-
ber of pixels to correctly sample each individual telescope.
Numerically, this implies an over-sampling of the Fourier plane.
For that, a simple way is to use zero padding of the discrete im-
ageO(α). This facilitates the frequency translations described in
Eq.5, from Î(u) to Î′(u) in the diagram of Fig.2.

The number of telescopes, their sizes and configuration is
crucial for the quality of the final image, but not necessarily to
check if a deconvolution technique can improve the hypertele-
scope image. The greater the number and sizes of apertures, the
greater must be the number of pixels in the images. Since we will
use iterative algorithms for the deconvolution, we have limited
the image size to 1024 × 1024 pixels. The number of telescopes
is here of K = 25, taking all apertures to be identical circular
apertures of diameter D, set on a regular grid in x and y, with a
minimal distance d = dm between them. In Fig.3 we show the
positions of the configuration we use (one among many possi-
ble). Making it non-redundant makes it possible to obtain the
largest number of independently sampled spatial frequencies for
this number or telescopes, and to recover images good enough
for a visual interpretation. The figure is drawn in units of dm.
The real array transmission P(r) can be obtained by substituting
to the positions indicated in Fig.3 the elementary aperture P 0(r),
and by giving to d a sufficiently large value. In the same figure,
we have also represented the ensemble of differences of posi-
tions ukl that appear in Eq.4 that gives the Fizeau MTF T (u).
This figure is drawn in units of dm/λ. Since the array is fully
non-redundant,with K = 25, there are 601 regions of the Fourier

Fig. 5. Left: Fizeau mode. Right: densified mode. Top: Fourier space.
Bottom: focal plane images.

plane transmitted by the array. There is the region centered at the
origin for which all apertures contribute, and K(K −1) = 600 re-
gions corresponding to all other pairs of apertures, all transmit-
ted with the amplitude 1/K = 1/25, half of them corresponding
to symmetric positions. Our simulation is made for dm = 7 units,
D = 1.5 so that T0(u) spreads over 3 × 3 points in the Fourier
plane.

Let us first give an example of the Fizeau images. Figure 4
presents the PSF of the array. Since the array fills rather reg-
ularly a low frequency square grid, the PSF shows a series of
peaks. Because there are gaps in the grid coverage of the MTF,
a diffuse speckle-like pattern is also present. The focal image is
given in Fig.5 (bottom left image). It is the result of the convo-
lution of the PSF with the object (here a low-resolution version
of an image taken by NASA’s MODIS1). The Fizeau image ap-
pears as an ensemble of object replicas superimposed to a cloudy
background. If the extent of the object is larger than the distance
between peaks in the PSF, replica of the Earth-like planet will
overlap. A discussion of these effects is made in Aime (2008). A
way to interpret these effects is to use the Shannon theorem, by
reversing the usual two spaces, dm playing the role of the sam-
pling interval and the extent of the astronomical object that of
the usual frequency cutoff.

A few elements of the simulation of the hypertelescope im-
age are also given in Fig.5. The top images illustrate the op-
eration of densification in the Fourier space, similarly to what
was shown in Fig.1. Because we have now 601 regions, it is no
more possible to represent the image with its full resolution as
we did before, and the values of Î(u) and Î′(u) are clipped to
black and white. In the simulation, the densification parameter
γ is approximately equal to 7/3 ∼ 2.34. Indeed, the elementary
distance dm = 7 units is reduced to d′m = 3, which corresponds to
the FSD case. Because of this shift to lower frequency structures,
the resulting densified image I ′(α) appears as a zoom performed
on the Fizeau image, as described by Aime (2008).

1 http://visibleearth.nasa.gov/view.php?id=57723
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A preliminary introduction to the inverse imaging problem Non-linear approches: impainting the Fourier space

In this example, the non-linear approach is
Richardson-Lucy, an iterative algorithm described in sect. 2

8 C. Aime et al.: Deconvolution of hypertelescope images

Fig. 13. Deconvolution of rediluted noiseless images. Left: from
top to bottom, result of RLA on the re-diluted images for k =
10, 100, 1000, and 10000. Right: corresponding modulus in the Fourier
plane. The evolution of the euclidian distance between the result of the
deconvolution process and the original image is shown in Fig.10.

3.3.1. Noiseless images

Let us first consider the case of the noiseless image. In this case,
there is no reason to choose between ISRA and RLA, that are
elaborated for specific noises. To recover the Fizeau image I(α),
we start by computing the Fourier transform Î′(u) of I′(α). Then,
the frequency domains around u ′kl are shifted back to their orig-
inal positions ukl. We therefore obtain a quantity equal to Î(u),
and the Fizeau image I(α) can be simply obtained by an inverse
Fourier transform. The relation of convolution is now verified,
the PSF being that of the Fizeau array. Note that this is done by
soft without any signal deterioration.

We have run the deconvolution algorithm up to the itera-
tion k = 50000. After a few hundred iterations, the replicas in

Fig. 14. Images of the original object (left) and as seen by the meta
telescope (center). The modulus in the Fourier plane of the latter is also
displayed (right).
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Fig. 15. Efficiency of the deconvolution algorithms for the two different
image references shown in Fig. 14. In solid lines, the reference image is
the original object. In dashed lines, the reference image is the original
image convolved with the PSF of the meta telescope. The color code is
the same as in Fig. 10.

Fig. 16. Left: hypertelescope image after MTF redilution. Right: abso-
lute difference between this image and the interferometric image shown
in Fig.6. Differences are due to statistical origin of the photodetection
process.

the original image disappear and only a single central image of
the Earth-like object remains, as illustrated in Fig. 12. In these
first steps, the deconvolution gathers the replicas by means of
a computation process. In this view, the deconvolution process
achieves numerically an operation analogous to that performed
by the hypertelescopes with an optical device.

The way the deconvolution algorithms are deleting replicas
can be well understood in the Fourier plane (Fig.13, right). RLA,
as well as ISRA, are non-linear algorithms that extend the fre-
quency spectral range of the image (Lantéri et al. (1999)). For
the diluted array, the coverage of the angular frequencies pref-
erentially grows from known spectral regions. As the number of
iterations increases, these algorithms are spreading energy into
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A preliminary introduction to the inverse imaging problem Non-linear approches: impainting the Fourier space

Increasing the iteration number

8 C. Aime et al.: Deconvolution of hypertelescope images

Fig. 13. Deconvolution of rediluted noiseless images. Left: from
top to bottom, result of RLA on the re-diluted images for k =
10, 100, 1000, and 10000. Right: corresponding modulus in the Fourier
plane. The evolution of the euclidian distance between the result of the
deconvolution process and the original image is shown in Fig.10.

3.3.1. Noiseless images

Let us first consider the case of the noiseless image. In this case,
there is no reason to choose between ISRA and RLA, that are
elaborated for specific noises. To recover the Fizeau image I(α),
we start by computing the Fourier transform Î′(u) of I′(α). Then,
the frequency domains around u ′kl are shifted back to their orig-
inal positions ukl. We therefore obtain a quantity equal to Î(u),
and the Fizeau image I(α) can be simply obtained by an inverse
Fourier transform. The relation of convolution is now verified,
the PSF being that of the Fizeau array. Note that this is done by
soft without any signal deterioration.

We have run the deconvolution algorithm up to the itera-
tion k = 50000. After a few hundred iterations, the replicas in

Fig. 14. Images of the original object (left) and as seen by the meta
telescope (center). The modulus in the Fourier plane of the latter is also
displayed (right).
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Fig. 15. Efficiency of the deconvolution algorithms for the two different
image references shown in Fig. 14. In solid lines, the reference image is
the original object. In dashed lines, the reference image is the original
image convolved with the PSF of the meta telescope. The color code is
the same as in Fig. 10.

Fig. 16. Left: hypertelescope image after MTF redilution. Right: abso-
lute difference between this image and the interferometric image shown
in Fig.6. Differences are due to statistical origin of the photodetection
process.

the original image disappear and only a single central image of
the Earth-like object remains, as illustrated in Fig. 12. In these
first steps, the deconvolution gathers the replicas by means of
a computation process. In this view, the deconvolution process
achieves numerically an operation analogous to that performed
by the hypertelescopes with an optical device.

The way the deconvolution algorithms are deleting replicas
can be well understood in the Fourier plane (Fig.13, right). RLA,
as well as ISRA, are non-linear algorithms that extend the fre-
quency spectral range of the image (Lantéri et al. (1999)). For
the diluted array, the coverage of the angular frequencies pref-
erentially grows from known spectral regions. As the number of
iterations increases, these algorithms are spreading energy into
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A preliminary introduction to the inverse imaging problem Non-linear approches: impainting the Fourier space

A non-linear approach may impaint the Fourier space
i.e. ”invent” missing angular frequencies
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