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Surfaces inhomogeneities : what are they ?

1 Temperature patches
2 Chemical patches
3 Magnetic fields
4 Velocity fields
5 Radiation field
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Example 1
Chemical patches

Figure: Chemical spots on HD 11753 (an HgMn star) from Kohronen et
al. 2013.
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Example 2
Magnetic fields

Figure: Extrapolation of the magnetic field of the star V374 Pegasi from
spectropolarimetric observations (by M. Jardine & J.-F. Donati).
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Example 3
Velocity patches

Figure: Solar supergranulation as viewed by SOHO/MDI.
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Example 4 : Rotational effect
Gravity darkening of Achernar (α Eri)
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Surfaces inhomogeneities : where do they come from ?

A phenomenon that breaks the spherical symmetry :

1 Rotation (or angular momentum)
2 Convection
3 Magnetic fields
4 Binarity
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Old stuff : von Zeipel 1924

Let us assume the star is barotropic so that all thermodynamic
quantities verify

ρ ≡ ρ(Φ), T ≡ T(Φ), etc

Then

~Frad = −χ~∇T = −χ(Φ)T ′(Φ)~∇Φ = K(Φ)~geff

Hence von Zeipel law

Teff = Kg1/4
eff

on the surface
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What is wrong ?

With rotation T cannot be constant over an equipotential if in
radiative equilibrium. {

Div(χ~∇T) = 0
∆Φ = 4πGρ + 2Ω2 (1)

which leads to

Div(χ(Φ)T ′(Φ)~∇Φ) = 0⇐⇒ 4πGρ + 2Ω2 + (ln(χT ′))′g2
eff = 0

On the surface Gρ � Ω2 while geff is not constant. There is a
contradiction ! !

M. Rieutord Physical processes leading to surface inhomogeneities



Introduction
Rotation
Binarity

Conclusions

The model ELR11
Espinosa Lara & Rieutord 2011, AA533,A43

Can we make a simple model of the dependence of the flux with
respect to latitude without computing the whole 2D structure of a
rotating star ?
YES ! But not as simple as von Zeipel 1924 though !
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The model ELR11 : the idea

In an evelope the flux just obeys :

Div~F = 0

namely energy is conserved and there are no energy sources.
This is a first order partial differential equation, not enough to
determine the flux, but if we add a constraint to the flux we may
find it. We thus assume

~F = −f (r, θ)~geff

which reduces our system to a single unknown f . Thus it is
solvable.
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Comments

How strong is this hypothesis ~F // ~geff ?
In a convection zone the flux is driven by buoyancy so it looks
reasonable.
In a radiative zone, the configuration is baroclinic so vectors are
not aligned for sure. But how strong is the misalignment ? Let’s
have a look to a 2D model.
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Baroclinic misalignment

Figure: Misalignment between pressure gradient and flux, from ELR11.
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Baroclinic torque

The baroclinic torque (~∇P × ~∇ρ)/ρ2 thus involves a small
misalignment of the vectors but strong gradients that make the
driving. Moreover

Div~F = 0 ⇐⇒ Div(f ~∇Φ) = 0

Thus

~geff · ~∇ ln f = −2Ω2

∂ ln f
∂ξ

= −
2Ω2

geff

I shows that f has similar latitudinal variations than geff , which
therefore will modify the von Zeipel law. So, again, Teff/g

1/4
eff

cannot
be constant.
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The derivation of f (r, θ)

f is given by the flux equation :

Div(f~geff) = 0⇐⇒ ~geff · ~∇f + f Div~geff = 0

To go further we need a model for ~geff . We shall use the Roche
model which is not so bad if the star is centrally condensed.
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Scaling the flux function f

Near the center of the star

~F =
L

4πr2~er ~geff = −
GM
r2 ~er

So that we may set

f (r, θ) =
L

4πGM
F(r, θ)

with

lim
r→0

F(r, θ) = 1
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The scaled PDE

We scale the gravity with GM/R2
e and the length scale with the

equatorial radius Re. The angular velocity is scaled by

ω =
Ω

Ωk
= Ω

√
GM
R3

e

thus we get (
1

ω2r2 − r sin2 θ

)
∂F
∂r
− sin θ cos θ

∂F
∂θ

= 2F

because in the Roche model Div~geff = 2Ω2. In addition F(0, θ) = 1.
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Solving the PDE

The probelm for F is well-posed and can be solved analytically.
Let’s do it !
First, we solve for ln F and remove the RHS. Namely,(

1
ω2r2 − r sin2 θ

)
∂ ln F
∂r
− sin θ cos θ

∂ ln F
∂θ

= 2

we set ln F = ln G + A(θ). We immediately find that

A′(θ) = −2/ sin θ cos θ =⇒ A(θ) = − ln(tan2 θ)

We still have to solve the homogeneous part(
1

ω2r2 − r sin2 θ

)
∂ ln G
∂r

− sin θ cos θ
∂ ln G
∂θ

= 0
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Solving the PDE
Characteristics method

We look for places where ln G is constant. These curves are the
characteristics of G. They are such that

∂ ln G
∂r

dr +
∂ ln G
∂θ

dθ = 0

but G also verifies(
1

ω2r2 − r sin2 θ

)
∂ ln G
∂r

− sin θ cos θ
∂ ln G
∂θ

= 0

So eliminating ∂ ln G
∂r and ∂ ln G

∂θ we get(
1

ω2r2 − r sin2 θ

)
dθ + sin θ cos θdr = 0

which is the equation of characteristics.
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Solution of the characteristics equation

We first observe that we may multiply(
1

ω2r2 − r sin2 θ

)
dθ + sin θ cos θdr = 0

by any function H(r, θ) without changing anything. So we may solve ∂h
∂r = H sin θ cos θ
∂h
∂θ = H

(
1

ω2r2 − r sin2 θ
) (2)

H needs to be chosen so that this system can be integrated. After
try and fail, we find H = ω2r2 cos2 θ/ sin θ.
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Solution of the characteristics equation (bis)

Thus { ∂h
∂r = ω2r2 cos3 θ
∂h
∂θ = cos2 θ

sin θ − ω
2r3 cos2 θ sin θ

(3)

and the solution is

h(r, θ) =
1
3
ω2r3 cos3 θ + cos θ + ln tan(θ/2)

M. Rieutord Physical processes leading to surface inhomogeneities



Introduction
Rotation
Binarity

Conclusions

Using characteristics

On the curves
1
3
ω2r3 cos3 θ + cos θ + ln tan(θ/2) = Cst

we know that ln G is constant. So G ≡ G(h(r, θ)). Now we know that

ln G(h) − ln tan2 θ

is the solution of(
1

ω2r2 − r sin2 θ

)
∂ ln F
∂r
− sin θ cos θ

∂ ln F
∂θ

= 2

or if we work with F

F =
G(h(r, θ))

tan2 θ

M. Rieutord Physical processes leading to surface inhomogeneities



Introduction
Rotation
Binarity

Conclusions

Using the boundary conditions

However we know h(r, θ) but we do not know G...
We need now to use the boundary condition : F(0, θ) = 1. Thus we
have to impose

G(h(0, θ))
tan2 θ

= 1

or

G(cos θ + ln tan(θ/2))
tan2 θ

= 1

or

G(cos θ + ln tan(θ/2)) = tan2 θ
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Solving for G

Let’s call cos θ + ln tan(θ/2) = h0(θ). Hence, we have

(G ◦ h0)(θ) = tan2 θ

or

G ◦ h0 = tan2 =⇒ G = tan2 ◦h−1
0

so formally, the solution is

G(r, θ) = tan2(h−1
0 (h(r, θ)))
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Solving for G (bis)

To make it more understandable, we set

ψ = h−1
0 (h(r, θ))

so that
h0(ψ) =

1
3
ω2r3 cos3 θ + cos θ + ln tan(θ/2)

or
cosψ + ln tan(ψ/2) =

1
3
ω2r3 cos3 θ + cos θ + ln tan(θ/2)

which is a transcendental equation for ψ not difficult to solve
numerically (you know that when r or ω are small ψ ' θ). So finally

F(r, θ) =
tan(ψ(r, θ))

tan2 θ
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Some interesting latitudes : the pole

F seems to be singular at the pole (θ = 0) and at the equator
(θ = π/2). What’s going on there ?
At the pole : if θ � 1 we get that

cosψ + ln tan(ψ/2) =
1
3
ω2r3 cos3 θ + cos θ + ln tan(θ/2)

leads to

1 + ln tan(ψ/2) '
1
3
ω2r3 + 1 + ln tan(θ/2)

so that

ψ ' θeω
2r3/3 =⇒ F(r, 0) = e2ω2r3/3
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Some interesting latitudes : the equator

More complicated ! We need to know that if ε � 1 then

ln
(
tan

[
π

4
− ε

)]
= −ε −

1
6
ε3 − · · ·

so that finally

F(r, π/2) = (1 − ω2r3)−2/3
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The flux or the effective temperature

Back to the definitions we start with, we have

~F = −
L

4πGM
F(ω, r, θ)~geff

so that

Teff =

( L
4πσGM

)1/4
√

tanψ
tan θ

g1/4
eff

so the function
√

tanψ/ tan θ shows the deviation from the von
Zeipel law.
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Comparison with full 2D models
Latitude dependence

Figure: 3 M� model at Ω = 0.9Ωk. Crosses=ESTER code, dashed= von
Zeipel.
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Comparison with full 2D models
Effective gravity dependence

Figure: 3 M� model at Ω = 0.9Ωk. Crosses=ESTER code, dashed= von
Zeipel.
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Comparison with full 2D models
Contrast of effective temperatures

Figure: 3 M� model at Ω = 0.9Ωk. Crosses=ESTER code, dashed= von
Zeipel.
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β-model

Let’s investigate what is the behaviour of the β-exponent defined as

Te = Tp

(
ge

gp

)β
From the polar and equatorial expression of the flux :

Fe = (1 − ω2)−2/3ge Fp = e2ω2r3
p/3gp

while
ge

gp
= r2

p(1 − ω2) with rp =
1

1 + ω2/2

where rp is the polar radius.

M. Rieutord Physical processes leading to surface inhomogeneities



Introduction
Rotation
Binarity

Conclusions

β-model

So we find (
Te

Tp

)4

=
(1 − ω2)1/3

(1 + ω2/2)2 e−2ω2r3
p/3

and

β =
1
4
−

1
6

ln(1 − ω2) + ω2r3
p

ln(1 − ω2) − 2 ln(1 + ω2/2)

For small values of ω, this leads to

β =
1
4
−

1
6
ω2 + O(ω4) or β =

1
4
−

1
3
ε + O(ε2)
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β-model
Comparisons

Figure: β-values from various models (full ESTER model in dashed dot),
dashed = linear law β = 0.25 − ε/3.
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β-model
Observations

Figure: Observationnaly derived β-values for various stars (Domiciano et
al. 2014).
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Lucy’s problem

In 1967 it was realized that gravity darkening was very important
for interpretation of the light curves of contact binaries (like W
UMa).
But most of these stars are low mass, thus with a convective
envelope so that using von Zeipel results was doubtful.
So Lucy asked : ”What is the gravity-darkening law appropriate for
late-type stars whose subphotospheric layers are convective ?”
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Lucy’s answer

Lucy reasoning was the following : let us consider models of solar
type stars and let us see how their effective temperature changes
with their gravity.
He used five models (3 with M=1M�, 2 with M=1.26M�) and found
that for these models

0.069 ≤ β ≤ 0.088

So Lucy adopted β = 0.08 as a representative value.
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The origin of Lucy’s result
Shape of a surface convection zone

Figure: Thermodynamic profile of the Sun according to Stein & Nordlund
1998.
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Lucy’s results

With the simulations of SN98, we see why it is allowable to use the
pressure boundary condition (adapted to radiative case)

P =
2g
3κ

at the top of an outer convective zone. 1D codes always use this. It
comes from the hydrostatic equilibrium :

∂P
∂z

= −ρg ⇐⇒
1
ρκ

∂P
∂z

= −
g
κ
⇐⇒

∂P
∂τ

=
g
κ

which is integrated from the optical depth τ = 2/3 upwards.
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Lucy’s results

Now in convective envelopes, the variation of pressure and
densities are related to temperature through

P ∝ Tn+1 and ρ ∝ Tn .

Even where convection is no longer efficient these polytropic laws
are approximately true as shown by numerical simulations of
SN98.
Thus we get

g ∝ Tn(µ+1)+1−s

leading to the gravity darkening exponent :

β =
1

n(µ + 1) + 1 − s
(4)
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Lucy’s results

In some range of temperatures and density, opacity may be written

κ = κ0ρ
µT−s

For instance Christensen-Dalsgaard uses µ = 0.408 and
s = −9.283 for models of helioseismology. Using
Christensen-Dalsgaard’s solar values and n = 3/2 yields

β ' 0.0807

So we clearly see that β in that case depends on the chemical
properties of the surface as they control the opacities.
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Lucy’s results and gravity darkening

Can Lucy’s law represent a gravity darkening effect ?
Obviously, it contradicts our model (β never reaches such low
values). Our model assumes

Div~F = 0 and ~F = −f~geff

It is based on the hydrostatics of surface layers :

dP
dτ

=
g
κ
.

while in rotating (possibly binary) the mechanical balance is rather :

~v · ~∇~v = −
1
ρ
~∇P − ~∇Φ

where ~v is the fluid velocity in some inertial frame.
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Lucy’s results and gravity darkening

Figure: Schematic representation of the generation of a baroclinic flow
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Lucy’s results and gravity darkening

So Lucy’s result does not apply because it juxtaposes 1D equilibria
that cannot be.
We therefore expect higher values of β even for low mass stars.
How can that be tested : likely on β Cas. and on close binaries.
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The case of binary stars
From ELR12, AA, 547, A32

Figure: Schematic representation of the primary star with filling factor 0.8.
The position of the Lagrange point L1is indicated.
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The case of binary stars

The equations are the same,

Div~F = 0 and ~F = −f~geff

but now the effective gravity comes from the 3D potential :

φ = −
GM1

r
−

GM2
√

a2 + r2 − 2ar cos θ
−

1
2

Ω2r2(sin2 θ sin2 ϕ + cos2 θ) + a
M2

M1 + M2
Ω2r cos θ ,

(5)
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The equation for f

Let us write Div(f~geff) = 0 as

~n · ∇ ln f =
∇ · ~geff

geff

, (6)

Let us build a trajectory C(θ0, ϕ0) that starts at the centre of the star
with an initial direction indicated by (θ0, ϕ0) and is tangent to ~n at
every point. C(θ0, ϕ0) is therefore a field line of the effective gravity
field.
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The equation for f

The value of f at a point ~r along the curve can be calculated as a
line integral

f (~r) = f0 exp
(∫
C(θ0,ϕ0)

∇ · ~geff

geff

dl
)

for ~r ∈ C(θ0, ϕ0) . (7)

Despite much efforts no analytical solution could be found. We
integrated the equations numerically.
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Some results
Teff distribution

Figure: q = M2/M1 = 1, ρ = 0.8 (filling factor).

M. Rieutord Physical processes leading to surface inhomogeneities



Introduction
Rotation
Binarity

Conclusions

Some results
Teff distribution

Figure: Dashed=von Zeipel, solid=linear fit (β-model), pluses=data of our
model).
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Some results
Teff distribution

Figure: q=1, ρ = 0.95
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Some results
Teff distribution
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Some results
Teff distribution

Figure: q=0.1, ρ = 0.8
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Some results
Teff distribution
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Some results
β values
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Observations
Djurasevic et al. 2003, 2006

Figure: The light curve.
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Observations
Djurasevic et al. 2003, 2006

Figure: The first model that leads to β = 0.15.
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Observations
Djurasevic et al. 2003, 2006

Figure: The second model with a spot....
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The effects of magnetic fields

Important in convective zone : a strong magnetic field inhibits
convection (it raises the threshold of the instability)

So expected to be important for the brightness of low mass
stars (spots) but unimportant for intermediate-mass and
massive stars.

But here they might structure the distribution of chemical
elements by inhibition of horizontal transport (roAp stars).

M. Rieutord Physical processes leading to surface inhomogeneities



Introduction
Rotation
Binarity

Conclusions

Outline

1 Introduction

2 Rotation

3 Binarity

4 Conclusions

M. Rieutord Physical processes leading to surface inhomogeneities



Introduction
Rotation
Binarity

Conclusions

Some conclusions

Rotation : the ELR11 model proposes a universal approach of
the gravity darkening.

The approximation of the Roche model with solid body
rotation needs to be evaluated

Observations should evaluate the latitude dependence of the
flux via a SH decomposition or/and use the full 2D models....
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Some conclusions

Rotation : the ELR11 model proposes a universal approach of
the gravity darkening.

The approximation of the Roche model with solid body
rotation needs to be evaluated

Observations should evaluate the latitude dependence of the
flux via a SH decomposition or/and use the full 2D models....
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The End
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