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Solar	  acCvity	  
•  In	  the	  Sun	  we	  can	  study	  stellar	  acCvity	  in	  detail,	  thanks	  to	  the	  spaCal	  and	  

Cme	   resoluCon	   (down	   to	   50-‐100	   km	   and	   a	   fracCon	   of	   a	   second,	  
respecCvely);	  

•  In	   the	   photosphere,	   the	   features	   associated	   with	   magneCc	   fields	   are	  
sunspots,	  faculae,	  and	  the	  network.	  	  



VariaCon	  of	  Solar	  Irradiances	  

(Lanza	  et	  al.	  2004)	  
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Fig. 7. The same as Fig. 6 for two data subsets close to the maximum of solar cycle 23, ranging from 29 January 2000 to 29 March 2000 in the
left panels, and from 29 March 2000 to 28 May 2000 in the right panels, respectively. These time series were previously modelled by Krivova
et al. (2003, Fig. 3 right panels).

The model time series provide a good fit to the observed time
series in the four passbands for ω ≤ 0.2 (d−1), i.e., for time
scales longer than 5.0 days during the activity minimum phase,
with a significant degradation of the performance toward in-
creasing frequencies, likely to be due to the irradiance fluc-
tuations produced by ephemeral active regions with typical
lifetimes of 2−3 days (Harvey 1993). During the maximum
of activity, the best performance is obtained for frequencies
ω ≤ 0.25 (d−1), i.e., time scales longer than 4 days, but the
degradation of the performance towards higher frequencies is
less pronounced and the squared modulus of the coherency
stays at about 0.8 for the 402 nm band up to ω ∼ 1.0 (d−1).
This suggests that the variability of the solar irradiance close
to the maximum of activity is dominated by long-lived active
regions affecting predominantly the TSI and the longer optical
wavelengths. Moreover, during the maximum activity interval,
our model gives a better reproduction of the phase shifts due
to the active region growth and decay than during the interval
of minimum activity, as witnessed by the smaller dispersion of
the phase spectrum around the zero values. This indicates that

the typical lifetime of the surface inhomogeneities is compa-
rable to the typical time scale we assumed for changes of the
active region configuration, i.e., 7 days in the present model.
The determinations of the rotation period P and of the longi-
tude of the active regions are not significantly improved by the
simultaneous fitting of the TSI and SSI data. For a discussion
of such aspects and the long-term parameter variations related
to the 11-yr cycle, we refer the interested reader to Paper I.

5. Discussion and conclusions

The application of stellar-like approaches for modelling the so-
lar rotational modulation is not new (cf. Paper I, and refer-
ences therein). However, this is the first time, to our knowledge,
that total and optical multiband irradiance data are simultane-
ously modelled without any knowledge of the distribution of
active regions on the solar disk that can help to constrain the
free parameters (cf. Eker et al. 2003). The direct approach, i.e.,
the modelling of the solar irradiance variations in the TSI and
SSI passbands starting from the maps of the surface magnetic



Photometric	  effects	  of	  an	  acCve	  region	  

Faculae are more contrasted close to the limb and produce an increase of the flux, 
while spots produce the maximum flux decrement when they are closer to disc 
centre because of projection effects. On the other hand, faculae have a small 
contrast at disc centre, so the effect of the spots is prevailing there.  



Stellar	  acCvity	  
•  The	  disks	  of	  distant	  stars	  cannot	  generally	  be	  resolved	  (see,	  however,	  lectures	  by	  

Perrin,	  Kervella,	  Monnier	  et	  al.	  at	  this	  meeCng);	  
	  
•  We	  apply	  indirect	  techniques	  to	  map	  their	  photospheres:	  
	  

–  Doppler	   imaging	  (v	  sin	   i	  ≥	  10-‐15	  km/s	   is	  required);	  see,	  e.g.,	  Kochukhov	  (this	  
meeCng),	  DonaC	  &	  Collier	  Cameron	  (1997),	  Strassmeier	  (2009;	  2011);	  

	  
–  Modelling	  of	  the	  rotaConal	  modulaCon	  of	  the	  opCcal	  flux,	  i.e,	  spot	  modelling	  	  

(e.g.,	  Lanza	  et	  al.	  2007);	  	  
	  
–  Eclipse	  mapping	  in	  close	  binary	  systems	  (e.g.,	  Collier	  Cameron	  1997;	  Lanza	  et	  

al.	  1998);	  
	  
–  Transit	  mapping	  in	  star-‐planet	  systems	  (e.g.,	  Schneider	  2000;	  Silva	  2003);	  
	  

•  A	  general	   introducCon	  to	  starspot	  acCvity	  in	  late-‐type	  stars	  can	  be	  found	  in,	  e.g.,	  
Berdyugina	  (2005)	  and	  Strassmeier	  (2009).	  	  	  	  



Space-‐borne	  photometry	  
•  Thanks	   to	   space-‐borne	   photometric	   experiments	   (MOST,	   CoRoT,	  

and	  Kepler)	  high-‐precision	  (20-‐300	  ppm	  for	  1	  hr	  integraCon	  Cme	  on	  
a	  V=12	  G2V	  star)	  and	  uninterrupted	  (up	  to	  150-‐1200	  days)	  opCcal	  
photometric	   Cme	   series	   are	   now	   available	   to	   map	   stellar	  
photospheres;	  	  

	  
•  Those	  Cme-‐series	  were	  primarily	   acquired	   to	   search	   for	   planetary	  

transits;	  
	  
•  If	  a	  transit	  is	  discovered,	  this	  leads	  to	  complementary	  and	  follow-‐up	  

observaCons	  that	  allow	  us	  a	  full	  characterizaCon	  of	  the	  star;	  
	  
•  The	   out-‐of-‐transit	   Cme	   series	   can	   then	   be	   used	   to	   study	   stellar	  

acCvity	  and	  relate	  its	  characterisCcs	  to	  stellar	  parameters.	  	  	  



Time-‐series	  analysis	  
•  Several	   approaches	   based	   on	   different	  methods	   for	   Cme	   series	   analysis	  

have	  been	  proposed	  and	  applied	  to	  stellar	  light	  curves	  to	  derive:	  
	  

–  RotaCon	  periods	  and	  differenCal	  rotaCon;	  
–  Spot	  lifeCmes;	  
–  AcCve	  longitudes;	  
–  AcCvity	  cycles;	  
	  

•  see,	   e.g.,	   Jetsu	   (1996);	   Donahue	   et	   al.	   (1997),	   Kollath	   &	   Olah	   (2009);	  
LehCnen	   et	   al.	   (2011);	   Lindborg	   et	   al.	   (2013);	   McQuillan	   et	   al.	   (2013,	  
2014);	  Walkowitz	  &	  Basri	  (2013);	  Reinhold	  et	  al.	  (2013);	  	  

•  Here,	  we	  shall	  focus	  on	  spot	  modelling	  and	  do	  not	  consider	  further	  those	  	  
approaches.	  	  

	  
	  



Principles	  of	  spot	  modelling	  

We consider a Cartesian reference frame in which the Z-axis is directed along

the spin axis of the star while the X and Y axes are fixed in an inertial space.

The X-axis is chosen so that the line of sight to the observer OE is contained

in the XZ plane.

θ is the colatitude of the point P on the surface of the star, φ its longitude, i

the inclination of the stellar spin axis to the line of sight, and ψ is the angle

between the normal to the surface element and the line of sight.

If Ω is the angular velocity of rotation of the star:

φ(t) = φ0 + Ω(t− t0), (1)

where φ0 is the initial longitude at the initial time t0, and t is the time. Then

we have:

ÔE = (sin i, 0, cos i)

ÔP = (sin θ cosφ(t), sin θ sinφ(t), cos θ) (2)

µ ≡ cosψ = ÔE · ÔP = sin i sin θ cosφ(t) + cos i cos θ

µ = sin i sin θ cos [φ0 + Ω(t− t0)] + cos i cos θ (3)

1



EsCmaCng	  stellar	  inclinaCon	  
•  The	  photometric	  period	  Prot,	  derived	  from	  the	  light	  modulaCon	  induced	  by	  starspots,	  can	  be	  

combined	  with	  the	  measurement	  of	  the	  vsini	  and	  an	  esCmate	  of	  the	  stellar	  radius	  R	  to	  derive	  
the	  inclinaCon:	  	  

	  
sin	  i	  =	  Prot	  (vsini)	  /	  (2πR)	  	  

	  
•  Asteroseismology	  can	  also	  provide	  a	  measure	  of	  the	  inclinaCon	  (e.g.,	  Gizon	  &	  Solanki	  2003;	  

Ballot	  et	  al.	  2006,	  2011).	  	  
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sun spinning at different speeds with different axis orientations. We

have considered rather realistic signal-to-noise ratios (S/Ns) and we

have focused on the particular situation of slow rotators (less than

twice solar rotation).

Our preliminary results have been outlined in Ballot et al. (2004).

This paper fully develops this work. The layout of the rest of this

paper is as follows. In Section 2, we describe the main properties of

modes for a star under rotational effects. In Section 3, we describe the

techniques used to extract splittings and angle i from several modes

together. In Section 4, we present the results of our method applied

to several example cases. Finally, we discuss the fitting methods

before concluding in the last section.

2 O S C I L L AT I O N S P E C T RU M
O F A S P I N N I N G S TA R

2.1 Mode properties

Acoustic (p) modes in solar-like stars are excited by turbulent

convective motions. Oscillations are damped but permanently re-

excited (Goldreich, Murray & Kumar 1994). The oscillation power

spectrum of such modes can be modelled as a noisy Lorentzian pro-

file. For a power spectrum classically computed with the Fourier

transform of a regularly sampled time-series, this noise is a mul-

tiplicative exponential. A mode (n, !, m) – see below – is also

characterized by its frequency, its amplitude and its full width at

half-maximum (FWHM).

In solar-like stars, the width " of a p-mode depends only on

its frequency ν. For the Sun, the function "(ν) shows an S-shape.

There is a plateau in the range 2300–3200 µHz around a value of

1 µHz. At low frequency widths decrease rapidly and increase at

high frequency (e.g. Garcı́a et al. 2004b).

In the absence of rotation, the frequency of a mode depends only

on its radial order n and its degree !: we denote it ν n!. Modes

are (2! + 1)-times degenerate among the azimuthal order m. This

degeneracy is removed by breaking the spherical symmetry, espe-

cially by rotation. The frequency of mode (n, !, m) is expressed as

ν n!m = ν n! + δν n!m . The asymptotic first-order approximation, de-

veloped for a star spinning as a solid body with an angular velocity

%, gives δν n!m = −mδν with δν = %/2π (Ledoux 1951). We call

δν rotational splitting (or simply splitting).

For geometrical reasons, only low-degree modes have a sufficient

amplitude to be visible in an oscillation spectrum due to the integra-

tion of the luminosity – or the radial velocity – on the full stellar disc.

Mode amplitudes also depend on their azimuthal order m. Calcula-

tions are rather straightforward and can be found, for example, in

GS03. Assuming the equipartition of energy between the different

components of a multiplet (n, !), their amplitudes can be expressed

as

An!m = a!m(i)V 2
! αn! = a!m(i)An!. (1)

In this expression, the factor V ! is the mode visibility. It depends

on the limb-darkening function, that is, on the atmospheric proper-

ties. The visibility V ! decreases strongly when ! increases: for ! =

1, . . . , 5, we have calculated (V !/V 0)2 = 1.5, 0.53, 0.027, 0.0039,

0.000 67, assuming an Eddington law for the limb-darkening func-

tion. For this reason, we expect to measure only modes ! = 0, 1,

2 and probably a few ! = 3. The factor a!m(i) is the amplitude

ratio of modes inside a multiplet. It is a purely geometrical term,

depending on i, the angle between the line of sight and the rotation

axis. This is true under only one condition, that the contribution

of each stellar-surface element to the total flux depends only on its
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Figure 1. An ! = 2 mode for three different speeds and angles.

distance to the disc centre. Even if it is not exactly true for velocity-

fluctuation observations due to the rotation of the star (e.g. Henney

1999), this assumption stays very good for luminosity observations.

The final factor of the mode amplitude αn! ≈ α(ν n!) depends mainly

on the frequency and excitation mechanisms. We note An! = V 2
!αn!.

This approach is valid for low rotation rates, when rotation can be

interpreted as perturbation.

Thus, a mode (n, !) is modelled by a multiplet parametrized by

five parameters (only three for ! = 0): the central frequency ν n!, the

amplitude An!, the width "n! common to all the components, the

splitting δν and the angle i.

2.2 Classification depending on δν

We have defined the following three different scenarios according

to δν.

(1) δν # δ02ν,

(2) " < δν ! δ02ν, and

(3) δν ! ",

where δ02 ν denotes the small separationν n+1,!=0 −ν n,!=2 (around

10 µHz for the Sun in the range 2000–3000 µHz). In the first case,

the components of different modes are mixed and it could be dif-

ficult to label each peak in a spectrum with the correct values of

!, m and relative n. However, when this identification is done, all

of the splittings δν n!m are accurately defined. In the second situa-

tion, mode identification does not pose any problem in general for

good S/N and, as the components of a multiplet are well separated,

splittings are easily measured. In the third and last case, the multi-

plet components are blended. The effect on the amplitude ratio of a

multiplet due to a given inclination axis is not always distinguish-

able from those of the splitting as illustrated by Fig. 1. For three

different configurations chosen as an example, the mode profiles

are nearly the same; only fine differences appear in the structure of

profile tops. When an exponential multiplicative noise is taken into

account, these differences are very difficult to catch. We have stud-

ied this more challenging situation, corresponding to δν ! 1 µHz

(for suns), that is, % ! 2 %$ (%$/2π ≈ 0.4 µHz).

3 E X T R AC T I N G T H E M O D E PA R A M E T E R S

3.1 Fitting modes: maximum likelihood

Splittings and inclination angle should be deduced from the oscilla-

tion spectra at the same time as all the other mode parameters. For

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 369, 1281–1286

(Ballot et al. 2006) 



Specific	  intensity	  and	  flux	  



Let us assume a quadratic limb-darkening law for the unperturbed photosphere
in the given passband:

Iu(µ) = I0(a+ bµ+ cµ2), (4)

where Iu is the specific intensity in the given passband, I0 is the specific inten-
sity at the centre of the disc, a, b, and c are the limb-darkening coefficients that
verify a+ b+ c = 1, and µ ≡ cosψ.

The total flux coming from the stellar disc of radius R is:

Fu = 2πR2

� π/2

0
Iu(cosψ) cosψ sinψ dψ = 2πR2

� 1

0
Iu(µ)µdµ

Fu = πR2I0

�
a+

2

3
b+

1

2
c

�
. (5)

The flux perturbation produced by dark spots and bright faculae contained
within a small surface element centred around the point P is:

∆F = ∆Fs +∆Ff = Asµ(Is − Iu) +Afµ(If − Iu),

where As is the area of the spots and Af that of the faculae.

If A is the area of the surface element, we define the filling factor of the spots
fs and that of the faculae Qf according to:

As = fsA, Af = QfsA = QAs,

and their intensity contrasts as:

cs ≡
�
1− Is

Iu

�
, cf ≡ −

�
1− If

Iu

�
.

Solar faculae are more contrasted toward the limb and virtually invisible at disc
centre; therefore, we assume:

cf = cf0(1− µ),

so that

∆F = AsIu(µ) [−cs +Qcf0(1− µ)]µ = fsAIu(µ) [−cs +Qcf0(1− µ)]µ. (6)

In addition, to further simplify our model, we assume that:

a) the star is spherically symmetric – a rotationally or tidally distorted star
shows gravity darkening in addition to limb darkening, thus complicating
the model;

b) the contrasts cs and cf0 are constant;

c) the ratio of the facular-to-spotted area Q ≡ Af/As is constant;

d) the presence of spot penumbra is neglected;

e) active regions are assumed to be point-like to compute projection effects
(As, Af � πR2).

2



Effect	  of	  a	  single	  acCve	  region	  
We assume that a given active region consists of spots of area As and faculae of
area Af = QAs localized into a given surface element with central coordinates
(θ,φ0).

The observed flux at the time t is:

F (t) = Fu +∆F (t)

and its relative variation, according to Eq. (6):

F (t)

Fu
= 1 +

∆F (t)

Fu
= 1 +

AsIu(µ)

Fu
[Qcf0(1− µ)− cs] v(µ)µ, (7)

or, substituting Eqs. (4) and (5) into Eq. (7):

F (t)

Fu
= 1 +

�
As

πR2

��
a+ bµ+ cµ2

a+ 2b/3 + c/2

�
[Qcf0(1− µ)− cs] v(µ)µ, (8)

where the time dependence comes through µ:

µ = sin i sin θ cos [φ0 + Ω(t− t0)] + cos i cos θ,

and v is the visibility of the surface element defined as:

v(µ) =

�
1 if µ ≥ 0
0 if µ < 0.

3



Extended	  polar-‐cap	  spots	  
•  Polar	  cap	  spots	  have	  been	  considered	  in	  the	  case	  of	  very	  acCve	  stars	  because	  spots	  cover	  a	  

significant	  fracCon	  of	  the	  stellar	  disc;	  

•  They	  were	  quite	  popular	  in	  the	  ‘80	  and	  ‘90	  to	  fit	  ground-‐based	  photometry;	  
	  
•  Dorren	  (1987)	  and	  Eker	  (1994),	  among	  others,	  provided	  the	  theory	  of	  their	  light	  variaCon.	  
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Few-‐spot	  models	  
•  We	  can	  model	   the	   light	   curve	   of	   an	   acCve	   star	   by	   considering	   the	   simultaneous	  

effects	  of	  2-‐3	  non-‐overlapping	  spots;	  
•  It	   is	   sufficient	   to	  add	   the	  effects	  of	   the	   single	   spots	  as	  described	   in	   the	  previous	  

slides;	  
•  When	  we	  consider	  2	  spots,	  the	  free	  parameters	  are:	  

–  Stellar	  parameters:	  inclinaCon	  i,	  Prot	  =	  2π⁄Ω,	  limb-‐darkening	  coefficients;	  
–  The	   unspoled	   flux	   level	   Fu	   (usually	   assumed	   equal	   to	   the	   maximum	   of	   the	  

light	  curve	  or	  specified	  as	  a	  constant);	  
–  The	   spot	   and	   facular	   contrasts,	   cs	   and	   cf0,	   respecCvely,	   and	   the	   raCo	   of	   the	  

facular-‐to-‐spoled	  area	  Q;	  
–  For	   each	   spot:	   relaCve	   area	   As	   /πR2,	   colaCtude	   θ,	   iniCal	   longitude	   φ0	   (spot	  

geometric	  parameters).	  
•  By	  fixing	  i,	  Prot,	  Fu,	  Q,	  the	  contrasts	  and	  the	  limb-‐darkening	  coefficients,	  we	  search	  

for	   the	   6	   spot	   geometrical	   parameters	   that	   minimize	   the	   χ2	   of	   the	   fit	   to	   the	  
observaCons;	  



2-‐spot	  modelling	  

(Rodonò	  et	  al.	  1986)	  

•  The model can be unique only because of the small 
number of free parameters;  

 
•  In general, there are several degeneracies among the 

parameters (e.g., i vs. θ); 

•  It was acceptable for ground-based photometry with a 
precision of 0.01-0.02 mag, but its residuals are too large 
for space-borne photometry for which a typical precision 
is 10-4 mag; 

•  Increasing the number of spots makes the residuals 
smaller, but the degeneracies among parameters become 
much stronger and the solution highly non-unique leading 
to an unstable best fit; 

 
•  For specific applications, 2-spot models in combination 

with a Monte Carlo Markov Chain approach to sample the 
parameter space are useful, e.g., to estimate differential 
rotation (Croll 2006; Lanza et al. 2014).  

1986A&A...165..135R



Two-‐spot	  model	  of	  ε	  Eridani	  

MOST	  light	  curve	  (filled	  dots)	  filed	  with	  a	  2-‐spot	  model	  with	  differenCal	  rotaCon	  (solid	  line)	  
and	  with	  rigid	  rotaCon	  (dashed	  line)	  (Croll	  et	  al.	  2006;	  Croll	  2006;	  Lanza	  et	  al.	  2014).	  

A&A 564, A50 (2014)

Table 2. Initial and final times of the intervals considered for the MCMC analysis, together with the uniform prior intervals of the parameters for
the stars of our sample.

Star name t1 t2 i F0 a1,2 θ1,2 ∆λ1,2 P1,2
(d) (d) (deg) (deg) (deg) (d)

Sun 19.8542 39.7084 70, 90 −0.03, 0.01 2 × 10−5, 0.060 0, 180 ±13 24.0, 29.0
HD 52265 48.3125 60.2654 15, 45 −2 × 10−4, 2 × 10−4 2 × 10−7, 0.044 0, 150 ±15 9.0, 14.0
HD 52265 60.3210 72.3890 15, 45 −2 × 10−4, 2 × 10−4 2 × 10−7, 0.044 0, 150 ±15 9.0, 14.0
HD 181906 23.1900 28.9158 15, 40 −0.001, 0.002 2 × 10−5, 0.044 0, 120 ±13 2.65, 2.90
HD 181906 37.9341 42.6582 15, 40 −0.001, 0.002 2 × 10−5, 0.044 0, 120 ±13 2.65, 2.90
CoRoT-6 75.930140 82.810186 70, 90 −0.03, 0.01 2 × 10−3, 0.268 0, 180 ±13 5.0, 9.0
KIC 7765135 88.07162 93.91567 50, 60 −0.03, 0.01 2 × 10−3, 0.268 0, 180 ±13 1.0, 4.0
KIC 7985370 33.5126 39.07074 25, 50 −0.03, 0.01 2 × 10−3, 0.268 0, 180 ±13 1.0, 5.0
KIC 8429280 104.49977 108.66819 65, 73 −0.02, 0.01 2 × 10−3, 0.268 0, 180 ±13 1.0, 4.0
Kepler-30 290.99150 313.34662 60, 90 −0.03, 0.01 2 × 10−5, 0.060 0, 180 ±13 13.0, 19.0

Fig. 4. Distribution of the residuals of the composite best fit to the entire
time series of Kepler-30 obtained with the two-spot model with DR for
M = 51. The dashed line is a Gaussian best fit to the distribution.

5.2.2. Two-spot modelling of ε Eridani light curve

The optical light curve of ε Eri, together with the best fits ob-
tained with our model, is plotted in Fig. 5. The best fit with
DR gives a better reproduction of the variable amplitude of the
light modulation along the nearly three rotations covered by the
dataset, while the best fit with two rigidly rotating spots has
larger deviations and does not reproduce the times of all three
light minima. In particular, the second and the third minima are
approximately matched, while the first one is missed because the
two deeper minima strongly constrain the (unique) spot rotation
period. On the other hand, the model with DR provides a sig-
nificantly better fit because the two spots can drift in longitude
with respect to each other, thus allowing a simultaneous fit of
all the three minima. The value of ∆BIC computed according to
Eqs. (11) and (12) is 1.94 in favour of the model with DR. This
difference is close to the threshold adopted for selecting cases
with some evidence of DR so it gives support to our choice.

5.2.3. MCMC analysis for ε Eridani and comparison
with previous results

We computed an MCMC chain of 48 million points starting
from the minimum χ2 found with the two-spot model with DR
as given by the Levenberg-Marquardt algorithm. The standard

Fig. 5. The optical flux of ε Eridani (filled dots) vs. the time, together
with the best fits obtained with our two-spot model with DR (solid line)
or rigid rotation (dashed line).

deviations of the random steps of the parameters were chosen as
to obtain an overall acceptance rate of 0.27. The prior distribu-
tions of our parameters were the uniform wide priors in Table 1
of Croll (2006) with the exception of the reference flux level F0
that we assumed to range from −0.001 and 0.005 and the use
of initial spot longitudes instead of spot transiting epochs in our
model; we assumed a range of ±13◦ for the initial longitudes.
The mixing and convergence of the chain were checked as ex-
plained in Sect. 3.4, obtaining a minimum value of the parame-
ter R of 1.0017 and a maximum value of 1.0133 (see Table 3).
Therefore, the convergence of our chain for ε Eri was remarkably
good. In the present approach, we considered point-like active
regions, while Croll (2006) assumed circular (polar cap) spots.
Moreover, we limited the maximum χ2 variation for the accep-
tance of a given step to one percent, which was significantly less
than that of Croll who adopted a limit around four percent (Croll
et al. 2006). Croll’s choice of the odds relating one point to the
next in the chain was ruled by a virtual temperature according to
his Eq. (1). We assumed a similar exponential dependence, but
dropped the factor 2 present in the denominator of his equation
(cf. Sect. 3.4). In spite of all these differences, our results were
very similar to Croll’s.

The marginal distributions of the model parameters, as de-
rived a posteriori from our chain of 48 million points to which
a thinning factor of 10 has been applied, are shown in Fig. 6.
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The	  facular-‐to-‐spoled	  area	  raCo	  

•  Few-‐spot	  models	  may	  be	  used	  to	  esCmate	  Q	  by	  minimizing	  the	  
χ2	  vs.	  that	  parameter.	  	  
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(Chapman et al. 1994) and is independent of the limb angle,
as discussed by Lanza et al. (2003, 2004). It corresponds to a
spot temperature ∼540 K below that of the unperturbed photo-
sphere that, in the case of the Sun, accounts for the effects of the
extended penumbra in large sunspot groups. Considering stars
with photometric variations of a few 0.1 mag, Berdyugina (2005)
found a relationship between the temperature of the spots and
that of the unperturbed photosphere. In the case of CoRoT-Exo-
2a, it would imply a temperature deficit as large as ∼1700 K,
corresponding to cs ∼ 0.21. The real temperature deficit of the
spots on our star is probably somewhere in between the extreme
values considered above, given that its level of activity is inter-
mediate between that of the Sun and those of the most active
stars. We prefer to adopt a strict solar analogy for the present
analysis assuming that the active regions of CoRoT-Exo-2a con-
sist of spots analogous to sunspots, but with a larger area or fill-
ing factor. However, we briefly discuss at the end of Sect. 5 how
our results are affected if the spot contrast is changed or is not
uniform over the photosphere of the star.

In the case of the models including the facular contribution,
we assume the same facular contrast of the Sun cf = 0.115, with
the same dependence on the limb angle, giving a zero contrast at
the centre of the disc and a maximum contrast at the limb (Lanza
et al. 2004).

The best value of the area ratio Q between the faculae and
the spots in each active region has been estimated by means of
the 3-spot model. In Fig. 1, we plot the ratio χ2/χ2

min of the to-
tal χ2 of the composite best fit to the entire time series to its min-
imum value χ2

min, versus Q. The horizontal dashed line indicates
the 99 percent confidence level as derived from the F-statistics
(e.g., Lampton et al. 1976). The best value of Q turns out to be
Q = 1.5, with an acceptable range extending from ∼1 to ∼2.5.
For comparison, the best value in the case of the Sun is Q" = 9,
indicating a lower relative contribution of the faculae to the to-
tal light variation in late-type stars more active than the Sun,
as suggested by Gondoin (2008). Considering the colour light
curves of CoRoT-Exo-2a, we searched for the characteristic dou-
ble light maxima produced by the transits of faculae across the
disc of the star, particularly evident at shorter wavelengths, as
it is often observed in the Sun. We found no evidence of such
facular signatures, confirming that the facular contribution, if
present, is indeed significantly smaller than in the case of the
Sun. This may suggest that for a low filling factor of the mag-
netic flux tubes, facular brightness enhancement would domi-
nate, whereas when the filling factor exceeds a certain threshold,
convective heat transport is inhibited and dark spots appear with
an increasingly relative contribution (cf. also Solanki & Unruh
2004).

5. Results

The sequence of best fits obtained with the ME model including
only the photometric effects of spots is shown in Fig. 2, together
with the residuals.

The distribution of the residuals is shown in Fig. 3, for the
cases with cool spots without any regularization (λ = 0), with
only cool spots and ME regularization, and with spots and facu-
lae and ME regularization. The model with only cool spots and
without regularization has a mean of the residuals µres = 1.27 ×
10−6 and a standard deviation σ0 = 1.44 × 10−4 in relative
flux units. The model with regularization and only cool spots
has µres = −3.29 × 10−5 and σ = 2.26 × 10−4, that including
also solar-like faculae with Q = 1.5 has µres = −3.32 × 10−5

and σ = 2.39 × 10−4 in relative flux units. Note that the values

Fig. 1. The ratio of the χ2 of the composite best fit to the entire time
series of CoRoT-Exo-2a to its minimum value vs. the parameter Q, i.e.,
the ratio of the area of the faculae to that of the cool spots in active
regions. The horizontal dashed line indicates the 99 percent confidence
level for χ2/χ2

min, determining the interval of the acceptable Q values.

of the Lagrangian multipliers have been fixed by the condition
|µres| = σ0/

√
N where N ∼ 45 is the number of observations in

each subset of duration ∆tf = 3.15611 days.
The distribution of the spot covering factor f versus longi-

tude and time is plotted in Fig. 4 for the ME models with spots
only, and in Fig. 5 for the ME models with spots and faculae,
respectively. In both cases the longitude increases in the same
direction of stellar rotation and the orbital motion of the planet.
In the case of the model with spots only, we clearly see that spots
form within two active longitudes initially separated by ∼180◦.
The one centred around longitude 0◦ does not appreciably mi-
grate during the ∼140 days of the observations showing a rota-
tion period of 4.522± 0.024 days, i.e., the period adopted for our
spot modelling, while the other shows a retrograde migration of
about ≈80◦ during the same interval, which corresponds to a ro-
tation period of 4.554 days. If such a difference corresponds to
the angular velocity at different latitudes on a differentially rotat-
ing star, the relative amplitude of the differential rotation would
be only 0.7 percent. Note that the angular velocity difference be-
tween pole and equator derived from the fit in Fig. 2 of Barnes
et al. (2005) is about one order of magnitude greater, suggesting
that the spots observed on CoRoT-Exo-2a are localized in a quite
narrow latitude band or that our star has been observed in a state
with a low degree of differential rotation (cf. Donati et al. 2003;
Lanza 2006).

The formation and evolution of individual active regions
within each of the active longitudes is clearer in Fig. 4. It shows
that an active region forms around HJD 2 454 245 in the ac-
tive longitude centred at 0◦ and then increases its area and
migrates backward in longitude, reaching a maximum area at
HJD 2 454 270, and eventually fading away at HJD 2 454 300,
after ∼55 days since its appearance. At HJD 2 454 275, a new
active region forms in the other active longitude and evolves
in a similar way, migrating backward in longitude and fading
away at HJD 2 454 330, again with a characteristic lifetime of
about 55 days. Between HJD 2 454 330 and HJD 2 454 350, both
active longitudes show spots with similar area that decay in
20−30 days, leaving a minimum spotted area at HJD 2 454 350,
when a large active region begins to develop around longi-
tude 0◦, reaching the maximum area at the end of the time series.
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Fig. 1. Ratio of the χ2 of the composite best fit of the entire time series
of Kepler-17 to its minimum value vs. the parameter Q, i.e., the ratio
of the area of the faculae to that of the cool spots in active regions.
The horizontal dashed line indicates the 95 percent confidence level for
χ2/χ2

min, determining the interval of acceptable Q values.

To evaluate the spot contrast, we adopted the same mean
temperature difference as derived for sunspot groups from their
bolometric contrast, i.e. 560 K (Chapman et al. 1994). The effec-
tive temperature of the unspotted photosphere is 5780 ± 85 K,
i.e., very similar to that of the Sun (cf. B12). In other words,
we assumed a spot effective temperature of 5220 K, yielding a
contrast cs = 0.677 in the bolometric passband (cf. Lanza et al.
2007). A different spot contrast changes the absolute spot cov-
erages, but significantly affects neither their longitudes nor their
time evolution, as discussed in detail by Lanza et al. (2009a).
Therefore, since the spot temperature is only estimated, we ne-
glected the difference in the contrast cs between the Kepler band-
pass and the bolometric passband in our analysis.

In our model, the facular contrast is assumed to be solar-like
with cf = 0.115 (Lanza et al. 2004). The best value of the area
ratio Q between the faculae and the spots in the active regions
was estimated by means of the three-spot model by Lanza et al.
(2003, cf. Sect. 3). In Fig. 1, we plot the ratio χ2/χ2

min of the
total χ2 of the composite best fit of the entire time series to its
minimum value χ2

min, versus Q, and indicate the 95 percent con-
fidence level as derived from the F-statistics (e.g., Lampton et al.
1976). The choice of ∆tf = 8.733 d allows us to fit the rotational
modulation of the active regions for the longest time interval dur-
ing which they remain stable, modelling both the flux increase
due to the facular component when an active region is close to
the limb and the flux decrease due to the dark spots when the
same region transits across the central meridian of the disc. In
this way, a measure of the relative facular and spot contributions
can be obtained, leading to an estimate of Q. Figure 1 shows
that the best value is Q = 1.6, with an acceptable range extend-
ing from ≈0.6 to ≈2.6. Therefore, we adopted Q = 1.6 for our
modelling in Sect. 5. We comment on the value of Q in more
detail in Sect. 6.

5. Results

5.1. Light curve models

We applied the model of Sect. 3 to the out-of-transit light curve
of Kepler-17, considering time intervals ∆tf = 8.733 d. The best
fit without regularization (λ = 0) has a mean µres = 3.845× 10−6

and a standard deviation of the residuals σ0 = 3.032 × 10−4 in
relative flux units. The Lagrangian multiplier λ is iteratively ad-
justed until the mean of the residuals µres = −1.583 × 10−5 $
−σ0/
√

N, where N = 367 is the mean number of points in each
fitted light curve interval ∆tf ; the standard deviation of the resid-
uals of the regularized best fit is σ = 3.311 × 10−4.

The composite best fit to the entire light curve is shown in the
upper panel of Fig. 2, while the residuals are plotted in the lower
panel. The best fit is always very good, with a standard devia-
tion of the residuals ≈1.52 times the median of the errors of the
photometric measurements as given by the Kepler pipeline. The
distribution of the residuals is plotted in Fig. 3 and is well fitted
by a Gaussian with a standard deviation of 3.056×10−4 for abso-
lute values of the residuals lower than ≈6 × 10−4 in relative flux
units. For residuals greater than ≈6 × 10−4 there is a remarkable
asymmetry in the distribution with an excess of positive resid-
uals. A periodogram of the residuals shows a highly significant
peak at a period of 1.505 ± 0.005 d, very close to the orbital pe-
riod, and several lower peaks at periods between ≈1.2 and ≈3 d.
Putting the residuals in phase with the orbital period, we see the
occultation of the planet and a possible phase-dependence of the
reflected light (see B12).

5.2. Longitude distribution of active regions and stellar
differential rotation

The distribution of the spot-filling factor f vs. the longitude and
the time is plotted in Fig. 4. The longitude zero corresponds to
the point intercepted on the stellar photosphere by the line of
sight to the centre of the star at BJD 2454964.5109, i.e., the sub-
observer point at the initial epoch. The reference frame rotates
with the star with a fixed period of 12.01 d and the longitude in-
creases in the same direction as the stellar rotation and the orbital
motion of the planet. This is consistent with the reference frames
adopted in our previous studies (e.g., Lanza et al. 2009a,b), but
does not allow a direct comparison of the mapped active regions
with the dips in the light curve.

Our map shows that the individual starspots evolve with
timescales of tens of days, which makes it difficult to trace the
evolution and migration of the active regions in an unambiguous
way. Nevertheless, two main active longitudes, where individ-
ual spots form and evolve, can be identified with confidence and
appear to rotate on the whole with the rotation period of our ref-
erence frame. The migration rate of individual spots or groups of
spots within each longitude is variable, which suggests that indi-
vidual spots are forming at different latitudes on a differentially
rotating star or, alternatively, there are several spots at close lon-
gitudes that are evolving to mimic spot migration. Unfortunately,
there is no information on the starspot latitude from our map-
ping technique and even the hemisphere cannot be determined
because the inclination is close to 90◦ (cf. Sect. 3). Nevertheless,
some additional information can be extracted in this particular
case from the occultation of the spots by the planet during tran-
sits. Specifically, we can exploit the results of D11 to constrain
the latitude of some of the starspot trails that are seen in Fig. 4.

Désert et al. (2011) identified five starspots that are repeat-
edly occulted every eight transits and labelled them A, B, C, D,
and E (cf. their Figs. 11 and 12). The transit profile distortions
associated with spot C are barely visible in their Fig. 11, thus
spot C is certainly significantly smaller than the other four spots.
We plot in Fig. 4 the migration of the starspots detected by D11.
The initial epoch E(0) of D11 is equal to the epoch of the first
mid transit as reported in their Table 3 (Désert, priv. comm.) so
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MulC-‐spot	  models	  with	  evoluCon	  
•  Mosser	  et	  al.	  (2009)	  filed	  the	  light	  curves	  of	  several	  CoRoT	  asteroseismic	  targets	  

using	  a	  model	  with	  evolving	  spots;	  	  
•  During	  each	  rotaCon,	  2-‐3	  spots	  were	  assumed;	  	  
•  SoluCons	   are	  obtained	  by	   a	   relaxed	   χ2	  minimizaCon	  using	   a	   technique	   similar	   to	  

simulated	  annealing;	  
•  The	  method	  was	  extensively	  tested	  with	  simulated	  data	  to	  study	  the	  dependence	  

of	  	  the	  results	  on	  the	  model	  assumpCons	  and	  the	  	  parameters	  held	  fixed;	  
•  The	  model	  proved	  useful	  to	  derive:	  	  

–  Spot	  lifeCmes;	  
–  Mean	  rotaCon	  period;	  
–  Other	  parameters	  could	  also	  be	  derived,	  but	  with	  a	  sensible	  dependence	  on	  model	  assumpCons:	  
	  

•  InclinaCon	  of	  the	  spin	  axis;	  	  
•  Spot	  laCtudes;	  
•  LaCtudinal	  differenCal	  rotaCon.	  	  



Spot	  laCtudes	  from	  transit	  Cmes	  
•  The	  informaCon	  on	  the	  laCtudes	  of	  individual	  spots	  comes	  from	  their	  transit	  Cmes	  

across	  the	  stellar	  disc,	  in	  the	  case	  of	  a	  star	  not	  viewed	  equator-‐on;	  
•  However,	  even	  in	  the	  case	  of	  a	  single	  spot,	  laCtude	  is	  largely	  degenerate	  with	  the	  

inclinaCon	  of	  the	  stellar	  spin	  axis;	  
•  Surface	  differenCal	  rotaCon	  can	  affect	  the	  result;	  
•  In	  the	  case	  of	  a	  model	  with	  several	  spots,	   their	   laCtudes	  are	  generally	   ill-‐defined	  

and	  depend	  on	  model	  assumpCons	  and	  fixed	  parameters.	  



Bayesian	  mulC-‐spot	  modelling	  
•  Fröhlich	   (2007),	   Frasca	  et	   al.	   (2011),	   and	   Fröhlich	  et	   al.	   (2012)	  proposed	  

models	  with	   several	   discrete	   spots	   based	   on	   a	   Bayesian	   esCmate	   of	   the	  
spot	  and	  stellar	  parameters	  using	  Monte	  Carlo	  Markov	  Chains.	  H.-E. Fröhlich et al.: Magnetic activity and differential rotation in two young suns

Fig. 12. Equatorial period of the star. Mean and 68-per-cent confidence
interval are indicated by vertical lines (case A only). Dashed: the cor-
responding marginal distribution for the original data with linear trends
removed (case B).

Fig. 13. Equator-to-pole differential rotation of the star. Mean and
68-per-cent confidence interval are indicated by vertical lines (case A
only). Dashed: the corresponding marginal distribution for the original
data with linear trends removed (case B).

From the three parameters describing the star’s surface ro-
tation, A, B, and C, the equatorial rotational period (Fig. 12)
and the equator-to-pole differential rotation (Fig. 13) follow. The
latter amounts to 0.1774+0.0004

−0.0005 rad d−1 (case A) and 0.1729 ±
0.0002 rad d−1 (case B), respectively. The difference is signifi-
cant, considering the formal errors, albeit very small. In the case
of fixed inclination (i = 75◦), the differential rotation would be
slightly enhanced, 0.1839 ± 0.0002 rad d−1.

The spot area evolution is depicted in Fig. 14. The sudden ap-
pearance of spot # 7 seems to be an artefact. It falls into the gap
between the end of the Q2 data and the beginning of the Q3 data.
On the other hand, the sudden disappearance of spot # 3 is un-
related to any switching from one part of the light curve to the
next one. The fall in area of spot # 1 at the end of the time se-
ries is somehow mirrored by an increase in the size of spot # 5.
However, this highlights a flaw due to too much freedom in
describing the spot area evolution.

Expectation values with 1-σ confidence limits for various
parameters are also quoted in Table 5.

One should be aware that there is more than one solution
for each case. The second case-A solution presented in Table 5

Fig. 14. Spot area evolution (case A). Area is in units of the star’s cross-
section. Vertical lines mark the boundaries of the Q0 to Q3 quarters of
data. A number in parenthesis indicates the spot number.

Table 6. A second pair of seven-spot solutions for KIC 7985370.

Parameter Case A Case B
equ. period Peq 2.8202 ±0.0002 2.8209 ±0.0002

diff. rotation dΩ 0.1943 ±0.0002 0.1933 ±0.0002

residuals ±2.20 ±2.21

Notes. The meaning of the entries is the same as in Table 5, i.e. pe-
riods are in days, the differential rotation in rad d−1, and the residuals
in mmag.

is the one that has the lowest residuals found so far. There is
an other well-relaxed seven-spot solution with slightly larger
residuals nearby in parameter space. In that solution, the fastest
spot (# 2), which comes into existence near the end of the time
series at JD ∼ 2 455 135, is located at a more southern latitude
of −21◦, resulting in a slightly higher differential rotation. All
other spots are virtually unaffected. Further details of this second
solution are given in Table 6.

4.3.2. KIC 7765135

We identified 11 gaps longer than an hour and 3 additional small
jumps in the light curve (Fig. 15). The data set was accordingly
divided into 15 parts. Each part was assigned its individual er-
ror level, offset, and, in case B (i.e. non-rectified data), linear
trend. Hence, the likelihood function (Eq. (3)) is the product
of 15 independent contributions.

As the inclination is photometrically ill-defined, we fixed it
to the spectroscopically derived value of i = 75◦.

Despite the addition of two spots, the residuals,±2.35 mmag,
exceed those of the seven-spot model of KIC 7985370
(±2.14 mmag). This is not due to the fainter magnitude
of KIC 7765135 than to KIC 7985370, because the photomet-
ric uncertainties are typically 0.047 mmag for the former and
0.022 mmag for the latter. The reason may instead be that three
of the nine spots are definitely short-lived with a life span as
short as two months (cf. Fig. 20), which is less than twice the
lapping time of 38 days between the fastest and the slowest spot.
We have to admit that dealing with nine spots almost exceeds the
capabilities the MCMC technique since the method’s relaxation
time then becomes prohibitively long.
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Fig. 12. Equatorial period of the star. Mean and 68-per-cent confidence
interval are indicated by vertical lines (case A only). Dashed: the cor-
responding marginal distribution for the original data with linear trends
removed (case B).

Fig. 13. Equator-to-pole differential rotation of the star. Mean and
68-per-cent confidence interval are indicated by vertical lines (case A
only). Dashed: the corresponding marginal distribution for the original
data with linear trends removed (case B).

From the three parameters describing the star’s surface ro-
tation, A, B, and C, the equatorial rotational period (Fig. 12)
and the equator-to-pole differential rotation (Fig. 13) follow. The
latter amounts to 0.1774+0.0004

−0.0005 rad d−1 (case A) and 0.1729 ±
0.0002 rad d−1 (case B), respectively. The difference is signifi-
cant, considering the formal errors, albeit very small. In the case
of fixed inclination (i = 75◦), the differential rotation would be
slightly enhanced, 0.1839 ± 0.0002 rad d−1.

The spot area evolution is depicted in Fig. 14. The sudden ap-
pearance of spot # 7 seems to be an artefact. It falls into the gap
between the end of the Q2 data and the beginning of the Q3 data.
On the other hand, the sudden disappearance of spot # 3 is un-
related to any switching from one part of the light curve to the
next one. The fall in area of spot # 1 at the end of the time se-
ries is somehow mirrored by an increase in the size of spot # 5.
However, this highlights a flaw due to too much freedom in
describing the spot area evolution.

Expectation values with 1-σ confidence limits for various
parameters are also quoted in Table 5.

One should be aware that there is more than one solution
for each case. The second case-A solution presented in Table 5

Fig. 14. Spot area evolution (case A). Area is in units of the star’s cross-
section. Vertical lines mark the boundaries of the Q0 to Q3 quarters of
data. A number in parenthesis indicates the spot number.

Table 6. A second pair of seven-spot solutions for KIC 7985370.

Parameter Case A Case B
equ. period Peq 2.8202 ±0.0002 2.8209 ±0.0002

diff. rotation dΩ 0.1943 ±0.0002 0.1933 ±0.0002

residuals ±2.20 ±2.21

Notes. The meaning of the entries is the same as in Table 5, i.e. pe-
riods are in days, the differential rotation in rad d−1, and the residuals
in mmag.

is the one that has the lowest residuals found so far. There is
an other well-relaxed seven-spot solution with slightly larger
residuals nearby in parameter space. In that solution, the fastest
spot (# 2), which comes into existence near the end of the time
series at JD ∼ 2 455 135, is located at a more southern latitude
of −21◦, resulting in a slightly higher differential rotation. All
other spots are virtually unaffected. Further details of this second
solution are given in Table 6.

4.3.2. KIC 7765135

We identified 11 gaps longer than an hour and 3 additional small
jumps in the light curve (Fig. 15). The data set was accordingly
divided into 15 parts. Each part was assigned its individual er-
ror level, offset, and, in case B (i.e. non-rectified data), linear
trend. Hence, the likelihood function (Eq. (3)) is the product
of 15 independent contributions.

As the inclination is photometrically ill-defined, we fixed it
to the spectroscopically derived value of i = 75◦.

Despite the addition of two spots, the residuals,±2.35 mmag,
exceed those of the seven-spot model of KIC 7985370
(±2.14 mmag). This is not due to the fainter magnitude
of KIC 7765135 than to KIC 7985370, because the photomet-
ric uncertainties are typically 0.047 mmag for the former and
0.022 mmag for the latter. The reason may instead be that three
of the nine spots are definitely short-lived with a life span as
short as two months (cf. Fig. 20), which is less than twice the
lapping time of 38 days between the fastest and the slowest spot.
We have to admit that dealing with nine spots almost exceeds the
capabilities the MCMC technique since the method’s relaxation
time then becomes prohibitively long.
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LimitaCons	  of	  few-‐spot	  models	  
•  Significant	  light	  curve	  residuals	  with	  modulaCon	  in	  several	  cases	  (see	  below	  the	  

cases	  of	  two	  stars	  modelled	  by	  Mosser	  et	  al.	  2009);	  
	  
•  Large	  residuals	  during	  transits	  (or	  eclipses	  in	  the	  case	  of	  eclipsing	  close	  binaries);	  
	  
•  An	  unphysical	  averaging	  of	  the	  spot	  distribuCon	  over	  large	  areas,	  i.e.,	  a	  few	  spots	  

must	  account	  for	  the	  effect	  of	  many	  small	  acCve	  regions	  as	  in	  the	  Sun.	  

	  
B. Mosser et al.: Short-lived spots in solar-like stars 249

Fig. 2. Spot modeling of HD 49933 and HD 175726. The dots in each upper panel represent the data binned every CoRoT orbit (6184 s), and the
solid curve is the best fit model. Dots in each bottom panel represent residuals. Vertical grey lines indicate the mean rotation period.

in the case of a large number of parameters, we applied three
different methods.

– The tests made on synthetic time series allow us to quan-
tify the goodness of the fit and to extract confidence inter-
vals from the chi-square fitting. Assuming Gaussian statis-
tics, due to the large amount of data, the relative likelihood
of a set S of parameters can be expressed as Croll (2006):

pS ∝ exp

−

(χ2
S − χ2

min)

2 T


 (6)

with χ2
min the minimum value reached for the best fit, and T

the virtual temperature as used in the case of Markov
chain Monte Carlo methods. This virtual temperature should
be 1 when the value of the reduced chi-square is about 1.
With large values of χ2

min, in the range from 50 to 100 in
most cases, we should use T = χ2

min as in Croll (2006).
However, hare-and-hounds exercises show that the 1-σ un-
certainty derived from Eq. (6) (at 68% of the maximum
value reached by pS) is then significantly exaggerated. In
fact, an irreducible contribution to the χ2 values comes from

B. Mosser et al.: Short-lived spots in solar-like stars 249

Fig. 2. Spot modeling of HD 49933 and HD 175726. The dots in each upper panel represent the data binned every CoRoT orbit (6184 s), and the
solid curve is the best fit model. Dots in each bottom panel represent residuals. Vertical grey lines indicate the mean rotation period.

in the case of a large number of parameters, we applied three
different methods.

– The tests made on synthetic time series allow us to quan-
tify the goodness of the fit and to extract confidence inter-
vals from the chi-square fitting. Assuming Gaussian statis-
tics, due to the large amount of data, the relative likelihood
of a set S of parameters can be expressed as Croll (2006):

pS ∝ exp

−

(χ2
S − χ2

min)

2 T


 (6)

with χ2
min the minimum value reached for the best fit, and T

the virtual temperature as used in the case of Markov
chain Monte Carlo methods. This virtual temperature should
be 1 when the value of the reduced chi-square is about 1.
With large values of χ2

min, in the range from 50 to 100 in
most cases, we should use T = χ2

min as in Croll (2006).
However, hare-and-hounds exercises show that the 1-σ un-
certainty derived from Eq. (6) (at 68% of the maximum
value reached by pS) is then significantly exaggerated. In
fact, an irreducible contribution to the χ2 values comes from



ConCnuous	  spot	  distribuCons	  
•  Given	   the	   limitaCons	   of	   discrete	   spot	   models,	   an	   approach	   based	   on	   a	  

conCnuous	   distribuCon	   of	   the	   spot	   filling	   factor	   has	   been	   proposed,	  
similar	  to	  that	  adopted	  in	  the	  Doppler	  Imaging	  case;	  

	  
•  The	   intrinsic	   limitaCon	   of	   photometry	   is	   that	   it	   provides	   essenCally	   1D	  

informaCon	  while	  a	  map	  of	  the	  filling	  factor	  is	  a	  2D	  object;	  
	  
•  The	  soluCon	  is	  generally	  non-‐unique	  and	  unstable,	  i.e.,	  small	  variaCons	  in	  

the	  data	  produce	  large	  changes	  in	  the	  map;	  	  
	  
•  A	  unique	  and	  stable	   soluCon	  can	  be	  obtained	  by	   including	  some	  a	  priori	  

informaCon	   on	   the	   map	   by	   means	   of	   a	   regularizaCon	   approach	   (e.g.,	  
maximum	  entropy	  or	  Tikhonov	  regularizaCons).	  	  



ConCnuous	  	  distribuCon	  models	  
If the whole star is subdivided into N surface elements of area Ak,
with k = 1, 2, ..., N , the flux coming from the k-th element is:

δFk = I(µk)(Akµk)v(µk),

where
I(µk) = fsIs +QfsIf + [1− (Q+ 1)fs]Iu(µk),

or, with a few algebra:

I(µk) = {1 + [cf0Q(1− µk)− cs] fs} Iu(µk)

The total flux coming from the disc is:

F (t) =
N�

k=1

δFk =
�

k

AkIu(µk) {1 + [cf0Q(1− µk)− cs] fk} v(µk)µk, (9)

where fk is the spot filling factor (previously indicated with fs) and µk the
projection factor of the k-th surface element at the time t.

In general, we want to compute M flux values Fj ≡ F (tj), where tj, j = 1, ...,M
are the times of the observations. We shall denote them as the model vector F.
We can express its relationship to the distribution of the filling factor on the
surface of the star by introducing a M ×N projection matrix R̃ = {Rjk} and
a constant Fu that gives the unspotted flux as:

Fj ≡ F (tj) =
�

k

Rjkfk + Fu, (10)

or, in matrix notation:
F = R̃f + Fu, (11)

where f = {fk, k = 1, ...N}, is the vector of the filling factor on the surface of
the star. If the observed flux values at the times tj are denoted as the vector
D = {Dj , j = 1, ...M}, the χ2 corresponding to a given distribution of the filling
factor is:

χ2(f) ≡
M�

j=1

(Dj − Fj)2

σ2
j

, (12)

where σj is the standard deviation of the flux measurement Dj .
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I(µk) = fsIs +QfsIf + [1− (Q+ 1)fs]Iu(µk),

or, with a few algebra:

I(µk) = {1 + [cf0Q(1− µk)− cs] fs} Iu(µk)

The total flux coming from the disc is:

F (t) =
N�

k=1

δFk =
�

k

AkIu(µk) {1 + [cf0Q(1− µk)− cs] fk} v(µk)µk, (9)

where fk is the spot filling factor (previously indicated with fs) and µk the
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�

k

Rjkfk + Fu, (10)
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where σj is the standard deviation of the flux measurement Dj .
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Regularized	  spot	  maps:	  ME	  

The regularized solution is computed by minimizing an objective function Z
defined as a linear combination of the χ2 and the regularizing functional S (for
the Maximum Entropy case):

Z(f) = χ2(f)− λMES(f), (13)

where f = {fk, k = 1, ...N} is the vector of the spot filling factors for the indi-
vidual surface elements, λME a Lagrangian multiplier, and

S = −
�

k

wk

�
fk log

fk
m

+ (1− fk) log
(1− fk)

(1−m)

�
, (14)

is the entropy functional, where wk is the relative area of the k-th surface ele-
ment and m = 10−6 is a default minimum spot filling factor included to avoid
the divergence of the logarithm.

S gets its maximum value for an immaculate star, i.e., fk = m in each surface
elements.

The effect of the regularization is that of reducing the spot filling factor (or
the spotted area) as much as possible, compatibly with fitting the data, by
increasing the Lagrangian multiplier.

5



How	  to	  fix	  the	  regularizaCon	  
• Without regularization (λME = 0), the best fit has the minimum χ2

= χ2
0

and the residuals of the fit have a Gaussian distribution with mean value

µ = 0 and a standard deviation σ. However, the fit is not acceptable

because we also fit the noise;

• With the regularization, (λME > 0), the fit has χ2
= χ2

1 > χ2
0 and the

residual distribution is now centred at a value µ > 0 because the spotted

area is reduced.

We can fix the optimal value of λ by comparing µ with σ. A practical recipe

adopted in the case of space-borne photometry with high signal-to-noise (S/N ≥
100) is to increase λ until:

µ =
σ√
M

,

where M is the number of data points in the light curve. The value of S/N
is the ratio of the flux modulation amplitude to the standard deviation of the

individual flux measurements.

When S/N ≈ 10− 30, we adopt a stronger regularization, i.e.:

µ = β
σ√
M

,

where β = 2− 3 is a numerical factor.

A visual inspection of the fit is generally needed to find the largest possible

acceptable deviations, i.e., to fix the appropriate value of β.

5
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Other	  regularizaCon	  approaches	  
•  Several	  regularizing	  funcConals	  can	  be	  used,	  e.g.,	  the	  Tikhonov	  funcConal	  

that	  makes	   the	   filling	   factor	   as	   smooth	   as	   possible	   (e.g.,	   Piskunov	   et	   al.	  
1990);	  

	  
	  
	  
	  
	  
•  Other	   regularizing	   funcConals	   have	   been	   proposed	   by,	   e.g.,	   Harmon	   &	  

Crews	   (2000)	   and	   applied	   to	   model	   Kepler	   light	   curves	   by,	   e.g.,	  
Roelenbacher	  et	  al.	  (2013).	  

	  

T (f) =

�

Σ

N�

k=1

��
1

R

∂fk
∂θ

�2

+

�
1

R sin θ

∂fk
∂φ

�2
�
dΣ,

where Σ is the stellar surface, R the radius of the star, θ the colatitude, and φ the
longitude. The partial derivatives are numerically evaluated by the difference
in the filling factors of neighbour surface elements.

8



Methods	  based	  on	  SVD	  !"#$%&'()*'"&(%+(,-.(
The χ2 minimization problem to be solved to find f can be approached also

by means of the Singular Value Decomposition (SVD) of the projection matrix

R̃. The method is described in, e.g., Press et al. 2007, Numerical Recipes,
Ch. 15.4.2. Its advantages are:

• linear combination of the components of f that are not constrained by the

data can be driven to zero (or to small, insignificant values);

• the solution is dominated by the linear combinations of the elements of f
that produce most of the observed flux variations (the so-called principal

components);

• the number of components to be retained in the solution is set by the

minimum acceptable singular value;

• the error of the individual components can be evaluated starting from the

error of the measurements.

Different versions of the approach have been implemented by, e.g., Berdyugina

(1998, Occamian approach), or Savanov & Strassmeier (2005, 2008; Truncated

LS Principal Components). They have also explored the performance of their

approaches using synthetic datasets. Complex input spot distributions tend to

be reconstructed as patches diffused all over the stellar surface.

7



Deriving	  robust	  results	  
•  The	   dependence	   on	   the	   assumed	   stellar	   parameters,	   i,	   cs,	   cf0,	  

and	  Q	  is	  sCll	  present	  in	  conCnuous	  filling	  factor	  maps;	  
	  
•  To	   reduce	   degeneracies,	   we	   focus	   on	   properCes	   that	   are	   lille	  

affected	  by	  those	  parameters:	  
	  

–  The	   relaCve	   distribuCon	   of	   the	   filling	   factor	   vs.	   longitude	  
(collapse	   the	   2D	   map	   into	   a	   1D	   map	   by	   integraCng	   over	  	  
laCtude);	  however,	  faculae	  may	  affect	  the	  distribuCon;	  

	  
–  The	  varia<on	  of	  the	  total	  spoled	  area	  (because	   its	  absolute	  
value	  depends	  on	  cs,	  cf0,	  Q,	  and	  Fu).	  	  



TesCng	  ME	  spot	  modeling	  	  
•  We	  used	  the	  Cme	  series	  of	  the	  Total	  Solar	  Irradiance	  with	  an	  accuracy	  of	  20	  ppm	  

and	  1	  hr	  cadence	  to	  test	  different	  modelling	  approaches;	  
	  
•  The	  method	   based	   on	   a	   conCnuous	   distribuCon	   of	   spots	   and	  maximum	  entropy	  

regularizaCon	  proved	  to	  be	  the	  best	  one	  in	  comparison	  to	  2-‐3	  discrete	  spot	  models	  
(see	  Lanza	  et	  al.	  2007).	  	  	  
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Fig. 6. The observed distributions of the sunspot group area (solid black line) and the corresponding ME spot models (dashed red line) vs.
longitude binned in 18◦ intervals at the labelled epochs, grouping around the minimum of activity cycle 23 in the left column panels and around
the maximum in the right column panels, respectively. The modelled distributions are corrected for the effect of the visibility. Both the observed
and the modelled distributions are normalized to their total area, respectively. The reference frame is the internal reference frame of our code (see
the text). For comparison, the initial meridian of the Carrington reference frame is marked in each panel by a vertically dot-dashed line, labelled
L = 0 in the uppermost panels. The correlation coefficient ρ between the modelled and the observed distributions, as defined by Eq. (11) for
longitude bins of 54◦, is reported in each panel.

maximum of activity cycle 23, respectively. The origin of the
longitude reference frame corresponds to the meridian crossing
the centre of the solar disk at 23h29m20s UT of 6 February 1996
for a geocentric observer. The adopted synodic rotation period of
27.27 days makes the origin of our reference frame drift slowly
with respect to the Carrington reference frame with, superposed,
a small periodic oscillation of amplitude∼4◦ and period of about
one year. The value of the area in each longitude bin in Fig. 6 has
been normalized to the total spotted area of each distribution,
i.e., the sum of the spot area over the bins is always equal to the
unity. Such a normalization has been adopted to avoid system-
atic effects arising from the different total spotted areas of the
model and the observations, as discussed above. The correlation
coefficients reported in Fig. 6 are computed adopting a bin width
of 54◦ with the area in each bin obtained by summing up the val-
ues of three consecutive bins of 18◦. The optimal bin width has
been chosen by comparing the correlation coefficients for bin
widths of 36◦, 54◦ and 72◦ and selecting the binning that gives
the higher resolution and the higher correlation coefficient, on
the average. Therefore, a bin width of 54◦ corresponds to the
average longitudinal resolution of our ME spot modelling tech-
nique. Note, however, that the original model bin width of 18◦
has been retained for plotting the distributions to show the cor-
relation between models and observations in more detail.

The distributions for the T models are usually broader than
those of the ME models implying a lower degree of correla-
tion betweeen the models and the observations and are not re-
produced here. During the minimum of activity, the rotational

modulation is dominated by the faculae, which implies that our
models, having a fixed proportion between the facular and the
spotted areas in each surface element, are often not capable of
retrieving the correct spot longitudinal distribution. Two cases
of such poor agreement are shown in the uppermost left panels
of Fig. 6 having a correlation coefficient ρ lower than 0.25. The
maximum of activity is characterized by correlation coefficients
usually higher than 0.8 indicating a remarkably good agreement
between the ME modelled and the observed sunspot group area.

The distribution of the correlation coefficient ρ vs. time is
plotted in Fig. 7. The correlation is lower during the phases of
lower activity and it is remarkably good during the phases of
intermediate or high activity with only a very few values lower
than 0.4 during the maximum of cycle 23. As a matter of fact,
we see from Figs. 1 and 6 that even a value as low as ρ = 0.4 in-
dicates a significant degree of correlation between the modelled
and the observed distributions.

We have explored the effects of the variations of the model
parameters Q, Prot and i, by changing one parameter at a time
while the others are kept fixed. We shall focus our discussion
on the ME models because they are those showing the best
performance.

It is interesting to consider models with only dark spots, i.e.,
Q = 0 because they are analogous to those usually adopted in
the case of highly active solar-like stars (cf., e.g., Messina et al.
1999; Lanza et al. 2002, 2006). The χ2 values of the best fits
are systematically higher by a factor of about 1.5−2.0 with more
than 10% of the best fits having χ2 > 15. The total sunspot areas

Q = 9 



Starspot	  temperature	  from	  
mulCband	  photometry	  

•  In	  principle,	  simultaneous	  mulCband	  photometry	  can	  be	  used	  to	  measure	  
starspot	  temperatures	  provided	  that	  the	  flux	  from	  the	  dark	  spots	  can	  be	  
detected	  in	  some	  of	  the	  passbands;	  

	  
•  A	  good	  limb-‐darkening	  model	  is	  mandatory	  for	  accurate	  results;	  
	  
•  Spectrophotometry	   of	   TiO	   bands	   has	   also	   been	   applied	   because	   spots	  

have	  Teff	  similar	  to	  that	  of	  M-‐type	  stars	  in	  the	  case	  of	  G-‐K	  subgiants	  in	  RS	  
CVn	  binary	  systems	  (e.g.,	  O’Neal	  et	  al.	  1996);	  	  

•  Since	  most	  of	  the	  space-‐borne	  photometry	  is	  in	  a	  single	  passband	  (MOST,	  
Kepler)	   or	   in	   passbands	   depending	   on	   the	   specific	   SED	   (CoRoT	   bright	  
targets),	  here	  I	  shall	  focus	  on	  single-‐passband	  photometry.	  	  



Completely	  dark	  spot:	  effect	  of	  the	  	  
limb	  darkening	  	  

•  The	  wavelength	  dependence	  of	  the	  limb-‐darkening	  introduces	  a	  color	  variaCon	  
even	  in	  the	  case	  of	  a	  completely	  dark	  spot	  (Teff	  =	  0	  K);	  

•  Here	  I	  show	  the	  light	  variaCon	  in	  the	  case	  of	  a	  Sun-‐like	  star	  observed	  at	  400	  and	  
600	  nm;	  

•  Therefore,	  for	  an	  accurate	  esCmate	  of	  starspot	  temperatures,	  we	  need	  an	  
accurate	  limb-‐darkening	  model.	  	  



Spot	  mapping	  as	  a	  general	  inverse	  problem	  
Applying	  Fourier	  analysis	  

where	  K	  is	  the	  projecCon	  kernel,	  M	  the	  surface	  map,	  G	  represents	  the	  geometry	  (inclinaCon	  

of	  the	  spin	  axis),	  θ	  is	  the	  colaCtude,	  φ	  the	  longitude,	  t	  the	  Cme,	  Ω	  the	  solid	  angle.	  

There is an infinite number of harmonics contributing to the component of the light curve with a 
given m. 
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In the current study we consider photometric variability due to rotational and orbital motion, i.e. method (b). We seek analytic expressions
for the time variations in disc-integrated brightness measured by a distant observer, as a function of the intrinsic spatial inhomogeneities
of the planet and the system geometry. In particular, we consider changes in disc-integrated thermal flux due to spatial inhomogeneities in
thermal emission, and variations in disc-integrated reflectance due to spatial inhomogeneities in albedo.

In addition to betraying brightness markings on stars and planets, rotational and orbital phase variations have the potential to constrain
viewing geometry. Possible applications include the following: the thermal phase variations of non-transiting hot Jupiters might hint at their
orbital inclination, breaking the Msin i degeneracy and allowing for improved mass estimates; the rotational phase variations of a transiting
planet’s host star may be sufficient to infer its rotational inclination (a.k.a. stellar obliquity), a useful discriminator between planet migration
scenarios (Winn et al. 2005); the rotational photometric variations of a directly imaged planet might encode information about its rotational
inclination which – when combined with the astrometrically inferred orbital inclination – provides an estimate of planetary obliquity, telling
us about planet formation (Tremaine 1991).

1.2 Forward versus inverse problem

Inferring the properties of a star or planet based on its disc-integrated brightness is an inverse problem, as opposed to the forward problem of
predicting the photometry of an object based on its properties. We approximate the forward problem as linear in the planet map, M(θ , φ):

F (t) =
∮

K(θ, φ, t)M(θ,φ)d#, (1)

where F(t) is the observed flux, K(θ , φ, t) is the kernel, θ and φ are planetary co-latitude and longitude, respectively, and d# = sin θdθdφ. As
we will see below, the kernel is non-negative and unimodal. It is therefore tempting to think of (1) as a convolution, and the inverse problem
as a deconvolution. For thermal light curves, K has a fixed shape and this description is formally correct; in other cases it is merely a useful
analogy.

The inverse problem, solving for M given K and F, is a Fredholm integral equation of the first kind and is non-trivial (Aster, Borchers
& Thurber 2013). Inverse problems are typically underconstrained, and ‘exo-cartography’ is no exception. First of all, there are non-zero
maps that produce flat light curves, a so-called nullspace.1 Secondly, even non-zero harmonic light curves are sometimes proportional to each
other. This is not surprising, since linear transformations need not preserve angles: planetary maps that are orthogonal are not necessarily
transformed to light curves that are orthogonal. The bottom line is that attempts to map the brightness markings of distant objects suffer from
formal degeneracies, even in the limit of noiseless observations.

If the orientation of the planet or star is not known a priori, then the problem can be expressed as

F (t) =
∮

K(G, θ, φ, t)M(θ,φ) d#, (2)

where G represents the unknown geometry (e.g. inclination or obliquity). The object is then to solve for G and M(θ , φ) knowing F and the
form of K. It has been demonstrated in numerical experiments, for example, that one can simultaneously constrain a planet’s two-dimensional
(2D) albedo map, obliquity and obliquity phase (Kawahara & Fujii 2010, 2011; Fujii & Kawahara 2012).

1.3 Harmonic light curves

In order to develop an analytic solution to (1), it is necessary to express the planetary map analytically. In general this is done by decomposing
M using an orthonormal basis. The obvious basis maps for a spherical planet are spherical harmonics. Any continuous, static albedo map,
M(θ , φ), may be decomposed as

M(θ,φ) =
∞∑

l=0

l∑

m=−l

Cm
l Ym

l (θ, φ), (3)

Cm
l = 1

4π

∮
M(θ,φ)Ym

l (θ,φ) d#. (4)

The real spherical harmonics are given by

Ym
l (θ, φ) =

{
Nm

l Plm(cos θ ) cos(mφ) if m ≥ 0

N
|m|
l Pl|m|(cos θ ) sin(|m|φ) if m < 0,

(5)

where Plm is the associated Legendre polynomial without the Condon–Shortley phase, (−1)m.

1 The term ‘kernel’ is often used interchangeably with ‘nullspace’ in mathematical physics, but we eschew that terminology here because ‘kernel’ already has
a central role in convolutions.
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In the current study we consider photometric variability due to rotational and orbital motion, i.e. method (b). We seek analytic expressions
for the time variations in disc-integrated brightness measured by a distant observer, as a function of the intrinsic spatial inhomogeneities
of the planet and the system geometry. In particular, we consider changes in disc-integrated thermal flux due to spatial inhomogeneities in
thermal emission, and variations in disc-integrated reflectance due to spatial inhomogeneities in albedo.

In addition to betraying brightness markings on stars and planets, rotational and orbital phase variations have the potential to constrain
viewing geometry. Possible applications include the following: the thermal phase variations of non-transiting hot Jupiters might hint at their
orbital inclination, breaking the Msin i degeneracy and allowing for improved mass estimates; the rotational phase variations of a transiting
planet’s host star may be sufficient to infer its rotational inclination (a.k.a. stellar obliquity), a useful discriminator between planet migration
scenarios (Winn et al. 2005); the rotational photometric variations of a directly imaged planet might encode information about its rotational
inclination which – when combined with the astrometrically inferred orbital inclination – provides an estimate of planetary obliquity, telling
us about planet formation (Tremaine 1991).

1.2 Forward versus inverse problem

Inferring the properties of a star or planet based on its disc-integrated brightness is an inverse problem, as opposed to the forward problem of
predicting the photometry of an object based on its properties. We approximate the forward problem as linear in the planet map, M(θ , φ):

F (t) =
∮

K(θ, φ, t)M(θ,φ)d#, (1)

where F(t) is the observed flux, K(θ , φ, t) is the kernel, θ and φ are planetary co-latitude and longitude, respectively, and d# = sin θdθdφ. As
we will see below, the kernel is non-negative and unimodal. It is therefore tempting to think of (1) as a convolution, and the inverse problem
as a deconvolution. For thermal light curves, K has a fixed shape and this description is formally correct; in other cases it is merely a useful
analogy.

The inverse problem, solving for M given K and F, is a Fredholm integral equation of the first kind and is non-trivial (Aster, Borchers
& Thurber 2013). Inverse problems are typically underconstrained, and ‘exo-cartography’ is no exception. First of all, there are non-zero
maps that produce flat light curves, a so-called nullspace.1 Secondly, even non-zero harmonic light curves are sometimes proportional to each
other. This is not surprising, since linear transformations need not preserve angles: planetary maps that are orthogonal are not necessarily
transformed to light curves that are orthogonal. The bottom line is that attempts to map the brightness markings of distant objects suffer from
formal degeneracies, even in the limit of noiseless observations.

If the orientation of the planet or star is not known a priori, then the problem can be expressed as

F (t) =
∮

K(G, θ, φ, t)M(θ,φ) d#, (2)

where G represents the unknown geometry (e.g. inclination or obliquity). The object is then to solve for G and M(θ , φ) knowing F and the
form of K. It has been demonstrated in numerical experiments, for example, that one can simultaneously constrain a planet’s two-dimensional
(2D) albedo map, obliquity and obliquity phase (Kawahara & Fujii 2010, 2011; Fujii & Kawahara 2012).

1.3 Harmonic light curves

In order to develop an analytic solution to (1), it is necessary to express the planetary map analytically. In general this is done by decomposing
M using an orthonormal basis. The obvious basis maps for a spherical planet are spherical harmonics. Any continuous, static albedo map,
M(θ , φ), may be decomposed as

M(θ,φ) =
∞∑

l=0

l∑

m=−l

Cm
l Ym

l (θ, φ), (3)

Cm
l = 1

4π

∮
M(θ,φ)Ym

l (θ,φ) d#. (4)

The real spherical harmonics are given by

Ym
l (θ, φ) =

{
Nm

l Plm(cos θ ) cos(mφ) if m ≥ 0

N
|m|
l Pl|m|(cos θ ) sin(|m|φ) if m < 0,

(5)

where Plm is the associated Legendre polynomial without the Condon–Shortley phase, (−1)m.

1 The term ‘kernel’ is often used interchangeably with ‘nullspace’ in mathematical physics, but we eschew that terminology here because ‘kernel’ already has
a central role in convolutions.
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In the current study we consider photometric variability due to rotational and orbital motion, i.e. method (b). We seek analytic expressions
for the time variations in disc-integrated brightness measured by a distant observer, as a function of the intrinsic spatial inhomogeneities
of the planet and the system geometry. In particular, we consider changes in disc-integrated thermal flux due to spatial inhomogeneities in
thermal emission, and variations in disc-integrated reflectance due to spatial inhomogeneities in albedo.

In addition to betraying brightness markings on stars and planets, rotational and orbital phase variations have the potential to constrain
viewing geometry. Possible applications include the following: the thermal phase variations of non-transiting hot Jupiters might hint at their
orbital inclination, breaking the Msin i degeneracy and allowing for improved mass estimates; the rotational phase variations of a transiting
planet’s host star may be sufficient to infer its rotational inclination (a.k.a. stellar obliquity), a useful discriminator between planet migration
scenarios (Winn et al. 2005); the rotational photometric variations of a directly imaged planet might encode information about its rotational
inclination which – when combined with the astrometrically inferred orbital inclination – provides an estimate of planetary obliquity, telling
us about planet formation (Tremaine 1991).

1.2 Forward versus inverse problem

Inferring the properties of a star or planet based on its disc-integrated brightness is an inverse problem, as opposed to the forward problem of
predicting the photometry of an object based on its properties. We approximate the forward problem as linear in the planet map, M(θ , φ):
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we will see below, the kernel is non-negative and unimodal. It is therefore tempting to think of (1) as a convolution, and the inverse problem
as a deconvolution. For thermal light curves, K has a fixed shape and this description is formally correct; in other cases it is merely a useful
analogy.

The inverse problem, solving for M given K and F, is a Fredholm integral equation of the first kind and is non-trivial (Aster, Borchers
& Thurber 2013). Inverse problems are typically underconstrained, and ‘exo-cartography’ is no exception. First of all, there are non-zero
maps that produce flat light curves, a so-called nullspace.1 Secondly, even non-zero harmonic light curves are sometimes proportional to each
other. This is not surprising, since linear transformations need not preserve angles: planetary maps that are orthogonal are not necessarily
transformed to light curves that are orthogonal. The bottom line is that attempts to map the brightness markings of distant objects suffer from
formal degeneracies, even in the limit of noiseless observations.

If the orientation of the planet or star is not known a priori, then the problem can be expressed as

F (t) =
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K(G, θ, φ, t)M(θ,φ) d#, (2)

where G represents the unknown geometry (e.g. inclination or obliquity). The object is then to solve for G and M(θ , φ) knowing F and the
form of K. It has been demonstrated in numerical experiments, for example, that one can simultaneously constrain a planet’s two-dimensional
(2D) albedo map, obliquity and obliquity phase (Kawahara & Fujii 2010, 2011; Fujii & Kawahara 2012).

1.3 Harmonic light curves

In order to develop an analytic solution to (1), it is necessary to express the planetary map analytically. In general this is done by decomposing
M using an orthonormal basis. The obvious basis maps for a spherical planet are spherical harmonics. Any continuous, static albedo map,
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We adopt the geodesy normalization (unit power) for real spherical harmonics,

Nm
l =






1 if l = 0
√

2(2l+1)(l−m)!
(l+m)! if l > 0,

(6)

1
4π

∮
Ym

l (θ, φ)Yµ
λ (θ, φ) d$ = δlλδmµ. (7)

The light curve signature of a spherical harmonic, or harmonic light curve, is

Fm
l (t) =

∮
K(θ, φ, t)Ym

l (θ, φ) d$. (8)

It is perfectly equivalent to think of this as decomposing the kernel into spherical harmonics. Aside from the current application of photometric
variability which dates to Russell (1906), this sort of formalism has broad applications throughout astrophysics (e.g. constraining B-field
morphology of Ap stars via harmonic analysis of time-variable spectra; Deutsch 1958, 1970).

In this paper we present harmonic light curves for a few cases of immediate interest. We tackle thermal light curves in Section 2 and
address the more complex case of reflected light curves in Section 3. In both of these sections we begin by describing our model assumptions,
then present solutions to special cases before moving on to the general solution. Whenever possible, we solve the integrals analytically by
hand and/or with MATHEMATICA. When symbolic solutions are too messy to have intuitive value, we use IDL to compute and plot numerical
integrals. We discuss possible applications and implications of this work in Section 4.

2 TH E R M A L L I G H T C U RV E S

2.1 Model formalism

We assume a spherical planet, static brightness map and diffuse thermal emission, and neglect limb darkening. The requirement of a static
map depends on context. For mapping star spots or patchy clouds on a brown dwarf, the rotation period is the relevant time-scale. When
mapping the diurnal heating pattern of a planet, on the other hand, one requires stability on the orbital period (for more about the various
sources of planetary thermal variability see Cowan, Voigt & Abbot 2012c).

The flux, F, in this case is the disc-integrated thermal flux from the planet. The kernel is proportional to the visibility of a given region
of the planet at time t: K(θ,φ, t) = 1

π
V (θ, φ, t), where the visibility, V, is unity at the sub-observer location, drops as the cosine of the angle

from the sub-observer location, γo, and is zero on the far side of the planet:

V (θ,φ, t) = max[cos γo, 0] = max[sin θ sin θo cos(φ − φo) + cos θ cos θo, 0], (9)

where θo and φo are the sub-observer co-latitude and longitude, respectively. The piece-wise-defined kernel leads to much of the difficulty in
solving the forward problem analytically.

The entire time dependence of the forward problem comes in through the sub-observer position. In the absence of precession, the
sub-observer co-latitude is constant, θo(t) = θo. The sub-observer longitude decreases linearly with time (we define longitude increasing to
the east, with the planet rotating from west to east): φo(t) = φo(0) − ωrott , where ωrot is the rotational angular frequency in an inertial frame
(e.g. ωrot = 2π/23.93 hr−1 for Earth).

The thermal harmonic light curves are given by

Fm
l (t) = 1

π

∮
V (θ,φ, t)Ym

l (θ,φ) d$. (10)

Integrating the piece-wise-defined kernel over the entire sphere is equivalent to integrating the non-zero part of the kernel, Knz(θ, φ, t) =
1
π

(sin θ sin θo cos(φ − φo) + cos θ cos θo), over the visible hemisphere. The limits of integration are then defined by the limb, the locus of
points with γo = π/2. From (9), the limb satisfies

tan θlimb = −1
tan θo cos(φ − φo)

, (11)

as shown in Fig. 1.
For a planet-viewed equator-on (θo = π/2) the kernel simplifies to Knz(θ,φ, t) = 1

π
sin θ cos(φ − φo).

2.2 Equator-on thermal light curve

We first consider a planet-viewed equator-on (left-hand panel of Fig. 1), which allows us to separate (10) into two single integrals:

Fm
l (t) = Nm

l

π

∫ 1

−1

√
1 − x2Plm(x)dx

∫ φo+ π
2

φo− π
2

cos(φ − φo) cos(mφ) dφ, (12)

where we have made the change of coordinates x = cos θ . Note that we have given the example for a cosine Ym
l (m ≥ 0), but the sine instance

(m < 0) can be trivially obtained by replacing m → |m| and cos (mφ) → sin (|m|φ).
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Figure 5. Harmonic reflected light curves for a tidally locked planet on an inclined orbit (i = θo = π
4 ). Line style denotes l, and colour denotes m.

4 D ISCUSSION

4.1 Degeneracies in rotational mapping

The essential challenges of mapping distant bodies from time-resolved observations have been known for over a century (Russell 1906).
Nullspaces are bigger in cases where the kernel has a fixed shape and latitude: the worst cases are thermal light curves and reflected rotational
light curves of zero-obliquity objects at fixed phase. The nullspace is more limited for reflected phase variations (changing kernel shape) or
reflected light curves of oblique rotators (changing kernel latitude). Occultation mapping provides a much more varied kernel and is therefore
nearly devoid of a nullspace.

The problem of nullspaces for rotational light curves cannot be swept away by clever parametrization. For any planetary map that fits
the data, one can add an arbitrary linear combination of nullspace maps to obtain a very different map that fits the data equally well. This is
true regardless of how the initial map was parametrized.

The only way to constrain the presence of the nullspace maps is by adding a priori constraints. One universal constraint is that the map
must be everywhere greater than zero, while albedo maps must additionally be less than unity everywhere on the planet (these constraints are
critical for rotational unmixing; Cowan & Strait 2013). The application of Tikhonov or maximum entropy regularization may help produce
unique maps (e.g. Donati & Collier Cameron 1997; Knutson et al. 2007; Lanza et al. 2009; Kawahara & Fujii 2011), but the validity of such
additional constraints must be evaluated on a case-by-case basis. For example, the assumption of bimodal intensity may be reasonable for
star spots, but is still being tested for the cloud-related markings on brown dwarfs.

Although these degeneracies make it difficult/impossible to obtain an accurate map of an unresolved body, it is still possible to precisely
measure certain properties of a body based solely on rotational light curves.

4.2 Inclination-dependent nullspace

In Fig. 6, we show the amplitude of low-order thermal harmonic light curves as a function of sub-observer latitude, θo (θo = 0 for pole-on
or face-on rotation; θo = π/2 for equator-on or edge-on rotation). The nullspace of the convolution and the amplitude of non-zero harmonic
light curves are a function of θo. A pole-on object obviously exhibits no rotational variability (left-hand side of the plot). Moreover, an object
exhibiting light curve power at m = 3 is neither pole-on nor equator-on: the amplitude of F 3

4 exhibits a clear peak at θo = π/3.
Formally, there are an infinite number of harmonic maps that contribute to the light curve power at a given m:

Fm(t) =
∞∑

l=|m|
Cm

l Fm
l (t), (57)
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In the current study we consider photometric variability due to rotational and orbital motion, i.e. method (b). We seek analytic expressions
for the time variations in disc-integrated brightness measured by a distant observer, as a function of the intrinsic spatial inhomogeneities
of the planet and the system geometry. In particular, we consider changes in disc-integrated thermal flux due to spatial inhomogeneities in
thermal emission, and variations in disc-integrated reflectance due to spatial inhomogeneities in albedo.

In addition to betraying brightness markings on stars and planets, rotational and orbital phase variations have the potential to constrain
viewing geometry. Possible applications include the following: the thermal phase variations of non-transiting hot Jupiters might hint at their
orbital inclination, breaking the Msin i degeneracy and allowing for improved mass estimates; the rotational phase variations of a transiting
planet’s host star may be sufficient to infer its rotational inclination (a.k.a. stellar obliquity), a useful discriminator between planet migration
scenarios (Winn et al. 2005); the rotational photometric variations of a directly imaged planet might encode information about its rotational
inclination which – when combined with the astrometrically inferred orbital inclination – provides an estimate of planetary obliquity, telling
us about planet formation (Tremaine 1991).

1.2 Forward versus inverse problem

Inferring the properties of a star or planet based on its disc-integrated brightness is an inverse problem, as opposed to the forward problem of
predicting the photometry of an object based on its properties. We approximate the forward problem as linear in the planet map, M(θ , φ):

F (t) =
∮

K(θ, φ, t)M(θ,φ)d#, (1)

where F(t) is the observed flux, K(θ , φ, t) is the kernel, θ and φ are planetary co-latitude and longitude, respectively, and d# = sin θdθdφ. As
we will see below, the kernel is non-negative and unimodal. It is therefore tempting to think of (1) as a convolution, and the inverse problem
as a deconvolution. For thermal light curves, K has a fixed shape and this description is formally correct; in other cases it is merely a useful
analogy.

The inverse problem, solving for M given K and F, is a Fredholm integral equation of the first kind and is non-trivial (Aster, Borchers
& Thurber 2013). Inverse problems are typically underconstrained, and ‘exo-cartography’ is no exception. First of all, there are non-zero
maps that produce flat light curves, a so-called nullspace.1 Secondly, even non-zero harmonic light curves are sometimes proportional to each
other. This is not surprising, since linear transformations need not preserve angles: planetary maps that are orthogonal are not necessarily
transformed to light curves that are orthogonal. The bottom line is that attempts to map the brightness markings of distant objects suffer from
formal degeneracies, even in the limit of noiseless observations.

If the orientation of the planet or star is not known a priori, then the problem can be expressed as

F (t) =
∮

K(G, θ, φ, t)M(θ,φ) d#, (2)

where G represents the unknown geometry (e.g. inclination or obliquity). The object is then to solve for G and M(θ , φ) knowing F and the
form of K. It has been demonstrated in numerical experiments, for example, that one can simultaneously constrain a planet’s two-dimensional
(2D) albedo map, obliquity and obliquity phase (Kawahara & Fujii 2010, 2011; Fujii & Kawahara 2012).

1.3 Harmonic light curves

In order to develop an analytic solution to (1), it is necessary to express the planetary map analytically. In general this is done by decomposing
M using an orthonormal basis. The obvious basis maps for a spherical planet are spherical harmonics. Any continuous, static albedo map,
M(θ , φ), may be decomposed as

M(θ,φ) =
∞∑

l=0

l∑

m=−l

Cm
l Ym

l (θ, φ), (3)

Cm
l = 1

4π

∮
M(θ,φ)Ym

l (θ,φ) d#. (4)

The real spherical harmonics are given by

Ym
l (θ, φ) =

{
Nm

l Plm(cos θ ) cos(mφ) if m ≥ 0

N
|m|
l Pl|m|(cos θ ) sin(|m|φ) if m < 0,

(5)

where Plm is the associated Legendre polynomial without the Condon–Shortley phase, (−1)m.

1 The term ‘kernel’ is often used interchangeably with ‘nullspace’ in mathematical physics, but we eschew that terminology here because ‘kernel’ already has
a central role in convolutions.
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In the current study we consider photometric variability due to rotational and orbital motion, i.e. method (b). We seek analytic expressions
for the time variations in disc-integrated brightness measured by a distant observer, as a function of the intrinsic spatial inhomogeneities
of the planet and the system geometry. In particular, we consider changes in disc-integrated thermal flux due to spatial inhomogeneities in
thermal emission, and variations in disc-integrated reflectance due to spatial inhomogeneities in albedo.

In addition to betraying brightness markings on stars and planets, rotational and orbital phase variations have the potential to constrain
viewing geometry. Possible applications include the following: the thermal phase variations of non-transiting hot Jupiters might hint at their
orbital inclination, breaking the Msin i degeneracy and allowing for improved mass estimates; the rotational phase variations of a transiting
planet’s host star may be sufficient to infer its rotational inclination (a.k.a. stellar obliquity), a useful discriminator between planet migration
scenarios (Winn et al. 2005); the rotational photometric variations of a directly imaged planet might encode information about its rotational
inclination which – when combined with the astrometrically inferred orbital inclination – provides an estimate of planetary obliquity, telling
us about planet formation (Tremaine 1991).

1.2 Forward versus inverse problem

Inferring the properties of a star or planet based on its disc-integrated brightness is an inverse problem, as opposed to the forward problem of
predicting the photometry of an object based on its properties. We approximate the forward problem as linear in the planet map, M(θ , φ):

F (t) =
∮

K(θ, φ, t)M(θ,φ)d#, (1)

where F(t) is the observed flux, K(θ , φ, t) is the kernel, θ and φ are planetary co-latitude and longitude, respectively, and d# = sin θdθdφ. As
we will see below, the kernel is non-negative and unimodal. It is therefore tempting to think of (1) as a convolution, and the inverse problem
as a deconvolution. For thermal light curves, K has a fixed shape and this description is formally correct; in other cases it is merely a useful
analogy.

The inverse problem, solving for M given K and F, is a Fredholm integral equation of the first kind and is non-trivial (Aster, Borchers
& Thurber 2013). Inverse problems are typically underconstrained, and ‘exo-cartography’ is no exception. First of all, there are non-zero
maps that produce flat light curves, a so-called nullspace.1 Secondly, even non-zero harmonic light curves are sometimes proportional to each
other. This is not surprising, since linear transformations need not preserve angles: planetary maps that are orthogonal are not necessarily
transformed to light curves that are orthogonal. The bottom line is that attempts to map the brightness markings of distant objects suffer from
formal degeneracies, even in the limit of noiseless observations.

If the orientation of the planet or star is not known a priori, then the problem can be expressed as

F (t) =
∮

K(G, θ, φ, t)M(θ,φ) d#, (2)

where G represents the unknown geometry (e.g. inclination or obliquity). The object is then to solve for G and M(θ , φ) knowing F and the
form of K. It has been demonstrated in numerical experiments, for example, that one can simultaneously constrain a planet’s two-dimensional
(2D) albedo map, obliquity and obliquity phase (Kawahara & Fujii 2010, 2011; Fujii & Kawahara 2012).

1.3 Harmonic light curves

In order to develop an analytic solution to (1), it is necessary to express the planetary map analytically. In general this is done by decomposing
M using an orthonormal basis. The obvious basis maps for a spherical planet are spherical harmonics. Any continuous, static albedo map,
M(θ , φ), may be decomposed as

M(θ,φ) =
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l=0
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l (θ, φ), (3)
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l = 1

4π

∮
M(θ,φ)Ym

l (θ,φ) d#. (4)

The real spherical harmonics are given by
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l (θ, φ) =

{
Nm

l Plm(cos θ ) cos(mφ) if m ≥ 0

N
|m|
l Pl|m|(cos θ ) sin(|m|φ) if m < 0,

(5)

where Plm is the associated Legendre polynomial without the Condon–Shortley phase, (−1)m.

1 The term ‘kernel’ is often used interchangeably with ‘nullspace’ in mathematical physics, but we eschew that terminology here because ‘kernel’ already has
a central role in convolutions.
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In the current study we consider photometric variability due to rotational and orbital motion, i.e. method (b). We seek analytic expressions
for the time variations in disc-integrated brightness measured by a distant observer, as a function of the intrinsic spatial inhomogeneities
of the planet and the system geometry. In particular, we consider changes in disc-integrated thermal flux due to spatial inhomogeneities in
thermal emission, and variations in disc-integrated reflectance due to spatial inhomogeneities in albedo.

In addition to betraying brightness markings on stars and planets, rotational and orbital phase variations have the potential to constrain
viewing geometry. Possible applications include the following: the thermal phase variations of non-transiting hot Jupiters might hint at their
orbital inclination, breaking the Msin i degeneracy and allowing for improved mass estimates; the rotational phase variations of a transiting
planet’s host star may be sufficient to infer its rotational inclination (a.k.a. stellar obliquity), a useful discriminator between planet migration
scenarios (Winn et al. 2005); the rotational photometric variations of a directly imaged planet might encode information about its rotational
inclination which – when combined with the astrometrically inferred orbital inclination – provides an estimate of planetary obliquity, telling
us about planet formation (Tremaine 1991).

1.2 Forward versus inverse problem

Inferring the properties of a star or planet based on its disc-integrated brightness is an inverse problem, as opposed to the forward problem of
predicting the photometry of an object based on its properties. We approximate the forward problem as linear in the planet map, M(θ , φ):

F (t) =
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K(θ, φ, t)M(θ,φ)d#, (1)

where F(t) is the observed flux, K(θ , φ, t) is the kernel, θ and φ are planetary co-latitude and longitude, respectively, and d# = sin θdθdφ. As
we will see below, the kernel is non-negative and unimodal. It is therefore tempting to think of (1) as a convolution, and the inverse problem
as a deconvolution. For thermal light curves, K has a fixed shape and this description is formally correct; in other cases it is merely a useful
analogy.

The inverse problem, solving for M given K and F, is a Fredholm integral equation of the first kind and is non-trivial (Aster, Borchers
& Thurber 2013). Inverse problems are typically underconstrained, and ‘exo-cartography’ is no exception. First of all, there are non-zero
maps that produce flat light curves, a so-called nullspace.1 Secondly, even non-zero harmonic light curves are sometimes proportional to each
other. This is not surprising, since linear transformations need not preserve angles: planetary maps that are orthogonal are not necessarily
transformed to light curves that are orthogonal. The bottom line is that attempts to map the brightness markings of distant objects suffer from
formal degeneracies, even in the limit of noiseless observations.

If the orientation of the planet or star is not known a priori, then the problem can be expressed as

F (t) =
∮

K(G, θ, φ, t)M(θ,φ) d#, (2)

where G represents the unknown geometry (e.g. inclination or obliquity). The object is then to solve for G and M(θ , φ) knowing F and the
form of K. It has been demonstrated in numerical experiments, for example, that one can simultaneously constrain a planet’s two-dimensional
(2D) albedo map, obliquity and obliquity phase (Kawahara & Fujii 2010, 2011; Fujii & Kawahara 2012).

1.3 Harmonic light curves

In order to develop an analytic solution to (1), it is necessary to express the planetary map analytically. In general this is done by decomposing
M using an orthonormal basis. The obvious basis maps for a spherical planet are spherical harmonics. Any continuous, static albedo map,
M(θ , φ), may be decomposed as

M(θ,φ) =
∞∑

l=0

l∑

m=−l

Cm
l Ym

l (θ, φ), (3)

Cm
l = 1

4π

∮
M(θ,φ)Ym

l (θ,φ) d#. (4)

The real spherical harmonics are given by

Ym
l (θ, φ) =

{
Nm

l Plm(cos θ ) cos(mφ) if m ≥ 0

N
|m|
l Pl|m|(cos θ ) sin(|m|φ) if m < 0,

(5)

where Plm is the associated Legendre polynomial without the Condon–Shortley phase, (−1)m.

1 The term ‘kernel’ is often used interchangeably with ‘nullspace’ in mathematical physics, but we eschew that terminology here because ‘kernel’ already has
a central role in convolutions.
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We adopt the geodesy normalization (unit power) for real spherical harmonics,

Nm
l =






1 if l = 0
√

2(2l+1)(l−m)!
(l+m)! if l > 0,

(6)

1
4π

∮
Ym

l (θ, φ)Yµ
λ (θ, φ) d$ = δlλδmµ. (7)

The light curve signature of a spherical harmonic, or harmonic light curve, is

Fm
l (t) =

∮
K(θ, φ, t)Ym

l (θ, φ) d$. (8)

It is perfectly equivalent to think of this as decomposing the kernel into spherical harmonics. Aside from the current application of photometric
variability which dates to Russell (1906), this sort of formalism has broad applications throughout astrophysics (e.g. constraining B-field
morphology of Ap stars via harmonic analysis of time-variable spectra; Deutsch 1958, 1970).

In this paper we present harmonic light curves for a few cases of immediate interest. We tackle thermal light curves in Section 2 and
address the more complex case of reflected light curves in Section 3. In both of these sections we begin by describing our model assumptions,
then present solutions to special cases before moving on to the general solution. Whenever possible, we solve the integrals analytically by
hand and/or with MATHEMATICA. When symbolic solutions are too messy to have intuitive value, we use IDL to compute and plot numerical
integrals. We discuss possible applications and implications of this work in Section 4.

2 TH E R M A L L I G H T C U RV E S

2.1 Model formalism

We assume a spherical planet, static brightness map and diffuse thermal emission, and neglect limb darkening. The requirement of a static
map depends on context. For mapping star spots or patchy clouds on a brown dwarf, the rotation period is the relevant time-scale. When
mapping the diurnal heating pattern of a planet, on the other hand, one requires stability on the orbital period (for more about the various
sources of planetary thermal variability see Cowan, Voigt & Abbot 2012c).

The flux, F, in this case is the disc-integrated thermal flux from the planet. The kernel is proportional to the visibility of a given region
of the planet at time t: K(θ,φ, t) = 1

π
V (θ, φ, t), where the visibility, V, is unity at the sub-observer location, drops as the cosine of the angle

from the sub-observer location, γo, and is zero on the far side of the planet:

V (θ,φ, t) = max[cos γo, 0] = max[sin θ sin θo cos(φ − φo) + cos θ cos θo, 0], (9)

where θo and φo are the sub-observer co-latitude and longitude, respectively. The piece-wise-defined kernel leads to much of the difficulty in
solving the forward problem analytically.

The entire time dependence of the forward problem comes in through the sub-observer position. In the absence of precession, the
sub-observer co-latitude is constant, θo(t) = θo. The sub-observer longitude decreases linearly with time (we define longitude increasing to
the east, with the planet rotating from west to east): φo(t) = φo(0) − ωrott , where ωrot is the rotational angular frequency in an inertial frame
(e.g. ωrot = 2π/23.93 hr−1 for Earth).

The thermal harmonic light curves are given by

Fm
l (t) = 1

π

∮
V (θ,φ, t)Ym

l (θ,φ) d$. (10)

Integrating the piece-wise-defined kernel over the entire sphere is equivalent to integrating the non-zero part of the kernel, Knz(θ, φ, t) =
1
π

(sin θ sin θo cos(φ − φo) + cos θ cos θo), over the visible hemisphere. The limits of integration are then defined by the limb, the locus of
points with γo = π/2. From (9), the limb satisfies

tan θlimb = −1
tan θo cos(φ − φo)

, (11)

as shown in Fig. 1.
For a planet-viewed equator-on (θo = π/2) the kernel simplifies to Knz(θ,φ, t) = 1

π
sin θ cos(φ − φo).

2.2 Equator-on thermal light curve

We first consider a planet-viewed equator-on (left-hand panel of Fig. 1), which allows us to separate (10) into two single integrals:

Fm
l (t) = Nm

l

π

∫ 1

−1

√
1 − x2Plm(x)dx

∫ φo+ π
2

φo− π
2

cos(φ − φo) cos(mφ) dφ, (12)

where we have made the change of coordinates x = cos θ . Note that we have given the example for a cosine Ym
l (m ≥ 0), but the sine instance

(m < 0) can be trivially obtained by replacing m → |m| and cos (mφ) → sin (|m|φ).
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Figure 5. Harmonic reflected light curves for a tidally locked planet on an inclined orbit (i = θo = π
4 ). Line style denotes l, and colour denotes m.

4 D ISCUSSION

4.1 Degeneracies in rotational mapping

The essential challenges of mapping distant bodies from time-resolved observations have been known for over a century (Russell 1906).
Nullspaces are bigger in cases where the kernel has a fixed shape and latitude: the worst cases are thermal light curves and reflected rotational
light curves of zero-obliquity objects at fixed phase. The nullspace is more limited for reflected phase variations (changing kernel shape) or
reflected light curves of oblique rotators (changing kernel latitude). Occultation mapping provides a much more varied kernel and is therefore
nearly devoid of a nullspace.

The problem of nullspaces for rotational light curves cannot be swept away by clever parametrization. For any planetary map that fits
the data, one can add an arbitrary linear combination of nullspace maps to obtain a very different map that fits the data equally well. This is
true regardless of how the initial map was parametrized.

The only way to constrain the presence of the nullspace maps is by adding a priori constraints. One universal constraint is that the map
must be everywhere greater than zero, while albedo maps must additionally be less than unity everywhere on the planet (these constraints are
critical for rotational unmixing; Cowan & Strait 2013). The application of Tikhonov or maximum entropy regularization may help produce
unique maps (e.g. Donati & Collier Cameron 1997; Knutson et al. 2007; Lanza et al. 2009; Kawahara & Fujii 2011), but the validity of such
additional constraints must be evaluated on a case-by-case basis. For example, the assumption of bimodal intensity may be reasonable for
star spots, but is still being tested for the cloud-related markings on brown dwarfs.

Although these degeneracies make it difficult/impossible to obtain an accurate map of an unresolved body, it is still possible to precisely
measure certain properties of a body based solely on rotational light curves.

4.2 Inclination-dependent nullspace

In Fig. 6, we show the amplitude of low-order thermal harmonic light curves as a function of sub-observer latitude, θo (θo = 0 for pole-on
or face-on rotation; θo = π/2 for equator-on or edge-on rotation). The nullspace of the convolution and the amplitude of non-zero harmonic
light curves are a function of θo. A pole-on object obviously exhibits no rotational variability (left-hand side of the plot). Moreover, an object
exhibiting light curve power at m = 3 is neither pole-on nor equator-on: the amplitude of F 3

4 exhibits a clear peak at θo = π/3.
Formally, there are an infinite number of harmonic maps that contribute to the light curve power at a given m:

Fm(t) =
∞∑

l=|m|
Cm

l Fm
l (t), (57)
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In the current study we consider photometric variability due to rotational and orbital motion, i.e. method (b). We seek analytic expressions
for the time variations in disc-integrated brightness measured by a distant observer, as a function of the intrinsic spatial inhomogeneities
of the planet and the system geometry. In particular, we consider changes in disc-integrated thermal flux due to spatial inhomogeneities in
thermal emission, and variations in disc-integrated reflectance due to spatial inhomogeneities in albedo.

In addition to betraying brightness markings on stars and planets, rotational and orbital phase variations have the potential to constrain
viewing geometry. Possible applications include the following: the thermal phase variations of non-transiting hot Jupiters might hint at their
orbital inclination, breaking the Msin i degeneracy and allowing for improved mass estimates; the rotational phase variations of a transiting
planet’s host star may be sufficient to infer its rotational inclination (a.k.a. stellar obliquity), a useful discriminator between planet migration
scenarios (Winn et al. 2005); the rotational photometric variations of a directly imaged planet might encode information about its rotational
inclination which – when combined with the astrometrically inferred orbital inclination – provides an estimate of planetary obliquity, telling
us about planet formation (Tremaine 1991).

1.2 Forward versus inverse problem

Inferring the properties of a star or planet based on its disc-integrated brightness is an inverse problem, as opposed to the forward problem of
predicting the photometry of an object based on its properties. We approximate the forward problem as linear in the planet map, M(θ , φ):

F (t) =
∮

K(θ, φ, t)M(θ,φ)d#, (1)

where F(t) is the observed flux, K(θ , φ, t) is the kernel, θ and φ are planetary co-latitude and longitude, respectively, and d# = sin θdθdφ. As
we will see below, the kernel is non-negative and unimodal. It is therefore tempting to think of (1) as a convolution, and the inverse problem
as a deconvolution. For thermal light curves, K has a fixed shape and this description is formally correct; in other cases it is merely a useful
analogy.

The inverse problem, solving for M given K and F, is a Fredholm integral equation of the first kind and is non-trivial (Aster, Borchers
& Thurber 2013). Inverse problems are typically underconstrained, and ‘exo-cartography’ is no exception. First of all, there are non-zero
maps that produce flat light curves, a so-called nullspace.1 Secondly, even non-zero harmonic light curves are sometimes proportional to each
other. This is not surprising, since linear transformations need not preserve angles: planetary maps that are orthogonal are not necessarily
transformed to light curves that are orthogonal. The bottom line is that attempts to map the brightness markings of distant objects suffer from
formal degeneracies, even in the limit of noiseless observations.

If the orientation of the planet or star is not known a priori, then the problem can be expressed as

F (t) =
∮

K(G, θ, φ, t)M(θ,φ) d#, (2)

where G represents the unknown geometry (e.g. inclination or obliquity). The object is then to solve for G and M(θ , φ) knowing F and the
form of K. It has been demonstrated in numerical experiments, for example, that one can simultaneously constrain a planet’s two-dimensional
(2D) albedo map, obliquity and obliquity phase (Kawahara & Fujii 2010, 2011; Fujii & Kawahara 2012).

1.3 Harmonic light curves

In order to develop an analytic solution to (1), it is necessary to express the planetary map analytically. In general this is done by decomposing
M using an orthonormal basis. The obvious basis maps for a spherical planet are spherical harmonics. Any continuous, static albedo map,
M(θ , φ), may be decomposed as

M(θ,φ) =
∞∑

l=0

l∑

m=−l

Cm
l Ym

l (θ, φ), (3)

Cm
l = 1

4π

∮
M(θ,φ)Ym

l (θ,φ) d#. (4)

The real spherical harmonics are given by

Ym
l (θ, φ) =

{
Nm

l Plm(cos θ ) cos(mφ) if m ≥ 0

N
|m|
l Pl|m|(cos θ ) sin(|m|φ) if m < 0,

(5)

where Plm is the associated Legendre polynomial without the Condon–Shortley phase, (−1)m.

1 The term ‘kernel’ is often used interchangeably with ‘nullspace’ in mathematical physics, but we eschew that terminology here because ‘kernel’ already has
a central role in convolutions.
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In the current study we consider photometric variability due to rotational and orbital motion, i.e. method (b). We seek analytic expressions
for the time variations in disc-integrated brightness measured by a distant observer, as a function of the intrinsic spatial inhomogeneities
of the planet and the system geometry. In particular, we consider changes in disc-integrated thermal flux due to spatial inhomogeneities in
thermal emission, and variations in disc-integrated reflectance due to spatial inhomogeneities in albedo.

In addition to betraying brightness markings on stars and planets, rotational and orbital phase variations have the potential to constrain
viewing geometry. Possible applications include the following: the thermal phase variations of non-transiting hot Jupiters might hint at their
orbital inclination, breaking the Msin i degeneracy and allowing for improved mass estimates; the rotational phase variations of a transiting
planet’s host star may be sufficient to infer its rotational inclination (a.k.a. stellar obliquity), a useful discriminator between planet migration
scenarios (Winn et al. 2005); the rotational photometric variations of a directly imaged planet might encode information about its rotational
inclination which – when combined with the astrometrically inferred orbital inclination – provides an estimate of planetary obliquity, telling
us about planet formation (Tremaine 1991).

1.2 Forward versus inverse problem

Inferring the properties of a star or planet based on its disc-integrated brightness is an inverse problem, as opposed to the forward problem of
predicting the photometry of an object based on its properties. We approximate the forward problem as linear in the planet map, M(θ , φ):

F (t) =
∮

K(θ, φ, t)M(θ,φ)d#, (1)

where F(t) is the observed flux, K(θ , φ, t) is the kernel, θ and φ are planetary co-latitude and longitude, respectively, and d# = sin θdθdφ. As
we will see below, the kernel is non-negative and unimodal. It is therefore tempting to think of (1) as a convolution, and the inverse problem
as a deconvolution. For thermal light curves, K has a fixed shape and this description is formally correct; in other cases it is merely a useful
analogy.

The inverse problem, solving for M given K and F, is a Fredholm integral equation of the first kind and is non-trivial (Aster, Borchers
& Thurber 2013). Inverse problems are typically underconstrained, and ‘exo-cartography’ is no exception. First of all, there are non-zero
maps that produce flat light curves, a so-called nullspace.1 Secondly, even non-zero harmonic light curves are sometimes proportional to each
other. This is not surprising, since linear transformations need not preserve angles: planetary maps that are orthogonal are not necessarily
transformed to light curves that are orthogonal. The bottom line is that attempts to map the brightness markings of distant objects suffer from
formal degeneracies, even in the limit of noiseless observations.

If the orientation of the planet or star is not known a priori, then the problem can be expressed as

F (t) =
∮

K(G, θ, φ, t)M(θ,φ) d#, (2)

where G represents the unknown geometry (e.g. inclination or obliquity). The object is then to solve for G and M(θ , φ) knowing F and the
form of K. It has been demonstrated in numerical experiments, for example, that one can simultaneously constrain a planet’s two-dimensional
(2D) albedo map, obliquity and obliquity phase (Kawahara & Fujii 2010, 2011; Fujii & Kawahara 2012).

1.3 Harmonic light curves

In order to develop an analytic solution to (1), it is necessary to express the planetary map analytically. In general this is done by decomposing
M using an orthonormal basis. The obvious basis maps for a spherical planet are spherical harmonics. Any continuous, static albedo map,
M(θ , φ), may be decomposed as

M(θ,φ) =
∞∑

l=0

l∑

m=−l

Cm
l Ym

l (θ, φ), (3)

Cm
l = 1

4π

∮
M(θ,φ)Ym

l (θ,φ) d#. (4)

The real spherical harmonics are given by

Ym
l (θ, φ) =

{
Nm

l Plm(cos θ ) cos(mφ) if m ≥ 0

N
|m|
l Pl|m|(cos θ ) sin(|m|φ) if m < 0,

(5)

where Plm is the associated Legendre polynomial without the Condon–Shortley phase, (−1)m.

1 The term ‘kernel’ is often used interchangeably with ‘nullspace’ in mathematical physics, but we eschew that terminology here because ‘kernel’ already has
a central role in convolutions.
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In the current study we consider photometric variability due to rotational and orbital motion, i.e. method (b). We seek analytic expressions
for the time variations in disc-integrated brightness measured by a distant observer, as a function of the intrinsic spatial inhomogeneities
of the planet and the system geometry. In particular, we consider changes in disc-integrated thermal flux due to spatial inhomogeneities in
thermal emission, and variations in disc-integrated reflectance due to spatial inhomogeneities in albedo.

In addition to betraying brightness markings on stars and planets, rotational and orbital phase variations have the potential to constrain
viewing geometry. Possible applications include the following: the thermal phase variations of non-transiting hot Jupiters might hint at their
orbital inclination, breaking the Msin i degeneracy and allowing for improved mass estimates; the rotational phase variations of a transiting
planet’s host star may be sufficient to infer its rotational inclination (a.k.a. stellar obliquity), a useful discriminator between planet migration
scenarios (Winn et al. 2005); the rotational photometric variations of a directly imaged planet might encode information about its rotational
inclination which – when combined with the astrometrically inferred orbital inclination – provides an estimate of planetary obliquity, telling
us about planet formation (Tremaine 1991).

1.2 Forward versus inverse problem

Inferring the properties of a star or planet based on its disc-integrated brightness is an inverse problem, as opposed to the forward problem of
predicting the photometry of an object based on its properties. We approximate the forward problem as linear in the planet map, M(θ , φ):

F (t) =
∮

K(θ, φ, t)M(θ,φ)d#, (1)

where F(t) is the observed flux, K(θ , φ, t) is the kernel, θ and φ are planetary co-latitude and longitude, respectively, and d# = sin θdθdφ. As
we will see below, the kernel is non-negative and unimodal. It is therefore tempting to think of (1) as a convolution, and the inverse problem
as a deconvolution. For thermal light curves, K has a fixed shape and this description is formally correct; in other cases it is merely a useful
analogy.

The inverse problem, solving for M given K and F, is a Fredholm integral equation of the first kind and is non-trivial (Aster, Borchers
& Thurber 2013). Inverse problems are typically underconstrained, and ‘exo-cartography’ is no exception. First of all, there are non-zero
maps that produce flat light curves, a so-called nullspace.1 Secondly, even non-zero harmonic light curves are sometimes proportional to each
other. This is not surprising, since linear transformations need not preserve angles: planetary maps that are orthogonal are not necessarily
transformed to light curves that are orthogonal. The bottom line is that attempts to map the brightness markings of distant objects suffer from
formal degeneracies, even in the limit of noiseless observations.

If the orientation of the planet or star is not known a priori, then the problem can be expressed as

F (t) =
∮

K(G, θ, φ, t)M(θ,φ) d#, (2)

where G represents the unknown geometry (e.g. inclination or obliquity). The object is then to solve for G and M(θ , φ) knowing F and the
form of K. It has been demonstrated in numerical experiments, for example, that one can simultaneously constrain a planet’s two-dimensional
(2D) albedo map, obliquity and obliquity phase (Kawahara & Fujii 2010, 2011; Fujii & Kawahara 2012).

1.3 Harmonic light curves

In order to develop an analytic solution to (1), it is necessary to express the planetary map analytically. In general this is done by decomposing
M using an orthonormal basis. The obvious basis maps for a spherical planet are spherical harmonics. Any continuous, static albedo map,
M(θ , φ), may be decomposed as

M(θ,φ) =
∞∑

l=0

l∑

m=−l

Cm
l Ym

l (θ, φ), (3)

Cm
l = 1

4π

∮
M(θ,φ)Ym

l (θ,φ) d#. (4)

The real spherical harmonics are given by

Ym
l (θ, φ) =

{
Nm

l Plm(cos θ ) cos(mφ) if m ≥ 0

N
|m|
l Pl|m|(cos θ ) sin(|m|φ) if m < 0,

(5)

where Plm is the associated Legendre polynomial without the Condon–Shortley phase, (−1)m.

1 The term ‘kernel’ is often used interchangeably with ‘nullspace’ in mathematical physics, but we eschew that terminology here because ‘kernel’ already has
a central role in convolutions.
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We adopt the geodesy normalization (unit power) for real spherical harmonics,

Nm
l =






1 if l = 0
√

2(2l+1)(l−m)!
(l+m)! if l > 0,

(6)

1
4π

∮
Ym

l (θ, φ)Yµ
λ (θ, φ) d$ = δlλδmµ. (7)

The light curve signature of a spherical harmonic, or harmonic light curve, is

Fm
l (t) =

∮
K(θ, φ, t)Ym

l (θ, φ) d$. (8)

It is perfectly equivalent to think of this as decomposing the kernel into spherical harmonics. Aside from the current application of photometric
variability which dates to Russell (1906), this sort of formalism has broad applications throughout astrophysics (e.g. constraining B-field
morphology of Ap stars via harmonic analysis of time-variable spectra; Deutsch 1958, 1970).

In this paper we present harmonic light curves for a few cases of immediate interest. We tackle thermal light curves in Section 2 and
address the more complex case of reflected light curves in Section 3. In both of these sections we begin by describing our model assumptions,
then present solutions to special cases before moving on to the general solution. Whenever possible, we solve the integrals analytically by
hand and/or with MATHEMATICA. When symbolic solutions are too messy to have intuitive value, we use IDL to compute and plot numerical
integrals. We discuss possible applications and implications of this work in Section 4.

2 TH E R M A L L I G H T C U RV E S

2.1 Model formalism

We assume a spherical planet, static brightness map and diffuse thermal emission, and neglect limb darkening. The requirement of a static
map depends on context. For mapping star spots or patchy clouds on a brown dwarf, the rotation period is the relevant time-scale. When
mapping the diurnal heating pattern of a planet, on the other hand, one requires stability on the orbital period (for more about the various
sources of planetary thermal variability see Cowan, Voigt & Abbot 2012c).

The flux, F, in this case is the disc-integrated thermal flux from the planet. The kernel is proportional to the visibility of a given region
of the planet at time t: K(θ,φ, t) = 1

π
V (θ, φ, t), where the visibility, V, is unity at the sub-observer location, drops as the cosine of the angle

from the sub-observer location, γo, and is zero on the far side of the planet:

V (θ,φ, t) = max[cos γo, 0] = max[sin θ sin θo cos(φ − φo) + cos θ cos θo, 0], (9)

where θo and φo are the sub-observer co-latitude and longitude, respectively. The piece-wise-defined kernel leads to much of the difficulty in
solving the forward problem analytically.

The entire time dependence of the forward problem comes in through the sub-observer position. In the absence of precession, the
sub-observer co-latitude is constant, θo(t) = θo. The sub-observer longitude decreases linearly with time (we define longitude increasing to
the east, with the planet rotating from west to east): φo(t) = φo(0) − ωrott , where ωrot is the rotational angular frequency in an inertial frame
(e.g. ωrot = 2π/23.93 hr−1 for Earth).

The thermal harmonic light curves are given by

Fm
l (t) = 1

π

∮
V (θ,φ, t)Ym

l (θ,φ) d$. (10)

Integrating the piece-wise-defined kernel over the entire sphere is equivalent to integrating the non-zero part of the kernel, Knz(θ, φ, t) =
1
π

(sin θ sin θo cos(φ − φo) + cos θ cos θo), over the visible hemisphere. The limits of integration are then defined by the limb, the locus of
points with γo = π/2. From (9), the limb satisfies

tan θlimb = −1
tan θo cos(φ − φo)

, (11)

as shown in Fig. 1.
For a planet-viewed equator-on (θo = π/2) the kernel simplifies to Knz(θ,φ, t) = 1

π
sin θ cos(φ − φo).

2.2 Equator-on thermal light curve

We first consider a planet-viewed equator-on (left-hand panel of Fig. 1), which allows us to separate (10) into two single integrals:

Fm
l (t) = Nm

l

π

∫ 1

−1

√
1 − x2Plm(x)dx

∫ φo+ π
2

φo− π
2

cos(φ − φo) cos(mφ) dφ, (12)

where we have made the change of coordinates x = cos θ . Note that we have given the example for a cosine Ym
l (m ≥ 0), but the sine instance

(m < 0) can be trivially obtained by replacing m → |m| and cos (mφ) → sin (|m|φ).
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Figure 5. Harmonic reflected light curves for a tidally locked planet on an inclined orbit (i = θo = π
4 ). Line style denotes l, and colour denotes m.

4 D ISCUSSION

4.1 Degeneracies in rotational mapping

The essential challenges of mapping distant bodies from time-resolved observations have been known for over a century (Russell 1906).
Nullspaces are bigger in cases where the kernel has a fixed shape and latitude: the worst cases are thermal light curves and reflected rotational
light curves of zero-obliquity objects at fixed phase. The nullspace is more limited for reflected phase variations (changing kernel shape) or
reflected light curves of oblique rotators (changing kernel latitude). Occultation mapping provides a much more varied kernel and is therefore
nearly devoid of a nullspace.

The problem of nullspaces for rotational light curves cannot be swept away by clever parametrization. For any planetary map that fits
the data, one can add an arbitrary linear combination of nullspace maps to obtain a very different map that fits the data equally well. This is
true regardless of how the initial map was parametrized.

The only way to constrain the presence of the nullspace maps is by adding a priori constraints. One universal constraint is that the map
must be everywhere greater than zero, while albedo maps must additionally be less than unity everywhere on the planet (these constraints are
critical for rotational unmixing; Cowan & Strait 2013). The application of Tikhonov or maximum entropy regularization may help produce
unique maps (e.g. Donati & Collier Cameron 1997; Knutson et al. 2007; Lanza et al. 2009; Kawahara & Fujii 2011), but the validity of such
additional constraints must be evaluated on a case-by-case basis. For example, the assumption of bimodal intensity may be reasonable for
star spots, but is still being tested for the cloud-related markings on brown dwarfs.

Although these degeneracies make it difficult/impossible to obtain an accurate map of an unresolved body, it is still possible to precisely
measure certain properties of a body based solely on rotational light curves.

4.2 Inclination-dependent nullspace

In Fig. 6, we show the amplitude of low-order thermal harmonic light curves as a function of sub-observer latitude, θo (θo = 0 for pole-on
or face-on rotation; θo = π/2 for equator-on or edge-on rotation). The nullspace of the convolution and the amplitude of non-zero harmonic
light curves are a function of θo. A pole-on object obviously exhibits no rotational variability (left-hand side of the plot). Moreover, an object
exhibiting light curve power at m = 3 is neither pole-on nor equator-on: the amplitude of F 3

4 exhibits a clear peak at θo = π/3.
Formally, there are an infinite number of harmonic maps that contribute to the light curve power at a given m:

Fm(t) =
∞∑

l=|m|
Cm

l Fm
l (t), (57)
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In the current study we consider photometric variability due to rotational and orbital motion, i.e. method (b). We seek analytic expressions
for the time variations in disc-integrated brightness measured by a distant observer, as a function of the intrinsic spatial inhomogeneities
of the planet and the system geometry. In particular, we consider changes in disc-integrated thermal flux due to spatial inhomogeneities in
thermal emission, and variations in disc-integrated reflectance due to spatial inhomogeneities in albedo.

In addition to betraying brightness markings on stars and planets, rotational and orbital phase variations have the potential to constrain
viewing geometry. Possible applications include the following: the thermal phase variations of non-transiting hot Jupiters might hint at their
orbital inclination, breaking the Msin i degeneracy and allowing for improved mass estimates; the rotational phase variations of a transiting
planet’s host star may be sufficient to infer its rotational inclination (a.k.a. stellar obliquity), a useful discriminator between planet migration
scenarios (Winn et al. 2005); the rotational photometric variations of a directly imaged planet might encode information about its rotational
inclination which – when combined with the astrometrically inferred orbital inclination – provides an estimate of planetary obliquity, telling
us about planet formation (Tremaine 1991).

1.2 Forward versus inverse problem

Inferring the properties of a star or planet based on its disc-integrated brightness is an inverse problem, as opposed to the forward problem of
predicting the photometry of an object based on its properties. We approximate the forward problem as linear in the planet map, M(θ , φ):

F (t) =
∮

K(θ, φ, t)M(θ,φ)d#, (1)

where F(t) is the observed flux, K(θ , φ, t) is the kernel, θ and φ are planetary co-latitude and longitude, respectively, and d# = sin θdθdφ. As
we will see below, the kernel is non-negative and unimodal. It is therefore tempting to think of (1) as a convolution, and the inverse problem
as a deconvolution. For thermal light curves, K has a fixed shape and this description is formally correct; in other cases it is merely a useful
analogy.

The inverse problem, solving for M given K and F, is a Fredholm integral equation of the first kind and is non-trivial (Aster, Borchers
& Thurber 2013). Inverse problems are typically underconstrained, and ‘exo-cartography’ is no exception. First of all, there are non-zero
maps that produce flat light curves, a so-called nullspace.1 Secondly, even non-zero harmonic light curves are sometimes proportional to each
other. This is not surprising, since linear transformations need not preserve angles: planetary maps that are orthogonal are not necessarily
transformed to light curves that are orthogonal. The bottom line is that attempts to map the brightness markings of distant objects suffer from
formal degeneracies, even in the limit of noiseless observations.

If the orientation of the planet or star is not known a priori, then the problem can be expressed as

F (t) =
∮

K(G, θ, φ, t)M(θ,φ) d#, (2)

where G represents the unknown geometry (e.g. inclination or obliquity). The object is then to solve for G and M(θ , φ) knowing F and the
form of K. It has been demonstrated in numerical experiments, for example, that one can simultaneously constrain a planet’s two-dimensional
(2D) albedo map, obliquity and obliquity phase (Kawahara & Fujii 2010, 2011; Fujii & Kawahara 2012).

1.3 Harmonic light curves

In order to develop an analytic solution to (1), it is necessary to express the planetary map analytically. In general this is done by decomposing
M using an orthonormal basis. The obvious basis maps for a spherical planet are spherical harmonics. Any continuous, static albedo map,
M(θ , φ), may be decomposed as

M(θ,φ) =
∞∑

l=0

l∑

m=−l

Cm
l Ym

l (θ, φ), (3)

Cm
l = 1

4π

∮
M(θ,φ)Ym

l (θ,φ) d#. (4)

The real spherical harmonics are given by

Ym
l (θ, φ) =

{
Nm

l Plm(cos θ ) cos(mφ) if m ≥ 0

N
|m|
l Pl|m|(cos θ ) sin(|m|φ) if m < 0,

(5)

where Plm is the associated Legendre polynomial without the Condon–Shortley phase, (−1)m.

1 The term ‘kernel’ is often used interchangeably with ‘nullspace’ in mathematical physics, but we eschew that terminology here because ‘kernel’ already has
a central role in convolutions.
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In the current study we consider photometric variability due to rotational and orbital motion, i.e. method (b). We seek analytic expressions
for the time variations in disc-integrated brightness measured by a distant observer, as a function of the intrinsic spatial inhomogeneities
of the planet and the system geometry. In particular, we consider changes in disc-integrated thermal flux due to spatial inhomogeneities in
thermal emission, and variations in disc-integrated reflectance due to spatial inhomogeneities in albedo.

In addition to betraying brightness markings on stars and planets, rotational and orbital phase variations have the potential to constrain
viewing geometry. Possible applications include the following: the thermal phase variations of non-transiting hot Jupiters might hint at their
orbital inclination, breaking the Msin i degeneracy and allowing for improved mass estimates; the rotational phase variations of a transiting
planet’s host star may be sufficient to infer its rotational inclination (a.k.a. stellar obliquity), a useful discriminator between planet migration
scenarios (Winn et al. 2005); the rotational photometric variations of a directly imaged planet might encode information about its rotational
inclination which – when combined with the astrometrically inferred orbital inclination – provides an estimate of planetary obliquity, telling
us about planet formation (Tremaine 1991).

1.2 Forward versus inverse problem

Inferring the properties of a star or planet based on its disc-integrated brightness is an inverse problem, as opposed to the forward problem of
predicting the photometry of an object based on its properties. We approximate the forward problem as linear in the planet map, M(θ , φ):

F (t) =
∮

K(θ, φ, t)M(θ,φ)d#, (1)

where F(t) is the observed flux, K(θ , φ, t) is the kernel, θ and φ are planetary co-latitude and longitude, respectively, and d# = sin θdθdφ. As
we will see below, the kernel is non-negative and unimodal. It is therefore tempting to think of (1) as a convolution, and the inverse problem
as a deconvolution. For thermal light curves, K has a fixed shape and this description is formally correct; in other cases it is merely a useful
analogy.

The inverse problem, solving for M given K and F, is a Fredholm integral equation of the first kind and is non-trivial (Aster, Borchers
& Thurber 2013). Inverse problems are typically underconstrained, and ‘exo-cartography’ is no exception. First of all, there are non-zero
maps that produce flat light curves, a so-called nullspace.1 Secondly, even non-zero harmonic light curves are sometimes proportional to each
other. This is not surprising, since linear transformations need not preserve angles: planetary maps that are orthogonal are not necessarily
transformed to light curves that are orthogonal. The bottom line is that attempts to map the brightness markings of distant objects suffer from
formal degeneracies, even in the limit of noiseless observations.

If the orientation of the planet or star is not known a priori, then the problem can be expressed as

F (t) =
∮

K(G, θ, φ, t)M(θ,φ) d#, (2)

where G represents the unknown geometry (e.g. inclination or obliquity). The object is then to solve for G and M(θ , φ) knowing F and the
form of K. It has been demonstrated in numerical experiments, for example, that one can simultaneously constrain a planet’s two-dimensional
(2D) albedo map, obliquity and obliquity phase (Kawahara & Fujii 2010, 2011; Fujii & Kawahara 2012).

1.3 Harmonic light curves

In order to develop an analytic solution to (1), it is necessary to express the planetary map analytically. In general this is done by decomposing
M using an orthonormal basis. The obvious basis maps for a spherical planet are spherical harmonics. Any continuous, static albedo map,
M(θ , φ), may be decomposed as

M(θ,φ) =
∞∑

l=0

l∑

m=−l

Cm
l Ym

l (θ, φ), (3)

Cm
l = 1

4π

∮
M(θ,φ)Ym

l (θ,φ) d#. (4)

The real spherical harmonics are given by

Ym
l (θ, φ) =

{
Nm

l Plm(cos θ ) cos(mφ) if m ≥ 0

N
|m|
l Pl|m|(cos θ ) sin(|m|φ) if m < 0,

(5)

where Plm is the associated Legendre polynomial without the Condon–Shortley phase, (−1)m.

1 The term ‘kernel’ is often used interchangeably with ‘nullspace’ in mathematical physics, but we eschew that terminology here because ‘kernel’ already has
a central role in convolutions.
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In the current study we consider photometric variability due to rotational and orbital motion, i.e. method (b). We seek analytic expressions
for the time variations in disc-integrated brightness measured by a distant observer, as a function of the intrinsic spatial inhomogeneities
of the planet and the system geometry. In particular, we consider changes in disc-integrated thermal flux due to spatial inhomogeneities in
thermal emission, and variations in disc-integrated reflectance due to spatial inhomogeneities in albedo.

In addition to betraying brightness markings on stars and planets, rotational and orbital phase variations have the potential to constrain
viewing geometry. Possible applications include the following: the thermal phase variations of non-transiting hot Jupiters might hint at their
orbital inclination, breaking the Msin i degeneracy and allowing for improved mass estimates; the rotational phase variations of a transiting
planet’s host star may be sufficient to infer its rotational inclination (a.k.a. stellar obliquity), a useful discriminator between planet migration
scenarios (Winn et al. 2005); the rotational photometric variations of a directly imaged planet might encode information about its rotational
inclination which – when combined with the astrometrically inferred orbital inclination – provides an estimate of planetary obliquity, telling
us about planet formation (Tremaine 1991).

1.2 Forward versus inverse problem

Inferring the properties of a star or planet based on its disc-integrated brightness is an inverse problem, as opposed to the forward problem of
predicting the photometry of an object based on its properties. We approximate the forward problem as linear in the planet map, M(θ , φ):

F (t) =
∮

K(θ, φ, t)M(θ,φ)d#, (1)

where F(t) is the observed flux, K(θ , φ, t) is the kernel, θ and φ are planetary co-latitude and longitude, respectively, and d# = sin θdθdφ. As
we will see below, the kernel is non-negative and unimodal. It is therefore tempting to think of (1) as a convolution, and the inverse problem
as a deconvolution. For thermal light curves, K has a fixed shape and this description is formally correct; in other cases it is merely a useful
analogy.

The inverse problem, solving for M given K and F, is a Fredholm integral equation of the first kind and is non-trivial (Aster, Borchers
& Thurber 2013). Inverse problems are typically underconstrained, and ‘exo-cartography’ is no exception. First of all, there are non-zero
maps that produce flat light curves, a so-called nullspace.1 Secondly, even non-zero harmonic light curves are sometimes proportional to each
other. This is not surprising, since linear transformations need not preserve angles: planetary maps that are orthogonal are not necessarily
transformed to light curves that are orthogonal. The bottom line is that attempts to map the brightness markings of distant objects suffer from
formal degeneracies, even in the limit of noiseless observations.

If the orientation of the planet or star is not known a priori, then the problem can be expressed as

F (t) =
∮

K(G, θ, φ, t)M(θ,φ) d#, (2)

where G represents the unknown geometry (e.g. inclination or obliquity). The object is then to solve for G and M(θ , φ) knowing F and the
form of K. It has been demonstrated in numerical experiments, for example, that one can simultaneously constrain a planet’s two-dimensional
(2D) albedo map, obliquity and obliquity phase (Kawahara & Fujii 2010, 2011; Fujii & Kawahara 2012).

1.3 Harmonic light curves

In order to develop an analytic solution to (1), it is necessary to express the planetary map analytically. In general this is done by decomposing
M using an orthonormal basis. The obvious basis maps for a spherical planet are spherical harmonics. Any continuous, static albedo map,
M(θ , φ), may be decomposed as

M(θ,φ) =
∞∑

l=0

l∑

m=−l
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l Ym

l (θ, φ), (3)

Cm
l = 1

4π

∮
M(θ,φ)Ym

l (θ,φ) d#. (4)

The real spherical harmonics are given by

Ym
l (θ, φ) =

{
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l Plm(cos θ ) cos(mφ) if m ≥ 0

N
|m|
l Pl|m|(cos θ ) sin(|m|φ) if m < 0,

(5)

where Plm is the associated Legendre polynomial without the Condon–Shortley phase, (−1)m.

1 The term ‘kernel’ is often used interchangeably with ‘nullspace’ in mathematical physics, but we eschew that terminology here because ‘kernel’ already has
a central role in convolutions.
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We adopt the geodesy normalization (unit power) for real spherical harmonics,

Nm
l =






1 if l = 0
√

2(2l+1)(l−m)!
(l+m)! if l > 0,

(6)

1
4π

∮
Ym

l (θ, φ)Yµ
λ (θ, φ) d$ = δlλδmµ. (7)

The light curve signature of a spherical harmonic, or harmonic light curve, is

Fm
l (t) =

∮
K(θ, φ, t)Ym

l (θ, φ) d$. (8)

It is perfectly equivalent to think of this as decomposing the kernel into spherical harmonics. Aside from the current application of photometric
variability which dates to Russell (1906), this sort of formalism has broad applications throughout astrophysics (e.g. constraining B-field
morphology of Ap stars via harmonic analysis of time-variable spectra; Deutsch 1958, 1970).

In this paper we present harmonic light curves for a few cases of immediate interest. We tackle thermal light curves in Section 2 and
address the more complex case of reflected light curves in Section 3. In both of these sections we begin by describing our model assumptions,
then present solutions to special cases before moving on to the general solution. Whenever possible, we solve the integrals analytically by
hand and/or with MATHEMATICA. When symbolic solutions are too messy to have intuitive value, we use IDL to compute and plot numerical
integrals. We discuss possible applications and implications of this work in Section 4.

2 TH E R M A L L I G H T C U RV E S

2.1 Model formalism

We assume a spherical planet, static brightness map and diffuse thermal emission, and neglect limb darkening. The requirement of a static
map depends on context. For mapping star spots or patchy clouds on a brown dwarf, the rotation period is the relevant time-scale. When
mapping the diurnal heating pattern of a planet, on the other hand, one requires stability on the orbital period (for more about the various
sources of planetary thermal variability see Cowan, Voigt & Abbot 2012c).

The flux, F, in this case is the disc-integrated thermal flux from the planet. The kernel is proportional to the visibility of a given region
of the planet at time t: K(θ,φ, t) = 1

π
V (θ, φ, t), where the visibility, V, is unity at the sub-observer location, drops as the cosine of the angle

from the sub-observer location, γo, and is zero on the far side of the planet:

V (θ,φ, t) = max[cos γo, 0] = max[sin θ sin θo cos(φ − φo) + cos θ cos θo, 0], (9)

where θo and φo are the sub-observer co-latitude and longitude, respectively. The piece-wise-defined kernel leads to much of the difficulty in
solving the forward problem analytically.

The entire time dependence of the forward problem comes in through the sub-observer position. In the absence of precession, the
sub-observer co-latitude is constant, θo(t) = θo. The sub-observer longitude decreases linearly with time (we define longitude increasing to
the east, with the planet rotating from west to east): φo(t) = φo(0) − ωrott , where ωrot is the rotational angular frequency in an inertial frame
(e.g. ωrot = 2π/23.93 hr−1 for Earth).

The thermal harmonic light curves are given by

Fm
l (t) = 1

π

∮
V (θ,φ, t)Ym

l (θ,φ) d$. (10)

Integrating the piece-wise-defined kernel over the entire sphere is equivalent to integrating the non-zero part of the kernel, Knz(θ, φ, t) =
1
π

(sin θ sin θo cos(φ − φo) + cos θ cos θo), over the visible hemisphere. The limits of integration are then defined by the limb, the locus of
points with γo = π/2. From (9), the limb satisfies

tan θlimb = −1
tan θo cos(φ − φo)

, (11)

as shown in Fig. 1.
For a planet-viewed equator-on (θo = π/2) the kernel simplifies to Knz(θ,φ, t) = 1

π
sin θ cos(φ − φo).

2.2 Equator-on thermal light curve

We first consider a planet-viewed equator-on (left-hand panel of Fig. 1), which allows us to separate (10) into two single integrals:

Fm
l (t) = Nm

l

π

∫ 1

−1

√
1 − x2Plm(x)dx

∫ φo+ π
2

φo− π
2

cos(φ − φo) cos(mφ) dφ, (12)

where we have made the change of coordinates x = cos θ . Note that we have given the example for a cosine Ym
l (m ≥ 0), but the sine instance

(m < 0) can be trivially obtained by replacing m → |m| and cos (mφ) → sin (|m|φ).
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Figure 5. Harmonic reflected light curves for a tidally locked planet on an inclined orbit (i = θo = π
4 ). Line style denotes l, and colour denotes m.

4 D ISCUSSION

4.1 Degeneracies in rotational mapping

The essential challenges of mapping distant bodies from time-resolved observations have been known for over a century (Russell 1906).
Nullspaces are bigger in cases where the kernel has a fixed shape and latitude: the worst cases are thermal light curves and reflected rotational
light curves of zero-obliquity objects at fixed phase. The nullspace is more limited for reflected phase variations (changing kernel shape) or
reflected light curves of oblique rotators (changing kernel latitude). Occultation mapping provides a much more varied kernel and is therefore
nearly devoid of a nullspace.

The problem of nullspaces for rotational light curves cannot be swept away by clever parametrization. For any planetary map that fits
the data, one can add an arbitrary linear combination of nullspace maps to obtain a very different map that fits the data equally well. This is
true regardless of how the initial map was parametrized.

The only way to constrain the presence of the nullspace maps is by adding a priori constraints. One universal constraint is that the map
must be everywhere greater than zero, while albedo maps must additionally be less than unity everywhere on the planet (these constraints are
critical for rotational unmixing; Cowan & Strait 2013). The application of Tikhonov or maximum entropy regularization may help produce
unique maps (e.g. Donati & Collier Cameron 1997; Knutson et al. 2007; Lanza et al. 2009; Kawahara & Fujii 2011), but the validity of such
additional constraints must be evaluated on a case-by-case basis. For example, the assumption of bimodal intensity may be reasonable for
star spots, but is still being tested for the cloud-related markings on brown dwarfs.

Although these degeneracies make it difficult/impossible to obtain an accurate map of an unresolved body, it is still possible to precisely
measure certain properties of a body based solely on rotational light curves.

4.2 Inclination-dependent nullspace

In Fig. 6, we show the amplitude of low-order thermal harmonic light curves as a function of sub-observer latitude, θo (θo = 0 for pole-on
or face-on rotation; θo = π/2 for equator-on or edge-on rotation). The nullspace of the convolution and the amplitude of non-zero harmonic
light curves are a function of θo. A pole-on object obviously exhibits no rotational variability (left-hand side of the plot). Moreover, an object
exhibiting light curve power at m = 3 is neither pole-on nor equator-on: the amplitude of F 3

4 exhibits a clear peak at θo = π/3.
Formally, there are an infinite number of harmonic maps that contribute to the light curve power at a given m:

Fm(t) =
∞∑

l=|m|
Cm

l Fm
l (t), (57)
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the	  case	  of	  a	  star	  viewed	  equator-‐on:	  

ϕ0 is the longitude of the observer (fixed in the adopted frame) and Rl
m (odd) are 

numerical coefficients (see Cowan et al.); for simplicity, limb-darkening is not 
considered. 
 
Note that the amplitude of the Fourier components decreases rapidly with increasing 
azimuthal order m. 
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Figure 1. The visibility (red contours) of a planet seen by an equatorial (left) or northern observer (right). The grey-scale shows the kernel of the convolution,
which in this case is simply the rescaled visibility. The sub-observer location is denoted by a red cross. The limb is shown in each case with green dotted lines.
For either viewing geometry, the limb is a great circle and the non-zero portion of the kernel is a hemisphere.

The time dependence can be factored out of the integral by making the change of variables ! = φ − φo, using a trigonometric identity,
and noting that one of the two resulting integrals is zero (or simply using complex exponentials):

Fm
l (t) = Nm

l

π
cos(mφo)

∫ 1

−1

√
1 − x2Plm(x)dx

∫ π
2

− π
2

cos(!) cos(m!) dφ, (13)

where the product of integrals is now solely a function of l and m. This justifies the use of sinusoidal basis maps and light curves in the
analysis of hot Jupiter thermal phase variations (Cowan & Agol 2008).

The integral of the associate Legendre polynomial is simplified by using a recurrence relation, then solved directly following Jepsen,
Haugh & Hirschfelder (1955), as described in Appendix A:
∫ 1

−1

√
1 − x2Plm(x)dx = 1

(2l + 1)

[
Rm+1

l+1 − Rm+1
l−1

]
. (14)

The integral of an associated Legendre polynomial over the interval x ∈ [−1, 1], represented here as Rm
l , depends on the parity of the spherical

harmonic. If l and m are even, then l − 1, l + 1 and m + 1 are odd; if l and m are odd, then l − 1, l + 1 and m + 1 are even; if l + m is odd,
then so are (l − 1) + (m + 1) and (l + 1) + (m + 1). Finally, Rm+1

l−1 = Rm+1
l+1 for odd l > 1, producing a nullspace, Fm

l = 0.
The !-integral yields

∫ π
2

− π
2

cos ! cos(m!) dφ =
{

π
2 if |m| = 1

2
1−m2 cos

(
mπ

2

)
if |m| #= 1,

(15)

which recovers the Cowan & Agol (2008) result of zero-phase signature for odd |m| > 1, since cos ( mπ
2 ) is zero in those cases. Physically, the

brightness inhomogeneities cancel each other in the disc-integrated case. Mathematically, Ym
l with odd |m| > 1 are in the nullspace of the

convolution.
Combining (14) and (15) yields the full solution,

Fm
l (t) =






1 if l = 0

2√
3

cos φo if l = 1 and m = 1

2(−1)m/2

π(1−m2)

√
2(l−m)!

(2l+1)(l+m)!

[
Rm+1

l+1 (odd) − Rm+1
l−1 (odd)

]
cos(mφo) if l and m are even

0 otherwise,

(16)

where Rm
l (odd) is given in Appendix A. The nullspace is the union of odd m > 1 (!-integral goes to zero) and odd l > 1 (x-integral goes to

zero).
The first few non-zero harmonic light curves are given as follows:

F 0
0 (t) = 1 (17)

F 1
1 (t) = 2√

3
cos φo (18)

F 0
2 (t) = −

√
10
8

(19)
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!0 is the longitude of the observer (fixed in the adopted frame) and Rl
m (odd) are 

numerical coefficients (see Cowan et al.); for simplicity, limb-darkening is not 
considered. 
 
Note that the amplitude of the Fourier components decreases rapidly with increasing 
azimuthal order m. 



An	  example	  of	  a	  nullspace	  map	  

(see	  Cowan	  et	  al.	  2013)	  

The Y4
3 map in the nullspace of the light curve for a star without limb darkening 

viewed equator-on. 
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2470 N. B. Cowan, P. A. Fuentes and H. M. Haggard

Figure 2. The Y 3
4 brightness map is in the nullspace of the edge-on thermal light curve, but not of the inclined light curve. It is the lowest-order map that can

produce power at odd m > 1 in a thermal light curve.

F 0
2 =

√
10
8

(
3 cos2 θo − 1

)
, (30)

F 1
2 = 3

4

√
5
3

sin θo cos θo cos φo, (31)

F 2
2 =

√
15
8

sin2 θo cos(2φo), (32)

F 0
4 = −

√
2

512
[9 + 20 cos(2θo) + 35 cos(4θo)] (33)

F 1
4 = 5

128
√

10
(24 sin θo + 2 sin 2θo + 7 sin 4θo) cos φo, (34)

F 2
4 = −

√
5

64
(5 + 7 cos 2θo) sin2 θo cos(2φo), (35)

F 3
4 = 35

16
√

70
cos θo sin3 θo cos(3φo), (36)

F 4
4 = −

√
35

64
sin4 θo cos(4φo). (37)

The sine harmonic light curves (m < 0) can be trivially obtained by the substitution cos (mφo) → sin (|m|φo).
The nullspace for an inclined geometry is more limited than the equatorial case: there are non-zero harmonic light curves with odd

m > 1 (provided that l is even, e.g. Y 3
4 shown in Fig. 2).

3 R E F L E C T E D L I G H T C U RV E S

3.1 Model formalism

We assume a spherical planet with a static albedo map on a circular orbit. For rotational light curves, the map only needs to be constant over
a single rotation; or equivalently the recovered map is a diurnal average (Cowan et al. 2009). For rotational+orbital mapping (‘spin-orbit
tomography’; Fujii & Kawahara 2012), the map is assumed to be static over an entire planetary orbit (e.g. the Mars map of Hasinoff et al.
2011).
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The Y4
3 map in the nullspace of the light curve for a star without limb darkening 

viewed equator-on. 



ProperCes	  of	  the	  light	  variaCons	  	  
due	  to	  spots	  



Planetary	  transits	  
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Planetary	  transits	  

LeF:	  Light	  curve	  of	  	  planetary	  transit	  on	  an	  ideal	  star	  without	  limb	  darkening	  (Seager	  &	  
Mallen-‐Ornelas	  2003).	  Right:	   transit	  of	   the	  planet	  of	  CoRoT-‐2	   (a	   real,	   limb-‐darkened	  
star;	  Alonso	  et	  al.	  2008).	  	  
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3. THE EQUATIONS AND SOLUTION FOR A LIGHT CURVE WITH TWO OR MORE TRANSITS

3.1. The General System of Equations

There are five equations that completely describe the planet transit light curve. The first three equations (eqs. [1]–[3])
describe the geometry of the transit in terms of transit depth, transit shape, and transit duration (see Fig. 1). For a planet
transit light curve that is due to two spheres passing in front of each other, the geometry is relatively straightforward (see
Sackett 1999 for a derivation of the transit duration eq. [3]). Here we parameterize the transit shape by both tT, the total transit
duration (first to fourth contact), and tF, the duration of the transit completely inside ingress and egress (second to third con-
tact). The three geometrical equations that describe the transit light curve depend on four observables: the period P, the transit
depth DF, tF, and tT. See Figure 1 for an illustrative definition of DF, tF, and tT. In addition to the three geometrical equations,
there are two physical equations (eqs. [4] and [5]), Kepler’s third law and the stellar mass-radius relation. It is these physical
equations that break the degeneracy of the mathematical description of two spheres passing in front of each other, by setting a
physical scale. It is this physical scale, together with the geometrical description, that allows the unique solution.

The equations are as follows: the transit depth, DF, with F defined as the total observed flux,

DF ! Fno transit " Ftransit

Fno transit
¼

Rp

R$

! "2

; ð1Þ

the transit shape, described by the ratio of the duration of the ‘‘ flat part ’’ of the transit (tF) to the total transit duration (tT),

sinðtF!=PÞ
sinðtT!=PÞ

¼
#
1" Rp=R$

$ %& '2" a=R$ð Þ cos i½ (2
(1=2

#
1þ Rp=R$

$ %& '2" a=R$ð Þ cos i½ (2
(1=2

; ð2Þ

the total transit duration,

tT ¼ P

!
arcsin

R$
a

1þ Rp=R$
$ %& '2" a=R$ð Þ cos i½ (2

1" cos2 i

( )1=2
0

@

1

A ; ð3Þ

F!

*R

*

t 
t T

F

pR

2 3 41

421 3

bR = a cos i

Fig. 1.—Definition of transit light-curve observables. Two schematic light curves are shown on the bottom (solid and dotted lines), and the corresponding
geometry of the star and planet is shown on the top. Indicated on the solid light curve are the transit depth DF, the total transit duration tT, and the transit
duration between ingress and egress tF (i.e., the ‘‘ flat part ’’ of the transit light curve when the planet is fully superimposed on the parent star). First, second,
third, and fourth contacts are noted for a planet moving from left to right. Also defined areR*,Rp, and impact parameter b corresponding to orbital inclination
i. Different impact parameters b (or different i) will result in different transit shapes, as shown by the transits corresponding to the solid and dotted lines.

1040 SEAGER & MALLÉN-ORNELAS Vol. 585
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Fig. 1. Normalized flux of the CoRoT-Exo-2 star, showing a low frequency modulation due to the presence of spots on the stellar surface, and the
78 transits used to build the phase-folded transit of the Fig. 2. For clarity purposes, data have been combined in 64-points bins (∼34 min).

30 km s−1). The radial velocities are given in Table 2, and the
phase folded radial velocity measurements are plotted in Fig. 3.

The radial-velocity points obtained show a variation in phase
with the ephemeris derived from the CoRoT lightcurve. To fit
these measurements, we applied a radial velocity shift between
the different spectrographs (the values are displayed in Fig. 3).
The epoch and period of the transit were then fixed to the CoRoT
values. Due to the very short period, we first assumed zero ec-
centricity. The semi-amplitude of the radial velocity variation
and the mean velocity were then adjusted to the data. We re-
peated the fit with a free eccentricity, resulting in an orbit com-
patible with zero eccentricity (e = 0.03±0.03). The final solution
is displayed in Table 1; the observed minus computed (O−C)
residuals have a standard deviation of 56 m/s. This is signif-
icantly larger than the noise on individual measurements, and
consistent with the expected effect of stellar activity, as described
in Bouchy et al. (2008). The semi-amplitude of the radial motion
is large (K = 563 m/s) due to the large planetary mass and very
short period. These measurements thus establish the planetary
nature of the transiting body detected by CoRoT and reject other
interpretations such as a grazing or background eclipsing binary,
or a triple system. The bisector of the CCF, plotted in Fig. 3,
shows no correlation of the spectral line shapes with the orbital
period. Finally, the observation of the Rossiter-McLaughlin ef-
fect by Bouchy et al. (2008) confirms the planetary nature of
CoRoT-Exo-2b, as no triple system or blend could reproduce
such a well-identified radial-velocity anomaly.

5. Stellar and planetary parameters

From the fit to the folded light curve, we can measure with high
precision the ratio M1/3

s /Rs, and thus obtain a good estimation of
the stellar radius once an estimation of its mass is given. The un-
certainty on the stellar mass determination thus limits our knowl-
edge of the stellar and planetary radii (as was the case in other
space-based observations of transits, such as Brown et al. 2001;
or Pont et al. 2007). Assuming a mass of 0.97±0.06 M# (Bouchy
et al. 2008), we obtain a stellar radius of 0.902 ± 0.018 R#. This
translates into a planetary mass of 3.31 ± 0.16 MJup, a planetary
radius of 1.465±0.029RJup and thus a planetary mean density of
1.31 ± 0.04 g/cm3.

Using models of the evolution of irradiated planets (Guillot
2005), CoRoT-Exo-2b appears once again to be anomalously

Fig. 2. Normalized and phase folded light curve of 78 transits of CoRoT-
Exo-2b (top), and the residuals from the best-fit model (bottom). The
bin size corresponds to 2.5 min, and the 1-sigma error bars have been
estimated from the dispersion of the points inside each bin. The resid-
uals of the in-transit points are larger due to the effect of successive
planet occultations of stellar active regions.

large: its radius is about 0.3 RJup larger than expected for
a hydrogen-helium planet of this mass and irradiation level.
However, contrary to most planets discovered to date, standard
recipes to explain this large radius (heat dissipation in the in-
terior or increased opacities) yield only a ∼0.15 RJup increase,
and thus are not sufficient. Larger deviations from the standard
models (e.g. very large tides) or effects that may alter the radius
determination (e.g. large brightness variations of the stellar sur-
face) should be studied.

Due to its short orbital radius and the high mass, both the
star and the planet exchange strong tidal forces. The Doodson
constants for the star and the planet, a measure of the magni-
tude of the tidal forces, are of the same order of magnitude as
for OGLE-TR-56b and confirms that this system is a good can-
didate for the study of the evolution of the system under tidal
interactions. As the orbital period (1.7 days) is shorter than the
stellar rotation period (4.5–5 days), the planetary rotation should
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3. THE EQUATIONS AND SOLUTION FOR A LIGHT CURVE WITH TWO OR MORE TRANSITS

3.1. The General System of Equations

There are five equations that completely describe the planet transit light curve. The first three equations (eqs. [1]–[3])
describe the geometry of the transit in terms of transit depth, transit shape, and transit duration (see Fig. 1). For a planet
transit light curve that is due to two spheres passing in front of each other, the geometry is relatively straightforward (see
Sackett 1999 for a derivation of the transit duration eq. [3]). Here we parameterize the transit shape by both tT, the total transit
duration (first to fourth contact), and tF, the duration of the transit completely inside ingress and egress (second to third con-
tact). The three geometrical equations that describe the transit light curve depend on four observables: the period P, the transit
depth DF, tF, and tT. See Figure 1 for an illustrative definition of DF, tF, and tT. In addition to the three geometrical equations,
there are two physical equations (eqs. [4] and [5]), Kepler’s third law and the stellar mass-radius relation. It is these physical
equations that break the degeneracy of the mathematical description of two spheres passing in front of each other, by setting a
physical scale. It is this physical scale, together with the geometrical description, that allows the unique solution.

The equations are as follows: the transit depth, DF, with F defined as the total observed flux,

DF ! Fno transit " Ftransit

Fno transit
¼

Rp

R$

! "2

; ð1Þ

the transit shape, described by the ratio of the duration of the ‘‘ flat part ’’ of the transit (tF) to the total transit duration (tT),

sinðtF!=PÞ
sinðtT!=PÞ

¼
#
1" Rp=R$

$ %& '2" a=R$ð Þ cos i½ (2
(1=2

#
1þ Rp=R$

$ %& '2" a=R$ð Þ cos i½ (2
(1=2

; ð2Þ

the total transit duration,

tT ¼ P

!
arcsin
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1þ Rp=R$
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Fig. 1.—Definition of transit light-curve observables. Two schematic light curves are shown on the bottom (solid and dotted lines), and the corresponding
geometry of the star and planet is shown on the top. Indicated on the solid light curve are the transit depth DF, the total transit duration tT, and the transit
duration between ingress and egress tF (i.e., the ‘‘ flat part ’’ of the transit light curve when the planet is fully superimposed on the parent star). First, second,
third, and fourth contacts are noted for a planet moving from left to right. Also defined areR*,Rp, and impact parameter b corresponding to orbital inclination
i. Different impact parameters b (or different i) will result in different transit shapes, as shown by the transits corresponding to the solid and dotted lines.
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Fig. 1. Normalized flux of the CoRoT-Exo-2 star, showing a low frequency modulation due to the presence of spots on the stellar surface, and the
78 transits used to build the phase-folded transit of the Fig. 2. For clarity purposes, data have been combined in 64-points bins (∼34 min).

30 km s−1). The radial velocities are given in Table 2, and the
phase folded radial velocity measurements are plotted in Fig. 3.

The radial-velocity points obtained show a variation in phase
with the ephemeris derived from the CoRoT lightcurve. To fit
these measurements, we applied a radial velocity shift between
the different spectrographs (the values are displayed in Fig. 3).
The epoch and period of the transit were then fixed to the CoRoT
values. Due to the very short period, we first assumed zero ec-
centricity. The semi-amplitude of the radial velocity variation
and the mean velocity were then adjusted to the data. We re-
peated the fit with a free eccentricity, resulting in an orbit com-
patible with zero eccentricity (e = 0.03±0.03). The final solution
is displayed in Table 1; the observed minus computed (O−C)
residuals have a standard deviation of 56 m/s. This is signif-
icantly larger than the noise on individual measurements, and
consistent with the expected effect of stellar activity, as described
in Bouchy et al. (2008). The semi-amplitude of the radial motion
is large (K = 563 m/s) due to the large planetary mass and very
short period. These measurements thus establish the planetary
nature of the transiting body detected by CoRoT and reject other
interpretations such as a grazing or background eclipsing binary,
or a triple system. The bisector of the CCF, plotted in Fig. 3,
shows no correlation of the spectral line shapes with the orbital
period. Finally, the observation of the Rossiter-McLaughlin ef-
fect by Bouchy et al. (2008) confirms the planetary nature of
CoRoT-Exo-2b, as no triple system or blend could reproduce
such a well-identified radial-velocity anomaly.

5. Stellar and planetary parameters

From the fit to the folded light curve, we can measure with high
precision the ratio M1/3

s /Rs, and thus obtain a good estimation of
the stellar radius once an estimation of its mass is given. The un-
certainty on the stellar mass determination thus limits our knowl-
edge of the stellar and planetary radii (as was the case in other
space-based observations of transits, such as Brown et al. 2001;
or Pont et al. 2007). Assuming a mass of 0.97±0.06 M# (Bouchy
et al. 2008), we obtain a stellar radius of 0.902 ± 0.018 R#. This
translates into a planetary mass of 3.31 ± 0.16 MJup, a planetary
radius of 1.465±0.029RJup and thus a planetary mean density of
1.31 ± 0.04 g/cm3.

Using models of the evolution of irradiated planets (Guillot
2005), CoRoT-Exo-2b appears once again to be anomalously

Fig. 2. Normalized and phase folded light curve of 78 transits of CoRoT-
Exo-2b (top), and the residuals from the best-fit model (bottom). The
bin size corresponds to 2.5 min, and the 1-sigma error bars have been
estimated from the dispersion of the points inside each bin. The resid-
uals of the in-transit points are larger due to the effect of successive
planet occultations of stellar active regions.

large: its radius is about 0.3 RJup larger than expected for
a hydrogen-helium planet of this mass and irradiation level.
However, contrary to most planets discovered to date, standard
recipes to explain this large radius (heat dissipation in the in-
terior or increased opacities) yield only a ∼0.15 RJup increase,
and thus are not sufficient. Larger deviations from the standard
models (e.g. very large tides) or effects that may alter the radius
determination (e.g. large brightness variations of the stellar sur-
face) should be studied.

Due to its short orbital radius and the high mass, both the
star and the planet exchange strong tidal forces. The Doodson
constants for the star and the planet, a measure of the magni-
tude of the tidal forces, are of the same order of magnitude as
for OGLE-TR-56b and confirms that this system is a good can-
didate for the study of the evolution of the system under tidal
interactions. As the orbital period (1.7 days) is shorter than the
stellar rotation period (4.5–5 days), the planetary rotation should



Rossiter-‐McLaughlin	  effect	  
•  The	   Rossiter-‐McLaughlin	   (RM)	   effect	   is	   an	   anomaly	   of	   the	   stellar	   radial	   velocity	   detected	  

during	  transits;	  	  

•  The	  angle	  between	  the	  projecCons	  on	  the	  plane	  of	  the	  sky	  of	  the	  spin	  axis	  and	  the	  normal	  to	  
the	  orbital	  plane	  can	  be	  measured	  by	  exploiCng	  the	  RM	  effect;	  

•  This	  provides	  complementary	  informaCon	  on	  the	  inclinaCon	  of	  the	  stellar	  spin	  axis	  to	  the	  line	  
of	  sight	  in	  the	  case	  of	  transiCng	  systems.	  



Some	  selected	  results	  



CoRoT-‐2	  
•  A	   main-‐sequence	   G7	   star	   (V=12.6),	   accompanied	   by	   a	   hot	  

Jupiter	  with	  an	  orbital	  period	  of	  1.743	  d	   (Alonso	  et	  al.	  2008;	  
Bouchy	  et	  al.	  2008);	  	  



ME best fit of the out-of-transit light curve 

(normal points obtained by binning the data along each satellite orbital 
period of 6184 s) 

Best fit of the out-of-transit light curve 

(normal points obtained by binning the data along each satellite orbital 
period of 6184 s) 



Spot	  area	  vs.	  longitude	  and	  Cme	  !"#$%&'(&%)*+%,#-./$01(%&-1%23(%

(The rotation period of the longitude reference frame is 4.5221 days) 



DifferenCal	  rotaCon	  in	  CoRoT-‐2	  
•  Individual	   spot	  groups	  migrate	  backward	   in	   longitude	  during	  

their	   lifeCme,	  i.e.,	  their	  angular	  velocity	  is	   lower	  than	  that	  of	  
the	   acCve	   longitudes	   (cf.	   sunspot	   group	   braking;	   Zappalà	   &	  
Zuccarello	  1991;	  Schuessler	  &	  Rempel	  2005);	  	  

	  
•  One	  of	   the	  ac<ve	   longitudes	   is	   almost	   fixed	  while	   the	   other	  

migrates	  backward,	   suggesCng	  a	   surface	  differenCal	   rotaCon	  
with	  a	  relaCve	  amplitude	  ΔΩ/Ω	  ≈	  0.9	  percent	  (this	  is	  actually	  
a	  lower	  limit	  to	  ΔΩ/Ω);	  	  

	  
•  Modelling	   the	   migraCon	   of	   individual	   spots,	   a	   higher	  

differenCal	  rotaCon	  is	  derived:	  ΔΩ/Ω	  ≈	  8	  percent	  (Fröhlich	  et	  
al.	  2009;	  Huber	  et	  al.	  2010).	  	  



VariaCon	  of	  the	  spot	  area	  vs.	  Cme	  
(a	  possible	  Rieger	  cycle)	  

Spots only (solid line): Pcyc = 28.9 ± 4.8 d;  
Spots and faculae with Q≡Af/As= 1.5 (dot-dashed line): Pcyc = 29.5 ± 4.8 d;  



Solar	  Rieger	  cycles	  

	  	  	  	  	  Wavelet	  analysis	  of	  sunspot	  area	  variaCon	  (axer	  Zaqarashvili	  et	  al.	  2010;	  see	  the	  
original	  discovery	  paper	  by	  Oliver,	  Ballester	  &	  Baudin	  1998,	  in	  Nature).	  	  



Possible	  origin	  of	  the	  Rieger	  cycle	  in	  
CoRoT-‐Exo-‐2a	  

a)  Rossby-‐type	  waves	   trapped	   in	   the	   outer	   layers	   of	  
the	   stellar	   convecCon	   zone,	   as	   suggested	   for	   the	  
Sun	  (Lou	  2000):	  	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ωRossby	  ∝	  Ω;	  
	  
b)	   a	   possible	   star-‐planet	   magneCc	   interacCon:	   the	  

synodic	   period	   of	   the	   planet	   with	   respect	   to	   the	  
stellar	  rotaCon	  period	   is	  2.89	  days	  (i.e.,	  1/Psyn	  =	  1/
Porb	  –	  1/Prot);	  

	  
(see	  Lanza	  et	  al.	  2009a	  for	  details).	  	  
	  



Comparison	  with	  Huber	  et	  al.	  
•  Huber	  et	  al.	   (2010)	  published	  another	  model	  of	  CoRoT-‐2	   light	  curve,	  but	  

with	  an	  	  approach	  different	  from	  that	  of	  Lanza	  et	  al.	  (2009a);	  
•  They	   subdivided	   the	   star	   into	   longitudinal	   sectors	   and	   varied	   their	  

brightness	  to	  fit	  the	  light	  curve;	  
•  Different	   longitudinal	  extensions	  for	  occulted	  and	  unocculted	  sectors	  are	  

used;	  
•  They	   obtained	   a	   good	   best	   fit	   with	   12	   non-‐occulted	   sectors	   and	   24	  

occulted	  sectors.	  	  

(Huber et al. 2009) 
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Table 1. Stellar/planetary parameters of CoRoT-2a/b.

Stara Value ± Error Ref.b

Ps (4.522 ± 0.024) d L09
P∗s 4.57 d
Spectral type G7V B08

Planetc Value ± Error Ref.

Pp (1.7429964 ± 0.0000017) d A08
Tc [BJD] (2 454 237.53362 ± 0.00014) d A08
i (87.7 ± 0.2)° C09
Rp/Rs (0.172 ± 0.001) C09
a/Rs (6.70 ± 0.03) A08
ua, ub (0.41 ± 0.03), (0.06 ± 0.03) A08

a Ps – stellar rotation period, P∗s – stellar rotation period used for the
observation interval analyzed in this paper (see Sect. 3.4). b Taken from
Lanza et al. (2009) [L09], Alonso et al. (2008) [A08], Bouchy et al.
(2008) [B08], or Czesla et al. (2009) [C09]. c Pp – orbital period, Tc –
central time of first transit, i – orbital inclination, Rp,Rs – planetary and
stellar radii, a – semi major axis of planetary orbit, ua, ub – linear and
quadratic limb darkening coefficients.

The host star CoRoT-2 has a spectral type of G7V with an
optical companion at a distance of approximately 4.3′′ (2MASS,
Skrutskie et al. 2006), too close to be resolved by CoRoT.
According to Alonso et al. (2008) the secondary contributes a
constant fraction of (5.6 ± 0.3)% to the total CoRoT-measured
flux. In Table 1 we list the system parameters of CoRoT-2a/b,
which are used throughout our analysis. CoRoT-2b’s orbital
period of ≈1.74 days is about a third of CoRoT-2a’s rotation
period; hence, the almost continuous CoRoT data sample of
142 days covers about 30 stellar rotations and more than 80 tran-
sits. The lightcurve shows signatures of strong stellar activity
and substantial rotational modulation (Lanza et al. 2009). We
use the same CoRoT raw data reduction procedures as described
in Czesla et al. (2009, Sect. 2).

3. Analysis
3.1. Modeling approach

The measurements of the Rossiter-McLaughlin effect by Bouchy
et al. (2008) suggest that the rotation axis of the host star
and the planet’s orbit normal are approximately co-aligned
(λ = 7.4 ± 4.5°). The sign λ represents the misalignment an-
gle projected on the plane of the sky, and its value strongly
favors aligned orbital and rotational axes, even though it
does not prove it. More support for a co-aligned geometry
comes from the following argument. Comparing the measured
v sin(i) = 11.85 km s−1 with a calculated equatorial velocity of
veq = 2πRs/Ps ≈ 10 km s−1 derived with the theoretically ob-
tained value Rs = 0.9 · R% (Alonso et al. 2008) also favors
sin(i) ≈ 1.

As a result, the planet always eclipses the same low-latitude
band between 6 and 26 degrees. The transits separate the stellar
surface into two observationally distinct regions, i.e., a region
eclipsed by CoRoT-2b and another region that is not. In the case
of CoRoT-2a, the eclipsed section covers ≈21% of the stellar
disk corresponding to ≈17.3% of its surface. The time-resolved
planet migration across the visible stellar disk sequentially cov-
ers and uncovers surface fractions, so that the brightness pro-
file of the underlying stellar surface is imprinted on the transit
lightcurve.

Fig. 1. Our model geometry using 12 longitudinal strips for the
noneclipsed and 24 strips for the eclipsed section, respectively.

For our modeling, we separate the surface into the eclipsed
and the noneclipsed section, which are both further subdivided
into equally sized, longitudinal bins or “strips” as demonstrated
in Fig. 1. Let Ne be the number of bins in the eclipsed section
and Nn be the number of noneclipsed strips. As is apparent from
Fig. 1, Ne and Nn need not be the same. Altogether, we have
Ntot = Ne + Nn bins enumerated by some index j. A bright-
ness b j is assigned to each of these surface bins, with which it
contributes to the total (surface) flux of the star. Then let V ji
denote the visibility of the jth bin at time ti. The visibility is
modified in response to both a change in the viewing geome-
try caused by the stellar rotation and a transit of the planet. The
modeled flux fmod,i at time ti is then given by the expression

fmod,i =

Ntot∑

j=1

V jib j. (1)

We determine the unknown brightnesses, b j, by comparing fmod,i
to a set of MC CoRoT flux measurements using a specifically
weighted version of the χ2-statistics:

χ2
m =

MC∑

i=1

( fmod,i − fobs,i)2

σ2
i

· wi, (2)

where χ2
m differs from χ2 by a weighting factor, wi, which we

choose to be 10 for lightcurve points in transits and 1 otherwise.
In this way, the global lightcurve and the transits are given about
the same priority in the minimization process. Error bars for the
individual photometric measurements were estimated from the
datapoint distribution in the lightcurve, and the same value of
σ = 1000 e−/32 s (= 1.4 × 10−3 after lightcurve normalization)
was used for all points.

In our modeling we currently exclude surface structures
with a limb-angle dependent contrast. This particularly refers
to solar-like faculae, for which Lanza et al. (2009) find no ev-
idence in their analysis. The planet CoRoT-2b is modeled as a
dark sphere without any thermal or reflected emission. This ap-
proximation is justified by the findings of Alonso et al. (2009),
who report a detection of the secondary transit with a depth of
(0.006 ± 0.002)%, which is negligible in our analysis.

The actual fit is carried out using a (nongradient)
Nelder-Mead simplex algorithm (e.g. Press et al. 1992). All
strips are mutually independent, and as we define only a rather

(Huber et al. 2009) 



Left: Spot map of CoRoT-2 obtained by Huber et al. (2010) by fitting the entire 
light curve (in and outside transits). Right: comparison of their map (contours) 
with that of Lanza et al. (2009a) (color shades); the latter is based only on the 
out-of-transit light curve. 

A&A 514, A39 (2010)

(2009)

Fig. 8. Left panel: brightness distribution of the entire surface for all reconstructed intervals; it represents a combination of both the global and the
transit map. The error for each bin of the brightness map is shown below. Right panel: comparison of our brightness distribution (contours) to the
reconstruction of Lanza et al. (2009), which are shown in color coding. See Sect. 4.7 for details.

and noneclipsed sections are related. For the first 30 transits
there is a dark feature of the transit map at this longitude, then
it starts to disappear when D2 becomes darker. This reflects a
scenario where a spot group moves from the eclipsed section
to the noneclipsed. After transit number 40, D2 starts to disap-
pear while other structures appear on the eclipsed section. If this
really represents a case of spot migration, the spot group either
moves back onto the eclipsed section, or it stays outside and new
spots emerge under the transit path.

A similar observation can be made concerning the bright
structures in the upper panel of Fig. 7. The bright structures in
the transit map between 60° and 120° alternate with the bright
regions B2 and B4. First there is a bright structure on the eclipsed
map below region B2, then there is a little bit of both between
B2 and B4, and after region B4 a bright structure is emerging in
the transit map.

It is impossible to prove whether these signatures really
represent spot migration; probably some of them are due to
other processes, e.g. short-term evolution of spotted regions.
Nevertheless, there is a similarity to what one would expect
to see in brightness maps from surfaces showing spot migra-
tion. A behavior supporting a shift of spots from the eclipsed
to the noneclipsed sections (and vice-versa) can be observed in
Fig. 4 (second and third panel). It suggests a correlation between
the mean brightnesses of the two sections; when the average
brightness of the eclipsed section decreases, it increases on the
noneclipsed part. However, this correlation does not necessarily
prove a steady motion between the two sections and might as
well indicate that vanishing spots just reappear somewhere else.

4.7. Comparison to previous results

Figure 8 (left panel) displays the combined brightness map de-
rived from both the eclipsed (transit map) and noneclipsed sec-
tions (global map) of Fig. 3: the single maps are multiplied by
their corresponding surface fractions (0.21 for the eclipsed and
0.79 for the noneclipsed) and added.

Lanza et al. (2009) present a map of the surface evolution
derived from a fit to the global lightcurve (their Fig. 4) not in-
cluding the transits. In the right panel of Fig. 8 we present a
comparison of their results to ours. Since we do not use filling
factors, we translated their map into brightnesses using their spot
contrast of 0.665. We take the resulting map (color coding) and

superimpose it on our combined map from both the eclipsed and
noneclipsed sections (contours). In the left panel of Fig. 8 the
same contour lines are drawn to provide a better comparison.
Lanza et al.’s and our results show good agreement, although
a perfect match in fine-structure is neither found nor expected.
Dark and bright structures are located at very similar positions
and the shapes are consistent.

Adding up the brightness values of each reconstruction inter-
val of the map in Fig. 8 (left panel), we can study the variations
of the mean total brightness BTotal of the star. This is presented
in Fig. 4 (bottom panel). With a maximum of BTotal = 0.951 and
a minimum value of 0.942, the maximum difference between
the highest and lowest average total brightness is only about
1%, which is much less than the maximum brightness differ-
ences within the brightness maps. This implies that the star as a
whole does not change its overall spot coverage as dramatically
as it redistributes it; when spots disappear, other spots show up.
The solid line in the panel gives the comparison to the results of
Lanza et al. (2009). We translated their values to our spot con-
trast of 0.7 and shifted it by a constant spot coverage of +9% to
match our points. Our average spot coverage of 17.5% is roughly
twice as high. Although, a 9% shift seems to be enormous, about
80% of it (+7%) can be attributed to a different normalization of
the lightcurve and, thus, photosphere. While Lanza et al. (2009)
define the maximum flux in the lightcurve as their photospheric
level, our photosphere is 2% brighter (cf. Sect. 3.2), which has to
be compensated by spots. We attribute the remaining 2% to the
differences in the adopted models. In particular, we use longi-
tudinal strips and spots can only be distributed homogeneously
across a strips, while Lanza et al. (2009) localize the spots in
200 bins on the surface.

Previously, we detected an average brightness under the
eclipsed section (6 ± 1)% higher than on the noneclipsed sec-
tion (Huber et al. 2009). This value is redetermined from the
reconstruction of the entire lightcurve presented in this paper. It
decreases to (5.4 ± 0.9)% (see top panel of Fig. 4).

4.8. Brightness maps and lightcurve modulation

It is striking that the rotational variations of the star are addition-
ally modulated with a beat period about a factor 10 to 15 larger.
During the maxima of this large-scale modulation (at about tran-
sit numbers 15, 45, and at the end of the lightcurve), the minima
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Left: Spot map of CoRoT-2 obtained by Huber et al. (2010) by fitting the entire 
light curve (in and outside transits). Right: comparison of their map (contours) 
with that of Lanza et al. (2009a) (color shades); the latter is based only on the 
out-of-transit light curve. 



Model	  by	  Fröhlich	  et	  al.	  (2009)	  

A	  Bayesian	  3-‐spot	  	  model	  	  of	  
CoRoT-‐2	  light	  curve.	  
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Out-‐of-‐transit	  light	  curve	  of	  CoRoT-‐4	  

(normal points obtained by binning the observation along each CoRoT orbital period; 
solid line: ME best fit; dashed vertical lines mark the epochs of mid-transits). 

CoRoT-4 is a F7 main-sequence star (V~13.7) accompanied by a transiting 
hot Jupiter with a period of 9.202 days (Aigrain et al. 2008; Moutou et al. 
2008). The stellar rotation is quasi-synchronized with the orbit of the planet.  
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(normal points obtained by binning the observation along each CoRoT orbital period; 
solid line: best fit; dashed vertical lines mark the epochs of mid-transits) 

CoRoT-4 is a F7 main-sequence star (V~13.7) accompanied by a transiting 
hot Jupiter with a period of 9.202 days (Aigrain et al. 2008; Moutou et al. 
2008). The stellar rotation is quasi-synchronized with the orbit of the planet.  



Plots	  of	  the	  spoled	  area	  vs.	  longitude:	  
DifferenCal	  RotaCon	  in	  CoRoT-‐4	  

     Active longitude relative migration 
rates in a reference frame with a 
rotation period of 9.202 days: 

 
a)  long-dashed: ΔΩ/Ω = 0.052 ± 

0.010; 
b)  3-dot-dashed: ΔΩ/Ω = 0.108 ± 

0.010; 
c)  dot-dashed: ΔΩ/Ω = 0.100 ± 

0.024. 

  From the difference between the 
greatest and the lowest migration 
rates, we estimate: 

 
              ΔΩ/Ω = 0.056 ± 0.015   
 
(Lanza et al. 2009b) 
 

   (Time labels are HJD-2450000.0)  



DifferenCal	  rotaCon	  in	  CoRoT-‐7	  

From	   the	   slowest	   and	   the	   fastest	  
migraCng	   acCve	   longitudes,	   we	  
find:	  	  
	  	  	  	  	  	  	  	  	  ΔΩ/Ω	  =	  0.058	  ±	  0.017	  
(Lanza	  et	  al.	  2010)	  	  
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DifferenCal	  rotaCon	  in	  CoRoT-‐6	  

	  	  	  	  	  	  	  	  From	  the	  lowest	  and	  the	  fastest	  migraCng	  acCve	  longitudes,	  we	  find	  
ΔΩ/Ω	  =	  0.12	  ±	  0.02	  (Lanza	  et	  al.	  2011a).	  	  
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DifferenCal	  rotaCon	  in	  	  late-‐type	  stars	  

The asterisks indicate the values obtained for CoRoT-2, 4, 6, and 7; data for 
other stars are from Barnes et al. (2005) and Reiners (2006; Fig.5). The dashed 
line is the relationship derived by Barnes et al. (2005). 

* 
* 

* * 



Kepler-‐17	  
•  Bonomo	  &	  Lanza	  (2012)	  filed	  the	  out-‐of-‐transit	  light	  curve	  of	  Kepler-‐17;	  
•  They	   found	   	   acCve	   longitudes	   and	   a	   general	   	   correspondence	  with	   the	  

spots	  occulted	  by	  the	  planet	  during	  transits;	  
•  A	  Rieger-‐like	  cycle	  with	  a	  period	  of	  ≈	  48	  days	  was	  detected	  in	  the	  second	  

half	  of	  the	  dataset.	  	  
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Fig. 4. Distribution of the spot-filling factor vs. longitude and time for Q = 1.6. The values of the filling factor were normalized to their maximum
fmax = 0.01553 with orange-yellow indicating the maximum and dark blue the minimum (see the colour scale on the right lower corner of the
figure for the correspondence between the colour and the normalized filling factor). Note that the longitude scale is extended beyond 0◦ and 360◦
to help following the migration of the starspots. The tracks of the five spots occulted during the planetary transits after D11 are also reported. The
open circles mark the time intervals of eight transits after which the same spots are detected again during the transits. The straight lines connecting
the circles trace the migration of those spots in our reference frame; each line is labelled with the name of the corresponding spot, as indicated in
Fig. 11 of D11.

on timescales shorter than three months. Moreover, the pres-
ence of gaps in the observations can introduce systematic errors
in the measurement of the spotted area. This is the case of the
gap beginning at BJD 2 454 997.982 for a duration of 5.0268 d.
Since the time interval adopted for our individual best fits is
∆tf = 8.733 d, this loss of data implies a systematically lower
value of the total spotted area because the ME regularization re-
moves spots at the longitudes not constrained by the observa-
tions. Fortunately, the other gaps in the photometric time series
are much shorter than ∆tf , thus no other value of the area is sig-
nificantly affected. To show the distribution of the gaps, we plot
line segments with a length equal to their duration at the level
0.04 in Fig. 5 considering all interruptions with a duration longer
than 24 h. In the analysis presented below, we discarded the area
value at BJD 2 455 003.81 because it is affected by the gap that
started at 2 454 997.982.

The Lomb-Scargle periodogram of the entire time series of
the area values is plotted in Fig. 6 (solid line) together with the
power level corresponding to a false-alarm probability of 0.01
as evaluated according to Horne & Baliunas (1986). The main
peak corresponds to a period of 47.1±4.5 d and has a false-alarm
probability (FAP) of 2.0 percent. The value of the FAP was con-
firmed by performing an analysis of 50 000 random Gaussian
noise time series with the same sampling as our area data se-
ries. We also plot the periodogram of the time interval from
BJD 2 455 230.869 to 2 455 457.929 (dashed line) because we
see a regular oscillation of the total spotted area with a period
of ≈48 d during that interval in Fig. 5. The main periodogram
peak corresponds to a period of 48.2 ± 9.0 d with an FAP of
0.44 percent.

The time variation of the frequency of the spotted area mod-
ulation is best represented by means of a wavelet amplitude. We

plot in Fig. 7 the amplitude of the Morlet wavelet versus the
period and the time (see, e.g., Hempelmann & Donahue 1997,
for details). The wavelet parameters are adjusted to give a time
resolution of ≈100 d for a period of about 48 d and a relative
period resolution of ∆P/P ≈ 0.06. We see that in the initial part
of the dataset there is a periodicity of ≈30 d that corresponds
to secondary peaks in the periodogram of the whole time series
whose false-alarm probability is >50 percent (cf. Fig. 6, where
the frequency resolution is better than in the case of the wavelet).
On the other hand, during the second half of the time series
we see a clear periodicity of ≈50 d, which corresponds to the
significant peak in the periodogram. We conclude that the total
spotted area of Kepler-17 showed an oscillation with a period
of 47.1 ± 4.5 d. This behaviour is reminiscent of the short-term
oscillations of the total sunspot area found close to the maxima
of some of the 11-year solar cycles. They were called Rieger
cycles because they were first detected in the periodicity of oc-
currence of large solar flares by Rieger et al. (1984). In the Sun,
the periodicity is ≈160 d with small variations from one cycle to
the other, although only some of the sunspot maxima show evi-
dence of this short-term periodicity (Oliver et al. 1998; Krivova
& Solanki 2002; Zaqarashvili et al. 2010). A behaviour simi-
lar to that of Kepler-17 was found in CoRoT-2, a G7V star that
showed a Rieger-type cycle in the variation of its spotted area
with a period of 28.9 ± 4.3 d (Lanza et al. 2009a).

6. Discussion and conclusions

The application of a spot model to reproduce the optical light
curve of Kepler-17 shows that the spot pattern is almost stable
for a timescale of ≈9 d because the residuals to our best fits have
a standard deviation of σ ≈ 3.3 × 10−4 in relative flux units
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Fig. 5. Total spotted area as derived from the regularized ME models
vs. time for Q = 1.6. The lower horizontal ticks mark the gaps in the
photometric time series longer than 24 h.

Fig. 6. Lomb-Scargle periodogram of the variation of the spotted area.
The solid line gives the normalized power vs. the period for the whole
time interval, while the dashed line gives the power for the time interval
from BJD 2 455 230.8696 to BJD 2 455 457.9294 with the same nor-
malization as adopted for the periodogram of the whole interval. The
horizontal dotted line marks the 99 percent confidence level (FAP =
0.01).

that is only ≈50 percent greater than the mean error attributed
to the photometric measurements by the Kepler pipeline. Our
facular-to-spotted area ratio Q = 1.6 is significantly lower than
the value Q" = 9.0 adopted for the modelling of the light curves
of the Sun-as-a-star by Lanza et al. (2007). However, this lower
value of Q is typical of sun-like stars that are more active than
the Sun (cf. Lanza et al. 2009a, 2010, 2011a,b) and suggests an
increasing weight of the dark spots in the photometric variations
as a star becomes more active, as indicated by the results of, e.g.,
Radick et al. (1998) and Lockwood et al. (2007).

Our models found several active longitudes that clustered on
opposite hemispheres with a separation of ≈180◦ for more than
half the observation interval. This explains the two peaks found
in the periodogram of the light curve by D11, one corresponding
to the rotation period and the other to its first harmonic.

Bonomo et al. (2012) suggested an age younger than 1.8 Gyr,
while D11 derived an age of 3.0 ± 1.6 Gyr for Kepler-17. As
noted by B12, the age determined by means of standard gy-
rochronology is only 0.9 ± 0.2 Gyr, while considering the ef-
fects of the close-in planet on the evolution of the stellar angular

Fig. 7. Amplitude of the Morlet wavelet of the total spotted area vari-
ation vs. the period and the time. The amplitude was normalized to its
maximum value. Different colours indicate different relative amplitudes
from the maximum (yellow) to the minimum (dark blue) as indicated in
the colour scale in the right lower corner.

momentum (Lanza 2010), an age of 1.7 ± 0.3 Gyr is estimated
that seems more compatible with the age found from isochrone
fitting.

Since the rotation period of the star is longer than the orbital
period, tides remove angular momentum from the orbit to spin
up the star and lead to orbital decay. The timescale for the en-
gulfment of the planet can be estimated according to Ogilvie &
Lin (2007) as τa $ 0.048(Q′s/106) Gyr, where Q′s is the modified
tidal quality factor of the star. This timescale is much shorter
than the lifetime of the system on the main sequence if we adopt
Q′s ≈ 106, i.e., the value derived from the observed circulariza-
tion periods of close binary systems in open clusters of different
ages. Together with the observations of several other stars with
massive planets on very tight orbits, this suggests that Q′s should
be much higher (i.e., the tidal dissipation much lower) in those
star-planet systems than in close binary systems that consist of
two main-sequence stars. The difference in the Q′s value could
arise because the stellar rotation is far from being synchronized
with the orbital motion of its planet. In this case, considering the
dissipation of the tides inside the convection zone, Ogilvie & Lin
(2007) predicted Q′s >∼ 5× 109, which implies an infall timescale
longer than the system lifetime.

A lower limit on the value of Q′s can be set by an accurate
timing of the transits over a time interval of a few decades be-
cause for Q′s = 106 we expect a variation of the orbital period
of ∆Porb/Porb ≈ 5 × 10−8 in ten years. It produces a variation
of ≈8 s in the epoch of the mid transit in 10 years. The accu-
racy reported by D11 is ± 2.4 s for their initial transit epoch,
implying that a Q′s of about 106 should give an orbital period
acceleration detectable in a few years with a space-borne pho-
tometer. The recently approved extension of the Kepler mission
till 2016 is therefore an interesting opportunity to perform such
measurements. A model of the light perturbations that are caused
by the spots occulted during the transits may possibly be used to
improve the accuracy since D11 found small O−C timing oscil-
lations with a period of approximately half the stellar rotation
period, i.e., likely associated with starspots on opposite stellar
hemispheres (cf. their Fig. 10).

We can estimate an approximate lower limit to the differen-
tial rotation of Kepler-17 finding ∆Ω/Ω ≈ 0.10−0.16 from the
migration rates of the different trails of spots as seen in Fig. 4.
Given the rapid evolution of the individual spots, this value is
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Fig. 5. Total spotted area as derived from the regularized ME models
vs. time for Q = 1.6. The lower horizontal ticks mark the gaps in the
photometric time series longer than 24 h.

Fig. 6. Lomb-Scargle periodogram of the variation of the spotted area.
The solid line gives the normalized power vs. the period for the whole
time interval, while the dashed line gives the power for the time interval
from BJD 2 455 230.8696 to BJD 2 455 457.9294 with the same nor-
malization as adopted for the periodogram of the whole interval. The
horizontal dotted line marks the 99 percent confidence level (FAP =
0.01).
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Fig. 7. Amplitude of the Morlet wavelet of the total spotted area vari-
ation vs. the period and the time. The amplitude was normalized to its
maximum value. Different colours indicate different relative amplitudes
from the maximum (yellow) to the minimum (dark blue) as indicated in
the colour scale in the right lower corner.

momentum (Lanza 2010), an age of 1.7 ± 0.3 Gyr is estimated
that seems more compatible with the age found from isochrone
fitting.

Since the rotation period of the star is longer than the orbital
period, tides remove angular momentum from the orbit to spin
up the star and lead to orbital decay. The timescale for the en-
gulfment of the planet can be estimated according to Ogilvie &
Lin (2007) as τa $ 0.048(Q′s/106) Gyr, where Q′s is the modified
tidal quality factor of the star. This timescale is much shorter
than the lifetime of the system on the main sequence if we adopt
Q′s ≈ 106, i.e., the value derived from the observed circulariza-
tion periods of close binary systems in open clusters of different
ages. Together with the observations of several other stars with
massive planets on very tight orbits, this suggests that Q′s should
be much higher (i.e., the tidal dissipation much lower) in those
star-planet systems than in close binary systems that consist of
two main-sequence stars. The difference in the Q′s value could
arise because the stellar rotation is far from being synchronized
with the orbital motion of its planet. In this case, considering the
dissipation of the tides inside the convection zone, Ogilvie & Lin
(2007) predicted Q′s >∼ 5× 109, which implies an infall timescale
longer than the system lifetime.

A lower limit on the value of Q′s can be set by an accurate
timing of the transits over a time interval of a few decades be-
cause for Q′s = 106 we expect a variation of the orbital period
of ∆Porb/Porb ≈ 5 × 10−8 in ten years. It produces a variation
of ≈8 s in the epoch of the mid transit in 10 years. The accu-
racy reported by D11 is ± 2.4 s for their initial transit epoch,
implying that a Q′s of about 106 should give an orbital period
acceleration detectable in a few years with a space-borne pho-
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measurements. A model of the light perturbations that are caused
by the spots occulted during the transits may possibly be used to
improve the accuracy since D11 found small O−C timing oscil-
lations with a period of approximately half the stellar rotation
period, i.e., likely associated with starspots on opposite stellar
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Possible	  star-‐planet	  	  interacCons	  (SPIs)	  

•  The	  planets	  of	  CoRoT-‐2,	  CoRoT-‐4,	  	  CoRoT-‐6,	  and	  Kepler-‐17	  are	  
hot	   Jupiters,	   i.e.,	   giant	   planets	   orbiCng	  within	   0.15	   AU	   from	  
their	  host	  stars;	  

	  
•  They	  can	  interact	  through	  Cdes	  and	  magneCc	  fields	  with	  their	  

host	   stars,	   possibly	   affecCng	   their	   acCvity	   (e.g.,	   Cuntz	   et	   al.	  
2000;	  Lanza	  2008,	  2009,	  2011);	  

	  
•  Current	  evidence	  of	  magneCc	  SPI	   is	   limited	  to	  a	  few	  systems	  

and	  at	  some	  epochs	  (e.g.,	  Shkolnik	  et	  al.	  2008;	  2009).	  



Mean	  spoled	  area	  vs.	  longitude	  in	  
CoRoT-‐4	  

Time average of the spotted area vs. longitude; Q is the facular-to-spotted 
area ratio adopted in the models, thus models with Q=0 do not include 
faculae. The dotted line marks the subplanetary longitude.  
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Time average of the spotted area vs. longitude; Q is the facular-to-spotted 
area ratio adopted in the models, thus models with Q=0 do not include 
faculae. The dotted line marks the subplanetary longitude.  



Possible	  star-‐planet	  interacCon	  in	  
CoRoT-‐6	  

	  	  	   	   	   	   	   	   	   	   	  The	  straight	  lines	  mark	  a	  longitude	  at	  -‐200°	  from	  the	   	  subplanetary	  longitude;	  the	  
crosses	  mark	  the	  acCve	  regions	  possibly	  associated	  with	  that	  point.	  The	  probability	  
of	  a	  chance	  associaCon	  is	  less	  than	  1	  percent	  (Lanza	  et	  al.	  2011a).	  



Starspot	  occultaCon	  during	  
planetary	  transits	  

•  Silva	  (2003)	  proposed	  to	  use	  the	  bumps	  produced	  by	  starspot	  occultaCons	  
during	  transits	  to	  map	  starspots;	  	  

•  The	  duraCon	  of	  the	  bump	  gives	  a	  measure	  of	  the	  spot	  extension	  along	  the	  
transit	  chord;	  

•  The	  height	  of	  the	  bump	  is	  proporConal	  to	  the	  spot	  contrast.	  	  
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Fig. 1.—Left: White-light image of the Sun from BBSO. The dashed line
represents the path of the planet. Right: Resultant light curve from the transit
of an Earth-sized planet (top panel) and that of a planet with the relative size
of the HD 209458 companion (bottom panel).

Fig. 2.—Top panel: Light curve in the Strömgren b filter of the planetary
transit observed on 2000 July 26 (Deeg et al. 2001). The solid curve represents
one of the best fits from the model, whereas the dotted line represents a transit
without spot occultation. The variation of intensity due to the presence of a
stellar spot is indicated by the arrow. Bottom right panel: Blowup of the box
outlined in the top panel containing the bump due to the spot eclipse. Bottom
left panel: Image of the Sun used in the model with the opaque disk of the
planet and the modeled spot (arrows). The dotted line shows the positions of
the planetary transit used in the model.

Fig. 3.—2000 April 25 observations made by HST (Brown et al. 2001) of
HD 209458 with both models for the stellar limb darkening. The thin gray
line represents the planetary transit using a real solar image, and the thick
solid line a model star with a quadratic limb darkening.

fore darker, regions on the stellar surface, their occultation will
cause an increase in the measured light intensity during a short
period of the transit. This occurs because the decrease in in-
tensity when the planet blocks a region of the stellar surface
with a dark spot is smaller than when a region with no spot,
and therefore brighter, is eclipsed. The magnitude of this in-
tensity variation depends on the ratio of the spot size and that
of the occulting planet and on the brightness contrast of the
spot with respect to the stellar disk. It should be pointed out
that the bumps in the light curve analyzed here might just be
the result of noise, and we do not claim to have detected spots
from these data. However, it remains a working hypothesis in
order to test the method, which might be used in observations
of future generation space missions such as COROT (Michel
et al. 2000), which will have a much lower noise level.
The two observations that might show spot eclipses were

taken on 2000 April 25 (Brown et al. 2001) with the Hubble
Space Telescope (HST) and on 2000 July 26 (Deeg et al. 2001)
with the 0.9 m telescope of the Observatorio Sierra Nevada
(Strömgren b-filter light curve). The observed transit light
curves are shown in the top panels of Figures 2 and 4, where
the error bars represent the uncertainty (1 j). The HST light
curve has the smallest uncertainties of all the published plan-
etary transits of HD 209458. A comparison of the four transit
light curves shown in Figure 2 of Brown et al. (2001) shows
that, during the transits, only the April 25 profile has a de-
tectable intensity bump.
In order to simulate the transit of the companion planet HD

209458, the following assumptions were made. The orbit was
considered to be circular with a period of 3.5247 days, a
semimajor axis of 0.0467 AU, and an inclination angle of
86!.68 (Brown et al. 2001). The planet radius was taken to be
1.347 , whereas the star radius was 1.146 (Brown etR RJup ,

al. 2001). An opaque disk, representing the planet, was made
to cross the “stellar” disk (Fig. 1, left panel) at 30!.45 latitude
(corresponding to an inclination angle of 86!.68), arbitrarily
chosen to be south. The positions of the planet in its orbit were
calculated every 2 minutes. The pixels of the solar image cor-
responding to the disk of the planet, centered on these positions,
were replaced by null values. The total intensity was obtained
from the sum of all pixel values, thus yielding the value of the
light curve at that instant. The same orbital parameters were
used in the comparison with the two available observations of
Brown et al. (2001) and Deeg et al. (2001). Even though these
parameters are not the exact ones inferred by Deeg et al., they

do fit the observations reasonably well owing to the noise level
of the data. The result of the simulated transit may be seen as
the dotted line in Figure 2 for the Deeg et al. (2001) obser-
vations and as a gray line in Figure 3.

3. LIMB DARKENING

Owing to the low noise level present in the HST data, it was
possible to notice that an image of the Sun was not the best
model for the parent star HD 209458, as can be seen in Fig-
ure 3 (thin gray line). In fact, the limb darkening of the Sun is
best represented by a linear function. However, Brown et al.
(2001) obtained a better fit to their data by describing the stel-
lar limb darkening as a quadratic function I(m)/I(1) p 1!



Starspot	  occultaCon	  during	  transit	  

Solid line: transit across the disc of a star with a spot; dashed line: transit in 
the case of an unspotted star. 
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Solid line: transit across the disc of a star with a spot; dashed line: transit in 
the case of an unspotted star. 



Degenerate	  cases	  

(CoRoT-‐2:	  Wolter	  et	  al.	  2009)	  
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564 U. Wolter et al.: Transit mapping of a starspot on CoRoT-2

Fig. 5. A starspot on CoRoT-2a occulted by the planet during transit 56,
as reconstructed by transit mapping. The black and gray circles repre-
sent the planetary disk and the spot for our “bright spot” scenario, i.e.
adopting a spot flux of 75% relative to the photosphere. The purple arcs
illustrate the northern- and southernmost solutions for this spot flux.
The red arc illustrates a “dark spot” solution (DEQ in Table 1), see text
for discussion.

Table 1. Parameters of characteristic spot solutions discussed in the
text; longitudes and colatitudes are given for the spot center.

Modela Long. Colat. Radius Fluxb χ2 Areac

BC 216.4◦ 75.0◦ 7.8◦ 0.75 0.8 0.45%
BN 216.5◦ 70.0◦ 9.5◦ 0.75 1.4 0.55%
BS 216.2◦ 80.0◦ 8.5◦ 0.75 1.2 0.47%
DN 216.7◦ 71.0◦ 4.8◦ 0.3 1.7 0.18%
DS 216.2◦ 81.0◦ 4.8◦ 0.3 1.9 0.18%
DEQ 216.3◦ 94.0◦ 15.3◦ 0.3 1.6 0.72%

a BC, BN and BS stand for “bright central”, “bright north” and “bright
south”, respectively. They describe spots with colatitudes close to the
center of the planetary disk. DN and DS stand for “north” and “south”
dark spot solutions, respectively; DEQ represents a “dark” spot centered
below the equator. b Relative to the photosphere. c Fraction of total stel-
lar surface.

3.3. Results

As the χ2-contours in the upper panel of Fig. 4 show, for the
“bright spot” scenario, the central spot colatitude is confined
to θ = 75 ± 6◦, i.e. inside the stellar surface belt transited by
the planet. The spot radii are slightly smaller than, or compa-
rable to, the size of the planetary disk: r = 7.1◦ . . . 10.6◦. This
scenario is illustrated by Fig. 5 and the exemplary solutions BN,
BC and BS (“bright north, central and south ”) of Table 1.

For the “dark spot” scenario, on the other hand, only spot
centers away from the center of the transit belt yield proper fits to
the transit lightcurve: θ ≤ 72◦ and θ ≥ 78◦. This is illustrated by
the lower panel of Fig. 4 which also shows that the resulting spot
radii are smaller than in the “bright spot” case (r = 4.6◦ . . . 7.8◦).

Spots with centers outside the transit band also yield feasi-
ble solutions. An example is illustrated by the red arc in Fig. 5,
showing solution DEQ of Table 1. As illustrated by the figure,
concerning area and longitude extent they do not differ signif-
icantly from solutions with centers inside the band. We do not
discuss them further since their radii do not describe the tran-
sited extension and area of the spot appropriately.

4. Discussion

The shape of the transit lightcurves of CoRoT-2 exhibits highly
significant variations between different transits. This indicates
the ubiquitous presence of starspots in the surface regions tran-
sited by the planet. Furthermore, as illustrated by Fig. 1 and the
analysis of Lanza et al. (2009), the overall lightcurve of CoRoT-2
continuously changes in amplitude during the complete CoRoT
observations. This shows that the stellar surface of CoRoT-2a
persistently evolves on timescales shorter than its rotation pe-
riod. Such a fast spot evolution is interesting physically and
makes CoRoT-2a a favourable case for the study of stellar ac-
tivity and, potentially, a landmark system.

We concentrate our analysis on a single planetary transit
whose lightcurve shows a pronounced and isolated bump close
to the transit center. Assuming this bump is caused by a circular
starspot, we determine parameter ranges for this spot that repro-
duce the observed transit lightcurve.

While, similar to Pont et al.’s analysis of HD189733, the spot
contrast is only weakly constrained, the spot longitude and ra-
dius are closely confined by the transit lightcurve. The spot thus
reconstructed on CoRoT-2b is comparable in extent with large
spot groups on the Sun which cover up to about 1% of the solar
surface (Baumann & Solanki 2005; Norman 2005).

Given the nearly 90◦ inclination of CoRoT-2b’s orbit, the
transit-covered belt on its surface lies close to the equator. Our
analysis proves that CoRoT-2a, like the Sun, exhibits spots in
this region. Such well-constrained latitude measurements near
the equator are difficult or impossible with other surface recon-
struction methods like Doppler imaging. Using long-term transit
observations, this may allow one to study activity cycles analo-
gous to the solar butterfly diagram. Also, concerning possible
indications of differential rotation on CoRoT-2a (Lanza et al.
2009), the spots in the transit-covered belt could supply addi-
tional information.

Solar umbrae have diameters up to about 10 Mm, corre-
sponding to one degree in heliographic coordinates; penumbrae
reach approximately twice this size. Our study indicates that a
surface resolution of potentially better than one degree can be
achieved for host stars of eclipsing planets when applying transit
mapping to low-noise and fast-sampled lightcurves. Thus, such
observations offer a new opportunity to study “solar-like” sur-
face structures on other stars; they may for example permit one
to measure the umbra/penumbra contrasts of their spots.
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Stellar	  obliquity	  and	  spot	  occultaCons	  

•  Nutzman et al. (2011) suggested that if a given spot is repeatedly occulted during 
successive transits then the projection of the stellar spin axis on the plane of the sky is 
orthogonal to the transit chord (projected obliquity close to zero); 

 
•  Knowledge of the mean spot rotation period is needed to trace the rotation of the spots 

from one occultation to the next. 
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Figure 2. Series of transit light curves shown in order of increasing spot rotational phase. Generally, the spot is occulted at progressively later positions in the
transit light curve, with black bars indicating the spot-crossing timing as measured with the technique described in Section 2.2. The gray bars indicate the expected
spot-crossing time for a well-aligned planet with, λ = 0 and is = 90◦. The time axis is scaled so that ingress and egress, defined here by the time when the planet
center crosses the stellar limb, occur at −1 and 1.

Figure 3. Schematic of spot crossings for a well aligned (left) and a misaligned (right) planetary orbit, with spot (gray) shown before and after a 120◦ rotation of the
star. The relative size and impact parameter of the planet (black) reflect that of the CoRoT-2 system. A planet must be well aligned to exhibit spot crossings along the
entire transit chord. The exact timing of a spot crossing during transit, given the rotational phase of the spot, further constrains λ, while is is largely degenerate with
the spot latitude.

a maximum perturbation just after ingress. In this way, we can
distinguish misalignments of tens of degrees.

We emphasize that, given the large and uncertain star spot
sizes on CoRoT-2, the latitude of spot center is not constrained to
be in the band occulted by the disk of the planet. This limitation,
combined with the large spot-crossing timing uncertainties,
leads to a degeneracy of is with l; almost any is can be allowed by
adjusting the spot latitude, such that the spot is near the occulted
band. In the limit of a spot that is much smaller than the planet,
we would require the projected distance between spot center
and the transit chord to be less than the radius of the planet.
This constraint, especially if accompanied by well-determined
spot-crossing timings, would allow for the degeneracy between

is and l to be broken, and allow for a reliable determination of
the stellar spin inclination.

To determine the posterior probability distribution for the
parameters, we employed MCMC, with acceptance probability
calculated with the likelihood exp(−χ2/2). We assumed prior
distributions that are uniform in λ, cos(is), and sin(l). We take
the measured value and 1σ uncertainty for each parameter to
be the mean and standard deviation of the MCMC samples. We
find λ = 4.◦7 ± 12.◦3. is and l are very poorly constrained and
the MCMC samples demonstrate strong degeneracy between
these two parameters. Nevertheless, we report these values for
completeness: is = 84◦±36◦ and l = 14◦±30◦, where is < 90◦

indicates the rotation axis tilted toward the line of sight and

4
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An	  oblique	  system:	  HAT-‐P-‐11	  !"#$%&'()*#+,+-*./#0!123244#

(after Sanchis-Ojeda & Winn 2011; see also Beky et al. 2014) 
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Figure 3. Kepler observations of transits of HAT-P-11. Based on data from quarters 0, 1, and 2. The best-fitting model curves are shown as thin gray lines. Red squares
are points that are suspected of being strongly affected by spot-crossing events and were assigned zero weight in the fitting procedure.
(A color version of this figure is available in the online journal.)

Table 1
System Parameters of HAT-P-11

Parameter Value Uncertainty

Transit ephemeris
Reference epoch (BJDTDB) 2454957.812464 0.000022
Orbital period (days) 4.8878049 0.0000013

Transit parameters
Planet-to-star radius ratio, Rp/R! 0.05862 0.00026
Transit duration (days) 0.09795 0.00006
Transit ingress or egress duration (days) 0.00550 0.00007
Linear limb-darkening coefficient, u1 0.599 0.015
Quadratic limb-darkening coefficient, u2 0.073 0.016
Transit impact parameter, b 0.132 0.045
Scaled semimajor axis, a/R! 15.6 1.5

Notes. Based on a Markov Chain Monte Carlo analysis of the 26 Kepler
light curves, with uniform priors on (Rp/R!)2, the transit duration, and the
ingress/egress duration, and Gaussian priors on the eccentricity parameters
e cos ω = 0.201 ± 0.049 and e sin ω = 0.051 ± 0.092. The quoted values and
uncertainties are based on the 15.65%, 50%, and 84.35% levels of the cumulative
distributions of the marginalized posteriors.

is as follows. If the stellar obliquity were zero (ψ = 0), then
the transit chord would correspond to a certain fixed range of
latitudes in the reference frame of the star. In that case, after
a given spot-crossing anomaly that same spot would advance

along the transit chord due to stellar rotation and future spot-
crossing events could be predicted and sought out in the data.
For HAT-P-11, a spot-crossing anomaly observed in the first
half of the transit would recur at a later phase of the next transit.
This is because the orbital period (4.9 days) is shorter than half
a rotation, the time it takes for the spot to cross the visible
stellar hemisphere. The underlying assumption is that the spot
does not move significantly or fade into undetectability within
4.9 days, but that assumption seems justified (for large spots at
least) given the observed coherence of the light curve over four
rotations (see Figure 2).

No such recurrence is seen in the Kepler data, leading to the
conclusion that the star’s spin axis is misaligned with the planet’s
orbital axis. Figure 4 shows two of the clearest examples of a
pair of transits where one spot-crossing anomaly was seen and
the other corresponding anomaly that would be predicted for
perfect spin–orbit alignment is missing. Many other examples
are evident in Figure 3.

4.2. Evidence for Spin–Orbit Misalignment

Winn et al. (2010b) suggested that even for ψ != 0, the recur-
rence of spot-crossing anomalies could be observed and used
to constrain the stellar obliquity and the stellar rotation period.
However, such recurrences require the spots to last for one or
more full rotation periods, as opposed to one-sixth of a rotation
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Figure 4. Evidence for spin–orbit misalignment. Shown are two examples of
pairs of consecutive transits where one spot-crossing anomaly was observed, and
if ψ were zero, there would have been a corresponding spot-crossing anomaly
detected in the other transit. No such correspondence was observed in the time
series considered in this paper. The black dots are data points and the red lines
are best-fitting models including a circular spot with a lower intensity than the
surrounding photosphere. For epochs 4 and 15, two curves for the expected spot
signal are plotted (solid and dotted), corresponding to extremes in the range of
rotation periods from 27.3 to 34.6 days.
(A color version of this figure is available in the online journal.)

period, and they also require the rotation period to be a nearly
exact multiple of the orbital period. This latter condition may or
may not be the case for HAT-P-11 and is a priori unlikely. Given
the uncertainty in the rotation period, the ratio of rotation to or-
bital periods is between 5.6 and 7.1. Indeed, we could establish
no firm correspondence between multiple pairs of spot events.

However, there is a regularity in the pattern of anomalies
that we did not anticipate, although perhaps we should have.
Figure 5 shows the residuals between the data and the best-
fitting transit model, as a function of time relative to the nearest
mid-transit time. The spot-crossing anomalies are manifested
as large positive residuals. They do not occur at random phases
of the transit, but rather at two specific phases: approximately
−0.010 and 0.025 days relative to mid-transit. One might
initially interpret this as evidence for two long-lived spots on the
star, with each bump representing the intersection of one spot’s
stellar latitude with the transit chord. However, in that situation
one would observe at most two anomalies per rotation period,
and more likely fewer, unless the orbital and rotational periods
were nearly commensurate. In reality, we observed at least
25 anomalies over four rotation periods. There are evidently
many different spots on HAT-P-11 and they are clustered at two
particular stellar latitudes.

If spots appeared with equal probability at any latitude, one
would expect to see a nearly uniform distribution of outliers
in Figure 5, except near the ingress and egress where limb
darkening and geometrical foreshortening would make some
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Figure 5. Differences between the data and the best-fitting transit model, as a
function of transit phase. Data from all 26 transits are plotted. Spot-crossing
anomalies (the large positive residuals) appear preferentially at two particular
phases. These phases are not symmetrically placed with respect to the transit
midpoint.
(A color version of this figure is available in the online journal.)

spots undetectable. Likewise, if ψ = 0, then a nearly uniform
distribution of residuals would be observed even if the spots
were clustered in latitude (again, unless there were some
near-commensurability between rotational and orbital periods).
Therefore, since the data exhibit two particular peaks, we
conclude that the system is misaligned and that the starspots
occur preferentially at certain “active latitudes.”

The phenomenon of active latitudes is a familiar one from
solar astronomy, which is why we wrote above that we should
have anticipated this result. Carrington (1858) and Spörer (1874)
found that over the course of the Sun’s 11 year activity cycle,
the mean latitude of sunspots is sharply defined for any few-
month interval and undergoes a gradual shift from high latitudes
to the equator. This spatial regularity of the cycle is sometimes
called the Spörer law. The famous “butterfly diagram” (Maunder
1904), in which sunspot latitude is charted against time, can be
regarded as a graphical depiction of this law. The regions where
sunspots are abundant are well described as relatively narrow
bands centered on two particular latitudes placed symmetrically
with respect to the solar equator. Early in a cycle, spots appear
at latitudes up to 40◦. As the cycle progresses, new sunspots
appear at increasingly lower latitudes, with the last sunspots of
a cycle lying close to the equator (Solanki 2003).

4.3. Geometric Model

For a quantitative analysis of the spot-crossing anomalies,
we fitted each anomaly with a simple triangular model with
three parameters, the height (A = the amplitude of the anomaly
in relative flux units), the width (τ = total duration), and the
midpoint (t0 = the time of the event):

F (t) =
{

A − 2A

τ
|t − t0| |t − t0| < τ/2

0 |t − t0| ! τ/2.
(1)

Table 2 gives the best-fitting values of the model parameters for
each anomaly. As a measure of statistical significance, the ∆χ2

between a no-spot model and the spot model is also given for
each event. All the chosen anomalies have ∆χ2 exceeding 50.

Next we used a simple geometric model to constrain the spin
orientation of the star as well as the locations and widths of
the active zones. The premise of the model is that each of the
two features seen in Figure 5 represents an intersection between
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Figure 6. Illustration of the coordinate system. The transit chord is parallel to the x-axis. The region of intersection between the transit chord and an active zone is
described by x, its center, and δx, its width in the x-direction. All distances are expressed in units of the stellar radius.
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Figure 7. Two solutions for the stellar geometry and associated results of parameter estimation. The upper panels represent the double-banded, edge-on solution and
the lower panels represent the single-band, pole-on solution. The left column of panels are sketches of the system, using the most probable values of the parameters.
The central column shows two-dimensional posterior distributions for the stellar orientation parameters λ and is, with solid lines representing the results with a uniform
prior on λ, and gray scales for the results with a two-sided Gaussian prior λ = 103+26

−10 deg based on the RM results of Winn et al. (2010b). The confidence levels are
68.3%, 95%, and 99.73%. The right column shows the posterior distribution for the true spin–orbit angle ψ , again with the solid line representing the result from the
spot analysis alone and the shaded distribution representing the joint results of the spot analysis and the RM measurement.

Next we make use of the measured widths of the spot-anomaly
distributions. Using Equation (5), we may calculate the four
vertices of the intersection region between the transit chord and
the band of active latitudes. We then take the difference between
the maximum and the minimum values of x and divide by two,
a quantity we will call δx. By characterizing the width in this

manner, we are effectively assuming that spots are equally likely
to form anywhere in the range l ± δl. This is computationally
very convenient, but it is in mild contradiction with the Gaussian
distribution we adopted when estimating σ̄1 and σ̄2. For this
reason, we multiply δx by

√
2/π to give the standard deviation

of a Gaussian function that has the same area as a uniform
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Starspot	  properCes	  in	  CoRoT-‐2	  

•  Silva-‐Valio	   et	   al.	   (2010)	   and	   Silva-‐Valio	   &	   Lanza	   (2011)	   derived	   longitudes	   and	  
properCes	  of	  occulted	  starspots	  during	  72	  transits	  of	  CoRoT-‐2;	  

•  Successive	   occultaCons	   of	   the	   same	   spot	   along	   different	   transits	   provided	  
informaCon	  on	  spot	  rotaCon	  rate	  at	  the	  laCtude	  of	  the	  transit	  chord.	  

Flux deficit = (1-Is) . Rs
2 The active longitudes  mapped from the out-

of-transit l ight curve correspond to 
concentrations of occulted spots.  
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A. Silva-Valio and A. F. Lanza: Evolution and rotation of starspots on CoRoT-2
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Fig. 2. Histogram of the minimum number of spots per transit as derived
by the method described in Sect. 3.

The minimum number of spots per transit, M̄, which is
needed to fit the light curve within the data uncertainty, was esti-
mated as follows. A model with M spots has 3M free parameters,
because each spot corresponds to three free parameters (longi-
tude, radius, and intensity). Therefore, the number of degrees of
freedom of the model is s = N − 3M, where N is the number of
data points per transit (usually N = 217). Now, the problem is to
find the minimum number of spots that yields an adequate best fit
for each transit according to the criterion for hypothesis testing
given by, e.g., Lampton et al. (1976). We compute the minimum
value of the χ2 for each model with a different M starting from
the case with a single spot (M = 1). A model with M spots is re-
jected at a significance level γ if its minimum chi square χ2(M)
exceeds χ2

s (γ), i.e., the γ-point of the χ2
s distribution defined by:

γ ≡
∫ ∞

χ2
s (γ)

f (χ2)dχ2, (2)

where f is the density of the probability distribution of the
χ2 with s degrees of freedom. By increasing M, the mini-
mum χ2(M) decreases until for a certain value of M, say M̄,
we have χ2(M̄) ≤ χ2

s (γ). The minimum number of spots giving
an acceptable model is therefore M̄. Following Lampton et al.
(1976), we assume a significance level γ = 0.1 and compute the
χ2 cumulative distribution function in Eq. (2) by means of the
IDL function CHISQR_PDF.

Figure 2 shows the distribution of the best number of spots
per transit, that is, the minimum number of spots that makes the
fit statistically acceptable. A total of 392 spots were modelled
during the whole period of observations (77 transits). The aver-
age number of spots per transit was 5 ± 1.

In principle, our modelling approach can suffer from the ef-
fects of possible systematic errors, but we believe that their im-
pact is negligible because a) the model has enough degrees of
freedom to account for a highly complex flux modulation dur-
ing transits by increasing the number of small spots; b) the effect
of bright faculae is not detected in our transit profiles because
we never observe dips below the reference profile as derived
from the deepest transit; c) systematic errors arising from limb-
darkening parameters or the adopted relative radius of the planet
are minimized by considering only the central part of each tran-
sit profile (±70◦). In any case, our choice of a confidence level
γ = 0.1 excludes too low χ2 values that may imply an over-fitting
of the data or enhance the impact of any residual systematic
error.
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Fig. 3. Histograms of the spot parameters obtained from the fits to the
77 transits: spot intensity (in units of Ic) (left), spot radius (in units of
Rp) (middle), and flux deficit caused by the spot (right).

4. Spot physical parameters

The location in time of a “bump” along the transit light curve
provides unambiguous information on the longitude of the cor-
responding spot. When the spot latitude is fixed beforehand, the
radius and the intensity of the spot may show some degree of de-
generacy, but in the case of a highly accurate light curve, such as
for CoRoT-2, they are independently constrained by the duration
and the height of the corresponding bump, respectively. This is
confirmed by the analysis of Wolter et al. (2009) who also con-
sidered spots centred at latitudes different from that of the central
transit chord, thus studying the effect of this additional degree of
freedom in the model.

A quantity proportional to the blockage of stellar emission
caused by the spot, called relative flux deficit, can be defined
as D = (1 − fi) S 2, where fi and S are the spot intensity (in
units of Ic) and radius (in units of Rp), respectively. The deficit is
proportional to 1 − fi because darker spots are the predominant
ones. In fact, a value of fi = 1 means that there is no spot at all,
because there is no contrast with respect to the photosphere. The
advantage of using the flux deficit instead of the values of fi and
S is that it is virtually independent of the degeneracy between
these parameters.

Figure 3 shows the results of the spot intensity, radius, and
flux deficit for the spots detected during all transits, a total of 392
spots. These are different from the results reported in Silva-Valio
et al. (2010), where a maximum of nine spots was assumed.
Here, the number of spots fitted was smaller, about half than
previously used, owing to the criterion applied to find the opti-
mal number of spots (cf. Sect. 3). The new model gives mean
values of the spot intensity (Fig. 3, left panel) and the radius
(middle panel) of (0.45 ± 0.25) Ic, and (0.53 ± 0.18) Rp, respec-
tively. The corresponding distribution of the relative flux deficit
is shown in the right panel of Fig. 3 and has an average value of
0.14 ± 0.06. Because fewer spots per transit were considered in
the new fits, these average values are higher than those reported
in Silva-Valio et al. (2010).

Simulations for a single central spot with different radius and
intensity show that only the spots with a flux deficit greater than
approximately 0.02 produce a signal in the light curve above the
data noise level of 0.0006. Therefore, only the spots with flux
deficit above 0.02 are considered in the following analysis and
have their best-fit parameters plotted in Fig. 3. Note that this
selection criterion implies a threshold of 0.20 Rp for the spot
radius and a maximum value of 0.92 Ic for the spot intensity.

The longitudes of the spots obtained from the best fit to each
transit are shown in Fig. 4 where the size of the symbols rep-
resents the relative diameter of the spots, and their colour their
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Fig. 4. Top: diagram of the spot longitude, size, and intensity for each
transit. Darker spot are pictured in darker shades of grey. Bottom: spots
flux deficit integrated in time as a function of spot longitude.

intensity. Black spots are those with the highest contrast. Only
spots within −70◦ and +70◦ longitude and flux deficit greater
than 0.02 are plotted. The bottom panel shows a histogram of
the flux deficit vs. longitudes for these spots.

5. Spot longitudes and stellar rotation

The longitude of a spot obtained from the fit is the topocentric
longitude on the star measured in an inertial reference frame.
To convert this value into a longitude measured in a reference
frame that rotates with the star, that is, fixed to the stellar surface,
one needs the rotation period of the star. Alonso et al. (2008)
obtained a value of 4.54 days for the mean stellar rotation period,
whereas Lanza et al. (2009) found 4.522 ± 0.024 days from the
motion of the active longitudes.

The rotational longitude, βrot, is determined from the
topocentric longitude, βtopo, as

βrot = βtopo − 360◦
n Porb

Pstar
, (3)

where Porb = 1.743 day is the planet orbital period, Pstar the
stellar rotation period, and n the transit number. The rotational
longitude is limited to the range ±180◦ and coincides with the
topocentric longitude at the mid-time of the first transit, i.e.,
when n = 0 at HJD 2454242.7666.

5.1. Comparison with the out-of-transit spot modelling

Before determining the best rotation period within the transit
band, it is interesting to compare the longitudes of the spots
obtained here with the out-of-transit spot maps as derived by
Lanza et al. (2009). First, the spot topocentric longitudes shown
in Fig. 4 were converted to rotational longitudes for a stellar pe-
riod of 4.522 days. Fixing the first transit at HJD 2454242.7666,
the shift of the origin of the longitudes between our reference
frame and that of Lanza et al. (2009) is−116.◦03. Thus, our longi-
tudes were shifted by −116.◦03 to overplot both results. Figure 5

Fig. 5. Spot longitude versus time for spots with flux deficit higher than
0.1 are shown as white circles overplotted on the map of the spot filling
factor obtained by Lanza et al. (2009) from out-of-transit data (their
Fig. 4). Different colours indicate different filling factors, with yellow
indicating the maximum spot occupancy and dark blue the minimum.
The bridges connecting active longitudes are labelled with A, B, and C
(see the text).

is the same as Fig. 4 of Lanza et al. (2009), with the white cir-
cles representing the spots from the transit fits with a flux deficit
greater than 0.1. The radius of each circle is proportional to
the flux deficit of the corresponding spot. The agreement be-
tween the results of the two different modelling approaches is
remarkable.

Some of the small and medium spots seem to trace small
bridges between the active longitudes, even if they are not per-
fectly superimposed with the maximum entropy bridges marked
with A, B, and C in Fig. 5. If interpreted as the effect of moving
spots, these bridges can be used to derive the differential rotation
(cf., e.g., Fröhlich et al. 2009). However, the transit maps sug-
gest that they are not single migrating spots, but instead are loca-
tions where spots appear and disappear between the two active
longitudes, like “hot spots” where activity is preferentially lo-
cated between the active longitudes. Of course, not all the spots
found from transit mapping are reproduced in the out-of-transit
maps because short-lived spots do not produce a significant ro-
tational modulation signal, while the main features found from
the out-of-transit data are also found by transit mapping, includ-
ing some evidence of those small bridges. Moreover, the spatial
resolution of the transit mapping is higher than that of the out-
of-transit modelling, which is limited to approximately 30◦−50◦.
Therefore, the spots mapped during transits show a more discrete
distribution vs. longitude.

5.2. Rotation period at the transit latitude

The rotation period of the transit band needs not be equal to the
star average rotation period, because the star may present dif-
ferential rotation. To determine the rotation period of the stellar
surface around the transit band, which covers −14.◦6 ± 10◦ lati-
tude, spot maps of the stellar surface within the transit latitudes
were constructed, similar to those of Fig. 4. Periods ranging from
4 to 6 days were tried, with 0.01 day intervals. Figure 6 shows
these maps for the periods of 4.30, 4.45, 4.48, 4.52, 4.54, and
4.60 days. These maps show the relative size and flux deficits of
the spots as a function of their rotational longitude (horizontal
axis) and transit time (vertical axis).

At first glance, one sees that the spots follow diagonal stripes
in these panels, giving the impression that they are wrapped
around the star too tightly or too loosely. That is to say, the stellar
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The active longitudes  mapped from the out-
of-transit l ight curve correspond to 
concentrations of occulted spots.  



Starspot	  occultaCons	  in	  Kepler-‐17	  

Each	  co-‐added	  transit	  corresponds	  to	  22	  individual	  transits	  (Desert	  et	  al.	  2011).	  
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Figure 11. Left: sequence of combined and binned transit light curves, with the best-fit model presented in Figure 2 and overplotted in red. Each co-added transit
corresponds to the combination of 22 individual transits that occurred at epochs modulo eight planetary orbital periods. The light curves are binned by 100 s and they
are shifted vertically for display purposes. Each combination of individual transits allows us to increase the S/N and to demonstrate that the same spots are occulted
during several consecutives transits and epochs. The overall combination of these eight transit light curves gives the final curves presented in Figure 2. Occulted stellar
spots are revealed in the combined curves since the stellar rotation period is eight times the planet’s orbital period. The same spots are crossed every eight transits at a
similar orbital phase. Right: residuals of the best-fit model subtracted from each individual combined light curve modulo 8. The vertical dashed lines correspond to the
beginning and to the end of the transits. Five occulted stellar spots are indicated on the residuals (A, B, C, D, and E) as they appear transit after transit at phase positions
expected from the stellar rotation period. This implies that the projected spin–orbit angle, λ, is very close to 0 for this system. The combination of the residuals of the
eight transit light curves is similar to the total residuals plotted in Figure 2 and exhibits a symmetrical structure.
(A color version of this figure is available in the online journal.)

of 600 samples in the epochal direction and 300 samples in
the transit phase direction. This image reveals individual spots
that we define as either “hot” or “cold” regions, depending on
whether the individual slide box residuals are below or above
the transit light curve model. The repeating vertical structure
is interpreted as spots marching across the transit chord such
as seen in the previous section. Each vertical profile is slanted
slightly from left to right indicating that the spots progress from
the ingress limb to the egress limb. Some spots make their way
around the star and reappear again during several stellar rotation
periods. For example, the collection of “cold” spots in the image
starting around Epoch 110 and ending around Epoch 170 seems
to be related to the same spot. We conclude from the nearly
continuous monitoring of Kepler-17 that the occulted starspots
are present on the same stellar chord for at least 100 days,
somewhat comparable to the lifetime of sunspots.

As Kepler continues to monitor transits of hot Jupiters in front
of active stars, it will help to better understand the stellar cycles.
If the Kepler mission is extended, the long term photometry
will enable it to produce starspot maps and learn more about
spot mean lifetimes and photospheric differential rotations. In
the case of Kepler-17, we may be able to measure the complete
activity cycle for this star and to compare it to another well-know
G-dwarf: the Sun.

7.2.3. Impact of Stellar Variability of Kepler-17 on the
System Parameters

When the planet transits in front of stellar spots, its transit
shape deviates from the averaged phase-folded light curve. The
effect of occulted stellar spots on the shape of the transit light
curve is observed in the residuals from the best-fit transit model
of the phase-folded light curve (see Figure 2). Since the stellar
activity influences the transit light curve profiles, the planetary
parameters we derive from these profiles are likely to be affected.
This is a well-known problem for planets transiting in front of
variable stars (e.g., Czesla et al. 2009; Désert et al. 2011a).
Importantly for the present study, the variability affects the
stellar density that we assume a fixed value for our determination
of the stellar parameters (see Section 4). Czesla et al. (2009)
propose to fit the lower envelope of the transit light curve to
recover more realistic transit parameters. This assumes that dark
stellar structures dominate over bright faculae. In the case of
Kepler-17b, we cannot exclude the possibility that every transit
is affected by dark or bright stellar regions so that a priori no
individual transit light curve can be used as representative of an
unaffected profile. Furthermore, because of the stroboscopic
effect described above, the phase-folded transit light curve
possesses combined pattern distortions that prevents the use
of its lower envelope to derive more accurate parameters.
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Spot	  modelling	  and	  the	  correcCon	  of	  
acCvity-‐induced	  RV	  variaCons	  

•  Lanza et al. (2011b) used MOST 
p h o t o m e t r i c  o b s e r v a t i o n s 
simultaneous with SOPHIE RV 
measurements of the active planet-
hosting star HD 189733 to model 
starspot and activity-induced RV 
variations in that star; 

•  Some correction of the activity-
induced perturbation can be seen in 
the residuals; 

•  A simpler approach was proposed by 
Aigrain et al. (2012); 

•  They also showed that maps in the 
photometry nullspace may contribute 
to the RV variations; 

•  Therefore, a complete correction may 
not be possible with this approach, 
but some improvement is expected 
(e.g., Meunier & Lagrange 2013). 
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Fig. 6. Upper panel: the observed RV variations due to stellar activity (filled dots) and the corresponding synthesized variations (open diamonds)
versus time for the spot models with Q = 0. The vertical dotted lines mark the time interval with the steepest variations that cannot be fitted by our
model (see the text). Lower panel: the difference between observed and synthesized variations vs. time.

suggested by Shkolnik et al. (2008). Given the short orbital pe-
riod of the planet, a different approach should be used to search
for signatures of a possible star-planet interaction, as in the case
of CoRoT-2 (cf., e.g., Pagano et al. 2009).

5.3. Activity-induced RV variations

To simulate the apparent RV changes induced by the distribu-
tion of active regions derived from our light curve modelling,
we consider a spectral line with a rest wavelength of 600 nm
that is close to the isophotal wavelength of MOST observations
for which our contrast coefficients are given. The spectral reso-
lution of the line profile is λ/∆λ = 75 000, i.e., comparable with
that of SOPHIE.

We fit the observed RV residuals by adjusting an offset value
and the parameter 〈Cd〉 that measures the average reduction of
the line depth inside starspots. We exclude from the fit the four
measurements between HJD 2 454 308.0 and 2 454 310.0 be-
cause those residuals show a very steep variation with a decrease
of the RV of ∼25 m s−1 in only two days, that is impossible to
reproduce with our model. This fast change and other similar
rapid variations in the observed RV time series exceed the accu-
racy of the SOPHIE velocimetry (cf. Sect. 2.2). They could be
due to photospheric velocity fields of several km s−1 localized
in active regions and displaying short-term variations, such as
those observed in the Sun during flares or the emergence of new
magnetic flux, or in syphon flows (e.g., Rüedi et al. 1992), or in

the time-varying features of the Evershed flows (e.g., Cabrera
Solana et al. 2007). We looked at the variability of the residuals
in the other published RV datasets (Bouchy et al. 2005; Winn
et al. 2006). They also show RV changes on short timescales
with night-to-night variations of several tens of m s−1, in agree-
ment with the present SOPHIE observations (see, e.g., the bot-
tom panel of Fig. 1 in Bouchy et al. 2005). The chromospheric
activity, as monitored by the core emission of the Ca II H&K
lines, shows remarkable variations on timescales as short as one
hour, suggesting frequent flaring events that can contribute to the
short-term RV variations (Moutou et al. 2007; Fares et al. 2010).

The best fit for the spot model with Q = 0.0 is found for a
RV offset of 21.6 ± 1.0 m s−1 and 〈Cd〉 = 0.25 ± 0.05. We plot
the observed and simulated RV residuals vs. time in the upper
panel of Fig. 6 together with their differences in the lower panel.
The error bars of the synthesized residuals take into account the
effects of the photometric accuracy, the differential rotation, and
the photometric residuals. The nominal accuracy of MOST pho-
tometry is ∼1.1 × 10−4 in relative flux units that implies an er-
ror in the estimated spot area of the order of ∼2.5 × 10−4 lead-
ing to a RV error of ∼0.75 m s−1 when Eq. (1) in Desort et al.
(2007) is applied to compute the maximum deviation. The differ-
ential rotation changes the longitudes of the starspots during the
time intervals considered for the photometric modelling. Since
our modelling assumes a fixed pattern of spots during each in-
terval of 7.625 days, our synthesized RV variations have sys-
tematic errors produced by the migration of the active regions
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Fig. 3. Upper panel: the ME-regularized composite best fit to the out-of-transit light curve of HD 189733 obtained for Q = 0.0. The flux is in
relative units, i.e., measured with respect to the maximum observed flux along the light curve. Lower panel: the residuals from the composite best
fit versus time.

accuracy of the fit and the smoothness of the spot distribution
and evolution.

The composite best fit to the entire light curve is shown in the
upper panel of Fig. 3 while the residuals are plotted in the lower
panel. The computed flux values at the same time from succes-
sive spot models are averaged. In spite of that, at the matching
points between successive best fits we observe some disconti-
nuities in the first derivative of the flux variation vs. time. This
may in principle affect the rate of change of the RV perturba-
tion induced by the spots vs. the rotation phase. However, we do
not worry about correcting for this effect because the discontinu-
ities always occur at epochs when no RV observation has been
obtained. Therefore, the synthesizes RV values to be compared
with the SOPHIE RV time series are not appreciably affected by
those discontinuities.

The residuals show oscillations with a typical timescale of
∼1–2 days that can be related to the rise and decay of active
regions that cover ≈0.2–0.3 percent of the stellar disc, i.e., com-
parable with the largest sunspot groups. The projected area of
those active regions is estimated from the amplitude of the flux
residuals and the adopted spot contrast, while their lifetimes are
estimated by the duration of the residual fluctuations. These ac-
tive regions cannot be modelled by our approach because they
do not produce a significant rotational flux modulation during
the ∼12 days of the stellar rotation period as they move across
the disc by only ≈60◦ in longitude. Their estimated size and life-
time are not significantly degenerate with each other because our
model has 200 degrees of freedom to fit any minute flux variation

with a timescale of several days by adjusting the covering fac-
tors fk of its 18◦ × 18◦ surface elements. In other words, by sub-
tracting our model we filter out all the variations with timescales
longer than 4–5 days leaving only the effects of the active re-
gions evolving on shorter timescales.

By decreasing the degree of regularization, i.e., the value
of η, we can marginally improve the best fit, but at the cost of
introducing several small active regions that wax and wane from
one ∆tf time interval to the next and are badly constrained by
the rotational modulation. Nevertheless, the oscillations of the
residuals do not disappear completely even for η = 0, indicating
that HD 189733 has a population of short-lived active regions
with typical lifetimes of 1–2 days. Spots can be mapped along
the strip occulted by the planet, as shown by Pont et al. (2007),
but this is beyond the scope of the present investigation.

5.2. Longitude distribution of active regions and stellar
differential rotation

The distributions of the spotted area vs. longitude are plotted in
Fig. 4 for the seven mean epochs of our individual subsets adopt-
ing a rotation period of 11.953 days. The longitude zero corre-
sponds to the point intercepted on the stellar photosphere by the
line of sight to the centre of the star at HJD 2 454 298.55874,
i.e., the sub-observer point at the initial epoch. The longitude
increases in the same direction as the stellar rotation. This is
consistent with the reference frames adopted in our previous
studies (Lanza et al. 2009a, 2009b), but does not allow a direct
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Conclusions	  
•  Methods	   for	   spot	   modelling	   based	   on	   space-‐borne	   high-‐precision	   photometry	   have	   been	  

reviewed;	  	  

•  Long-‐term	   opCcal	   photometric	   Cme	   series	   acquired	   to	   search	   for	   planetary	   transits	   can	   be	  
used	   to	   study	   starspot	   evoluCon	   and	   surface	   differenCal	   rotaCon	   (SDR)	   in	   late-‐type	   main-‐
sequence	  stars;	  

•  We	  discussed	  the	  results	  obtained	  with	  different	  modelling	  approaches	  as	  applied	  to	  the	  same	  
dataset,	  i.e.,	  the	  light	  curve	  of	  CoRoT-‐2;	  

	  
•  We	  derived	  lower	  limits	  to	  the	  SDR	  in	  four	  CoRoT	  targets	  and	  in	  Kepler-‐17	  	  from	  the	  migraCon	  

of	  their	  acCve	  longitudes;	  	  
	  
•  There	  is	  evidence	  of	  short-‐term	  (Rieger-‐like)	  spot	  cycles	  in	  CoRoT-‐2	  and	  Kepler-‐17;	  
	  
•  Possible	  magneCc	   star-‐planet	   interacCon	   is	   suggested	   in	   the	   cases	  of	  CoRoT-‐4	  and	  CoRoT-‐6,	  

two	  stars	  with	  giant,	  close-‐in	  planets;	  	  

•  Walker	   et	   al.	   (2008),	   from	   MOST	   observaCons,	   found	   a	   phenomenology	   similar	   to	   that	   of	  
CoRoT-‐4	  in	  τ	  BooCs;	  more	  recently,	  Beky	  et	  al.	  (2014)	  provided	  further	  indicaCon	  for	  HAT-‐P-‐11	  
and	  Kepler-‐17.	  



The	  end	  	  
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