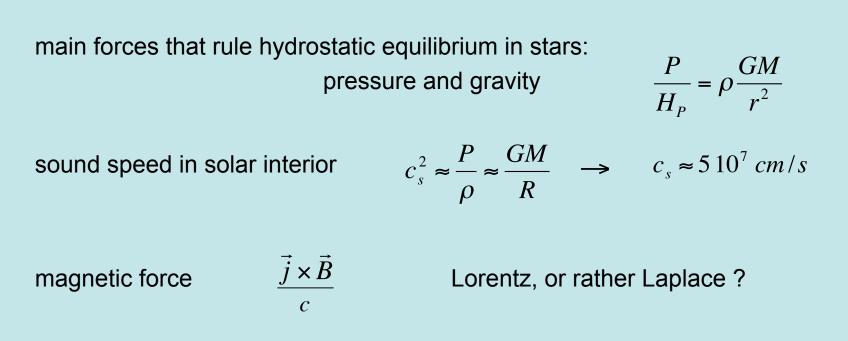
Impact of magnetic fields on stellar structure and evolution

Jean-Paul Zahn

Ecole de Physique Stellaire Stellar Magnetism La Rochelle 24-28 September 2007

Impact on stellar structure

Are magnetic fields strong enough to play a role in the structure of stars ?

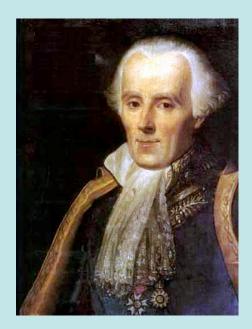


magnetic pressure is of same order as gas pressure when Alfvén velocity equals sound speed :

$$c_A = \frac{B}{\sqrt{4\pi\rho}} \approx c_s \qquad \longrightarrow \qquad B \approx 2\,10^8 G = 2\,10^4 T$$

Laplace or Lorentz ?

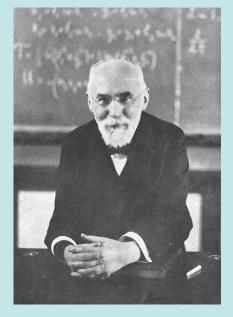
Pierre-Simon Laplace 1749 - 1827



$$d\vec{F} = Id\vec{l} \times \vec{B}$$

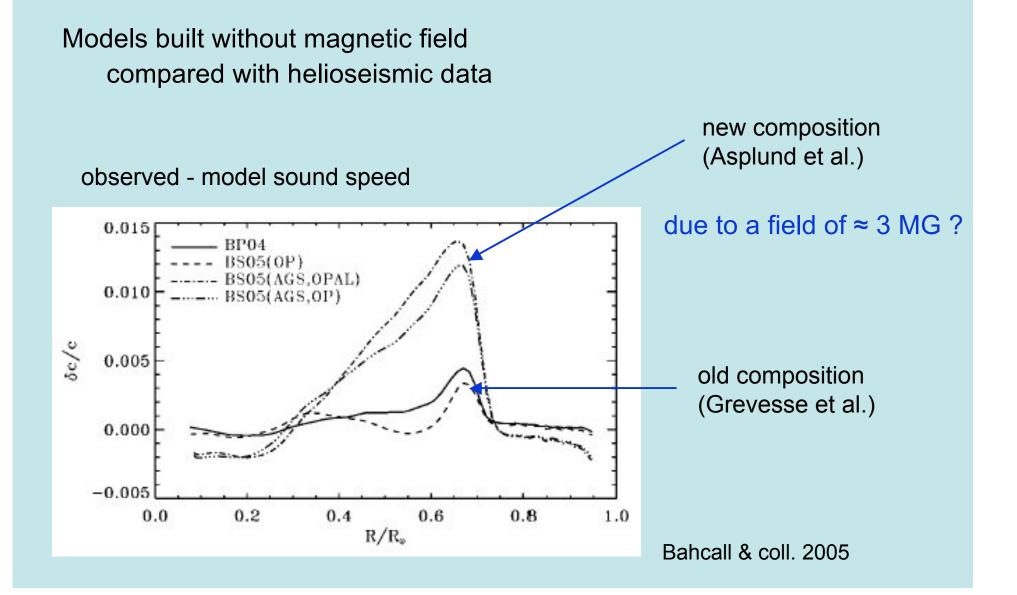
force exerted by a magnetic field on an element of electric courant force exerted by an magnetic field on a moving charged particle

Hendrik Lorentz 1853 - 1928



 $\vec{F} = q\vec{V} \times \vec{B}$

Can a field of MegaGauss strength exist in the Sun?



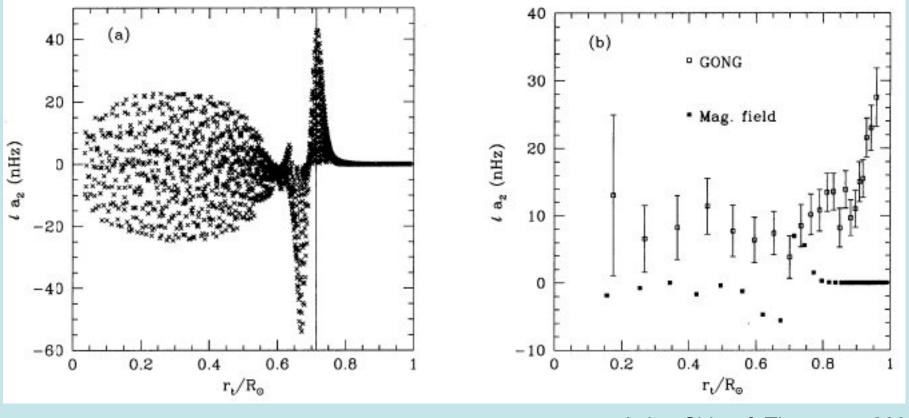
Can a field of MegaGauss strength exist in the Sun?

A closer look at helioseismology: frequencies are split by mag. field

Splitting coefficients expected from a 4 MG toroidal field located in the tachocline (Δ =0.04 R_{\odot})

→ upper limit ≈ 300 kG

same, averaged over 30 neighbouring modes



Anita, Chitre & Thompson 2000

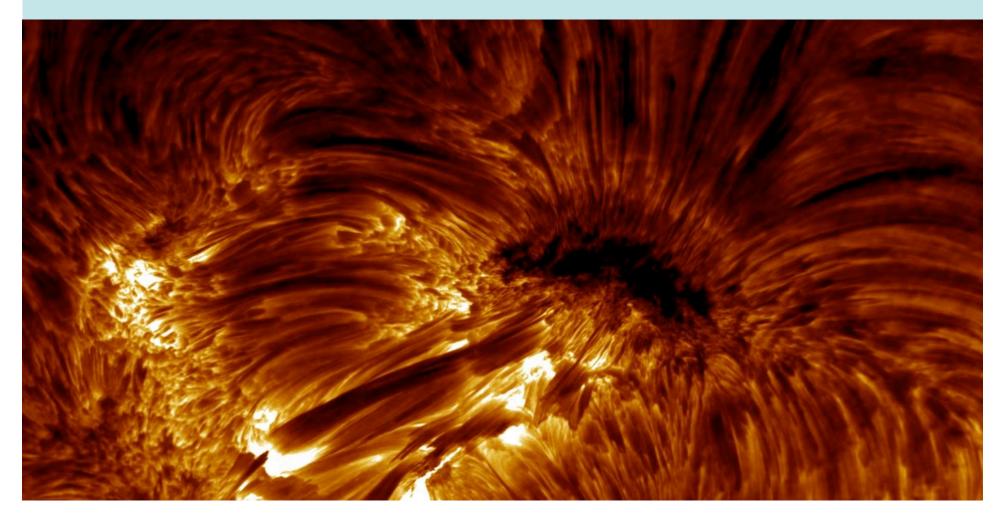
Magnetic pressure dominates gas presure in the surface layers

magnetic pressure:

$$P_m = \frac{B^2}{8\pi}$$

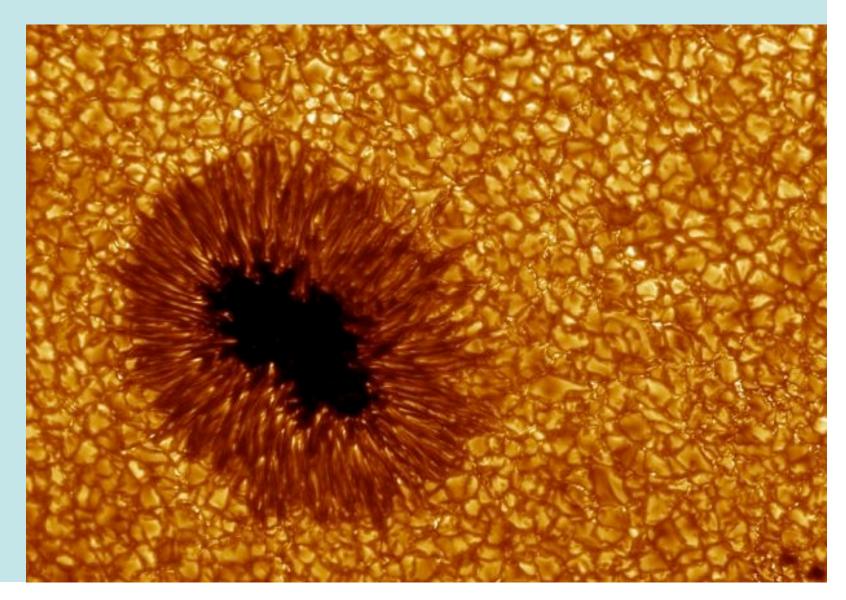
gas pressure:

$$P_g = \frac{\mathbf{R}\rho T}{\mu}$$



Magnetic fields interfer with thermal convection

Strong magnetic fields block convective heat transport in sunspots



SST La Palma

Strong magnetic fields suppress the convective instability

Linear instability in a unstably stratified magnetized medium

perturb by $\xi \propto \exp\left[st + i\,\vec{k}\cdot\vec{x}\right]$

dispersion relation, neglecting thermal and Ohmic diffusion :

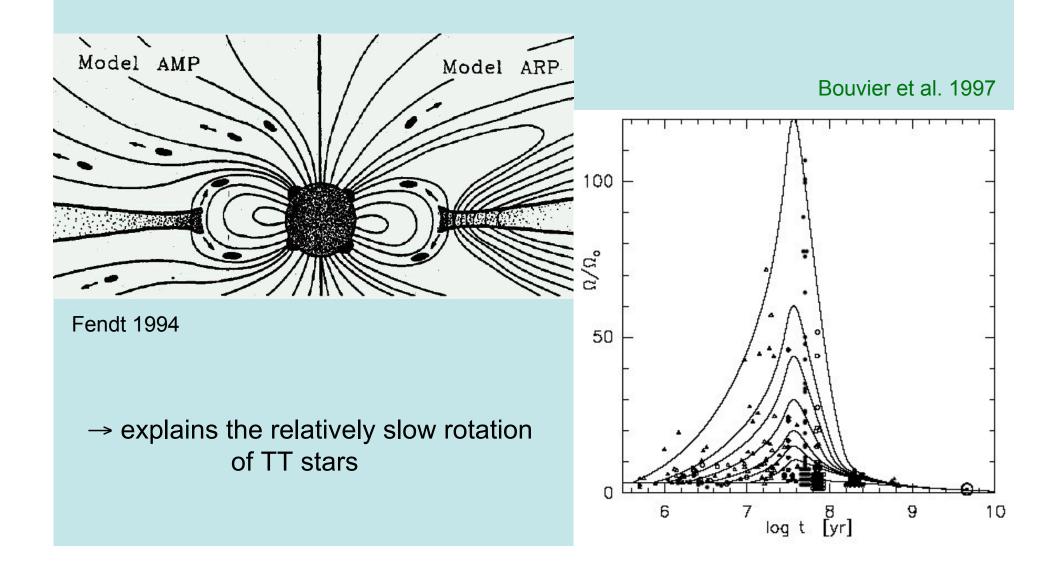
$$s^{2} = \left(\frac{k_{h}}{k}\right)^{2} \frac{g}{H_{P}} \left[\nabla - \nabla_{ad}\right] - \left(\vec{k} \cdot \vec{V}_{A}\right)^{2} \quad \text{Chandrasekhar; Weiss 1960's}$$

→ most unstable for horizontal wave-vector, may be stabilized by sufficiently strong horizontal field ~ 10⁷G below the solar CZ ~ 10³G at surface

- explains why inhomogeneities in surface composition of Ap stars are not smooted out by convection
- displaces somewhat the boundary of CZ; effect on Li burning during PMS ?

Magnetic fields couple stars to their environment

Magnetized star coupled to accretion disk



Magnetized winds → strong angular momentum loss

If Sun loses matter at equator :

$$\frac{d}{dt}I\Omega = R^{2}\Omega \frac{d}{dt}M$$

$$\frac{d}{dt}k^{2}MR^{2}\Omega = R^{2}\Omega \frac{d}{dt}M$$

$$\frac{(R^{2}\Omega)_{f}}{(R^{2}\Omega)_{i}} = \left[\frac{M_{f}}{M_{i}}\right]^{p}$$

$$p = k^{-2} - 1 = 16$$

$$\left[\frac{M_{f}}{M_{i}}\right] = 0.99 \qquad \frac{(R^{2}\Omega)_{f}}{(R^{2}\Omega)_{i}} = 0.85$$

Fessenkov 1949 Schatzman 1954

but Sun loses matter at distance D (Alfvén radius) :

$$\frac{d}{dt}I\Omega = D^{2}\Omega \frac{d}{dt}M$$

$$\frac{d}{dt}k^{2}MR^{2}\Omega = D^{2}\Omega \frac{d}{dt}M$$

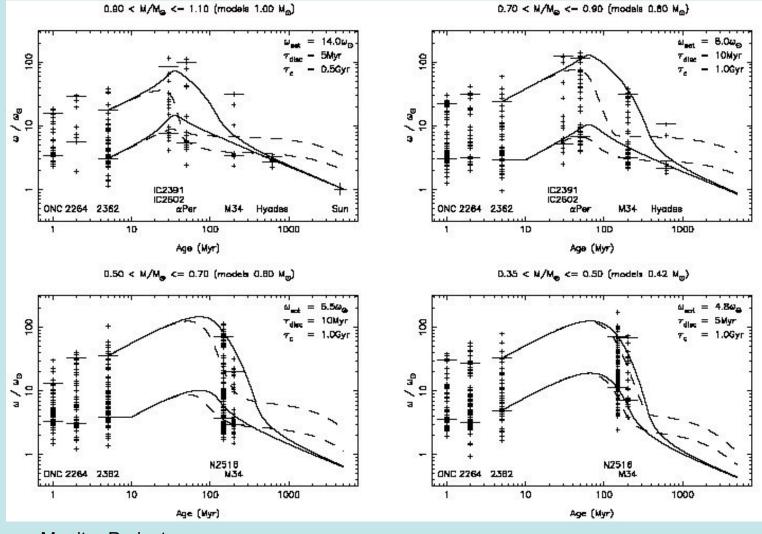
$$\frac{(R^{2}\Omega)_{f}}{(R^{2}\Omega)_{i}} = \left[\frac{M_{f}}{M_{i}}\right]^{p} \qquad D/R = 5$$

$$p = (D/R)^{2}k^{-2} - 1 = 425$$

$$\left[\frac{M_{f}}{M_{i}}\right] = 0.99 \qquad \frac{(R^{2}\Omega)_{f}}{(R^{2}\Omega)_{i}} = 0.014$$

Schatzman 1962

Disc-coupling and mass loss by magnetized wind determine the rotation of stars



Monitor Project (Irwin et al. 2006, 2007)

→ the young Sun was a fast rotator

Rotational mixing in radiation zones

Meridional circulation

Classical picture: circulation is due to thermal imbalance caused by perturbing force (centrifugal, magn. field, etc.) Eddington (1925), Vogt (1925), Sweet (1950), etc

Eddington-Sweet time $t_{ES} = t_{KH} \frac{GM}{\Omega^2 R^3}$ with $t_{KH} = \frac{GM^2}{RL}$

Revised picture: after a transient phase of about $t_{ES,}$ circulation is driven by the loss (or gain) of angular momentum and structural changes due to evolution Busse (1981), JPZ (1992), Maeder & JPZ (1998)

- AM loss by wind: need to transport AM to surface → strong circulation
- no AM loss: no need to transport AM → weak circulation

shear-induced turbulence and internal gravity waves contributes to AM transport

Rotational mixing in magnetized radiation zones

Transport of angular momentum

$$\rho \frac{d}{dt} \left(r^2 \sin^2 \theta \Omega \right) = -\nabla \cdot \left(\rho r^2 \sin^2 \theta \Omega \vec{U} \right) + \frac{\sin^2 \theta}{r^2} \partial_r \left(\rho v_v r^4 \partial_r \Omega \right) - \nabla \cdot \left(\rho r^2 F_{IGW} \right) + r \sin \theta \vec{e}_{\phi} \cdot \vec{L}$$

advection thru MC turbulent diffusion internal gravity waves Laplace torque

Even a weak field can inhibit the transport of AM

 $B^{2} > 4\pi\overline{\rho} \ \frac{R^{2}\Omega}{t_{AML}} \qquad t_{AML}: \text{ characteristic time for AM loss}$ For $\overline{\rho} = 1g/cm^{3} \quad R = 7 \ 10^{10} cm \qquad R\Omega = 10^{7} cm/s \quad t_{AML} = 10^{9} yr$

 $\rightarrow B_{crit} \approx 20 G$

But the exact figure depends sensitively on the topology of magnetic field

Rotational mixing in magnetized radiation zones

Evolution of an axisymmetric field

poloidal (meridian) field

$$\vec{B}_P = \nabla \times \vec{A}, \quad \vec{A} = A \vec{e}_{\phi}$$

toroidal (azimuthal) field

$$\vec{B}_T = B_T \, \vec{e}_{\phi}$$

$$\partial_t A + \frac{1}{s} \vec{U} \cdot \nabla(sA) = \eta \left(\nabla^2 A - \frac{A}{s^2} \right) \qquad s = r \sin \theta$$

advection diffusion

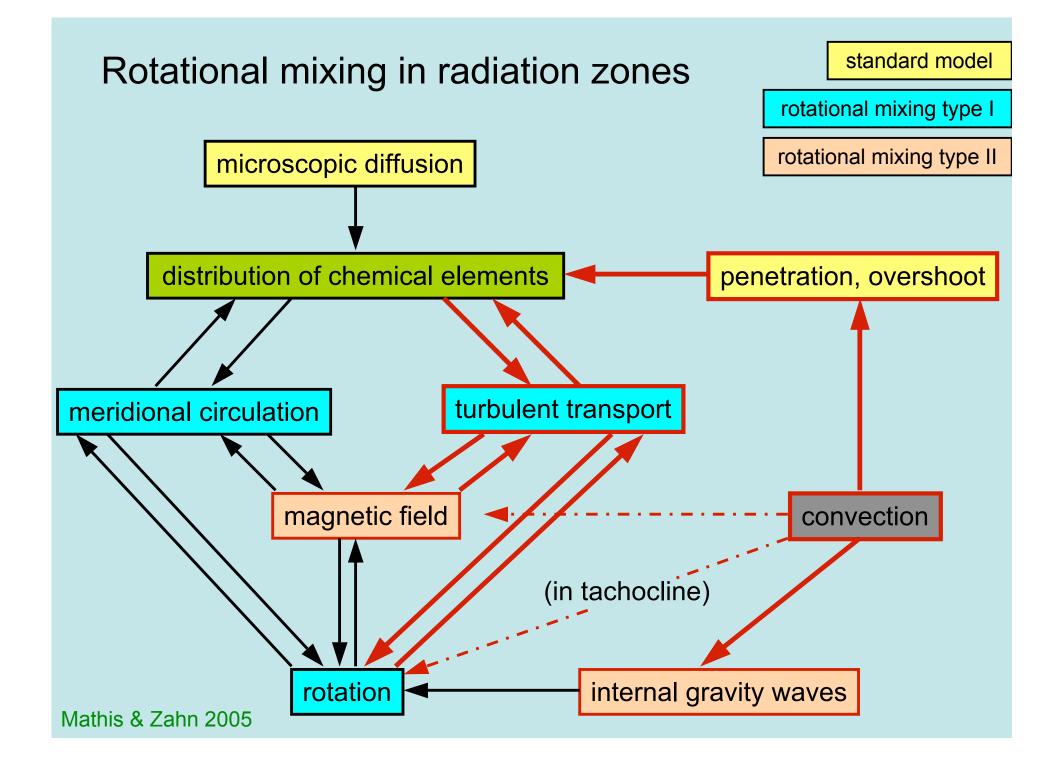
induction equations

$$\partial_t B_T + s \vec{U} \cdot \nabla \left(\frac{B_T}{s}\right) = -B_T \nabla \cdot \vec{U} + s \vec{B}_P \cdot \nabla \Omega + \eta \left(\nabla^2 B_T - \frac{B_T}{s^2}\right)$$

advection stretching diffusion
$$\Omega\text{-effect}$$

suppressed when Ω cst on field lines of B_P (Ferraro law)

2D equations are projected on spherical harmonics to be implemented in stellar evolution codes (thesis S. Mathis)



The solar tachocline problem Hydrostatic and geostrophic equilibrium conservation of angular momentum conservation of thermal energy Boussinesq approximation solutions are separable : $\Omega(r, \theta) = \Omega(r) + \sum_{i} \widetilde{\Omega}_{i}(r) f_{i}(\theta)$

In thin layer approximation, for $t \gg r_0^2/K$

$$\frac{\partial \widetilde{\Omega}}{\partial t} = -K \left(\frac{2\Omega}{N}\right)^2 \left(\frac{r_0}{\lambda}\right)^2 \frac{\partial^4 \widetilde{\Omega}}{\partial r^4} + \nu_v \frac{\partial^2 \widetilde{\Omega}}{\partial r^2}$$

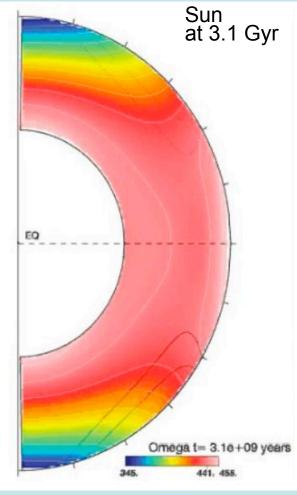
In present Sun, differential rotation would have spread down to $r = 0.3 R_{\odot}$ _ _ _ _

 \rightarrow not observed - why is the tachocline so thin ?

Another physical process must confine the tacholine Anisotropic turbulence ? Spiegel & Z 1992 Fossil magnetic field ? Gough & McIntyre 1998

(Spiegel & Z 1992)

Differential rotation $\Omega(\theta)$ applied at top of RZ



Brun 2006

Can the tachocline be confined by a fossil field ?

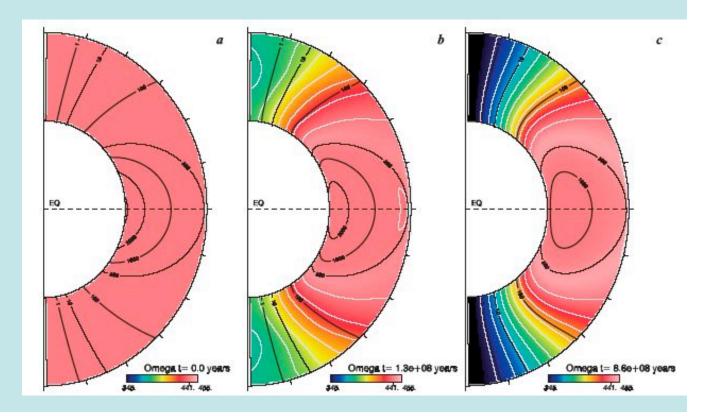
Numerical simulations by Sacha Brun

diff. rotation imposed at top of RZ initial dipolar penetrates in CZ

⇒ Ferraro Ω ~ cst on field lines of B_{pol}

ASH code tuned for RZ optimized for massively parallel machines

193x128x256

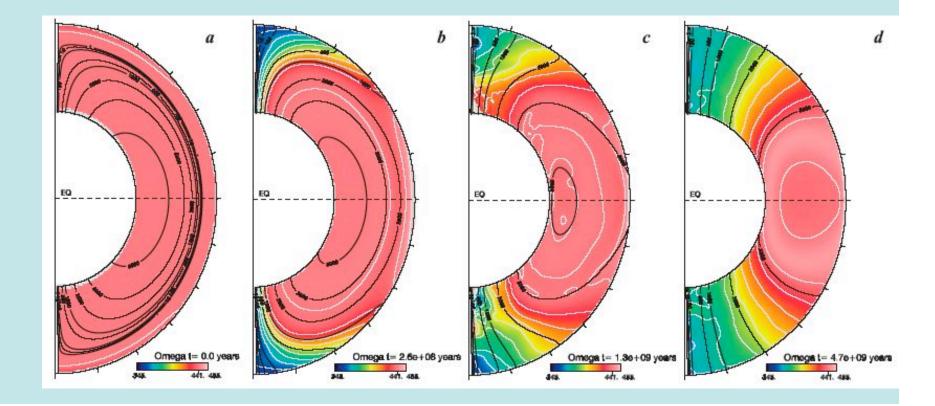


no

Can the tachocline be confined by a fossil field ?

No : such a field eventually connects with the CZ and imprints its differential rotation on the RZ Brun & Z 2006

initial dipolar field burried in RZ



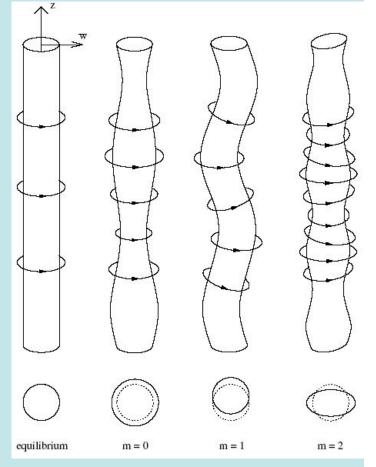
Magnetic fields generate instabilities

MHD instabilities

Theoretical results, mostly by Tayler & collaborators

- A purely poloidal field is unstable to non-axisymmetric perturbations (Markey & Tayler 1973)
- A purely toroidal field is unstable to non-axisymmetric perturbations (Tayler 1973; Wright 1973; Goossens et al. 1981)
- Stable fields are probably a mix of poloidal and toroidal fields of comparable strength
- Rotation stabilizes somewhat a purely toroidal field, but it cannot suppress entirely the instability (Pitts & Tayler 1973)

Results obtained in the ideal case (no thermal and Ohmic diffusions)



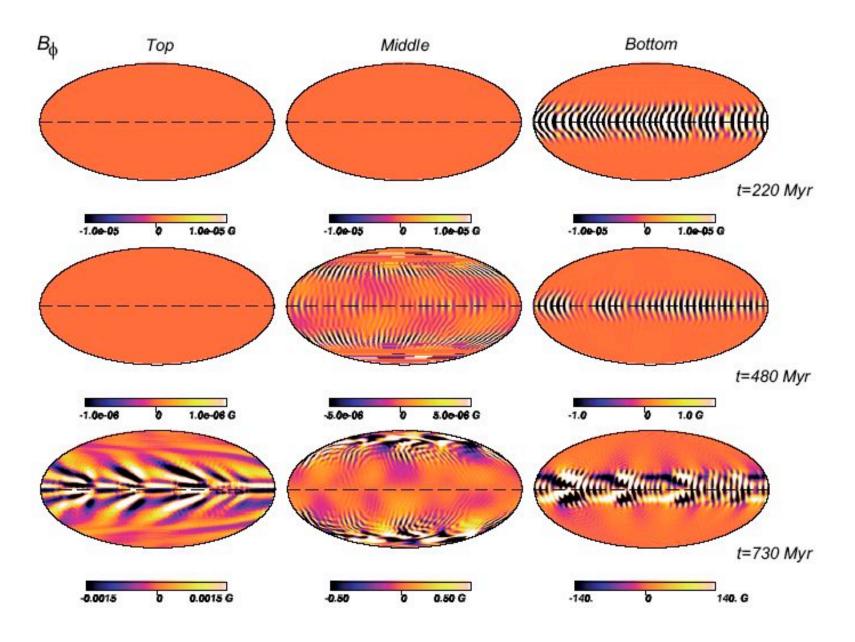
MHD instabilities

Linear analysis, adding diffusion (Acheson 1978; Spruit 1999, 2002)

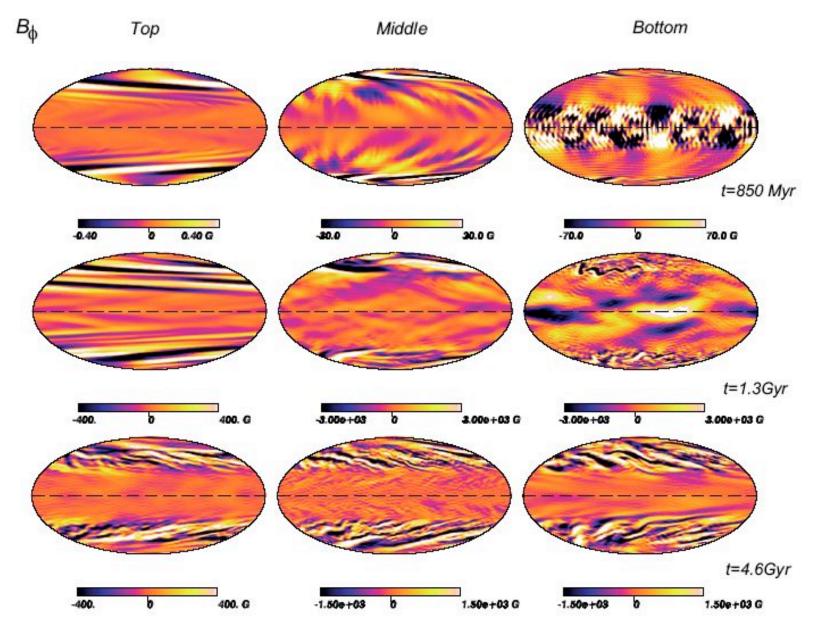
Radiation zone, stable stratification
buoyancy frequency : $N^2 = N_t^2 + N_{\mu}^2 = \frac{g}{H_p} (\nabla_{ad} - \nabla) + \frac{g}{H_p} \left(\frac{d \ln \mu}{d \ln P} \right)$ Purely toroidal field
Alfvén frequency : $\omega_A^2 = \frac{B_{\varphi}^2}{4\pi\rho s^2}$ $s = r \sin \theta$ Diffusivities - thermal: $\kappa \approx 10^7 cm^2/s$ Ohmic: $\eta \approx 10^3 cm^2/s$ Perturbation, near axis: $\xi \propto \exp i (ls + m\varphi + nz - \sigma t)$ Im $(\sigma) = 0$ Instability for $\omega_A^4 > C\Omega\eta l^2 \left[\frac{\eta}{\kappa} N_t^2 + N_{\mu}^2 \right]$ C = O(1)Spruit's conjectures :C = O(1)

- instability saturates when turbulent η ensures marginal stability
- turbulence operates a dynamo in radiation zone

Tayler instabilities in the solar radiation zone (magnetic tachocline simulation)



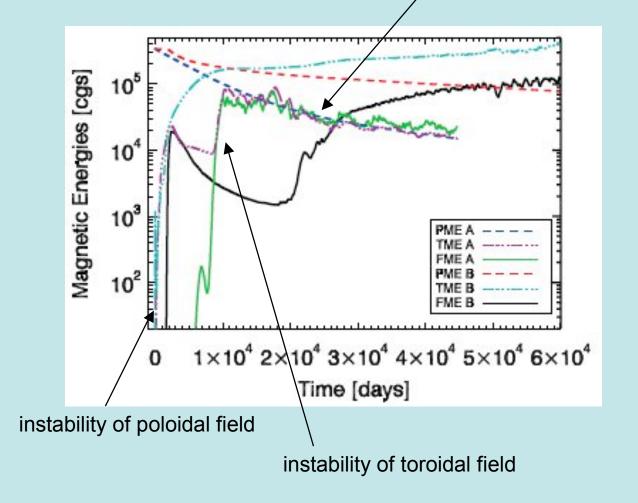
Tayler instabilities in the solar radiation zone (magnetic tachocline simulation, cont.)



Tayler instabilities in the solar radiation zone (magnetic tachocline simulation)

Brun & JPZ 2006 JPZ, Brun & Mathis 2007

poloidal field decays steadily



Poloidal field is not regenerated

→ no dynamo

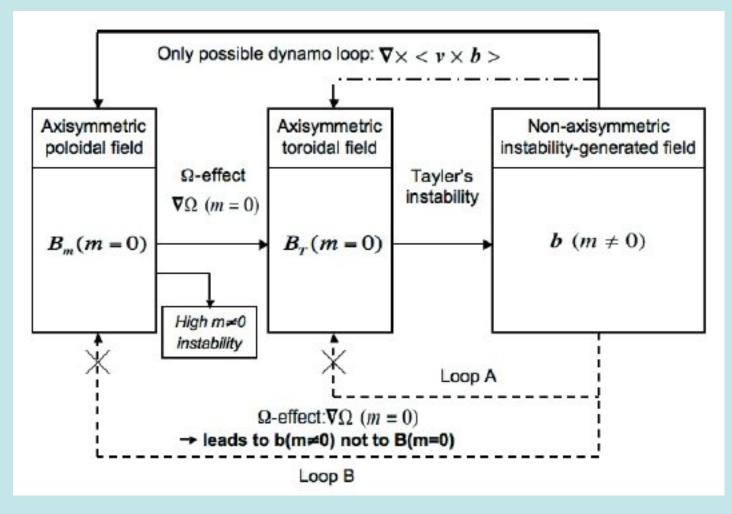
Decay of poloidal field not enhanced by instability

 \rightarrow no eddy diff.

 \rightarrow no mixing

The dynamo loop

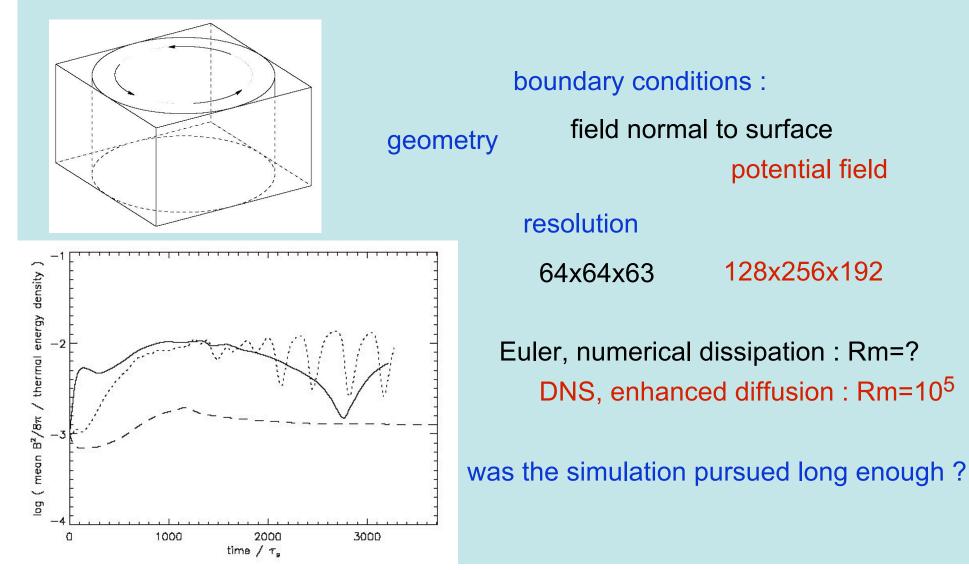
→ It cannot work as explained by Spruit and Braithwaite



Z, Brun & Mathis 2007

Why does Braithwaite find a dynamo?

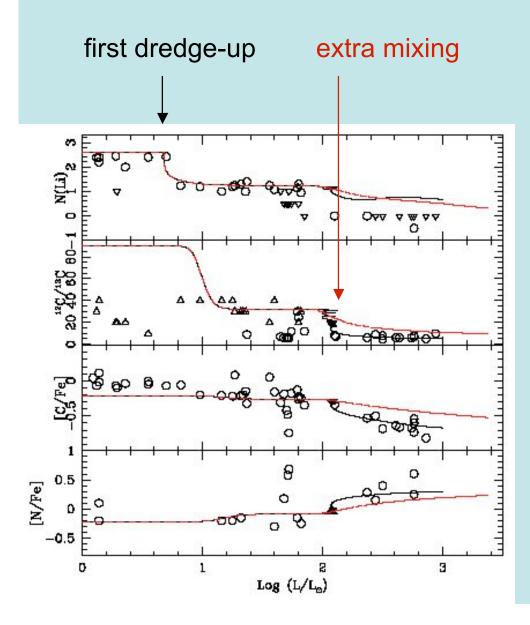
How Braithwaite's 2006 simulation (in black) differs from ours (in red)



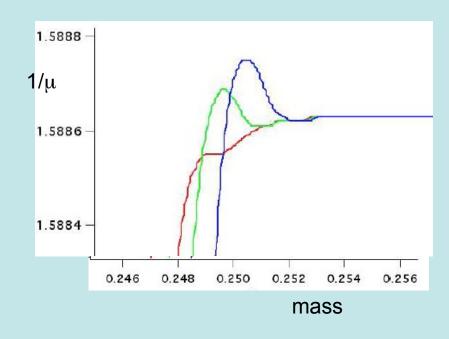
Magnetic fields may inhibit instabilities

Another example: thermohaline instability in RG

Thermohaline mixing in red giant stars

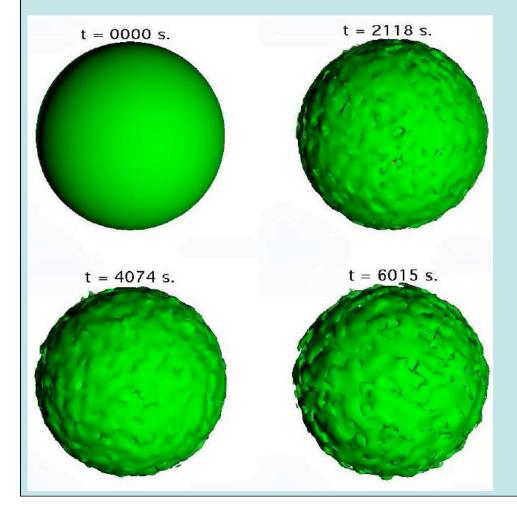


due to inversion of μ -gradient produced by ³He(³He,2p)⁴He



Eggleton, Dearborn & Lattanzio et al. 2006

In fact, Eggleton et al. observed convective instability, which occurs when



$$\nabla > \nabla_{ad} + \frac{d\ln\mu}{d\ln P}$$

Ledoux criterion

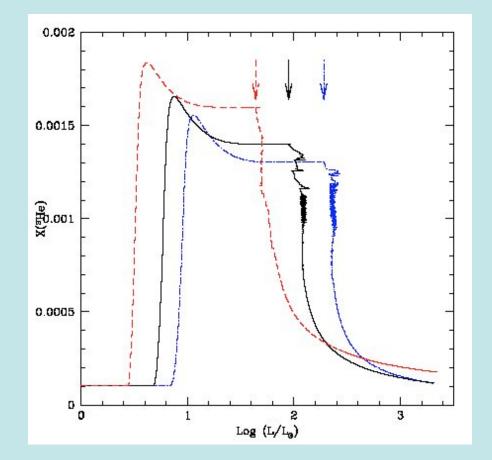
In reality, as the μ -gradient builds up, the first instability to arise as soon as $\frac{d \ln \mu}{d \ln P} < 0$

is the thermohaline instability.

Charbonnel & Z 2007

who use Ulrich's 1972 prescription

Such extra-mixing destroys ³He ; which explains its Galactic abundance



However, observations show that a small fraction of stars (~4%) avoid this extra-mixing (Charbonnel & do Nascimento 1998)

Moreover,

2 PNe have been observed with high ³He abundance $\sim 10^{-3}$ (NGC 3242, J320) (Balser et al. 2006)

Our explanation: the thermohaline instability is suppressed by magn. field $\sim 10^5$ G in those RGB stars that are the descendants of Ap stars

(Charbonnel & Z, submitted to A&A)

Conclusions

Magnetic fields play little rôle in the structure of stars

but they have an impact on their evolution

- by determining their rotation state
- by suppressing instabilities
- by interfering with mixing processes operating in RZ: rotational mixing, thermohaline mixing
- possibly by triggering MHD instabilities

Obviously, the effect depends on field strength → observational constraints are highly needed