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Physical basis of optical imaging

Image formation with a telescope

The semi-classical theory of image formation and photodetection

» A coherent process:
The PSF is obtained using Fourier optics.

» An incoherent addition in intensity:
The object image relationship is a convolution (or a Fredholm integral
for space-variant response).

» Photodetection:
A Poisson process p(n/m) describes the observed number of
photoelectrons n from the mean expected value m).

For a basic course in optics with illustrations (by Eric Aristidi, in French):
http://www.unice.fr/DeptPhys/optique/optique.html
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Physical basis

of optical imaging The Huygens - Fresnel model

Free space propagation: the Huygens-Fresnel model
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Physical basis of optical imaging The Huygens - Fresnel model

The Fresnel integral

With r = (z,y), expanding the 2D convolution, we have:

or

2
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where %)\L means the Fourier transform for the "frequency” r/\z.
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Physical basis of optical imaging The Huygens - Fresnel model

Lenses as quadratic phase terms.

Converging lens Diverging lens

24y2

. 242
Lir(x,y)=¢e T 3F F

L_p(x,y) =™ xF

These expressions can be obtained very simply.

Note that L_fg(x,y) X Lir(x,y) =1
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Physical basis of optical imaging The Huygens - Fresnel model

Back to the Fresnel diffraction

We can write:

2 2

Vo(r) = = op(im =) ¢ [Fo(r) explin )] (4)

as:
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Physical basis of optical imaging The Huygens - Fresnel model

Propagation of a wave after a converging lens
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Physical basis of optical imaging The Huygens - Fresnel model

In the focal plane at z=F

w (r)—ﬁI i‘s#[ II w,(r)]

Converging and diverging lenses cancel, and we have simply the Fourier
transform of the wave on the lens (to a quadratic phase term):

a r
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Physical basis of optical imaging Point Spread Function and Optical transfer function

Point Spread Function

For a wave W(r) arriving on the aperture Py(r), we denotes P(r):

P(r) = Wo(r)Fo(r), (6)
in the focal plane:
2 Y p "2
()7 = s | P ) 7
It is convenient to use angular units & = (a, vy ), and define the PSF:
H(a) = <5< P(S)? (8)
A3S A

where S is the telescope area, and H is normalized so that H(a) 1 =1,
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Physical basis of optical imaging Point Spread Function and Optical transfer function

Object - image relationship: the Fredholm integral

For a point source in the angular direction 3 (intensity O(/3)), the
elementary observed focal plane intensity is:

dl(o) = O(B)H(e, B) (9)
Summing for all S directions, the intensity in the focal plane becomes:
(@) = [ 0(@)H(a, 5)d5 (10)

which is a Fredholm integral.
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Physical basis of optical imaging Point Spread Function and Optical transfer function

The convolution relationship

Assuming a space-invariant response, we have

(o) = / O(8)H(a + B)dp (11)

and there is a simple relation of convolution between the image, object
and the PSF.

I(a) = O(a) * H(—«) (12)

where we recall that the convolution is 2D. The minus sign comes from
the inversion of the geometrical image by the lens.
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Physical basis of optical imaging Point Spread Function and Optical transfer function

The optical transfer function T(u)

In the Fourier space, with u = (uy, uy)

A

I(u) = O(u). T(v) (13)

where

T(u) = ;/P(r)P*(r— Au)dr (14)

is a low pass 2D filter, or a band-pass filter for diluted apertures.
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Physical basis of optical imaging Point Spread Function and Optical transfer function

PSF and OTF: perfect circular aperture.

Figure: 3D representation of the Airy function and corresponding OTF. Cut-off
frequency: |uc| = D/A
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Physical basis of optical imaging Point Spread Function and Optical transfer function

Aberrated circular aperture, OTF and PSF
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Physical basis of optical imaging Point Spread Function and Optical transfer function

Diluted apertures, OTF and PSF
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Physical basis of optical imaging Examples on a test object

Example of an object and its Fourier transform: log scale
modulus and phase
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Physical basis of optical imaging Examples on a test object

Characteristic sizes: cuts of the object and modulus of its
Fourier transform

1/L
Object Modulus of the Fourier transform
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Physical basis of optical imaging Examples on a test object

Blurred image

Low pass filter effect of the telescope MTF
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A preliminary introduction to the inverse imaging problem The inverse filter: a band limited constraint

The inverse filter: a linear approach
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A preliminary introduction to the inverse imaging problem The inverse filter: a band limited constraint

The inverse filter

From:

T(u) = O(u). T(u) (15)

One may consider the following simple procedure:

Oest(u) = ;_((LZI)) for T(u) # 0, and = 0 otherwise (16)

Oest(r) = %_l[éest(u)]
As a result, Oest(u) is non-zero only where T(u) # 0.

Moreover 7(u) may be contaminated by noises: photon noise, additive
noise ...which will be amplified by the division....
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A preliminary introduction to the inverse imaging problem The inverse filter: a band limited constraint

Inverse filter on a noiseless image: Gibbs effects

_,M a\

The reconstructed PSF has
negative parts
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A preliminary introduction to the inverse imaging problem The inverse filter: a band limited constraint

Example of an image with 5 x 10* photons

Photodetected image, modulus and phase of the spectrum.

The number of photons in a pixel is obtained using the Poisson law:
—mm"

p(n/m) = e~
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A preliminary introduction to the inverse imaging problem The inverse filter: a band limited constraint

Inverse filter applied to the noisy image

The result may be somewhat improved using optimal Wiener filter....
See Brault, J. W., & White, O. R. 1971, A&A, 13, 169, for example
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A preliminary introduction to the inverse imaging problem Non-linear approches: impainting the Fourier space

Non-linear approaches

On the example of diluted apertures (example of OTF)
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A preliminary introduction to the inverse imaging problem Non-linear approches: impainting the Fourier space

Focal plane image with replica
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A preliminary introduction to the inverse imaging problem Non-linear approches: impainting the Fourier space

In this example, the non-linear approach is
Richardson-Lucy, an iterative algorithm described in sect. 2
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A preliminary introduction to the inverse imaging problem Non-linear approches: impainting the Fourier space

Increasing the iteration number
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A preliminary introduction to the inverse imaging problem Non-linear approches: impainting the Fourier space

A non-linear approach may impaint the Fourier space
i.e. "invent” missing angular frequencies
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