Doppler and Zeeman Doppler Imaging of stars

Oleg Kochukhov

oleg.kochukhov@physics.uu.se

Uppsala University, Sweden

Outline

- Introduction: why map stellar surfaces?
- Doppler Imaging
 - Main principles
 - Examples
 - Open issues
- Zeeman Doppler imaging
 - Stokes parameters and magnetic field diagnostics
 - Main principles
 - Examples
 - Open issues

Practical exercise

Stellar surface structure

- Sun and all cool stars
 - Magnetic fields are created by turbulence and rotation (dynamo)
 - Magnetic fields are weak, complex and rapidly evolving
 - Cool spots (convection suppression)
- ◆ A, B, O magnetic stars (Ap/Bp)
 - Fossil magnetic fields trapped in stellar radiative zones
 - Magnetic fields are strong, globally organised (dipolar?) and stable
 - Chemical spots (atomic diffusion)

Chemical spot

Surface feature creates a distortion in the Doppler broadened line profile

Temperature spot

• Distortion moves across the line profile as the star rotates

• Distortion moves across the line profile as the star rotates

• Distortion moves across the line profile as the star rotates

Spatial resolution of DI

- ◆ Longitude: from velocity position of the distortion
- Latitude: from time series behaviour
- Spatial resolution of DI

$$\delta l = 90^{\rm o} \frac{\Delta \lambda}{\lambda} \frac{v_{\rm c}}{v_{\rm e} \sin i}$$

For *R* = 65000, v_{e} sin *i* =150 km/s: δl = 2.7°

Angular resolution for $R = 3R_{sun}$, d = 1 kpc: 0.3 µarcsec

- From spectroscopic time series $~\delta l \sim 360^{\rm o}/\Delta \phi$

Ill-posed nature of DI inversions

◆ DI reconstruction of the stellar surface maps is an *ill-posed inverse problem* (Goncharskij et al. 1977)

$$\underbrace{\sum_{i} [Obs_{i} - Syn(m)_{i}]^{2} / \sigma_{i}^{2}}_{\chi^{2}} \rightarrow \min$$

Ill-posed nature of DI inversions

◆ DI reconstruction of the stellar surface maps is an *ill-posed inverse problem* (Goncharskij et al. 1977)

Add a penalty function to

- Ensure uniqueness and stability of the solution
- Avoid fitting observational noise
- Convergence to a global minimum
- Decoupling from the surface grid

Regularization in DI

 "Occam razor": find the simplest solution that fits observations

 Tikhonov regularization = small local gradient (Tikhonov & Arsenin 1977)

$$\chi^2 + \Lambda \sum_j (m_j - m_k)^2 \to \min$$

 Maximum entropy = minimum "information content" (Skilling & Bryan 1984)

$$-\chi^2 - \Lambda \sum_j \frac{m_j}{m_0} \log \frac{m_j}{m_0} \to \max$$

where m_0 is the default value; e.g. $m_0 = 1/N \sum m_j$

Critical auxiliary parameters

- <u>Rotational period</u>
- <u>Projected rotational</u> and <u>radial velocity</u>
- Inclination of stellar rotation axis $\sin i = \frac{P_{\rm rot} v_{\rm e} \sin i}{50.613 R_{\odot}}$
- ◆ <u>Azimuth angle</u> of stellar rotation axis (Stokes *QU*)
- Local line profiles
 - Model atmosphere parameters (T_{eff} , log g, [M/H]), atomic data
 - Parameters of analytical profiles (EW, FWHM, limb darkening, assumed spot contrast, etc.)

Can be constrained with DI inversions

Spot maps of cool stars

XX Tri (Strassmeier 1999)

FK Com (Korhonen et al. 2010)

Summary of cool star DI

◆ Temperature/brightness maps for ~100 stars

Differential rotation from DI

Methodology

- Cross-correlation of DI maps
- Incorporated in inversions $\Omega(\theta) = \Omega_{eq} \delta \Omega \sin^2 \theta$

cross-correlation

Differential rotation from DI

- Results
 - Increase of $\delta\Omega$ with $T_{\rm eff}$
 - Stokes I and V difference
 - Temporal variation

 Ω_{ea} (rad/d)

Donati et al. (2003)

AB Dor, Stokes I & V data

0.2

0.1

0

3500

4000

4500

Т (К)

Barnes et al. (2005)

5000

5500

∆Ω (rad.day⁻¹)

6000

Outstanding issues of cool star DI

- Spot temperatures/contrasts vs. spot sizes
 - Better constrained by DI compared to photometry
 - Molecular lines
- Polar spots
- Interpretation of brightness maps
- Unresolved small-scale spots
- Atmosphere of a starspot

Multi-element DI of Ap stars

Chemical spots are (un?)related to magnetic geometry

Multi-element DI of Ap stars

Chemical spots are (un?)related to magnetic geometry

Stability of Ap-star spots

- No evidence of significant variability
 - Equivalent width curves: ~100 yr time scale
 - DI maps: ~20 yr time scale

Ap star 56 Ari Si maps from 1986 to 2001

Light curves vs. DI maps

◆ SED of Ap stars: flux redistribution from UV to optical chemical spots are bright in the optical, dark in UV

Lüftinger et al. (2010) for Ap star HD 50773

Light curves vs. DI maps

O. Kochukhov

Dynamic chemical spots on HgMn stars

- Low-contrast, evolving spots of heavy elements
- No evidence of magnetic field

Evolution of Hg spots on α And (Kochukhov et al. 2007)

Origin of chemical spots

Radiative diffusion in magnetic field

- Why chemical maps are so complex and diverse?
- How can spots exist on non-magnetic stars

Equilibrium (Alecian et al. 2010)

DI of non-radial pulsations

• Mapping distortions in velocity field (Kochukhov 2004) $V_r(\theta, \varphi, t) = V_c(\theta, \varphi) \cos \omega t + V_s(\theta, \varphi) \sin \omega t$

DI of non-radial pulsations

 Mapping pulsations in rapidly oscillating Ap stars (Kochukhov 2004)

Cartography of stellar magnetic fields

• With one exception (HgMn stars) magnetic field is thought to be responsible for the star spot formation

The ultimate goal is to map both magnetic field geometry and star spot configuration

How to measure magnetic field properties?

Detect magnetic fields and map their structure using spectropolarimetry

Zeeman effect

Splitting of lines and polarisation in Zeeman components

Stokes parameters

 $I_{lpha^{
m o}}$ intensity measured through perfect linear polarizer $I_{\circlearrowright}, I_{\circlearrowright}$ intensity measured through perfect right-hand and left-hand polarizers

Local Stokes profiles

Polarised radiative transfer based on model atmospheres

 Analytical formulas (weak-field approximation, Milne-Eddington atmosphere)

Disk-integrated Stokes profiles

Summing over ≥1000 surface zones, each with individual **B**, μ, projected area, Doppler shift, temperature, abundance

Disk-integrated Stokes profiles

Radial field spots

- Evidence of magnetic field comes of non-zero line polarisation signature
- Diverse and complex Stokes signatures depending on the surface field distribution and rotation velocity of the star

Phase variation of Stokes profiles

 Combined impact of Zeeman effect, Doppler effect, projection, and rotational modulation

Instrumentation for spectropolarimetry

 Axially symmetric beam, high-resolution, (fiber-fed,) thermally stabilized, echelle spectrograph

- ESPaDOnS@CFHT and NARVAL@TBL:
 R = 65,000, 370-1050 nm, ~30 m/s stability
- HARPSpol@3.6m:

R = 110,000, 380-690 nm, ~1 m/s stability

Beam exchange technique

Spectropolarimetry = differential spectral measurement
 (Semel et al. 1993, Bagnulo et al. 2009)

Zeeman effect in stellar spectra

♦ Early-type magnetic stars: amplitude ~10⁻² for Stokes V,
 ~10⁻³ for Stokes QU; analysis of individual lines at S/N~10³

Cool Ap star HD 24712 with HARPSpol (Rusomarov et al. 2013)

Multi-line polarisation analysis

- ◆ Late-type stars: amplitudes ~10⁻³ to 10⁻⁵ for Stokes *V*; need to use a multi-line technique for the field analysis
- Least-squares deconvolution (LSD)
 - spectrum = superposition of shifted and scaled profile
 - weak-field and weak-line approximations
 - linear least-squares problem

$$I(v) = 1 - \sum_{i} w_{I}^{i} Z_{I}(v - v^{i}), \quad w_{I}^{i} = d_{i}$$

$$V(v) = \sum_{i} w_{V}^{i} Z_{V}(v - v^{i}), \quad w_{V}^{i} = \bar{g}\lambda_{i}d_{i}$$
Donati et al. (1997)
Kochukhov et al. (2010)
$$Q(v) = \sum_{i} w_{Q}^{i} Z_{Q}(v - v^{i}), \quad w_{Q}^{i} = \bar{G}\lambda_{i}^{2}d_{i}$$

Multi-line polarisation analysis

- Widely used in stellar spectropolarimetry
- ◆ Enables sensitivity <10⁻⁵ for Stokes V of bright stars

Zeeman (Magnetic) Doppler imaging

◆ Restricted ZDI inversion (Brown et al. 1991)

 $\chi^2_V(\boldsymbol{B}) + \Lambda R(\boldsymbol{B}) \to \min$

- General ZDI inversion (Piskunov & Kochukhov 2002) $\sum_{k} w_k \chi_k^2(\boldsymbol{B}, T) + \Lambda_1 R(\boldsymbol{B}) + \Lambda R(T) \to \min$
- Regularization in ZDI
 - Tikhonov regularization applied to individual field components
 - ME regularization not applicable to global field geometries
 - Multipolar expansion

$$\boldsymbol{B} = F(\alpha_{\ell,m}, \beta_{\ell,m}, \gamma_{\ell,m}), \quad R(\boldsymbol{B}) = \sum_{\ell} \ell^2 (\alpha_{\ell,m}^2 + \beta_{\ell,m}^2 + \gamma_{\ell,m}^2)$$

Tests of ZDI inversions

Verification of ZDI code with numerical experiments

ZDI results: Ap/Bp stars

Full Stokes inversions reveal deviations from dipolar fields

ZDI results: Ap/Bp stars

Observed and computed Stokes profiles of α^2 CVn

observations best ZDI fit dipolar fit

ZDI results: Ap/Bp stars

♦ No field evolution on the time scale of ~10 yr

 α^2 CVn (Silvester et al. 2012)

ZDI results: Ap/Bp stars

• Complex fields in early-B stars

τ Sco (BOV) and HD 37776 (B2V) (Donati et al. 2006, Kochukhov et al. 2011)

 $\phi = 0.25$

 $\varphi = 0.75$

 $\varphi = 0.00$

 $\varphi = 0.50$

ZDI results: cool active stars

ZDI results: cool active stars

Long-term observations are to study the field evolution

ZDI results: solar twins

Global magnetic field geometry depends on rotation rate

ZDI results: low-mass stars

 Global, strong, mostly axisymmetric fields, inconsistent with |B| inferred from line broadening

ZDI cool stars: overview

Outstanding issues of ZDI

- Simultaneous reconstruction of
 - magnetic field and temperature for cool active stars
 - magnetic field and abundance for Ap stars
- Intrinsic non-uniqueness of Stokes IV inversions
- Simplified methods of line profile calculation
- Interpretation of LSD profiles
 - single line with mean parameters
 - theoretical LSD profiles from polarised spectrum synthesis

Lack of consistency between magnetic and temperature inversions

Rosén & Kochukhov (2012)

Cross-talks in Stokes IV inversions

 Low-latitude radial and meridional field features cannot be distinguished without Stokes QU

Non-uniqueness of cool-star ZDI

Independent inversions of the same objects do not agree

V410 Tau: Self-consistent T and **B** mapping (Carroll et al. 2012)

