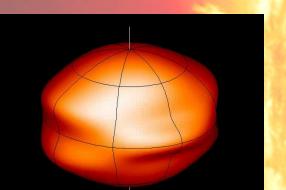


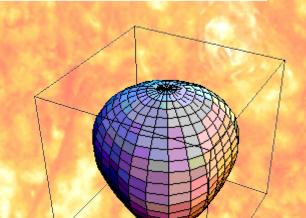
Seismic diagnostics for rotating massive main set

LESIA
Observatoire de Paris

What information can we obtain- about rotation - from the oscillations of stars:

here massive, MS stars → defines the type detected modes





OUTLINE

- I Introduction
- II. Theoretical framework: brief reminding No rotation, notation
- III. Seismic analyses of the 4 β Cep *
- III.1 Rotational splittings and overshoot
- III.2 Splitting asymmetries: distorsion
- III.3 Axisymmetric modes : mixing

Introduction

O- B stars are characterized by a convective core and an envelope

which is essentially radiative apart in the region of the Z-opacity bump

Important incertainties regarding the structure and future evolution of these stars are:

-the extent of chemical element mixing beyond the core instable

layers as defined by the Schwarzschild criterium

-Transport of angular momentum because the rotation also plays some role in element mixing

1) Convective instability

Rising eddy: $\rho < \rho_{env}$ after travelling distance I

buoyancy : f=- g $\delta \rho$ =m γ

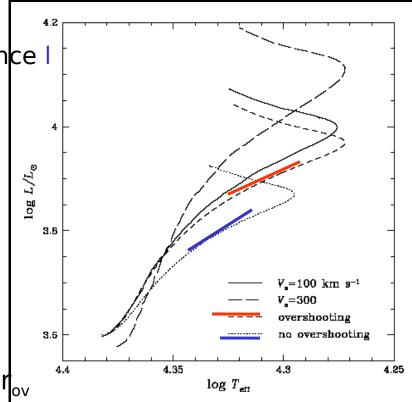
Eddy stops when $\gamma = 0$

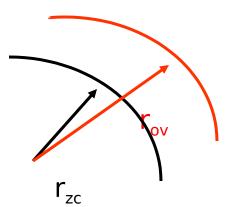
$$\rightarrow \nabla_{\rm ad} < \nabla_{\rm rad}$$

→ Convective core at Schwarzschild radius r_{zc}

but v ≠0 Core overshoot:

Due to inertia, eddies move beyond the Schwarzschild radius up to v=0: r_{ov}





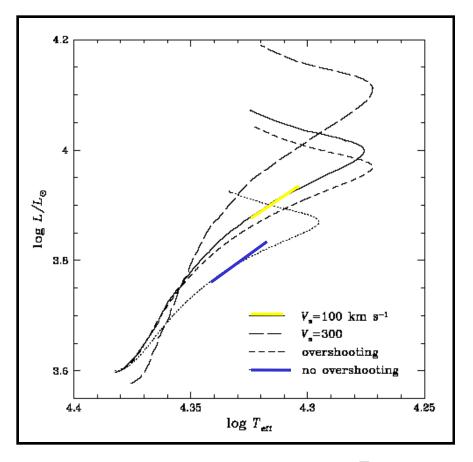
Evolutionary tracks for a 9M¹ models (*Talon et al., 1997*)

The overshooting distance in a simplist description in 1D stellar evolutionary models: $d_{ov} = \alpha_{ov} \min(r_{zc}, H_p)$ with $H_p = local$ pressure scale height

2) Rotationally induced mixing

Meridional cirdculation + (rotationally induced) turbulence

- → Diffusion of chemical elements
- → mixing



Evolutionary tracks for a 9M¹ models (*Talon et al., 1997*)

We want: to identify

regions of uniform rotation and regions of differential rotation

(depth, latitude

dependence)

inside the star $(\Omega_{\rm core}/\Omega_{\rm surf})$ \rightarrow constraint on transport of angular momentum

Another goal is

to disentangle effects of overshooting and rotation on mixed central regions and extension of convective core

Seismology of O-B stars can bring some light about these processes:

Fitting axisymmetric modes m=0: overshoot distance

Non axisymmetric modes : rotation profile

βCephei stars are good candidates for this purpose

Advantage over delta Scuti stars: no near surface convective layers → mode identification is trustworthy

β Cephei stars

Pulsating stars with masses roughly > 5
Msol

A few modes around the fundamental radial mode: low radial order, low degree p/g modes with periods

around 3-8 h:

sofar observed and identified p1, p2, g1 modes often of *mixed* p ang g nature

Reviews: Kurtz 2006, Handler 2006, Stankov, Handler 2005, Pigulski 2007, Aerts 2008

g modes p propagative when
$$\omega^2 > N^2$$
 and $\omega^2 > S_1^2$

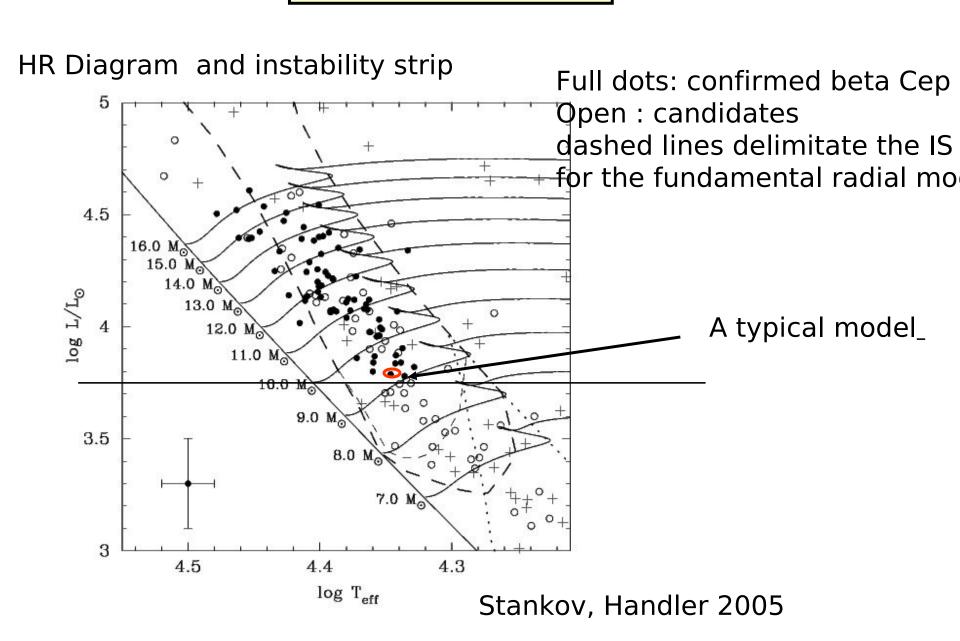
Brunt-Vaissala (buoyancy) frequency (sound speed)
$$N^2 = \frac{g}{r} \frac{d \ln P}{d \ln r} \left[\left(\frac{\partial \ln \rho}{\partial \ln T} \right)_P (\nabla_{ad} - \nabla) - \nabla \mu \right]$$

$$S_1^2 = (k_h c_s)^2 = I(I+1) c_s^2/r^2$$

Modes g propagative when $\omega^2 < N^2$ and $\omega^2 < SI^2$

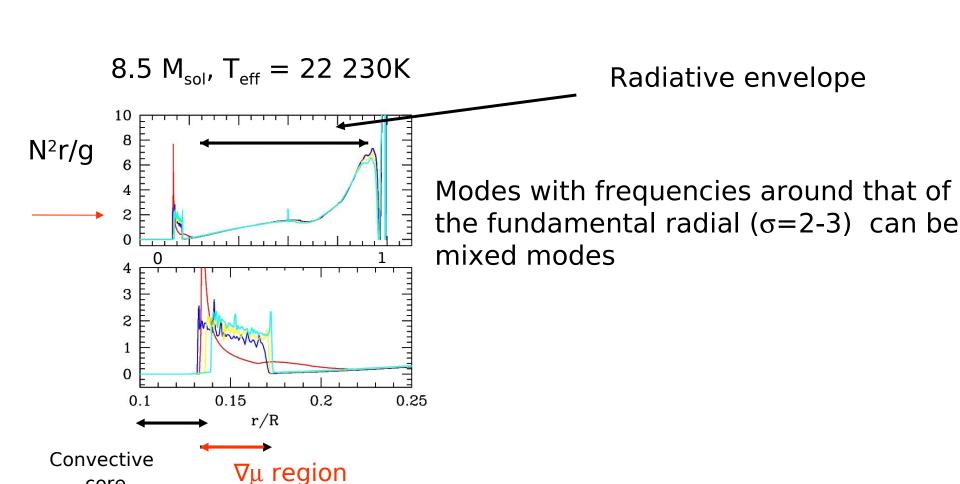
lixed modes: g mode in the inner part and p mode in the outer part

β Cephei stars



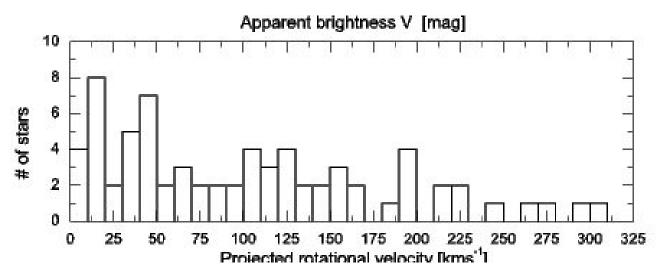
Brunt-Vaissala for a typical model N²

$$N^2/g = (1/\Gamma_1)$$
 (dln p /dr- dln ρ /dr)



core_

β Cephei stars



Stankov, Handler 2005

slow rotators <50 km/s up to rapid > 250 km/s

$$\Omega/\Omega_{\rm K} \sim 0.003$$
 up to 0.015 $\Omega_{\rm K} = ({\rm GM/R^3})^{1/2}$ break up angular velocity

Rapid rotation for these stars ~100 km/s C. Lovekin, R. Deupree Ω/Ω_{κ} ~0.06

OUTLINE

- . I Introduction
- II. Theoretical framework: brief reminding No rotation , notation
- III. Seismic analyses of the 4 beta Cep
- III.1 Rotational splittings and overshoot
- III.2 Splitting asymmetries: distorsion
- III.3 Axisymmetric modes: mixing

Theoretical background : a brief reminder

Tools for a theoretical interpretation

Study pulsation -> linearized equations about a static equilibrium stellar model

$$P_0$$
, ρ_0 , $\Gamma 1$, ϕ_0

Rotation \rightarrow centrifugal and Coriolis accelerations come into play : $\Omega(r, \vartheta)$

Centrifugal force affects the structure of the star : oblatness, distorsion

→ meridional circulation, chemical mixing

Coriolis force enters the equation of motion → affects the motion of waves and frequencies of normal modes

Equation of motion is perturbed, resonant cavity is modified

- → Linearized equation of motion is modified
- → static equilibrium stellar model is modified

No rotation

adiabatic oscillations:

linearized equations of momentum, continuity and adiabatic relation + boundary conditions leads to an eigenvalue problem:

$$\mathcal{L}_0 \boldsymbol{\xi} - \rho_0 \hat{\omega}^2 \boldsymbol{\xi} = \mathbf{0}$$

with

$$\mathcal{L}_0 \xi = \nabla p' - \frac{\rho'}{\rho} \nabla p_0 + \rho_0 \nabla \phi'$$

+ B(oundary) C(onditions)

Eigenvalue problem: ω is the eigenvalue

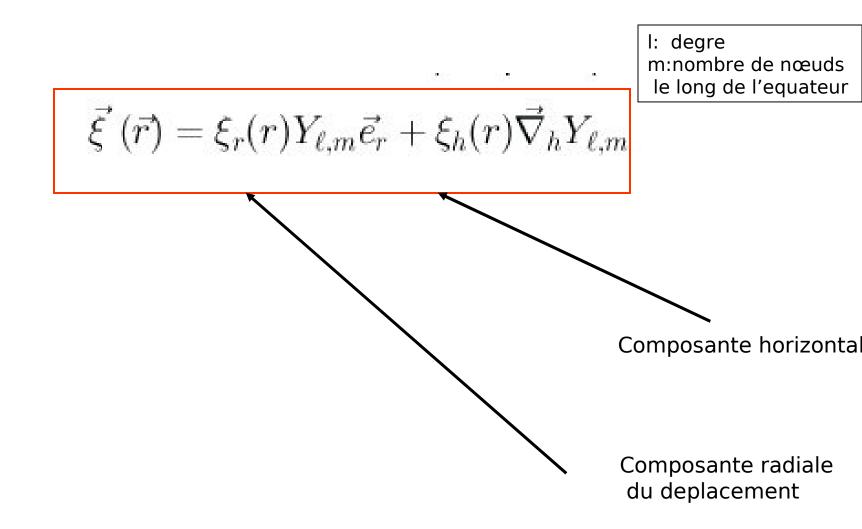
 ξ is the eigenfunction for the displacement

No rotation: axisymmetric modes: m=0

$$\int d3r \, \xi * \left(\mathcal{L}_0 \xi - \rho_0 \hat{\omega}^2 \xi \right) = 0$$

$$\omega_0^2 = \frac{1}{I} < \vec{\xi}^* | \mathcal{L}_0 \vec{\xi} > \qquad ; \qquad I = < \vec{\xi}^* | \vec{\xi} >$$

Eigenmode: displacement At zeroth order, it is written with a single harmonics



Add rotation

Results discussed here are obtained with <u>perturbation</u> <u>methods</u>

Rotation: Seismic Diagnostics:

1- Splitting

2 Splitting Asymmetries

3- Centroid modes v (m=0)

OUTLINE

- I Introduction
- II. Theoretical framework: brief reminding No rotation, notation
- III. Seismic analyses of the 4 β Cep
- III.1 Rotational splittings and overshoot
- III.2 Splitting asymmetries: distorsion
- III.3 Axisymmetric modes : mixing
- III.4 Cubic order versus latitudinal dependence

Ш

Four β Cepheid stars

with seismic analyses

3 Cephei stars

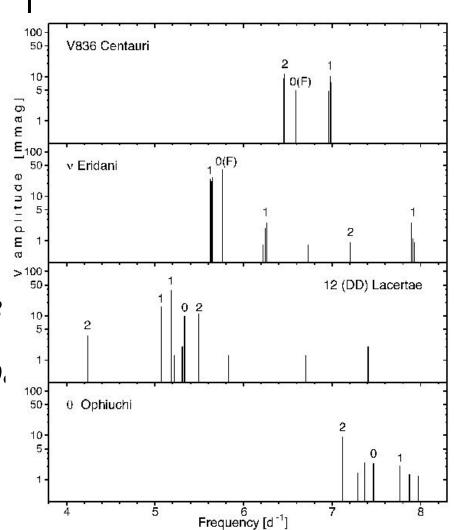
such stars have been the subject of seismic analyses:

(836 Cen (HD 129929) Aerts 2003 , Dupret et al 2004 Eri Pamyatnykh et al 2004, Ausseloos et al 2004, Dziembowski et al 2007 Dziembowski, Pamyatnykh 2008 2 Lac Dziembowski, Pamyatnykh 2004

for which information about *rotation* and *core overshoot* has been inferred

Ophiuchi Briquet et al 2005, 2007

Some others are under investigation



Pigulski 2007

OUTLINE

- I Introduction
- II. Theoretical framework: brief reminding

III. Seismic analyses of the 4 β Cep

III.1 Rotational splittings and overshoot

III.2 Splitting asymmetries: distorsion

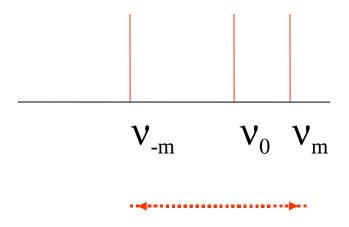
III.3 Axisymmetric modes : mixing

III.4 Cubic order versus latitudinal dependence

III.1 Rotational splitting

 v_{0nlm} = frequency for a given oscillation mode: n, l, m

Rotation breaks the azimuthal symmetry, lifts the degeneracy: $2l + 1 \mod s$ (given n,l): $schematique \ l=1 \ triplet$

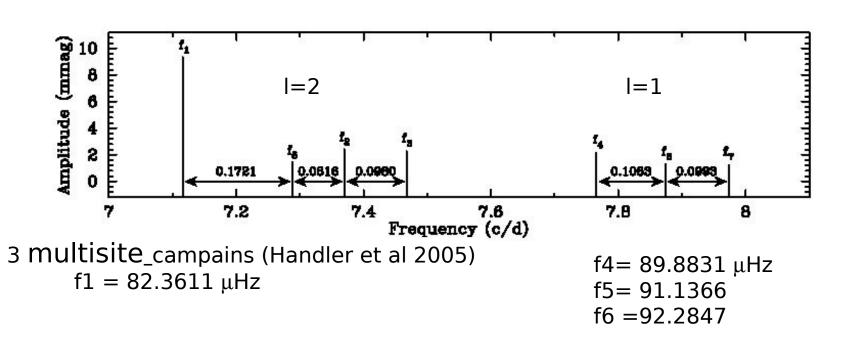


Ophiuchi: a β Cephei with a mass ¬ 9 Msol and an effective temperature ¬22 900 K identified frequencies:

he radial fundamental l=0 (p1)

one triplet l=1 (p1)

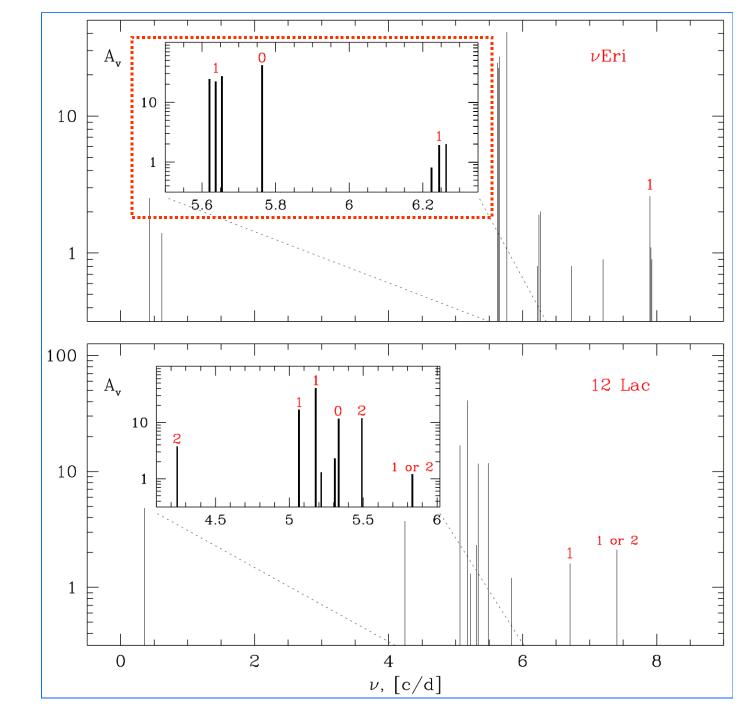
3 components (m=-1,1,2) d'un quintuplet l=2 (g1)



Seismic analysis Briquet et al 2007

Oscillation spectra of V Eri and 12 Lac

Two rotationally splitted triplets of *l* = 1 modes (g1 and p1)

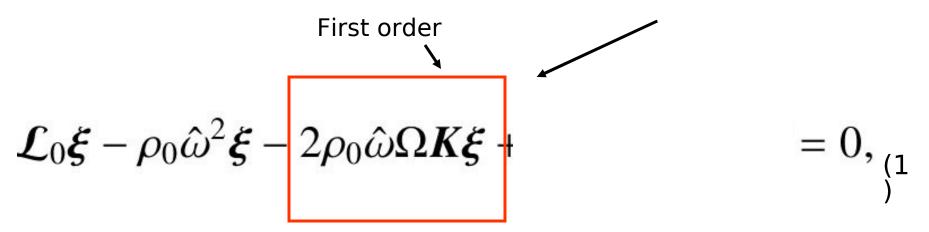


Dziembowski & Pamyatnykh 2008

III.1a) Theoretical expression

Linearized equation of motion

From Coriolis acc. $2\Omega \times v$



 $^{\circ}\omega = \omega + m \Omega \quad \omega$ is the eigenfrequency

 ξ is the displacement eigenvector (ξr radial component ξh : horizontal component)

$$\int d^3r (\xi^*. (1)) \rightarrow$$

from which one derives

no rotation Coriolis

$$\omega_{nlm} = \omega_{nl0} + m S_n$$

Assuming a shellular rotation $\Omega(r)$

Splitting (m azimuthal order)

Rotation angular velocity

$$\mathsf{S}
eq \int_0^R dr K_{n,\ell}(r) \Omega(r)$$

avec

$$K_{n\ell}(r)=rac{
ho_{00}\ r^2}{I}\left(\xi_r^2+\Lambda^2\xi_h^2-2\xi_r\xi_h+\xi_h^2
ight)$$
 rotational kernel

avec

$$I = \int_0^R \rho_{00} r^2 \; (\xi_r^2 + \Lambda^2 \xi_h^2) dr$$

Mode inertia_

Equivalent splitting definition at first order

$$S_1 \equiv \frac{\sigma_m - \sigma_0}{m} = \frac{\sigma_m - \sigma_{-m}}{2m} = \sigma_m - \sigma_{m-1}$$

depending which components of the multiplets are available

For a uniform rotation

III.1.b) HD 129929 is a beta Cephei d'environ 9 Msol, MS

Aerts et al 2003, Aerts et al 2004, Dupret et al 2004

1 For a uniform rotation

$$S = \Omega \beta$$

with β known from model , measured splittings $\,S\,$ gives :

I=1 p=1 triplet km/s

vrot = 3.61

I=2 g1 2 successive components yields vrot = 4.21 → Non uniform

rotation

2 Rotation of the convective core?

Assume a uniform rotation for the convective core with the angular velocity $\Omega = \Omega_c$ and a uniform rotation for the envelope $\Omega = \Omega_e$. Both values now are the unknowns

Inserting into Eq(1), the splitting becomes

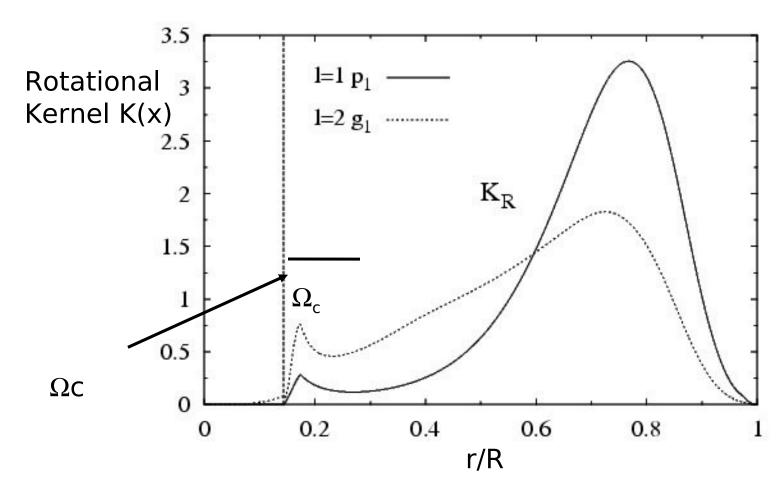
$$rac{\sigma_m-\sigma_0}{m}=rac{\sigma_m-\sigma_{-m}}{2m}=\Omega_ceta_c+\Omega_eeta_e$$

$$\Omega(x)$$
 Ωc
 Ωe
 X_c

$$\beta_c = \int_0^{x_c} K(x) \ dx$$

$$\beta_e = \int_{x}^{1} K(x) dx$$

$$S = \int_0^1 K(x) \Omega(x) dx$$



Dupret et al 2004

 \rightarrow Non uniform rotation with $\Omega c/\Omega e=3.6$

3- Depth variation of the rotation in the envelope

Assuming a linear depth variation of the angular velocity

in the envelope_

$$\Omega(x) = \Omega_0 + (x - x0) \,\Omega'$$

 \rightarrow The splittings must obey $S = \Omega_0 \beta_0 + \Omega_1 \beta_1$

 $\beta 0$ and $\beta 1$ are known from the models; the knowledge of S1 and S2 yields $\Omega 0$ and Ω'

$$\beta_0 = \int_0^{x_c} K(x) dx$$
 $\beta_1 = \int_{x_c}^{x_e} (x - x_c) K(x) dx$

 \rightarrow non uniform rotation with avec $\Omega c/\Omega s = 3.6$

<u>Simple but efficient!</u>

th the splittings of the l=1 triplet and et the components of the l=2 ultiplet, it is found that in the envelope, the rotation gradient is small and the compatible with a solid rotation

Conclusions:

I=1 p1 triplet and I=2 2 successive frequencies do not probe rotation of the core for this star. A small rotation gradient in the envelope

Core extension:

d mixing = 0.2 Hp is rejected d mixing = 0.1 Hp is better than 0 c) θ Ophiuchi: a β Cephei with a mass ¬ 9 Msol and an effective temperature ¬22 90 ultisite_campains (Handler et al 2005) → 7 identified frequencies: radial fundamental I=0 (p1) - one triplet I=1 (p1) components (m=-1,1,2) d'un quintuplet I=2 (g1)

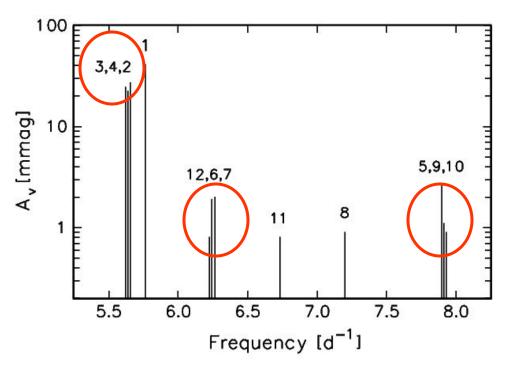
eismic analysis *Briquet et al 2007* he situation is very similar to the previous case

The modes do not provide strong constraint about the convective core however

rom its edge to the surface, <u>a uniform or slightly varying rotation</u>

Convective core extension : $\alpha_{mix} = 0.44 \pm 0.07$

III.1d) v Eri



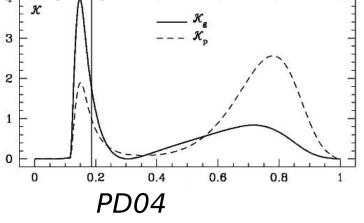
3 triplets l=1 (g1,p1,p2) One radial mode p1 One l=2 component

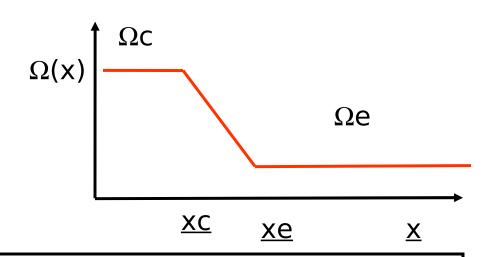
Jerzykiewicz et al 2005

smic studies : Pamyatnykh et al 2004, Aussellos et al 2004, Suarez et al embowski, Pamyatnykh 2008 Linear depth variation of Ω in the mu gradient zone $\Omega = \Omega c$ in the convective core $\Omega = \Omega e$ in the envelope above the grad mu region

$$\Omega(x) = \Omega_c \quad \text{for } x_c > x$$
 $\Omega(x) = \Omega_c + (x - x_c) \Omega' \quad \text{for } x_c < x < x$
 $\Omega' = \frac{\Omega_e - \Omega_c}{x_e - x_c}$
 $\Omega(x) = \Omega_e \quad \text{for } x_c > x$

Rotational





I=1 triplets g1 and p1 yield $\Omega c/\Omega e = 5.3-5.8$ DP08 Model fitting yields mixed core extension 0.1-0.2

III.1e)Summary

A few modes are enough to get some important information about internal rotation and core overshoot

- → If they are identified
- → If enough precise measurements
- → If age of the star such that ex
- → cited modes have mixed g, p modes

Desantangling overshoot/rotation effect on core element mixing ?

 $d_{ov} = \alpha_{ov} HP$ represents extension of mixed central layers

The question is

In the seismically measured d_{ov} , what part comes from eddies overshooting the r_{zc}

and

what part comes from other transport processes , f.i. rotation $\Omega c/\Omega e, \Omega e$?

Summary of III.1

Overshoot versus rotation

	Veq (km/s)	$lpha_{\sf ov}$	$\Omega_{inner}\!/\Omega_{env}$	Z
129929	~2	0.1 ± 0.05	$\Omega_{(0.2)/}\Omega_{\rm surf}{\sim}3.1$	0.019 ± 0.00
Ophiuchi	29 ± 7	0.44* ± 0.07	env. unif. rotation	0.012 ± 0.00
Eric	~6	0.15 ± 0.05	$\Omega_{\rm c}/\Omega_{\rm env} \sim 5.5-5.8$	0.0172 ±0.003
Lac 2 others *= Asp	~47	-	$\frac{\Omega_{\rm o}/\Omega_{\rm env}}{\rm only} \approx \frac{4.65}{\sim} 0.2$	0.015

It requires faster rotators other indicators

but one must take into account a Z- α_{ov} anticorrelation : Dupret et al, Thoul et al, Briquet et al

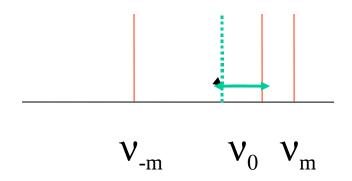
OUTLINE

II. Theoretical framework: brief reminding

- III. Seismic analyses of the 4 beta Cep
- III.1 Rotational splittings and overshoot
- III.2 Splitting asymmetries: distorsion
- III.3 Axisymmetric modes : mixing
- III.4 Cubic order versus latitudinal dependence

III.2 Splitting asymmetries

schematic I=1 triplet

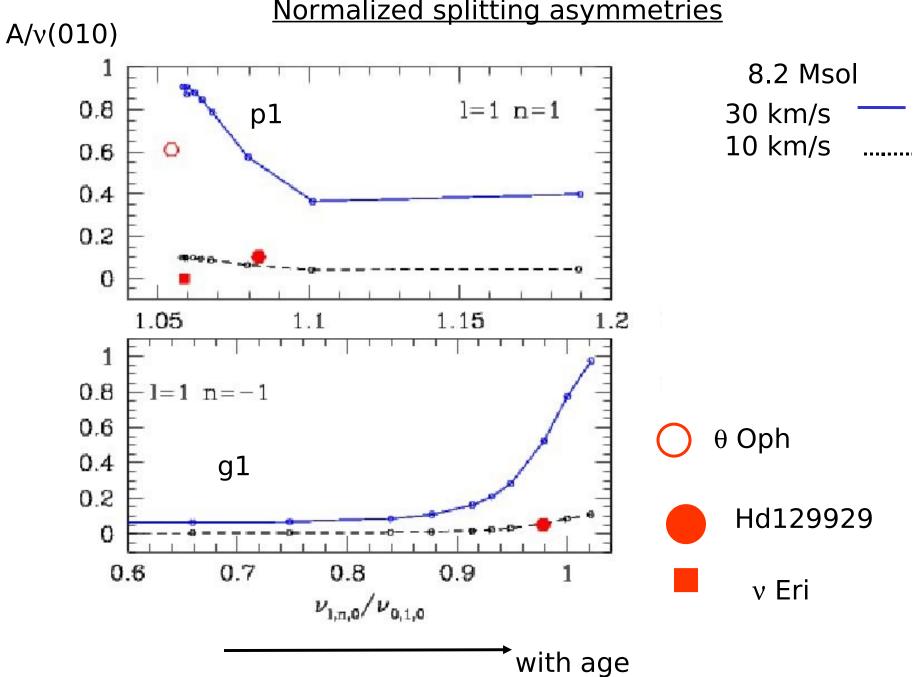


→A_m splitting asymmetries due to 2nd order effect

$$A_m = \sigma_0 - rac{1}{2} \sigma_m + \sigma_{-m}$$

v in μ Hz, c/d ; σ normalized frequency

Normalized splitting asymmetries



- Observed asymmetries deduced from l=2 seem to disagree:
- θ Ophiuchi Briquet et al 2007
- v Eri splitting too small for l=1 p2 triplets (Dziembowski, Jerzykiewicz 2003)

Disagreement real? Asymmetry values marginally above observed uncertainties

Not components of same multiplet? (Dziembowski, Pamyathnykh, 2008 for nu Eri)

worth to infer

Splitting asymmetries= different probes as kernels are different

For given
$$(n, \ell, m)$$
 mode:

$$\nu = \nu_0 + \frac{\Omega}{2\pi}C + (\frac{\Omega}{2\pi})^2(D_0 + m^2D_1)...$$

Splitting: slow rotators:Coriolis effect

asymmetry

Centrifugal distorsion dominates but for low radial modes Coriolis contribution remains significant

$$\rightarrow A_{\rm m} = \nu_0 - (1/2)(\nu_{\rm m} + \nu_{\rm -m}) = (\Omega/2\pi)^2 D_1$$

Where does it come from?

Linearized equation of motion:

$$\mathcal{L}_0 \boldsymbol{\xi} - \rho_0 \hat{\omega}^2 \boldsymbol{\xi} - 2\rho_0 \hat{\omega} \Omega \boldsymbol{K} \boldsymbol{\xi} + (\mathcal{L}_2 - \rho_2 \hat{\omega}^2) \boldsymbol{\xi} = 0,$$

$$\mathcal{L}_0 \xi = \nabla p' - \frac{\rho'}{\rho} \nabla p_{\infty} + \rho_{\infty} \nabla \phi'$$

spherical distorsion

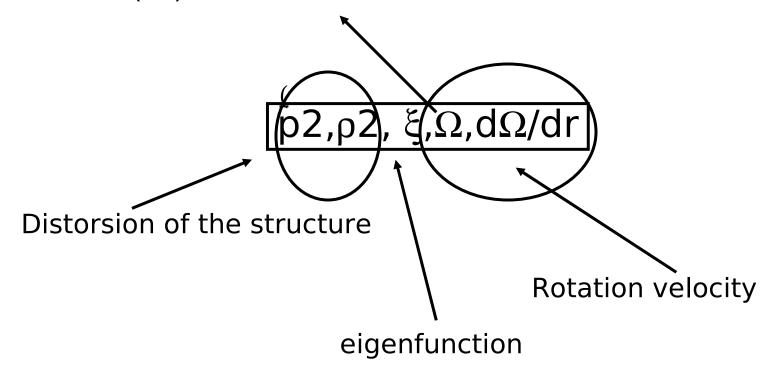
et

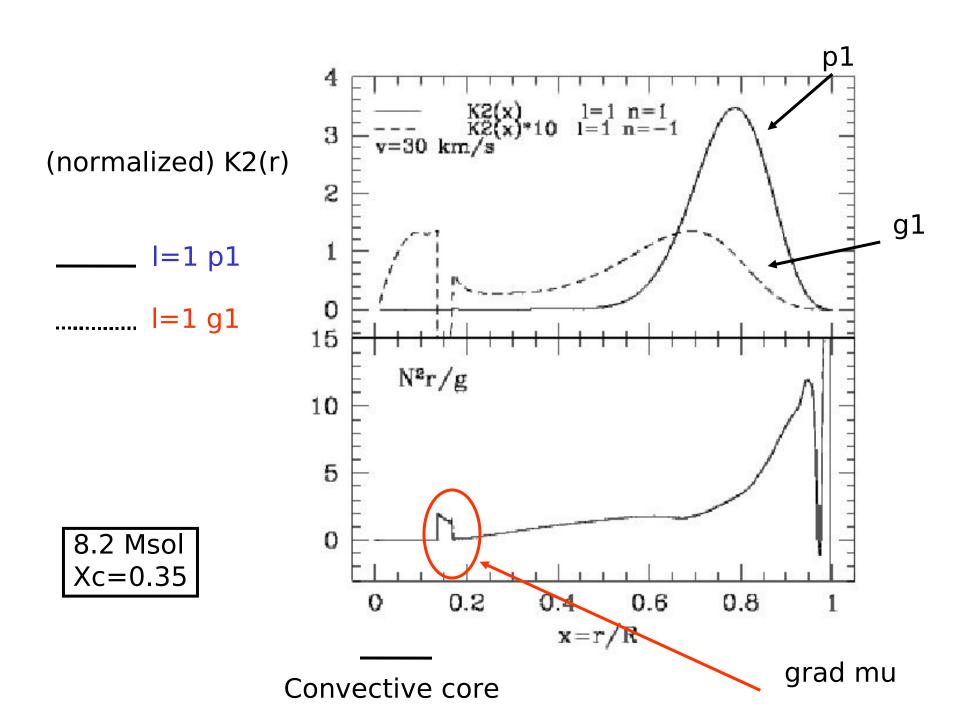
$$egin{aligned} L_2 oldsymbol{\xi} &= & rac{
ho'}{
ho} \left[rac{
ho_2}{
ho}
abla p -
abla p_2 \end{aligned} +
ho_2
abla \phi' \cdot & +
ho \, oldsymbol{e_s} r \sin heta \,
abla \Omega^2. oldsymbol{\xi} \end{aligned}$$

Non spherical distorsion

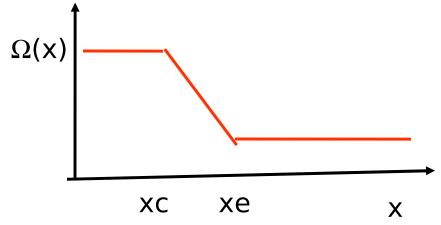
$$A_{-}=\sigma_0-rac{1}{2}(\sigma_m+\sigma_{-m})$$

$$A_{-} = \int_0^1 \frac{\Omega(x)^2}{(2\pi)^2} K_2(x) \ dx$$





With a few modes, similar inference than for splitting:



$$\Omega^2(x) = \Omega_c^2$$
 for $x_c > x$

$$\Omega^{2}(x) = \Omega_{c}^{2} + 2(x - xc) \Omega' \Omega_{c} + (x - xc)^{2} \Omega'^{2}$$
 for $x_{c} < x < x_{e}$

$$\Omega^2(x) = \Omega_e^2 \text{ for } x_c > x$$

$$\Omega' = \frac{\Omega_e - \Omega_c}{x_e - x_c}$$

$$A_m = \Omega_c^2 eta_0 + 2\Omega' \Omega_c eta_1 + eta_2 \Omega'^2$$
 $eta_0 = \int_0^{x_c} K_2(x) \, dx$
 $eta_1 = \int_{x_c}^{x_c} (x - x_c) \, K_2(x) \, dx$
 $Assumed known from splitting$
 $eta_2 = \int_{x_c}^1 (x - x_c)^2 \, K_2(x) \, dx$

 \rightarrow Constraint on β 's hence on K2(x) ie on distorted structure and/or $\Omega(r)$ Promising prospects

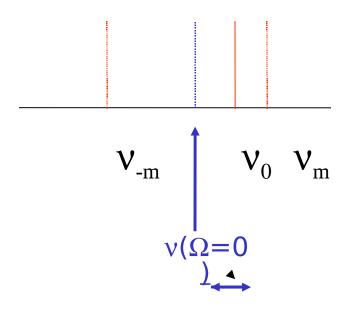
OUTLINE

II. Theoretical framework: brief reminding

- III. Seismic analyses of the 4 beta Cep
- III.1 Rotational splittings and overshoot
- III.2 Splitting asymmetries: distorsion
- III.3 Axisymmetric modes : mixing

III.3 Axisymmetric modes and mixing

schematique l=1 triplet



Frequency differences $v0 - v(\Omega = 0)$ can be efficient diagnostics but_

Care with defining the Ω =0 stellar model for comparison

Rotationally induces mixing changes the structure, particularly affects N^2 at the border of the convective core hence modifies axisymmetric mode m=0 frequencies

Rotational mixing: Meridional circulation+ turbulence (Zahn, 1992 and subsequent works) induces some diffusive transport of chemical elements

Evolution of chemical species:

$$\rho \frac{\mathrm{d}c}{\mathrm{d}t} = \rho c_{\text{nuc}} + \frac{1}{r^2} \frac{\partial}{\partial r} [r^2 \rho V_{ip} c]$$

nuclear transformation atomic diffusion

Rotationally induces mixing changes the structure, particularly affects N^2 at the border of the convective core hence modifies axisymmetric mode m=0 frequencies

Rotational mixing: Meridional circulation+ turbulence (Zahn, 1992 and subsequent works) induces some diffusive transport of chemical elements

Evolution of chemical species: circulation turbulence $\rho \frac{\mathrm{d}c}{\mathrm{d}t} = \rho \, c_{\mathrm{nuc}} + \frac{1}{r^2} \frac{\partial}{\partial r} \Big[r^2 \rho V_{\mathrm{i}p} c \Big] + \frac{1}{r^2} \frac{\partial}{\partial r} \Big[\rho \, r^2 \Big(D_{\mathrm{eff}} + D_{\mathrm{v}} \Big) \frac{\partial c}{\partial r} \Big]$ nuclear transformation atomic diffusion

'Extra' mixing

Chemical and angular momentum must be solved together

Evolution of angular momentum:

$$\rho \frac{\mathrm{d}}{\mathrm{d}t} (r^2 \Omega) = \frac{1}{5r^2} \frac{\partial}{\partial r} \left[\rho r^4 \Omega u_r \right] + \frac{1}{r^4} \frac{\partial}{\partial r} \left[\rho v_v r^4 \frac{\partial \Omega}{\partial r} \right]$$

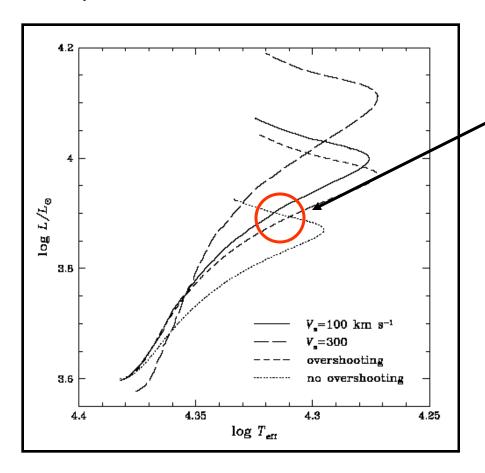
Evolution of chemical species: circulation turbulence

$$\rho \frac{\mathrm{d}c}{\mathrm{d}t} = \rho c_{\text{nuc}} + \frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 \rho V_{ip} c \right] + \frac{1}{r^2} \frac{\partial}{\partial r} \left[\rho r^2 \left(D_{\text{eff}} + D_v \right) \frac{\partial c}{\partial r} \right]$$

nuclear transformation atomic diffusion

'Extra' mixing' Deff, $Dv(ur, \Omega)$

Consequences:

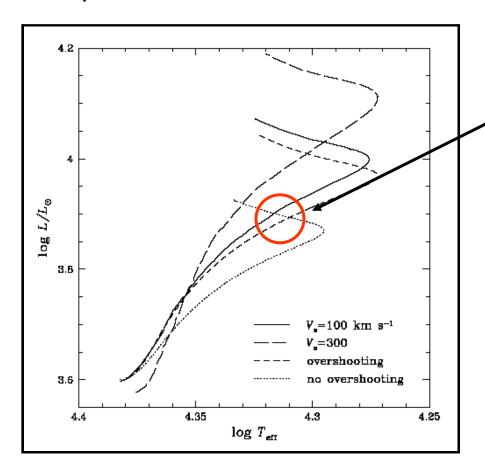


At a given location in a HR diagram, several models with different structures

ie differents axisymmetric modes?

Evolutionary tracks in a HR diagram 9M[®] models (*Talon et al., 1997*)-

Consequences:



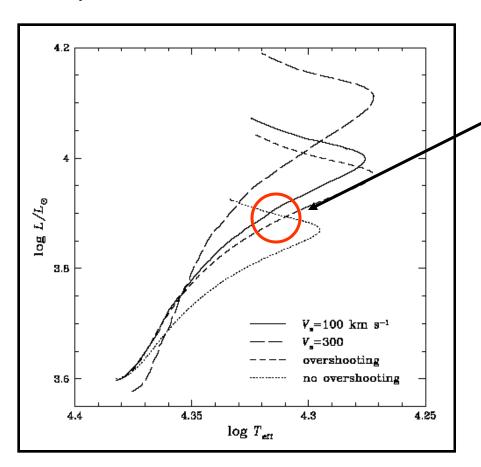
Evolutionary tracks in a HR diagram 9M[®] models (*Talon et al., 1997*)-

At a given location in a HR diagram, several models with different structures

ie differents axisymmetric modes ?

Important effect at the edge of the convective core

Consequences:



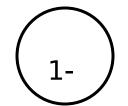
At a given location in a HR diagram, several models with different structures

ie differents axisymmetric modes ?

Important effect at the edge of the convective core

Evolutionary tracks in a HR diagram 9M[®] models (*Talon et al., 1997*)-

gc mode can efficiently probe such effects as was suggested for overshooting by Dziembowski, Pamyatnykh 1999_



Montalban, Miglio, Eggenberger, Noels, 2008 Miglio, Montalban, Noels, Eggenberger,_2008

nvestigation of effect of turbulent mixing on g mode spectrum and their ability to probe the extent of a convective core

Evolution of chemical species:

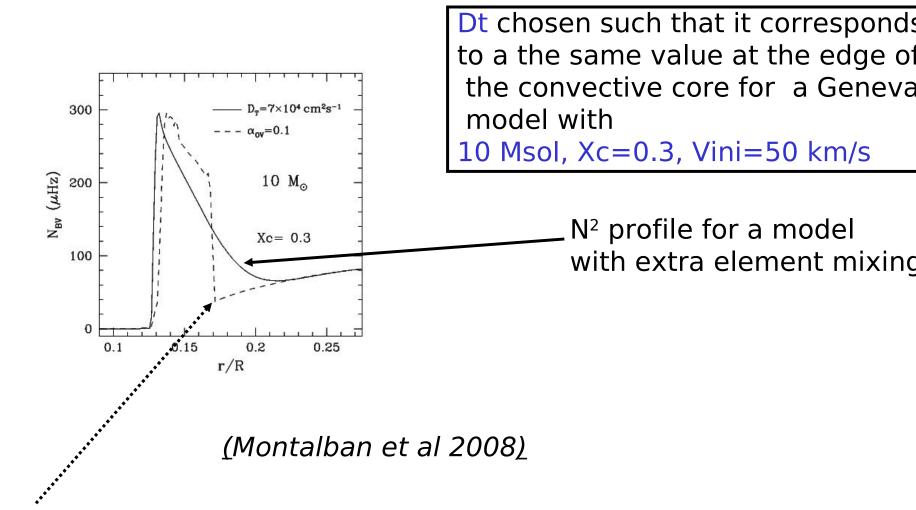
$$\rho \frac{\mathrm{d}c}{\mathrm{d}t} = \rho c_{\mathrm{nuc}} + \frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 \rho V_{ip} c \right] + \frac{1}{r^2} \frac{\partial}{\partial r} \left[\rho r^2 \left(D_{\mathrm{eff}} + D_{v} \right) \frac{\partial c}{\partial r} \right]$$

$$Dt = \mathrm{constant}$$

Dt constant with evolution : for massive stars , roughly OK (J.Montalban)

Dt uniform inside the star, value taken to correspond to the value near

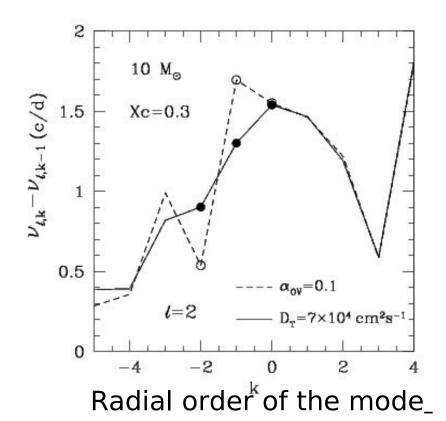
the convective given by Geneva 'rotating' models OK pour g modes with most amplitude there



 N^2 profil for a model with an overshooting distance dov =0.2 Hp

Large difference in N at the edge of the convective core \rightarrow large effect on frequencies of g modes and mixed modes

Large frequency separations for O and V models



O: model with overshoot V: model with V50 km/s pseudo rotationally induced mixing

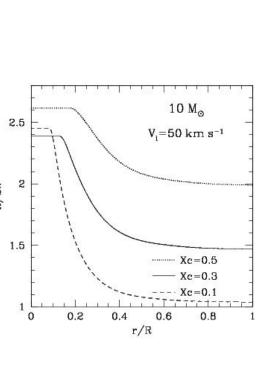
 $\Omega c/\Omega e = 1.6$

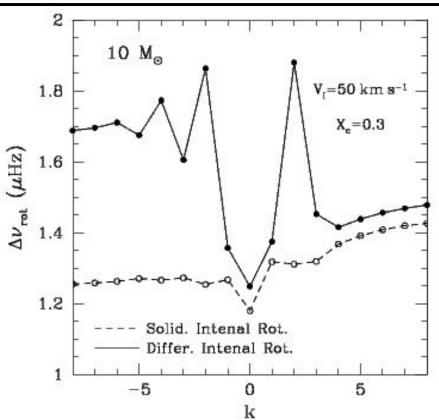
Montalban et al 2008

Rotationally induces mixing changes the structure Hence frequencies and eigenfunctions

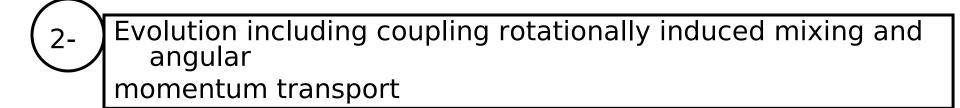
And therefore also splittings and asymmetries

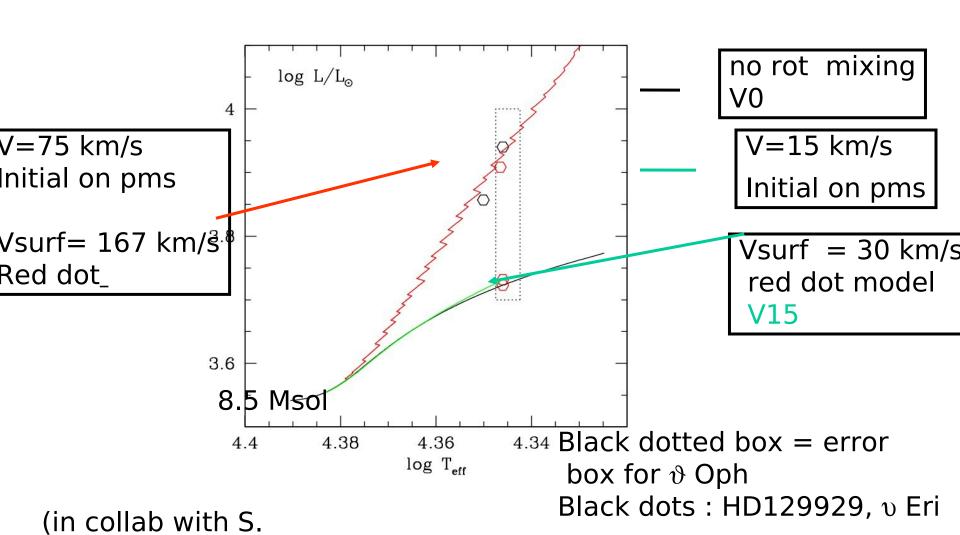
Effect of pseudo rotationally induced mixing on splittings

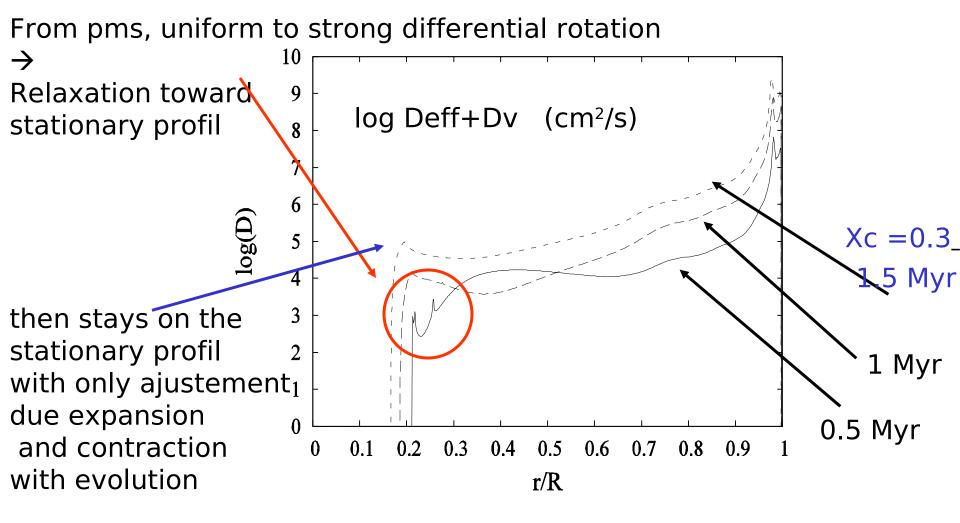




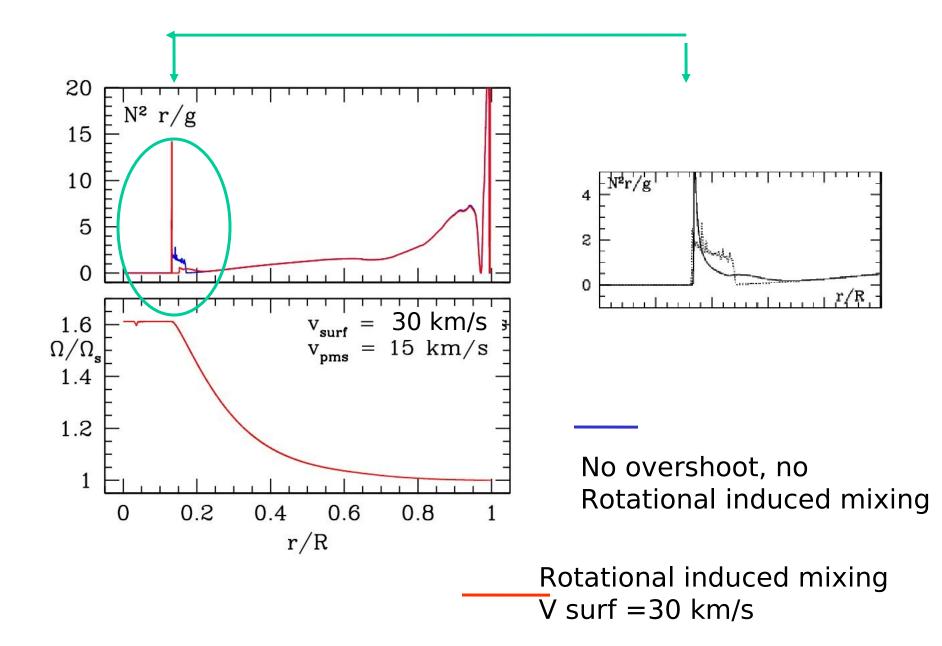
Montalban et al 2008

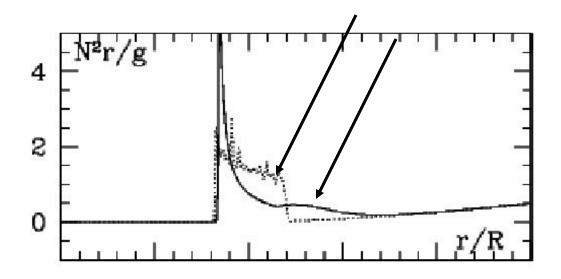


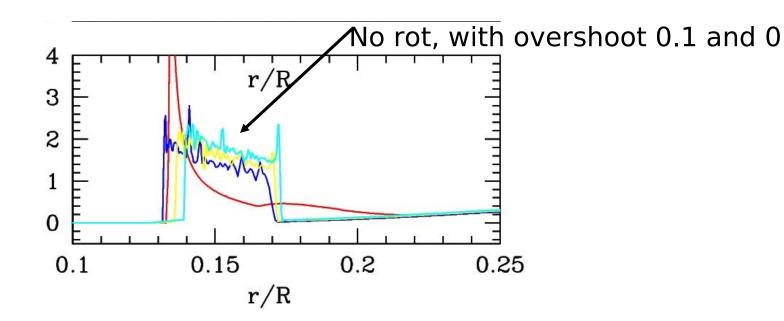


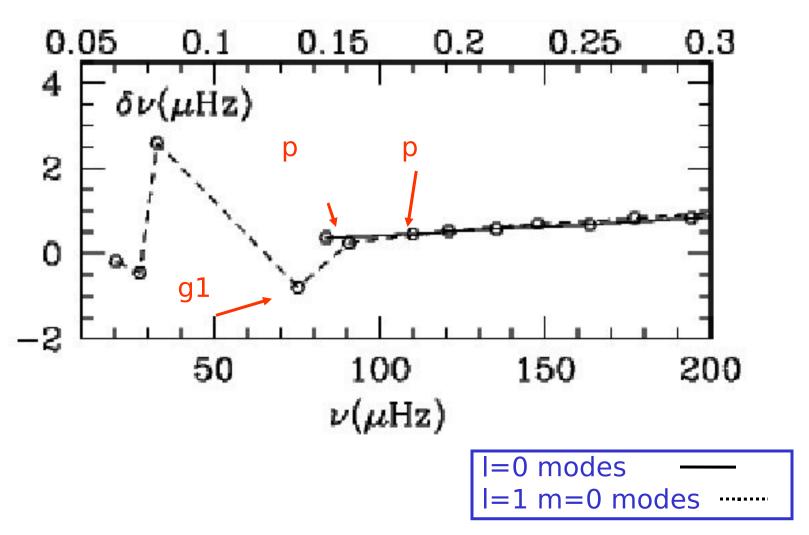


8.5 Msol V15 km initial on pms, vsurf =48.8 km/s for Xc=0.3









gn and magnitude of $\delta \omega$ dependent on the mdoe

How can we understand ?

$$\mathcal{L}_0 \boldsymbol{\xi} - \rho_0 \hat{\omega}^2 \boldsymbol{\xi} = \mathbf{0}$$

$$\omega_0^2 = \frac{1}{I} < \vec{\xi_0}^* | \mathcal{L}_0 \; \vec{\xi_0} > \qquad ; \qquad I = < \vec{\xi_0}^* | \vec{\xi_0} >$$

W02 = 1/I int dr K0(r)

First order in perturbation, eigenfunction inchanged W02(rot) - W02(no rot) = (1/I) int dr del K0

Linearized momentum equation

$$\bullet \qquad \omega^2 \boldsymbol{\xi} = \nabla p' + \rho_0 \nabla \phi' + \rho' \nabla \phi_0$$

$$\omega^2 I = \int_V \boldsymbol{\xi}^* \cdot (\nabla p' + \rho_0 \nabla \phi' + \rho' \nabla \phi_0) \mathbf{d}^3 \mathbf{r}$$

After some manipulation

$$\omega^2 \ (I+J) = \int_R \lambda \xi_r \ (\frac{N^2}{g/r}) \ (\frac{c_s^2}{r^2}) \ \rho_0 r^3 dr$$
 with
$$J = \int_R (\frac{dln\rho_0}{dlnr} \frac{\xi_r}{r} + \lambda) \xi_h \ \rho_0 r^3 dr$$
 and
$$I = \int_R (\xi_r^2 + \Lambda^2 \xi_h^2) \ \rho_0 r^2 dr$$
 Definitions
$$N^2 = \frac{g}{r} (\frac{1}{\Gamma_1} \frac{dlnp_0}{dlnr} - \frac{dln\rho_0}{dlnr})$$

$$\lambda = \frac{1}{r^2} \frac{dr^2 \xi_r}{dr} - \frac{\Lambda^2}{r} \xi_h$$

Differences between V0 and V15 come from the derivatives of the structure quantity and actually from

 $\frac{dln\rho}{dlnr}$

then

$$\delta \frac{N^2 r}{g} \sim -\frac{d l n \rho}{d l n r}$$

and

$$2\omega_0\delta\omega(I+J) + \omega_0^2\delta J = \int_R \lambda \xi_r \frac{\delta(N^2 c_s^2)}{g/r} \frac{c_s^2}{r^2} \rho_0 r^2 dr$$

$$\delta J = \int_{R} \delta \frac{dln\rho_0}{dlnr} \; \xi_r \xi_h \; \rho_0 r^2 dr$$

$$\delta\omega = \frac{1}{2\omega_0(I+J)} \int_R \delta(\frac{N^2}{g/r}) \xi_r (\lambda \frac{c_s^2}{r^2} - \omega_0^2 r \xi_h) \ \rho_0 r^2 dr$$

Sign of $\delta\omega$

