Image reconstruction

Part II
Inverse problems - A methodology

Céline Theys

Laboratoire Lagrange UNS/CNRS/OCA

Équipe Signal & Image

Besançon 2014

Outline

Introduction: a simple example

III posed problems

Discretization

Solutions

Regularization

Richardson Lucy and ISRA

Conclusion

A simple example: optical images deconvolution

Mathematical Model

$$y(n,m) = \sum_{k,l} h(k,l)x(n-k,m-l) + (b(n,m))$$
 (1)

The impulse response *h* includes:

- The limited aperture of the optical system.
- ▶ A move of the object during the exposition.
- Atmospheric turbulences.
- \triangleright All of these phenomena (astrophysical: 1+3).

b: measure and model errors

x: object

y: image

HST data, Psf

Result of the convolution

Solution in the Fourier plan

Remarks

$$X(f_{x}, f_{y}) = \frac{Y(f_{x}, f_{y})}{H(f_{x}, f_{y})} - \left(\frac{B(f_{x}, f_{y})}{H(f_{x}, f_{y})}\right)$$
(3)

- Lowpass system with transmission zeros.
- Without noise, amplification of the components at frequencies corresponding to the transmission zeros.
- With noise, amplification of the noise at the same frequencies.
- Signal processing: if the noise is Gaussian, it is "the best" solution (unbiased and minimum variance estimator)

Conclusion: ill posed problem!!

III posed problems

$$y = S[x] \tag{4}$$

y: measures; x: object; S[]: known transformation.

Problem: recover x from y?

Well posed problems: Hadamard conditions

- 1. Existency. The inverse operator exists, there is at least one solution *x*.
- 2. Unicity. The solution *x* is unique.
- 3. Stability. The solution is stable.

First kind Fredholm equation

Monodimensional case (k(s, r): kernel, $\mathbf{x}(\mathbf{r})$: unknown)

$$y(s) = \int_{a}^{b} k(s, r)x(r)dr$$
 (5)

For translation invariant kernel, convolution equation:

$$y(s) = \int_{-\infty}^{\infty} k(s - r)x(r)dr$$
 (6)

First kind Fredholm equation

Bidimensional case (optical imagery)

$$y(s,t) = \int_a^b \int_c^d k(s,t,r,v) x(r,v) dr dv$$
 (7)

For translation invariant kernel, **bi-dimensional convolution equation**:

$$y(s,t) = \int_{a}^{b} \int_{c}^{d} k(s-r,t-v)x(r,v)drdv$$
 (8)

And separable:

$$y(s,t) = \int_a^b \int_c^d l(s-r)m(t-v)x(r,v)drdv$$
 (9)

Existency

Existency

"If an unlimited bandwidth error (white noise for example) or outside the bandwidth is added on y then there is no solution

Unicity

Riemann-Lebesgue theorem

$$\lim_{\alpha \to \infty} \int_{a}^{b} k(s, r)(x(r) + \sin(\alpha r)) dr = \int_{a}^{b} k(s, r)x(r) dr \qquad (10)$$

"If high component frequencies are added to x, they are removed by the transformation, i.e x is recovered up to high frequencies"

More generally
$$x(r) = u(r) + v(r)$$

$$\int_{a}^{b} k(s,r)(u(r)+v(r)))dr = \int_{a}^{b} k(s,r)u(r)dr$$
 (11)

with v(r) orthogonal to k(r, s).

"x is recovered up to component frequencies outside the bandwidth of the instrument"

Unicity

Discretization

x and y belong to finite dimensional spaces and k is then a matrix H:

$$\mathbf{y} = H\mathbf{x} + (\mathbf{b}) \tag{12}$$

Structure of H - One dimensional convolution

$$y_n = \sum_{i=-Q}^P x_{n-i} h_i \tag{13}$$

One value of $y \rightarrow P + Q + 1$ values of xShift of one for each new value of yN values of $y \rightarrow P + Q + N$ values of x

Structure of H - One dimensional convolution

$$\begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{N} \end{pmatrix} = \begin{pmatrix} h_{P} & \dots & h_{0} & \dots & h_{-Q} & 0 & \dots \\ 0 & h_{P} & \dots & h_{0} & \dots & h_{-Q} & 0 \\ \vdots & \ddots & \dots & \dots & \dots & \dots \\ 0 & \dots & h_{P} & \dots & h_{0} & \dots & h_{-Q} \end{pmatrix} \begin{pmatrix} x_{-P+1} \\ \vdots \\ x_{0} \\ x_{1} \\ \vdots \\ x_{1+Q} \\ \vdots \\ x_{N} \\ \vdots \\ x_{N+Q} \end{pmatrix}$$

Using the DFT

Underdetermined system:

$$dim(\mathbf{x}) = N + P + Q > dim(\mathbf{y}) = N.$$

- Add P + Q rows to H to get a square circulant matrix $dim(H) = (N + P + Q) \times (N + P + Q)$.
- ▶ Then we can compute **y** by
 - 1. DFT of \mathbf{x} (dimension L).
 - 2. DFT of the first row of H, (dimension L).
 - 3. Product term by term of the two DFTs.
 - 4. IDFT of the result.
 - 5. Extraction of the N "correct" values from the N+P+Q values of \mathbf{y} .

Structure of H - Two dimensional convolution

$$y_{n,k} = \sum_{i=-Q_1}^{P_1} \sum_{j=-Q_2}^{P_2} h_{i,j} x_{(n-i,k-j)}$$
 (14)

$$y_{1,1} = \sum_{i} \left(h_{(i,-Q_2)} x_{(1-i,1+Q_2)} + h_{(i,-Q_2+1)} x_{(1-i,Q_2)} + \dots + h_{(i,P_2)} x_{(1-i,1-P_2)} \right)$$
(15)

One value of
$$y_{n,k} \rightarrow (P_1 + Q_1 + 1)(P_2 + Q_2 + 1)$$
 values of $x_{n,k}$ N^2 values $\rightarrow (P_1 + Q_1 + N^2)(P_2 + Q_2 + N^2)$ values of $x_{n,k}$

Solutions

Whatever dimensions and without noise or unknown noise

$$\mathbf{x}_{est} = \arg\min_{\mathbf{x}} ||\mathbf{y} - H\mathbf{x}||^2 = (H^T H)^{-1} H^T \mathbf{y}$$
 (17)

With i.i.d noise

$$\mathbf{x}_{est} = (H^T H)^{-1} H^T \mathbf{y} \tag{18}$$

With known autocorrelation matrix

$$\mathbf{x}_{est} = (H^T R^{-1} H)^{-1} H^T R^{-1} \mathbf{y} \qquad R = E[\mathbf{bb}^T]$$
 (19)

 $(H^TH)^{-1}H^T=H^{\dagger}$: generalized inverse matrix

Conclusion: bad conditioning

In the discretised case, there is always a solution, the problem is the inversion of H or $H^TH \rightarrow H$ is bad conditioned.

Condition number

$$c = \frac{\lambda_{max}}{\lambda_{min}} \tag{20}$$

 λ_{max} : maximal eigenvalue, λ_{min} : minimal eigenvalue well-conditioned: $c\approx 1$, bad-conditioned: $c\gg 1$, (introducing example: $c=4.10^5$)

Solutions to bad conditioning

Truncated eigendecomposition

- The eigendecomposition allows to increase the conditioning by suppressing the smaller eigenvalues.
- If the λ_i are arranged in descending order and the eigenvectors are arranged in the order of the eigenvalues, one can simply truncate the decomposition by stopping the summation to main eigenvalues
- $(H^T H)^{-1} = \sum_{i=1}^{K} \frac{1}{\lambda_i^2} \mathbf{v}_i \mathbf{v}_i^T$

Problems

- ► Choice of the truncation?
- ▶ No physical information on the object . . .

Adding a priori - Regularization

- By adding a priori, we give up the true solution, anyway the true solution is lost.
- ▶ We search a "stabilized" solution.
- Signal processing: biased estimator.

Minimization of a composite criterion

$$J(\mathbf{x}) = J_1(\mathbf{y}, \mathbf{x}) + \gamma J_2(\mathbf{x}) \tag{21}$$

 J_1 : fidelity term, J_2 a priori term on x or regularization term, γ : regularization coefficient.

Constraint: J(x) must be convex!

Smoothness constraint to reduce the amplification of the noise.

Tikhonov regularization

$$J_2(\mathbf{x}) = ||D\mathbf{x}||^2 \tag{22}$$

With D a linear operator.

▶ $J_2(\mathbf{x}) = ||\mathbf{x}||^2 = ||\mathbf{x} - \mathbf{0}||^2$ "we search to minimize the norm of the solution"

▶ $J_2(\mathbf{x}) = ||C\mathbf{x}||^2$ with C first derivative operator "we search to minimize the norm of the derivative of the solution"

$$C = \left(\begin{array}{ccccc} 1 & -1 & 0 & \dots & \dots \\ 0 & 1 & -1 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{array}\right)$$

▶ $J_2(\mathbf{x}) = ||L\mathbf{x}||^2$ with L second derivative operator "we search to minimize the norm of the second derivative of the solution"

$$L = \left(\begin{array}{ccccc} 1 & -2 & 1 & 0 & \dots \\ 0 & 1 & -2 & 1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{array}\right)$$

$$J_2(\mathbf{x}) = ||\mathbf{x} - \mathbf{x}_{priori}||^2_W = (\mathbf{x} - \mathbf{x}_{priori})^T W^{-1} (\mathbf{x} - \mathbf{x}_{priori})$$
 (23)

- ► This distance corresponds to a Gaussian a priori on **x** of mean **x**_{priori} and covariance matrix *W*.
- ▶ If the fidelity term is also quadratic, then:

$$J(\mathbf{x}) = ||\mathbf{y} - H\mathbf{x}||^2_R + \gamma ||\mathbf{x} - \mathbf{x}_{priori}||^2_W$$

= $(\mathbf{y} - H\mathbf{x})^T R^{-1} (\mathbf{y} - H\mathbf{x}) + \gamma (\mathbf{x} - \mathbf{x}_{priori})^T W^{-1} (\mathbf{x} - \mathbf{x}_{priori})$

Explicit minimizer

$$\mathbf{x}_{est} = (H^{T}R^{-1}H + \gamma W^{-1})^{-1}(H^{T}R^{-1}\mathbf{y} + \gamma W^{-1}\mathbf{x}_{priori})$$
 (24)

For $\gamma=0$, we find the generalized inverse solution For $\gamma\to\infty$, $\hat{\mathbf{x}}\to\mathbf{x}_{priori}$

Remark: We add γ on the diagonal of H^TH (if W is diagonal)

Simulation example

```
>>image=conv2(psf128,objet19,'same'); >>imagebruitee=image+randn(128); >>gamma=10
>>dirac=zeros(128); >>dirac(64,64)=1;
>>objetest=ifft2((fft2(imagebruitee)+gamma*fft2(ones(128)))
./(fft2(psf128)+gamma*abs(fft2(dirac))));
                                                                                             250
                                                600
             20
                                                          20
                                                                                             200
                                                400
             40
                                                          40
                                                                                             150
                                                200
             60
                                                          60
                                                                                             100
                                                          80
                                                                                             50
             80
                                                -200
            100
                                                         100
                                                 -400
                                                                                              -50
            120
                                                         120
                                                                           80 100 120
                  20
                      40
                          60
                              80
                                 100 120
                                                                        60
                           \gamma=0
                                                                        \gamma = 10
                                                                                             1.14
                                                14
             20
                                                          20
                                                                                             1.12
                                                12
             40
                                                          40
                                                                                             1.1
                                                10
                                                                                             1.08
             60
                                                          60
                                                                                             1.06
             80
                                                          80
                                                                                             1.04
            100
                                                         100
                                                                                             1.02
                                                         120
            120
                  20
                                  100 120
                                                                               100 120
```

 $\gamma = 100000$

 $\gamma = 1000$

How to choose γ ?

► Find a value of the regularization coefficient such that:

$$\mathbf{x}_{est} = \arg\min_{\mathbf{x}} (J_1(\mathbf{y}, \mathbf{x}) + \gamma J_2(\mathbf{x}))$$
 (25)

be as close as possible to x:

$$\gamma_{est} = \arg\min_{\gamma} (||\mathbf{x}_{est} - \mathbf{x}||^2)$$
 (26)

- ▶ No explicit solution in practice since **x** is not known.
- ► There are some results in the quadratic case: "curve in L", cross validation . . .

Iterative methods?

- No explicit solution
- Explicit solution but high order inversion
- lacktriangle Inequalities constraints (positivity \ldots) ightarrow non linear equation

$$[\nabla J(x^*)]x^* = 0 \tag{27}$$

- *: optimum
- Stop before convergence! (without regularization)

Descent algorithm

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha^{(k)} \mathbf{d}^{(k)}$$
 (28)

 $\mathbf{d}^{(k)}$: descent direction/ $J(\hat{\mathbf{x}}^{(k+1)}) \leq J(\hat{\mathbf{x}}^{(k)})$ $\alpha^{(k)}$: step size

Richardson Lucy algorithm

Poisson distribution:

$$\mathbf{y} = \mathcal{P}(H\mathbf{x}) \tag{29}$$

► Fidelity term:

$$J(\mathbf{x}) = \sum_{i=1}^{N} ((H\mathbf{x})_i - y_i \log(H\mathbf{x})_i)$$
 (30)

Descent direction:

$$\mathbf{d}^{(k)} = -[\nabla_{\mathbf{x}} J(\mathbf{x})].\mathbf{x} = H^{T}(\mathbf{y}./H\mathbf{x}-1_{N}).\mathbf{x} \quad and \quad \alpha^{(k)} = \alpha = 1$$
(31)

Richardson Lucy algorithm

$$x_i^{(k+1)} = x_i^{(k)} [H^T]_i \frac{y_i}{[H\mathbf{x}^{(k)}]_i}$$
 (32)

Image Space Reconstruction algorithm

Additive Gaussian noise:

$$\mathbf{y} = H\mathbf{x} + \mathbf{b}$$
 $y_i = (H\mathbf{x})_i + b_i$ $R = E(\mathbf{b}^T\mathbf{b})$ (33)

► Fidelity term:

$$J(\mathbf{x}) = ||\mathbf{y} - H\mathbf{x}||_R^2 = (\mathbf{y} - H\mathbf{x})^T R^{-1} (\mathbf{y} - H\mathbf{x})$$
(34)

Descent direction:

$$\mathbf{d}^{(k)} = -\frac{\left[\nabla_{\mathbf{x}}J(\mathbf{x})\right]}{H^{T}RH\mathbf{x}}.\mathbf{x} = \left(\frac{-H^{T}RH\mathbf{x} + H^{T}R\mathbf{y}}{H^{T}RH\mathbf{x}}\right).\mathbf{x}$$
(35)

For $\alpha^{(k)} = \alpha = 1$, ISRA algorithm

$$x_i^{(k+1)} = x_i^{(k)} \frac{[H^T R \mathbf{y}]_i}{[H^T R H \mathbf{x}^{(k)}]_i}$$
(36)

Conclusion

Observation by an optical system is an ill-posed problem

- → Direct inversion gives irrelevant result
- → **Regularization** = introduction of smoothness a priori
- ightarrow **Iterative methods** for explicit gradient, non linear constraints or/and high dimensional problem
- \rightarrow If no invariant psf, inversion of a very high dimensional matrix