accretion discs, low-mass protostars & protoplanets: the role of magnetic fields

JF Donati, LATT

LAOG: Bouvier, Ménard, Dougados, Ferreira UK: Jardine, Gregory, Cameron, Harries ENS: Hennebelle, Chabrier, Baraffe IAP: Terquem

HHHHHHHHHHHHHHHHHHHHHH background

origin of the Sun & the solar system

Kant (1755) & Laplace (1799) solar system formed from a rotating nebula condensing into a central star & surrounding planets

background

origin of the Sun & the solar system

Kant (1755) & Laplace (1799) solar system formed from a rotating nebula condensing into a central star & surrounding planets

a magnetic cloud collapse & accretion disc ?

angular momentum transport in accretion discs? > magnetic turbulence (Shakura & Sunyaev 1973) & magnetorotational instability (eg Balbus & Hawley 1991)

discovery of collimated jets around protostars (eg Snell et al 1980) > magnetocentrifugal model (eg Norman & Pudritz 1983)

origin of the Sun & the

conden

ba

© ESO

a magnetic cloud collapse

an > magnetic turbulence (S

discovery of collimated > magnetod

background

origin of the Sun & the solar system

Kant (1755) & Laplace (1799) solar system formed from a rotating nebula condensing into a central star & surrounding planets

a magnetic cloud collapse & accretion disc ?

angular momentum transport in accretion discs? > magnetic turbulence (Shakura & Sunyaev 1973) & magnetorotational instability (eg Balbus & Hawley 1991)

discovery of collimated jets around protostars (eg Snell et al 1980) > magnetocentrifugal model (eg Norman & Pudritz 1983)

background

origin of the Sun & the solar system

Kant (1755) & Laplace (1799) solar system formed from a rotating nebula condensing into a central star & surrounding planets

a magnetic cloud collapse & accretion disc ?

angular momentum transport in accretion discs? > magnetic turbulence (Shakura & Sunyaev 1973) & magnetorotational instability (eg Balbus & Hawley 1991)

discovery of collimated jets around protostars (eg Snell et al 1980) > magnetocentrifugal model (eg Norman & Pudritz 1983)

HHHHHHHHHHHHHHHHHHHHHHHHHH background

evacuating the disc core & braking stellar rotating ?

SED fitting and HAR imaging show central hole in accretion disc > disc core disrupted by magnetic field of protostar (eg Konigl 1991)

slow rotation of accreting protostars (cTTSs, eg Bertout 1989)
> magnetic coupling with inner accretion disc (eg Konigl 1991)

HHHHHHHHHHHHHHHHHHHHHHHHHH background

evacuating the disc core & braking stellar rotating ?

SED fitting and HAR imaging show central hole in accretion disc > disc core disrupted by magnetic field of protostar (eg Konigl 1991)

slow rotation of accreting protostars (cTTSs, eg Bertout 1989)
> magnetic coupling with inner accretion disc (eg Konigl 1991)

HHHHHHHHHHHHHHHHHHHHHHHHHHHH background

evacuating the disc core & braking stellar rotating ?

SED fitting and HAR imaging show central hole in accretion disc > disc core disrupted by magnetic field of protostar (eg Konigl 1991)

slow rotation of accreting protostars (cTTSs, eg Bertout 1989) > magnetic coupling with inner accretion disc (eg Konigl 1991)

magnetic fields & planet formation/migration ?

planet formed by dust accumulation or disc fragmentation? giant planet migration stopped by magnetic fields ? (Terquem 2003) disc fragmentation inhibited by magnetic fields ? (Fromang et al 2005)

close-in giant planets formed from slingshot prominences ? (Kurucz 2007)

HHHHHHHHHHHHHHHHHHHHHHHHHHHH background

evacuating the disc core & braking stellar rotating ?

SED fitting and HAR imaging show central hole in accretion disc > disc core disrupted by magnetic field of protostar (eg Konigl 1991)

slow rotation of accreting protostars (cTTSs, eg Bertout 1989) > magnetic coupling with inner accretion disc (eg Konigl 1991)

magnetic fields & planet formation/migration ?

planet formed by dust accumulation or disc fragmentation? giant planet migration stopped by magnetic fields ? (Terquem 2003) disc fragmentation inhibited by magnetic fields ? (Fromang et al 2005)

close-in giant planets formed from slingshot prominences ? (Kurucz 2007)

magnetic disruption & coupling

magnetic torques build up from rotation shear (Ghosh & Lamb 1979)
> disrupt the inner disc & generate star/disc angular momentum transfer
> rotation rate of protostar forced into equilibrium state (fn of massaccretion rate and large-scale field, eg Cameron & Campbell 1993)
> reproduces slow rotation of cTTSs

magnetic disruption & coupling

magnetic torques build up from rotation shear (Ghosh & Lamb 1979)
> disrupt the inner disc & generate star/disc angular momentum transfer
> rotation rate of protostar forced into equilibrium state (fn of massaccretion rate and large-scale field, eg Cameron & Campbell 1993)
> reproduces slow rotation of cTTSs

magnetic disruption & coupling

magnetic torques build up from rotation shear (Ghosh & Lamb 1979)
> disrupt the inner disc & generate star/disc angular momentum transfer
> rotation rate of protostar forced into equilibrium state (fn of massaccretion rate and large-scale field, eg Cameron & Campbell 1993)
> reproduces slow rotation of cTTSs

wind/corona & field opening

wind from the star /disc opens field lines (eg Safier 1998) > reduces coupling and spin-down torque > cannot reproduce observed rotation of cTTSs (eg Matt & Pudritz 2004)

3D MHD accretion models

disc material accreted through tilted magnetosphere > complex stream-like accretion funnels linking star to inner disc > polar hot spots at footpoints of accretion funnels for dipolar fields (eg Romanova et al 2003, 2004; Long et al 2007)

> angular momentum balance (including corona) > reproduces observed rotation periods of cTTSs (eg Long et al 2005)

3D MHD accretion models

disc material accreted through tilted magnetosphere > complex stream-like accretion funnels linking star to inner disc > polar hot spots at footpoints of accretion funnels for dipolar fields (eg Romanova et al 2003, 2004; Long et al 2007)

> angular momentum balance (including corona) > reproduces observed rotation periods of cTTSs (eg Long et al 2005)

3D MHD accretion models

3D MHD accretion models

disc material accreted through tilted magnetosphere > complex stream-like accretion funnels linking star to inner disc > polar hot spots at footpoints of accretion funnels for dipolar fields (eg Romanova et al 2003, 2004; Long et al 2007)

> angular momentum balance (including corona) > reproduces observed rotation periods of cTTSs (eg Long et al 2005)

3D MHD accretion models

disc material accreted through tilted magnetosphere > complex stream-like accretion funnels linking star to inner disc > polar hot spots at footpoints of accretion funnels for dipolar fields (eg Romanova et al 2003, 2004; Long et al 2007)

> angular momentum balance (including corona) > reproduces observed rotation periods of cTTSs (eg Long et al 2005)

2.5D models including disc field & wind

including disc dynamo & wind > large fraction of disc material diverted into wind > complex star/disc dynamo fields less efficient at slowing down cTTSs (eg vonReckowski & Brandenburg 2004, 2006)

Zeeman effect in stellar lines

B splits spectral lines in multiple subcomponents splitting increases linearly with wavelength (wrt line Doppler width) B produces circular & linear polarisation signatures in lines profiles

Zeeman effect in stellar lines

B splits spectral lines in multiple subcomponents splitting increases linearly with wavelength (wrt line Doppler width) B produces circular & linear polarisation signatures in lines profiles

Zeeman effect in stellar lines

B splits spectral lines in multiple subcomponents splitting increases linearly with wavelength (wrt line Doppler width) B produces circular & linear polarisation signatures in lines profiles

unpolarised light

detect Zeeman broadening & desaturation sensitive to average field strength (and filling factor) > high resolution (nIR) spectroscopy (eg Phoenix/Gemini)

Zeeman effect in stellar lines

B splits spectral lines in multiple subcomponents splitting increases linearly with wavelength (wrt line Doppler width) B produces circular & linear polarisation signatures in lines profiles

unpolarised light

detect Zeeman broadening & desaturation sensitive to average field strength (and filling factor) > high resolution (nIR) spectroscopy (eg Phoenix/Gemini)

polarised light

detect circular (linear) polarisation Zeeman signatures sensitive to longitudinal (transverse) magnetic field > high resolution spectropolarimeters (eg ESPaDOnS/CFHT, NARVAL/TBL)

in photospheric absorption lines (eg nIR) > average magnetic flux of several kG eg: 2.8 kG on BP Tau (Johns-Krull et al 1999) magnetic flux x2 stronger in the nIR than in the optical > strong magnetic fields concentrating in dark spots

field detected in ~15 cTTS (mostly in Taurus)

magnetic broadening

in photospheric absorption lines (eg nIR) > average magnetic flux of several kG eg: 2.8 kG on BP Tau (Johns-Krull et al 1999) magnetic flux x2 stronger in the nIR than in the optical > strong magnetic fields concentrating in dark spots

field detected in ~15 cTTS (mostly in Taurus)

magnetic broadening

in photospheric absorption lines (eg nIR) > average magnetic flux of several kG eg: 2.8 kG on BP Tau (Johns-Krull et al 1999) magnetic flux x2 stronger in the nIR than in the optical > strong magnetic fields concentrating in dark spots

field detected in ~15 cTTS (mostly in Taurus)

pros: no signal cancellation from opposite polarities > estimates average field strength and rough surface coverage

cons: very little sensitivity to field orientation
only possible for slow rotators (vsini < 10 km/s)
> no constraint on field topology

magnetic broadening

pros & cons

magnetic strengths of cTTSs

magnetic fluxes ranging from 1 to 3 kG (Johns-Krull 2007) significantly larger than equipartition fields

magnetic strengths of cTTSs

magnetic fluxes ranging from 1 to 3 kG (Johns-Krull 2007) significantly larger than equipartition fields

validity of disc-locking?

no correlation between magnetic flux and disc-locking field

magnetic strengths of cTTSs

magnetic fluxes ranging from 1 to 3 kG (Johns-Krull 2007) significantly larger than equipartition fields

validity of disc-locking?

no correlation between magnetic flux and disc-locking field

in emission lines tracing accretion (eg He I D3, Ca II IRT) > tracing monopolar longitudinal fields of several kG eg: 3 kG on BP Tau in He I D3 (Johns-Krull et al 1999)

in photospheric absorption lines (eg LSD profiles) > tracing more complex longitudinal fields of a few 100 G eg: ~500 G on BP Tau (Donati et al 2007)

longitudinal fields detected in ~10 cTTSs

circular polarisation signatures

in emission lines tracing accretion (eg He I D3, Ca II IRT) > tracing monopolar longitudinal fields of several kG eg: 3 kG on BP Tau in He I D3 (Johns-Krull et al 1999)

in photospheric absorption lines (eg LSD profiles) > tracing more complex longitudinal fields of a few 100 G eg: ~500 G on BP Tau (Donati et al 2007)

longitudinal fields detected in ~10 cTTSs

circular polarisation signatures

in emission lines tracing accretion (eg He I D3, Ca II IRT) > tracing monopolar longitudinal fields of several kG eg: 3 kG on BP Tau in He I D3 (Johns-Krull et al 1999)

in photospheric absorption lines (eg LSD profiles) > tracing more complex longitudinal fields of a few 100 G eg: ~500 G on BP Tau (Donati et al 2007)

longitudinal fields detected in ~10 cTTSs

pros: sensitive to vector field properties > map large-scale magnetic topology (using tomographic imaging)

circular polarisation signatures

pros & cons

use spectropolarimetric series...

rotational modulation of Zeeman signature (Doppler effect) > recover spot location and field orientation

accretin

use spectropolarimetric se rotational modu

accretin

use spectropolarimetric se rotational modu

use spectropolarimetric series...

rotational modulation of Zeeman signature (Doppler effect) > recover spot location and field orientation

use spectropolarimetric series...

rotational modulation of Zeeman signature (Doppler effect) > recover spot location and field orientation

... to reconstruct surface magnetic topology...

use spherical harmonics decomposition and tomographic imaging > infer magnetic topology (poloidal/toroidal components)

use spectropolarimetric series...

rotational modulation of Zeeman signature (Doppler effect) > recover spot location and field orientation

... to reconstruct surface magnetic topology...

use spherical harmonics decomposition and tomographic imaging > infer magnetic topology (poloidal/toroidal components)

...and extrapolate it outwards

assume potential field topology > get 3D image of stellar magnetosphere

Zeeman signatures

different Zeeman signatures in LSD profiles & emission lines
(i) assume accretion spot contributing to emission lines only
(ii) assume surrounding photosphere contributes to LSD profiles only
> fit Stokes I & V LSD and Ca II IRT profiles simultaneously
> derive maps of magnetic field & accretion spots

Zeeman signatures different Zeeman (i) assume accre (ii) assume surrounding p > fit Stokes I & V > deri

accretin

Zeeman signatures

different Zeeman signatures in LSD profiles & emission lines
(i) assume accretion spot contributing to emission lines only
(ii) assume surrounding photosphere contributes to LSD profiles only
> fit Stokes I & V LSD and Ca II IRT profiles simultaneously
> derive maps of magnetic field & accretion spots

Zeeman signatures

different Zeeman signatures in LSD profiles & emission lines
(i) assume accretion spot contributing to emission lines only
(ii) assume surrounding photosphere contributes to LSD profiles only
> fit Stokes I & V LSD and Ca II IRT profiles simultaneously
> derive maps of magnetic field & accretion spots

magnetic field and accretion spots

accretion spot located close to the pole kG radial field in the accretion spot small toroidal field (10-20% of magnetic energy) large scale poloidal field includes dipole+octupole components > V2129 Oph : d=0.35; o=1.2 kG > BP Tau : d=1.2; o=1.6 kG > dynamo origin likely

0.00

Zeeman signatures

different Zeeman signatures in LSD profiles & emission lines
(i) assume accretion spot contributing to emission lines only
(ii) assume surrounding photosphere contributes to LSD profiles only
> fit Stokes I & V LSD and Ca II IRT profiles simultaneously
> derive maps of magnetic field & accretion spots

magnetic field and accretion spots

accretion spot located close to the pole kG radial field in the accretion spot small toroidal field (10-20% of magnetic energy) large scale poloidal field includes dipole+octupole components > V2129 Oph : d=0.35; o=1.2 kG > BP Tau : d=1.2; o=1.6 kG > dynamo origin likely

coronal structure

work by M Jardine & S Gregory @ StAndrews extrapolate surface field assuming no current (potential) complex field lines close to the surface simple large loops further away Xray luminosity compatible with observations

a C

coronal struct

Č tivet al 2007a

coronal structure

work by M Jardine & S Gregory @ StAndrews extrapolate surface field assuming no current (potential) complex field lines close to the surface simple large loops further away Xray luminosity compatible with observations

coronal structure

work by M Jardine & S Gregory @ StAndrews extrapolate surface field assuming no current (potential) complex field lines close to the surface simple large loops further away Xray luminosity compatible with observations

geometry of accretion funnels

compute location of accreting field lines for various r_A select value of r_A producing accretion spots matching observations > V2129 Oph : r_A ≈ 7 R* (≈ r_c) > BP Tau : r_A ≥5 R* (r_c ≈ 7.5 R*) > disc magnetically warped in BP Tau ? disc-locking scenario ?

coronal structure

work by M Jardine & S Gregory @ StAndrews extrapolate surface field assuming no current (potential) complex field lines close to the surface simple large loops further away Xray luminosity compatible with observations

geometry of accretion funnels

compute location of accreting field lines for various r_A select value of r_A producing accretion spots matching observations > V2129 Oph : r_A ≈ 7 R* (≈ r_c) > BP Tau : r_A ≥5 R* (r_c ≈ 7.5 R*) > disc magnetically warped in BP Tau ? disc-locking scenario ?
indirect indicators : photopolarimetric rotational modulation

AA Tau: prototype cTTS viewed ~equator on

modelling photopolarimetric rotational modulation
quasi-periodic occultations by warped disc with inner edge at 8-9 R* (Bouvier et al 1999, 2007; Ménard et al 2003)
non stationary magnetospheric accretion (Bouvier et al 2003, 2007)
5.2 kG dipole tilted by 30° to explain warp (O'Sullivan et al 2005)

indirect indicators : photopolarimetric rotational modulation

indirect indicators : photopolarimetric rotational modulation

AA Tau: prototype cTTS viewed ~equator on

modelling photopolarimetric rotational modulation
quasi-periodic occultations by warped disc with inner edge at 8-9 R* (Bouvier et al 1999, 2007; Ménard et al 2003)
non stationary magnetospheric accretion (Bouvier et al 2003, 2007)
5.2 kG dipole tilted by 30° to explain warp (O'Sullivan et al 2005)

indirect indicators : Xrays

COUP: 10d observation of Orion Nebula Cluster with Chandra XEST: Extended Survey of the Taurus Molecular Cloud with XMM

cTTSs show L_x/L_{bol} > 10⁻⁵, ie >10x brighter than the Sun cTTSs emit 1/2 as much X-rays wrt/ non-accreting TTSs no activity vs. rotation dependence of Xray flux (saturation) Xray and optical variability do not correlate Xray correlate with M*

most (hard 10–30 MK) Xrays come from coronal activity little (soft 1–3 MK) Xrays from accretion shocks most X-rays come from small field loops evidence for large magnetic loops from Xray flare data

indirect indicators : Xrays

COUP: 10d observation of Orion Nebula Cluster with Chandra XEST: Extended Survey of the Taurus Molecular Cloud with XMM

cTTSs show L_x/L_{bol} > 10⁻⁵, ie >10x brighter than the Sun cTTSs emit 1/2 as much X-rays wrt/ non-accreting TTSs no activity vs. rotation dependence of Xray flux (saturation) Xray and optical variability do not correlate Xray correlate with M*

most (hard 10–30 MK) Xrays come from coronal activity little (soft 1–3 MK) Xrays from accretion shocks most X-rays come from small field loops evidence for large magnetic loops from Xray flare data

HUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU Magnefised discs

models of magnetised discs

cloud collapse & advection of large-scale magnetic field
 producing jets through magnetocentrifugal mechanism
 self-similar models of magnetised discs & jets (eg Ferreira et al 1997)
 MHD simulations of magnetised collapse (eg Banerjee & Pudritz 2006)
 predict orientation & distribution of magnetic field in accretion disc
 predict dominant poloidal field component in disc

models of magnetised discs

> self-similar MHD simul > predict o

HUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU Magnefised discs

models of magnetised discs

cloud collapse & advection of large-scale magnetic field
 producing jets through magnetocentrifugal mechanism
 self-similar models of magnetised discs & jets (eg Ferreira et al 1997)
 MHD simulations of magnetised collapse (eg Banerjee & Pudritz 2006)
 predict orientation & distribution of magnetic field in accretion disc
 predict dominant poloidal field component in disc

HHHHHHHHHHHHHHHHHHHHHHHHH Magnefised discs

models of magnetised discs

cloud collapse & advection of large-scale magnetic field
 producing jets through magnetocentrifugal mechanism
 self-similar models of magnetised discs & jets (eg Ferreira et al 1997)
 MHD simulations of magnetised collapse (eg Banerjee & Pudritz 2006)
 predict orientation & distribution of magnetic field in accretion disc
 predict dominant poloidal field component in disc

MHD simulations of magnetised accretion discs w/ dynamo fields
> dominantly toroidal MRI-dynamo field (Brandenburg et al 1995)
> uncollimated outflow - no jet (eg von Rekowski et al 2003)

HHHHHHHHHHHHHHHHHHHHHHH Magnefised discs

models of magnetised discs

cloud collapse & advection of large-scale magnetic field
 producing jets through magnetocentrifugal mechanism
 self-similar models of magnetised discs & jets (eg Ferreira et al 1997)
 MHD simulations of magnetised collapse (eg Banerjee & Pudritz 2006)
 predict orientation & distribution of magnetic field in accretion disc
 predict dominant poloidal field component in disc

MHD simulations of magnetised accretion discs w/ dynamo fields
 > dominantly toroidal MRI-dynamo field (Brandenburg et al 1995)
 > uncollimated outflow - no jet (eg von Rekowski et al 2003)

planet formation/migration in magnetic discs giant planet migration stopped by magnetic fields ? (Terquem 2003) disc fragmentation inhibited by magnetic fields ? (Fromang et al 2005)

under an antised discs

detecting magnetic fields in accretion discs

Zeeman signatures in LSD profiles of FU Ori (Donati et al 2005) > kG equipartition field near centre (<0.1au) of accretion disc

under an antised discs

detecting magnetic fields in accretion discs

Zeeman signatures in LSD profiles of FU Ori (Donati et al 2005) > kG equipartition field near centre (<0.1au) of accretion disc

detecting magnetic fields in accretion discs

Zeeman signatures in LSD profiles of FU Ori (Donati et al 2005) > kG equipartition field near centre (<0.1au) of accretion disc

modelling disc magnetic field

assuming axisymmetric magnetic field configuration in the disc decomposing Zeeman signature in symmetric and antisymmetric components > 20% of disc plasma rotating @ 1/3 of Keplerian velocity > dominant poloidal + half as strong toroidal field

detecting magnetic fields in accretion discs

Zeeman signatures in LSD profiles of FU Ori (Donati et al 2005) > kG equipartition field near centre (<0.1au) of accretion disc

modelling disc magnetic field

assuming axisymmetric magnetic field configuration in the disc decomposing Zeeman signature in symmetric and antisymmetric components > 20% of disc plasma rotating @ 1/3 of Keplerian velocity > dominant poloidal + half as strong toroidal field

formation/migration of close-in giant planets ?

spectral variability of FU Ori @ periods of 3.5, 7 and 14.8d > induced by planets @ 0.03, 0.05 & 0.09au ? (Clarke & Armitage 2003) > migrating planets ? stopped by magnetic fields ?

formation/migration of close-in giant planets ?

spectral variability of FU Ori @ periods of 3.5, 7 and 14.8d > induced by planets @ 0.03, 0.05 & 0.09au ? (Clarke & Armitage 2003) > migrating planets ? stopped by magnetic fields ?

modelling FU Ori

ESPaDOnS data confirm variability of Stokes I & V LSD profiles

need well sampled data over 15d to confirm modulation & find periods apply tomographic imaging on Stokes I and V profiles derive density & magnetic field maps of the inner accretion disc (<0.1au) density gaps ? coinciding with toroidal rings ? long-term evolution ?

disc fields,

formation/migration of cla spectral variabilit > induced by planets @ 0.03, > migr

modelling FU Ori

ESPaDOnS data conf

need well sampled data or apply tor derive density & magnetic fie density gaps ? coincidir

formation/migration of close-in giant planets ?

spectral variability of FU Ori @ periods of 3.5, 7 and 14.8d > induced by planets @ 0.03, 0.05 & 0.09au ? (Clarke & Armitage 2003) > migrating planets ? stopped by magnetic fields ?

modelling FU Ori

ESPaDOnS data confirm variability of Stokes I & V LSD profiles

need well sampled data over 15d to confirm modulation & find periods apply tomographic imaging on Stokes I and V profiles derive density & magnetic field maps of the inner accretion disc (<0.1au) density gaps ? coinciding with toroidal rings ? long-term evolution ?

observations: cTTS: determine large-scale field & accretion patterns characterise dependence wrt/ stellar parameters and temporal evolution

discs: determine magnetic field & density distribution close to disc centre find out relation to jets & protoplanets

investigate origin of magnetic fields & evaluate impact on stellar formation

observations: cTTS: determine large-scale field & accretion patterns characterise dependence wrt/ stellar parameters and temporal evolution

discs: determine magnetic field & density distribution close to disc centre find out relation to jets & protoplanets

investigate origin of magnetic fields & evaluate impact on stellar formation

models increase effort at modelling magnetised star/planet formation increase collaborative effort between data modelling and simulations

observations: cTTS: determine large-scale field & accretion patterns characterise dependence wrt/ stellar parameters and temporal evolution

discs: determine magnetic field & density distribution close to disc centre find out relation to jets & protoplanets

investigate origin of magnetic fields & evaluate impact on stellar formation

models increase effort at modelling magnetised star/planet formation increase collaborative effort between data modelling and simulations

instruments

use & abuse of existing instruments (LPs on ESPaDOnS/NARVAL) promote/build Cass polarimeters for existing high-res spectrographs build new instruments: eg SPIRou (nIR spectropolarimeter 0.9-2.4 mic)