Very close environments of young stars

Fabien Malbet

Institut de Planétologie et d'Astrophysique de Grenoble University of Grenoble / CNRS

> Observatoire des Sciences de l'Univers de Grenoble

OSUG

CNRS Summer School - Roscoff 4 April 2010

Inner regions of Young Stellar Objects

From Isella et al. (2007)

Outline

Introduction

- Physical conditions in the inner regions of YSOs
- Need for very high angular resolution
- Physical processes

Infrared interferometry

- Principles and observables
- Instruments available for inner regions studies
- Elements of bibliography

Inner disk physics

- Morphology of circumstellar structures
- Constraints on disk structure (T, z,...)
- Dust mineralogy
- Gas/dust connection
- Transition disks

Other AU-scale phenomena

- Hydrogen line emission : Outflows / winds or Magnetosphere?
- Importance of Binaries and multiple systems

Future prospects

INTRODUCTION

- Formation of stars, disks and planets
- Physical conditions in the inner regions of YSOs
- Need for very high angular resolution
- Physical processes

Formation of stars, disks and planets

Formation of stars, disks and planets

Formation of stars, disks and planets

Physical conditions in the close environment of young stellar objects

Physical phenomena

- Keplerian accretion disk: gas + dust
- Stars from K to B spectral types (4000K to 10000K)
- Strong outflowing wind
- Companions
- Magnetophere
- Protoplanets

Physical conditions

- Radius ranging from 0.1 AU to 10 AU
- Temperature ranging from 150 K to 4000 K
- Velocity ranging from 10 km/s to few 100 km/s

At 150 pc (Taurus), this corresponds to : $1\mu m \le \lambda \le 20\mu m$ and spatial scales between 0.5 et 70 mas

Close environment of young stars

Dullemond & Monnier (2010, ARAA)

Instrumental requirements

Wavelength domain

Temperature ranges $\rightarrow \lambda \sim 1$ to 20 µm:

Angular resolution

Spatial scales

1.22 λ/D	0.1 AU	1AU	5AU	10AU
75pc	1.5mas	15mas	70mas	150mas
150pc	0.7mas	7mas	30mas	70mas
450pc	0.2mas	2mas	10mas	20mas

Instrumental requirements

Wavelength domain

Temperature ranges $\rightarrow \lambda \sim 1$ to 20 µm:

Angular resolution

Spatial scales

			Po-	
1.22 λ/D	0.1 AU	1AU	5AUial te	10AU
75pc	1.5mas	15mas	70mas	1 Scopas
150pc	0.7mas	ricias Eron	30mas	ivenas Opti
450pc	0.2mas	2mas et	10mas	20mas S

VLTI Summer school 2010 - Inner regions of YSOs revealed by interferometry - F. Malbet

VLTI Summer school 2010 - Inner regions of YSOs revealed by interferometry - F. Malbet

Infrared and visible Interferometry

- Principles and observables
- Instruments available for YSO studies
- Elements of bibliography on YSO science results

Basics of optical interferometry

Basics of optical interferometry

Spatial coherence

Zernicke-van Cittert theorem

Visibility = Fourier transform of the brightness spatial distribution

Visibilities

VLTI Summer school 2010 - Inner regions of YSOs revealed by interferometry - F. Malbet

components

Facility	Instrument	Wavelength (microns)	#	tel.	Tel. Diam. (m)	Baseline (m)	
Existing facilities							
ΡΤΙ	V ²	H, K		3	0.4	80-110	
ΙΟΤΑ	V², CP	Н, К		3	0.4	5-38	
ISI	Heterodyne	11		2/3	1.65	4-70	
	V ²	K, L / spectral	, L / spectral 2		10	80	
	nulling	N					
	AMBER: V ² , CP	1-2.5 / spectral	3 2 4 (8)	8.2	40-130		
VLII	MIDI: V², V	8-13 / spectral		4 (8)	1.8	8-200	
CHARA	V ² , CP, Imaging	1-2.5 (spectral)	2	/4 (6)	1	50-350	
Future facilities							
LBT	V ² , nulling	1-12 µm		2	8.4	6-23	
MROI	V ² , CP, imaging	V, NIR	3/	6 (10)	1.4	7.5-340	

Facility	Instrument	Wavelength (microns)	#	ŧ tel.	Tel. Diam. (m)	Baseline (m)		
Existing facilities								
PTI	V ²	H, K		3	0.4	80-110		
IOTA	V ² , CP	H, K		3	0.4	5-38		
ISI	Heterodyne	11		2/3	1.65	4-70		
кі	V ²	K, L / spectral	tral 2		10	80		
	nulling	N						
	AMBER: V ² , CP	1-2.5 / spectral	3	4 (0)	8.2	40-130		
VLII	MIDI: V², V	8-13 / spectral	2	4 (8)	1.8	8-200		
CHARA	V ² , CP, Imaging	1-2.5 (spectral)	2	/4 (6)	1	50-350		
Future facilities								
LBT	V², nulling	1-12 µm		2	8.4	6-23		
MROI	V ² , CP, imaging	V, NIR	3/	6 (10)	1.4	7.5-340		

Facility	Instrument	Wavelength (microns)	#	tel.	Tel. Diam. (m)	Baseline (m)	
Existing facilities							
PTI	V2	H, K		3	0.4	80-110-	
IOTA Sma	V ² , CP	H, K		3	0.4	5-38	
ISI	Heterodyne	11		2/3	1.65	4-70	
кі	V ²	K, L / spectral		0	10	80	
	nulling	N	2		10		
	AMBER: V ² , CP	1-2.5 / spectral	3	4 (0)	8.2	40-130	
VLII	MIDI: V², V	8-13 / spectral	2	4 (8)	1.8	8-200	
CHARA	V ² , CP, Imaging	1-2.5 (spectral)		/4 (6)	1	50-350	
Future facilities							
LBT	V², nulling	1-12 µm		2	8.4	6-23	
MROI	V ² , CP, imaging	V, NIR	3/	6 (10)	1.4	7.5-340	

Facility	Instrument	Wavelength (microns)	#	ŧ tel.	Tel. Diam. (m)	Baseline (m)	
Existing facilities							
PTI	V ²	H, K		3	0.4	80-110-	
IOTA	V ² , CP	H, K		3	0.4	5-38	
ISI	Heterodyne	11		2/3	1.65	4-70	
кі	V ²	K, L / spectral	tral 2		10	90	
	nulling	N			10	00	
	AMBER: V ² , CP	1-2.5 / spectral	3	4 (0)	8.2	40-130	
VLII	MIDI: V², V	8-13 / spectral	2	4 (8)	1.8	8-200	
CHARA	V ² , CP, Imaging	1-2.5 (spectral)	2	/4 (6)	1	50-350	
Future facilities							
LBT	V², nulling	1-12 µm		2	8.4	6-23	
MROI	V ² , CP, imaging	V, NIR	3/	6 (10)	1.4	7.5-340	

Facility	Instrument	Wavelength (microns)	# tel.	Tel. Diam. (m)	Baseline (m)		
Existing facilities							
PTI	V ²	H, K	3	0.4	80-110-		
IOTA	V ² , CP	H, K	3	0.4	5-38		
ISI	Heterodyne	11	2/3	1.65	4-70		
KI	V ² nulling	K, L / spectral	2	10	80		
	AMBER: V ² , CP	1-2resolution	3	8.2	40-130		
VLII	MIDI: V², V	8-13 / spectral	2 4 (8)	1.8	8-200		
CHARA	V ² , CP, Imaging	1-2.5 (spectral)	2/4 (6)	1	50-350		
Future facilities							
LBT	V², nulling	1-12 µm	2	8.4	6-23		
MROI	V ² , CP, imaging	V, NIR	3/6 (10)	1.4	7.5-340		

Facility	Instrument	Wavelength (microns)	# tel.	Tel. Diam. (m)	Baseline (m)			
Existing facilities								
PTI	V ²	H, K	3	0.4	80-110			
IOTA	V ² , CP	H, K	3	0.4	5-38			
ISI	Heterodyne	11	2/3	1.65	4-70			
KI	V ²	K, L / spectral	2	10	80			
	nulling	N	2					
	AMBER: V ² , CP	1-2.5 / spectral	3 5	8.2	40-130			
VLII	MIDI: V², V	8-13 / spectral		1.8	8-200			
CHARA	V ² , CP, Imaging	1-2.5 (spectral)	2/4 <mark>–</mark> (6)	1	50-350			
Future facilities								
LBT	V², nulling	1-12 µm	2	8.4	6-23			
MROI	V ² , CP, imaging	V, NIR	3/6 (10)	1.4	7.5-340			

Interferometry publication OLBIN database

Astrophysical results

\rightarrow 71 astrophysical results published to date, ~100 objects observed.

YSOs + Debris disks observed (1998-2009)

INNER DISK PHYSICS

- Disk structures
- Constraints on disk structure (T, z,...)
- Dust mineralogy
- Gas/dust connection

UV and IR excesses in Spectral Energy Distribution

Geometrically thin optically thick accretion disk + irradiation = « classical » accretion disk model

Malbet & Bertout (1995, A&AS)

Original disk concept

- Optically thick disk both for inner gas and outer dust
- Simple power-law temperature distribution (T α r^{-0.75}, T α r^{-0.5})
- Oblique disk heating

→ fits rather well spectral energy distributions (SEDs)

Inner region discussion

Inner rim shapes: how sharp is it?

Dust sublimation Isella & Natta (2005, A&A 438, 899) VS Dust settling & grain growth Tannirkulam et al. (2007, ApJ 661, 374)

Inner hole? but

- optically thick disk beyond the dust sublimation barrier
e.g. TTS Akeson et al. (2006, ApJ 635, 1173)
- disk halo with 0.15-0.8 optical depths

Inner region discussion

Inner rim shapes: how sharp is it?

Dust sublimation Isella & Natta (2005, A&A 438, 899) VS Dust settling & grain growth Tannirkulam et al. (2007, ApJ 661, 374)

Inner hole? but

-optically thick disk beyond the dust sublimation barrier
e.g. TTS Akeson et al. (2006, ApJ 635, 1173)
-disk halo with 0.15-0.8 optical depths
Vinkovic & Jurkic (2007, ApJ 658..462)

The geometry of the inner rim

The geometry of the inner rim

 If inclined disk: asymmetries (skewness) depending on dust characteristics Tannirkulam et al. (2007, ApJ 661, 374)

The geometry of the inner rim

- If inclined disk: asymmetries (skewness) depending on dust characteristics Tannirkulam et al. (2007, ApJ 661, 374)
- Closure phase is a powerful observable to probe such asymmetries Monnier et al. (2006, ApJ 646, 444)

FU Orionis

Malbet et al. (2005, A&A, 437, 627)

VLTI Summer school 2010 - Inner regions of YSOs revealed by interferometry - F. Malbet

FU Orionis

Malbet et al. (2005, A&A, 437, 627)

FU Orionis

- The 4 brightest FUors have been observed
- FU Ori well constrained Quanz et al. (2006, ApJ 648, 472)

• Others like Z CMa appear more extended: background emission or companion? Millan-Gabet et al. (2006, ApJ 645, L77)

• Recent FUOr: V1647 Ori Ábrahám, Mosoni, Henning et al. (2006, A&A 449, L13)

Radial temperature distribution of disks

Commonly used analytic temperature-power-law disk models ($T \propto r^{-1/2}$ or $T \propto r^{-3/4}$) cannot describe the measured wavelength-dependence of the apparent size \rightarrow Detailed physical modeling required

Kraus et al. (2007, ApJ 676, 490)

MWC 147: a full disk model to understand NIR and MIR measurements

Effect of extended scattered light

- Ring radius fitting can lead to overestimated sizes
- Careful modeling must be performed including all sources of radiation

Vertical structure @ 10 microns

Vertical structure @ 10 microns

VLTI Summer school 2010 - Inner regions of YSOs revealed by interferometry - F. Malbet

Vertical structure @ 10 microns

VLTI Summer school 2010 - Inner regions of YSOs revealed by interferometry - F. Malbet

Dust mineralogy in HAeBe

Van Boekel et al. (2004, Nature, 432, 479)

Dust mineralogy in HAeBe

Van Boekel et al. (2004, Nature, 432, 479)

Dust mineralogy in HAeBe

Van Boekel et al. (2004, Nature, 432, 479)

... also in T Tauri disks!

Ratzka et al. (2007, A&A 471, 173)

\rightarrow Inner disks (< 2 AU) have:

- -larger silicate grains
- -higher fraction of silicates is crystalline (40-100%)

51 Oph: NIR CO overtone emission

Parameter	Best fit Value
Distance	131 pc
R_*	$7 R_{\odot}$
M_{*}	$3.8 M_{\odot}$
T_{eff}	10000 K
Av	0.15
Accretion rate	7.10 ⁻⁵ M _☉ /yr
Disk outer radius	7 AU
Disk inner radius	0.55 AU
Inclination	88°
Position Angle	78°

Tatulli, et al. (2008, A&A 489, 1151)

51 Oph: NIR CO overtone emission

All observations fitted by the standard disk model! but it seems not to be physically possible

Parameter	Best fit Value
Distance	131 pc
R_*	$7 R_{\odot}$
M_*	$3.8 M_{\odot}$
T_{eff}	10000 K
Av	0.15
Accretion rate	7.10 ⁻⁵ M _☉ /yı
Disk outer radius	7 AU
Disk inner radius	0.55 AU
Inclination	88°
Position Angle	78°

Tatulli, et al. (2008, A&A 489, 1151)

Tatulli, et al. (2008, A&A 489, 1151)

Tatulli, et al. (2008, A&A 489, 1151)

Transition disks: the case of T Cha

Olofsson et al. (2011, A&A 528, L6)

- Transition disks are disks with lack of MIR emission compared to FIR (discovered by Spitzer)
- Believe to have disk holes and therefore having starting planetary formation
- Discovery of disk gap between 0.17 and 7.5 AU (Olofsson et al. 2011)
- Discovery of a planet by Huelamo et al. (2011) at 62mas +/- 7mas, i.e. 6.7AU

HYDROGEN LINE EMISSION

– Outflowing winds?– Magnetospheres?

1.the of sight

Disk

Nature of Bry in the HAe star HD104237

Disk truncated by magnetosphere

Gas within the disk

Outflowing wind

Tatulli et al. (2007, A&A 464, 55)

Disk/star interaction ?

A systematic study of the origin of the BrY emission in Herbig Ae/Be stars

A systematic study of the origin of the BrY emission in Herbig Ae/Be stars

- magnetospheric accretion
- disk wind
- X-wind or disk wind ?

A systematic study of the origin of the BrY emission in Herbig Ae/Be stars

- magnetospheric accretion
- disk wind
- X-wind or disk wind ?
- ➡ No correlation with L* as suggested by Eisner et al. 2007
- We are probing mostly outflows phenomena: Brγ indirect accretion tracer through accretion-driven mass loss?

Kraus et al. (2008, A&A 489, 1157)

Spatially and Spectrally Resolved Hydrogen Gas within 0.1 AU of T Tauri and Herbig Ae/Be Stars

Eisner et al. (2010, ApJ 718, 774)

V2129 Oph magnetic field

2.1kG octupole + 0.9kG dipole, both tilted at ~20 deg onto the rot. axis

V2129 Oph MHD simulations

Tilted 1.2kG octupole + 0.35kG dipole

Disc truncation by the dipole (dominates at large distances) @ r_m=6.2R_{*}

Accretion flow redistributed into the octupole close to the star

Romanova et al. 2010

Spectro-astrometry of Z CMa

Clear asymmetric displacements up to ~150 µas at red- and blue-shifted velocities.

Benisty et al. (2010, A&A 517, L3)

elan, Dougados et al. (2 OSIRIS @ Keck

MULTIPLE SYSTEMS

Aperture synthesis imaging of the θ¹ Orionis C system with IOTA

VLTI Summer school 2010 - Inner regions of YSOs revealed by interferometry - F. Malbet

HD 98800B: orbit and masses

GW Orionis triple system

Berger et al. (2011, A&A 529, L1)

The nearly equal (2:1) H-band flux ratio of the inner components suggests that:

- either GW Ori B is undergoing a preferential accretion event that increases its disk luminosity
- or that the estimate of the masses has to be revisited in favour of a more equal mass-ratio system that is seen at lower inclination.

FUTURE PROSPECTS

First steps to imaging

Isella & Natta (2005, A&A 438, 899)

Closure phase provides information on departure from centro-symmetry

VLTI/AMBER

Renard, Malbet, Benisty et al. 2010

Image reconstruction is tricky:

- ▶ # measures ~1500 with VLTI/AMBER: 3 AT configs
- artefacts due to the (u,v) plane coverage
- disk + ring model consistent with Benisty 2009
- 1/1000 contrast compared with first VLA images

\rightarrow First indices on the morphology of disks around young stars

Benisty et al. (subm. A&A)

Conclusion

- A major leap in less than 10 years:
 - ~100 objects observed so far,
 - +70 refereed papers (mainly with one baseline broadband observations, but it is changing).
 - new types of observations with spectral resolution, closure phases, imaging
- Observations are mature enough to allow detailed modeling.

More images?

Data ing 5 ma Actual

More images?

mag

P

5

mulati

ons

Data ing 5 ma Actual

- Disks starts to be imaged: shifts from axial symmetry?
- NIR emitting zone larger than corotation / magnetospheric radii
 What implications for disk/star connection?
- Which implications do these measurements have for the initial conditions of planetary formation?
- Need to combine NIR+MIR to secure the disk structure.
- Origin of the **Bry emission**?
- Companions, formation of planets