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A simple example: optical images deconvolution

Mathematical Model
y(nv m) = Z h(k7 I)X(n - ku m — I) + (b(na m))
K,

The impulse response h includes:
» The limited aperture of the optical system.
» A move of the object during the exposition.
» Atmospheric turbulences.
» All of these phenomena (astrophysical: 1 + 3).

b: measure and model errors
x: object
y: image

(1)



HST data, Psf




Result of the convolution




Solution in the Fourier plan

Y (£, f,) =
[H(f = 0,%,)], [X(f = 0,f)|

abs(if(psh)

frequence normalisee
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Estimated Object
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Remarks

w1 (E) o

> Lowpass system with transmission zeros.

v

Without noise, amplification of the components at frequencies
corresponding to the transmission zeros.

v

With noise, amplification of the noise at the same frequencies.

v

Signal processing: if the noise is Gaussian, it is "the best”
solution (unbiased and minimum variance estimator)

Conclusion: ill posed problem!!



lll posed problems

y = S[x] (4)
y: measures; x: object; S[]: known transformation.

Problem: recover x from y?

Well posed problems: Hadamard conditions

1. Existency. The inverse operator exists, there is at least one
solution x.

2. Unicity. The solution x is unique.

3. Stability. The solution is stable.



First kind Fredholm equation

Monodimensional case (k(s, r): kernel, x(r): unknown)

b
y(s) = / k(s, r)x(r)dr (5)

For translation invariant kernel, convolution equation:

y(s) = /oo k(s — r)x(r)dr (6)

— 00



First kind Fredholm equation
Bidimensional case (optical imagery)

y(s,t) = / ’ / " k(5. t. 1 )x(r. v)drdy (7)

For translation invariant kernel, bi-dimensional convolution
equation:

y(s,t) = / i / ’ k(s — r,t — v)x(r, v)drdv (8)

And separable:

b pd
y(s, t) = / / I(s — r)m(t — v)x(r, v)drdv (9)



Existency
Existency

"If an unlimited bandwidth error (white noise for example) or
outside the bandwidth is added on y then there is no solution




Unicity

Riemann-Lebesgue theorem

a—0o0

b b
lim /a k(s, r)(x(r) + sin(ar))dr = /a k(s,r)x(r)dr  (10)

"If high component frequencies are added to x, they are removed
by the transformation, i.e x is recovered up to high frequencies”

More generally x(r) = u(r) + v(r)

b b
/a (e, D) 2 e :/a K(s,r)u(r)dr (1)
with v(r) orthogonal to k(r,s).

"x Is recovered up to component frequencies outside the
bandwidth of the instrument”
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Discretization

x and y belong to finite dimensional spaces and k is then a matrix
H:
y = Hx + (b) (12)

Structure of H - One dimensional convolution
P
Yn = Z Xn—ihi (13)
i=—Q

One value of y — P 4+ @ + 1 values of x
Shift of one for each new value of y
N values of y — P + @ + N values of x



Structure of H - One dimensional convolution

X—P+1

X0
" hp .. hy ... hog O ... x1
)%, 0 hp ... hg h_Q 0
2 P x14Q
YN 0 ... hp ... ho h_Q .

XN

XN+Q




Using the DFT

» Underdetermined system:
dim(x) = N+ P+ Q > dim(y) = N.

» Add P+ @ rows to H to get a square circulant matrix
dm(H)=(N+P+ Q) x (N+ P+ Q).

» Then we can compute y by

1.

ARSI BN

DFT of x (dimension L).

DFT of the first row of H, (dimension L).

Product term by term of the two DFTs.

IDFT of the result.

Extraction of the N " correct” values from the N+ P + @
values of y.



Structure of H - Two dimensional convolution

Py
Ynk = Z Z h,jX(n ik—j) (14)

—Q1j=—Q

yii1=
Z (h(i:*Qz)X(lfi,lJer) +hi - u1)Xa-i) T+ h(,-7p2)x(1,,-71,,32))

i

(15)

One value of y, x = (P1+ Q1 + 1)(P2 + @2 + 1) values of xj, «
N2 values — (P1+ Q1 + N2)(P2 4+ @ + N2) values of xj «



yi1

Y12
YN,N
hpy,p, s hp,—q, e h-q,-a 0
O hpp, o b o hgq
0 ... hpp . hp_g . hog-o

X(1—P1,1-Py)

X(14+@1,1+Q2)

X(o_ _
(2 P1.72 P») (16)

X(2+Q1,2+Q2)

X(N+Q1,N+Q>)



Solutions

Whatever dimensions and without noise or unknown noise

Xest = arg m|n lly — HxH2 (HTH)_IHTy (17)

With i.i.d noise
Xest = (H"H)"'H'y (18)
With known autocorrelation matrix
Xest = (HTRTIH)Y'HTR™ly R =E[bb"] (19)

(HTH)"'HT = H': generalized inverse matrix



Conclusion: bad conditioning

In the discretised case, there is always a solution, the problem is
the inversion of H or HT H — H is bad conditioned.

Condition number

o= D (20)

Amin

Amax: maximal eigenvalue, A\pjn: minimal eigenvalue
well-conditioned: ¢ ~ 1, bad-conditioned: ¢ > 1,
(introducing example: ¢ = 4.10)



Solutions to bad conditioning

Truncated eigendecomposition

» The eigendecomposition allows to increase the conditioning by
suppressing the smaller eigenvalues.

> If the \; are arranged in descending order and the eigenvectors
are arranged in the order of the eigenvalues, one can simply
truncate the decomposition by stopping the summation to
main eigenvalues

> (HTH)™ = XK ]

Problems

» Choice of the truncation?

» No physical information on the object ...



Adding a priori - Regularization

» By adding a priori, we give up the true solution, anyway the
true solution is lost.
> We search a "stabilized” solution.

» Signal processing: biased estimator.

Minimization of a composite criterion

J(x) = Li(y,x) + 7vh2(x) (21)

Ji: fidelity term, J> a priori term on x or regularization term,

~: regularization coefficient.
Constraint: J(x) must be convex!



Regularization

Smoothness constraint to reduce the amplification of the noise.

Tikhonov regularization

Jo(x) = || Dx||? (22)

With D a linear operator.

» Jp(x) = ||x||? = ||[x — 0]|? "we search to minimize the norm of
the solution”



Regularization

» Jp(x) = ||Cx||> with C first derivative operator "we search to
minimize the norm of the derivative of the solution”

> Jp(x) = ||Lx||? with L second derivative operator "we search
to minimize the norm of the second derivative of the solution”

1 -2 1 0
(=0 1 —21



Regularization

JZ(X) = HX - xpriori| |2W = (X - Xpriori)T W_l(x - xpriori) (23)

» This distance corresponds to a Gaussian a priori on x of mean
Xpriori and covariance matrix W.

> If the fidelity term is also quadratic, then:

Jx) = lly— HtzR +7]lx — XpriorinW
= (y - HX)TRil(y - HX) + ’)/(X - Xpriori)Twil(X - xpriori)



Regularization

Explicit minimizer

Xest = (HTRTIH +yW Y)Y HTR Yy 4+ yW lxpiori)  (24)

For v = 0, we find the generalized inverse solution
For v — 00, X = Xpriori

Remark: We add +y on the diagonal of H™ H (if W is diagonal)



Simulation example
>>image=conv2(psf128,objet19, ’same’); >>imagebruitee=image+randn(128); >>gamma=10
>>dirac=zeros(128); >>dirac(64,64)=1;
>>objetest=ifft2((fft2(imagebruitee)+gamma*fft2(ones(128)))

./ (£££2(psf128)+gammaxabs (fft2(dirac))));
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Regularization

How to choose ~7
» Find a value of the regularization coefficient such that:
Xest = arg mxin(Jl(y7 x) + 742 (x)) (25)
be as close as possible to x:

Yt = arg min([ ese — ] (26)

» No explicit solution in practice since x is not known.

» There are some results in the quadratic case: "curve in L"”,
cross validation ...



[terative methods?

» No explicit solution
» Explicit solution but high order inversion

» Inequalities constraints (positivity ...) — non linear equation
[VJ(x)]x* =0 (27)

*: optimum

» Stop before convergence! (without regularization)
Descent algorithm
x(k+1) — x(k) 4 o (k) g(k) (28)

d(¥): descent direction/ J(X(kT1)) < J(x(K)
alk): step size



Richardson Lucy algorithm

» Poisson distribution:

y = P(Hx) (29)
> Fidelity term:
N
J(x) = Y _((Hx); — y; log(Hx);) (30)

i=1
» Descent direction:

dX) = —[V,J(x)].x = HT (y./Hx=1py)x and oK) =a =1
(31)

Richardson Lucy algorithm

Xi(k+1) [HT],

= (k)] (32)



Image Space Reconstruction algorithm

» Additive Gaussian noise:
y=Hx+b yi=(Hx);+b R=EMb"b) (33)
> Fidelity term:
Jo) =y = Hxl[g = (y = H)"R7H(y = Hx)  (34)

» Descent direction:

T T
W _ [VxJ(x)] _ (—HTRHx+HTRy
d HTRHx HT RHx x  (39)
For oK) = a = 1, ISRA algorithm
HT Ry];
Lk _ o [HTRy] (36)

T [HTRHx(W)];



Conclusion

Observation by an optical system is an ill-posed problem

— Direct inversion gives irrelevant result

— Regularization = introduction of smoothness a priori

— lterative methods for explicit gradient, non linear constraints
or/and high dimensional problem

— If no invariant psf, inversion of a very high dimensional
matrix
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