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> disc core disrupted by magnetic field of protostar (eg Konigl 1991)
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> magnetic coupling with inner accretion disc (eg Konigl 1991) 
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magnetic disruption & coupling

magnetic torques build up from rotation shear (Ghosh & Lamb 1979) 
> disrupt the inner disc & generate star/disc angular momentum transfer

> rotation rate of protostar forced into equilibrium state (fn of mass-
accretion rate and large-scale field, eg Cameron & Campbell 1993)

> reproduces slow rotation of cTTSs 
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magnetic disruption & coupling

magnetic torques build up from rotation shear (Ghosh & Lamb 1979) 
> disrupt the inner disc & generate star/disc angular momentum transfer

> rotation rate of protostar forced into equilibrium state (fn of mass-
accretion rate and large-scale field, eg Cameron & Campbell 1993)

> reproduces slow rotation of cTTSs 

accreting protostars

wind from the star /disc opens field lines (eg Safier 1998)
> reduces coupling and spin-down torque  

> cannot reproduce observed rotation of cTTSs (eg Matt & Pudritz 2004)

wind/corona & field opening
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3D MHD accretion models
disc material accreted through tilted magnetosphere 

> complex stream-like accretion funnels linking star to inner disc 
> polar hot spots at footpoints of accretion funnels for dipolar fields

(eg Romanova et al 2003, 2004; Long et al 2007)

angular momentum balance (including corona)
> reproduces observed rotation periods of cTTSs

(eg Long et al 2005)
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including disc dynamo & wind 
> large fraction of disc material diverted into wind  

> complex star/disc dynamo fields less efficient at slowing down cTTSs
(eg vonReckowski & Brandenburg 2004, 2006)

3D MHD accretion models
disc material accreted through tilted magnetosphere 

> complex stream-like accretion funnels linking star to inner disc 
> polar hot spots at footpoints of accretion funnels for dipolar fields

(eg Romanova et al 2003, 2004; Long et al 2007)

angular momentum balance (including corona)
> reproduces observed rotation periods of cTTSs

(eg Long et al 2005)

accreting protostars

2.5D models including disc field & wind
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B splits spectral lines in multiple subcomponents
splitting increases linearly with wavelength (wrt line Doppler width)
B produces circular & linear polarisation signatures in lines profiles

accreting protostars

polarised light detect circular (linear) polarisation Zeeman signatures 
sensitive to longitudinal (transverse) magnetic field

> high resolution spectropolarimeters (eg ESPaDOnS/CFHT, NARVAL/TBL)

unpolarised light detect Zeeman broadening & desaturation
sensitive to average field strength (and filling factor)

> high resolution (nIR) spectroscopy (eg Phoenix/Gemini)

Zeeman effect in stellar lines
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field detected in  ~15 cTTS (mostly in Taurus)
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magnetic 
broadening

in photospheric absorption lines (eg nIR) 
> average magnetic flux of several kG

eg: 2.8 kG on BP Tau (Johns-Krull et al 1999) 
magnetic flux x2 stronger in the nIR than in the optical

> strong magnetic fields concentrating in dark spots

field detected in  ~15 cTTS (mostly in Taurus)

pros 
& 
cons

pros:  no signal cancellation from opposite polarities
> estimates average field strength and rough surface coverage

cons:  very little sensitivity to field orientation
only possible for slow rotators (vsini < 10 km/s)

> no constraint on field topology
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magnetic strengths of cTTSs
magnetic fluxes ranging from 1 to 3 kG (Johns-Krull 2007)

significantly larger than equipartition fields
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in emission lines tracing accretion (eg He I  D3, Ca II IRT)
> tracing monopolar longitudinal fields of several kG 

eg: 3 kG on BP Tau in He I D3 (Johns-Krull et al 1999)

in photospheric absorption lines (eg LSD profiles)
> tracing more complex longitudinal fields of a few 100 G 

eg: ~500 G on BP Tau (Donati et al 2007)

longitudinal fields detected in ~10 cTTSs
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in emission lines tracing accretion (eg He I  D3, Ca II IRT)
> tracing monopolar longitudinal fields of several kG 

eg: 3 kG on BP Tau in He I D3 (Johns-Krull et al 1999)

in photospheric absorption lines (eg LSD profiles)
> tracing more complex longitudinal fields of a few 100 G 

eg: ~500 G on BP Tau (Donati et al 2007)

longitudinal fields detected in ~10 cTTSs

accreting protostars

pros 
& 
cons

pros:  sensitive to vector field properties
> map large-scale magnetic topology (using tomographic imaging)

cons:  cancellation from nearby opposite polarities
> insensitive to small-scale bipolar groups

circular 
polarisation 
signatures
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accreting protostars

use spectropolarimetric series...

...to reconstruct surface magnetic topology...

rotational modulation of Zeeman signature (Doppler effect)
> recover spot location and field orientation

use spherical harmonics decomposition and tomographic imaging
> infer magnetic topology (poloidal/toroidal components)



assume potential field topology
> get 3D image of stellar magnetosphere

accreting protostars

use spectropolarimetric series...

...to reconstruct surface magnetic topology...

...and extrapolate it outwards

rotational modulation of Zeeman signature (Doppler effect)
> recover spot location and field orientation

use spherical harmonics decomposition and tomographic imaging
> infer magnetic topology (poloidal/toroidal components)
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different Zeeman signatures in LSD profiles & emission lines 
(i) assume accretion spot contributing to emission lines only

(ii) assume surrounding photosphere contributes to LSD profiles only
> fit Stokes I & V LSD and Ca II IRT profiles simultaneously 

> derive maps of magnetic field & accretion spots

Zeeman signatures
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Donati et al 2007a
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magnetic field and accretion spots
accretion spot located close to the pole

kG radial field in the accretion spot
small toroidal field (10-20% of magnetic energy)
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> V2129 Oph : d=0.35; o=1.2 kG

> BP Tau : d=1.2; o=1.6 kG
> dynamo origin likely
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coronal structure
work by M Jardine & S Gregory @ StAndrews

extrapolate surface field assuming no current (potential)
complex field lines close to the surface

simple large loops further away
Xray luminosity compatible with observations
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coronal structure

compute location of accreting field lines for various rA

select value of rA producing accretion spots matching observations 
> V2129 Oph : rA ≈ 7 R* (≈ rC)

> BP Tau : rA ≥5 R* (rC ≈ 7.5 R*)
 > disc magnetically warped in BP Tau ?

disc-locking scenario ?

geometry of accretion funnels

work by M Jardine & S Gregory @ StAndrews
extrapolate surface field assuming no current (potential)

complex field lines close to the surface
simple large loops further away

Xray luminosity compatible with observations
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V2129 Oph, rA = 3.5 R* Donati et al 2007a
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indirect indicators : photopolarimetric rotational modulation
AA Tau: prototype cTTS viewed ~equator on

modelling photopolarimetric rotational modulation 
> quasi-periodic occultations by warped disc with inner edge at 8-9 R*

(Bouvier et al 1999, 2007; Ménard et al 2003)
> non stationary magnetospheric accretion (Bouvier et al 2003, 2007) 
> 5.2 kG dipole tilted by 30° to explain warp (O’Sullivan et al 2005)
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indirect indicators : Xrays

COUP: 10d observation of Orion Nebula Cluster with Chandra
XEST: Extended Survey of the Taurus Molecular Cloud with XMM

cTTSs show Lx/Lbol > 10-5, ie >10x brighter than the Sun
cTTSs emit 1/2 as much X-rays wrt/ non-accreting TTSs

no activity vs. rotation dependence of Xray flux (saturation)
Xray and optical variability do not correlate 

Xray correlate with M*

most (hard 10-30 MK) Xrays come from coronal activity
little (soft 1-3 MK) Xrays from accretion shocks

most X-rays come from small field loops
evidence for large magnetic loops from Xray flare data
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CR Cha
BP Tau
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cloud collapse & advection of large-scale magnetic field
> producing jets through magnetocentrifugal mechanism

self-similar models of magnetised discs & jets (eg Ferreira et al 1997)
MHD simulations of magnetised collapse (eg Banerjee & Pudritz 2006)
> predict orientation & distribution of magnetic field in accretion disc

> predict dominant poloidal field component in disc
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cloud collapse & advection of large-scale magnetic field
> producing jets through magnetocentrifugal mechanism

self-similar models of magnetised discs & jets (eg Ferreira et al 1997)
MHD simulations of magnetised collapse (eg Banerjee & Pudritz 2006)
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use & abuse of existing instruments (LPs on ESPaDOnS/NARVAL)
promote/build Cass polarimeters for existing high-res spectrographs
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