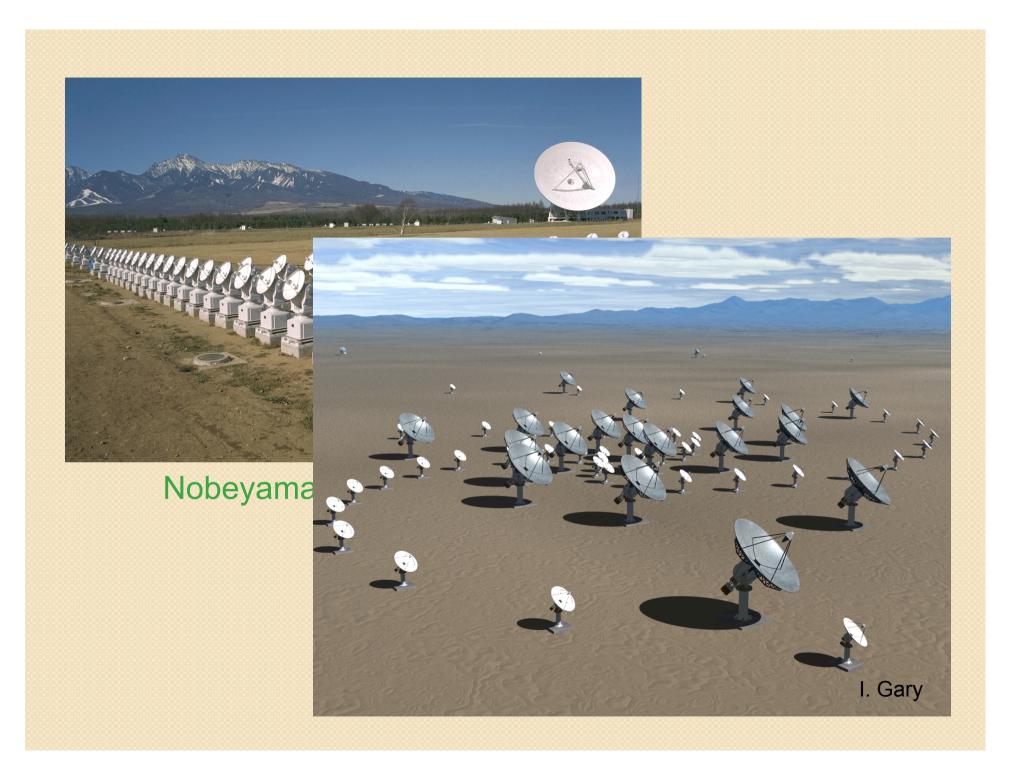
The Frequency Agile Solar Radiotelescope

AUI, NRAO, UCB, CIT, NJIT, UMd/USAF


The Innovation

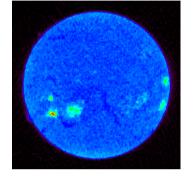
Ultra-wideband imaging spectroscopy of the solar atmosphere from the chromosphere to the outer corona with temporal, angular, and spectral resolution matched to the physical process that occur.

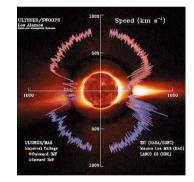
 $T_{B}(x, y, v, t, \sigma)$

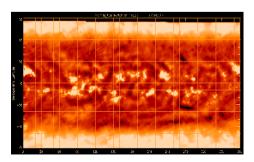
Brightness temperature as a function of position, frequency, time, and polarization

The entire solar atmosphere will be imagined in 3D from the mid-chromosphere to the outer-corona once every second!

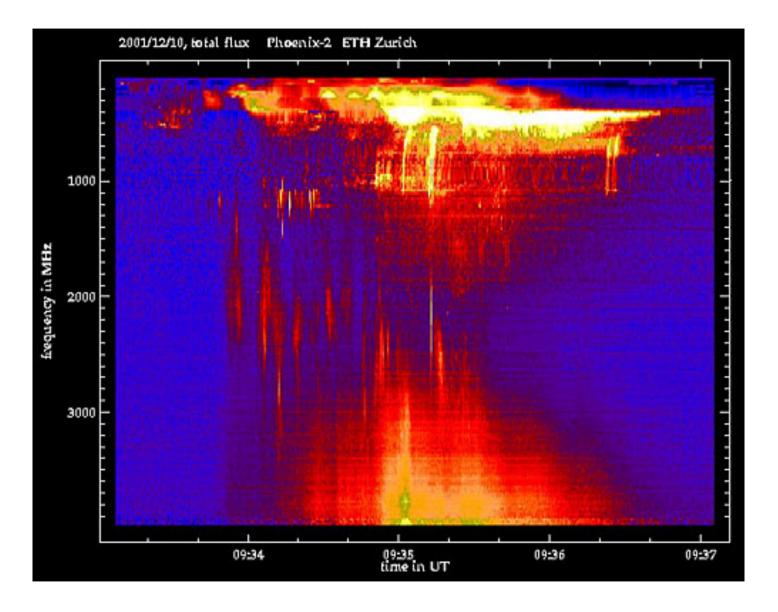
FASR	Frequency range Data channels/	50 MHz - 21 GHz
Specifications	bandwidth/ freq. channels/ int. time	2/ 500 MHz/ 4000/ 20 ms
	Number antennas	A: ~100 (4950 pairs) B: ~80 (3160) C: ~60 (1770)
FASR A: ~2.5-21 GHz		A: 2 m
FASR B: ~0.25-3 GHz FASR C: ~50-300 MHz	Size antennas	B: 6 m C: LPD tiles or similar
	Polarization	Stokes IV(QU)
	Angular resolution	20/ v_9 arcsec
	Footprint	~4.5 km
Proposed site is OVRO	Field of View	>0.5 deg




The Science

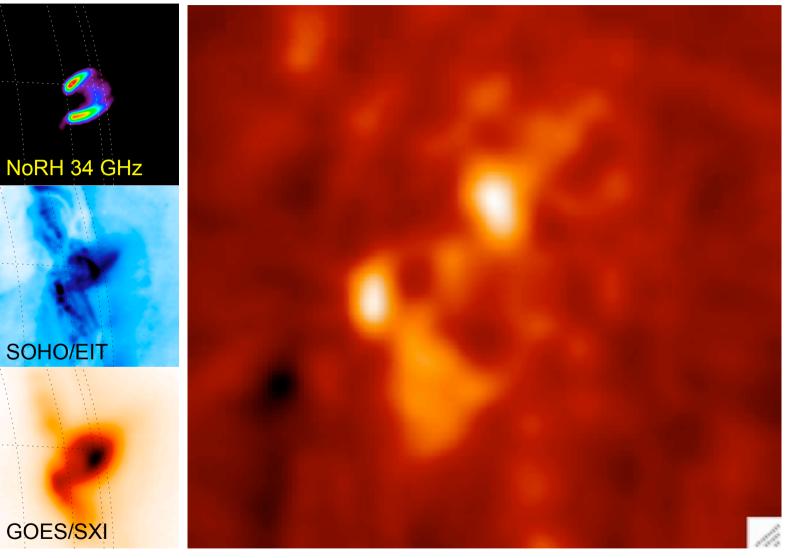

- Coronal Magnetic Fields
 - Coronal magnetography
 - $_{\odot}\,$ Spatiotemporal evolution of fields
 - $\circ~$ Role of electric currents in corona
 - Coronal seismology
- High energy solar physics
 - Magnetic energy release
 - Plasma heating and dynamics
 - Electron acceleration and transport
 - $\circ~$ Origin of SEPs
- Drivers of Space Weather
 - Birth & acceleration of CMEs
 - Prominence eruptions
 - Origin of SEPs
 - Fast solar wind streams

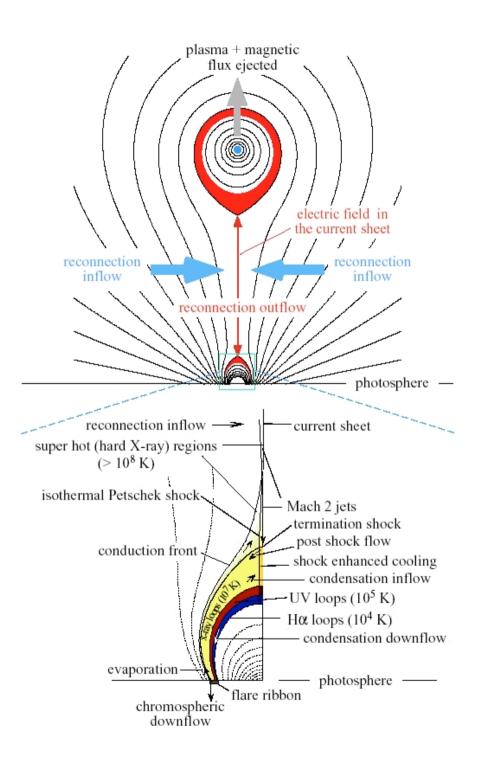
The Science



- The "thermal" solar atmosphere
 - Coronal heating nanoflares
 - Thermodynamic structure & dynamics
 - Formation & structure of filaments
- Solar Wind
 - Birth in network
 - Coronal holes
 - Fast/slow wind streams
 - Turbulence and waves

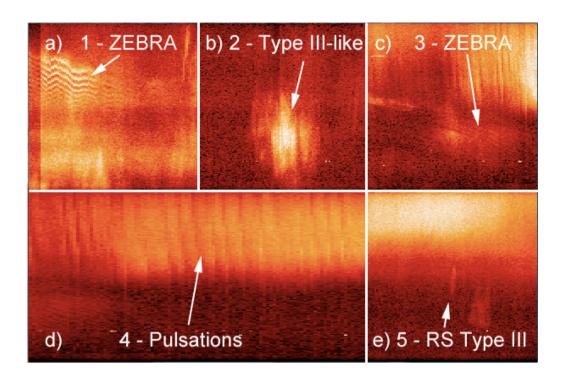
Synoptic studies

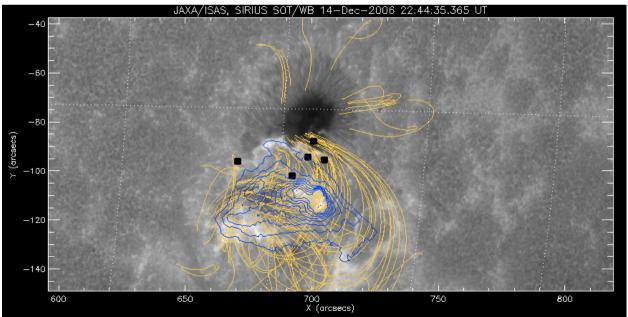

- Radiative inputs to upper atmosphere
- Global magnetic field/dynamo
- Flare statistics


from A. Benz

13 July 2005 LDE: 0230-0500 UT

Nobeyama Radioheliograph 17 GHz


Recent Developments


FASR development has been ongoing since 2006:

- NSF/ATM FASR Design and Development Plan (NRAO, AUI, UCB, NJIT, UM)
 - \checkmark Reference design and costing
 - \checkmark Operations and maintenance planning
 - ✓ Implementation planning
 - \checkmark Design and prototype front ends
 - ✓ Design and prototype "F engines"
 - ✓ Testing of critical COTS components (e.g., FO links)
 - ✓ Site planning
- NSF/AST FASR Subsystems Testbed (NJIT, UM, UCB)
 - \checkmark Design and test DSP strategies
 - \checkmark RFI mitigation strategies
 - ✓ FST science (see poster by Gary et al)

Gary et al 2009

Recent Developments

• In 2007 we were informed that NSF/ATM did not foresee the means of funding a full implementation of FASR

• We were instructed to prepare a plan for no more than \$25M with a duration of no more than 5 yrs

• We therefore "de-scoped" FASR in 2007 to fit within the proposed cost cap, but the design allowed for graceful expansion

•In Jan. 2008, we submitted our plan to the NSF/ATM *Mid-Sized Opportunity* program as a "pre-proposal" and were invited to submit a full proposal for the (de-scoped) FASR in Jun. 2008

FASR	Frequency range Data channels,	50 MHz - 21 GHz
Specifications (MSI Opp)	bandwidth, freq. channels, int. time	2/500 MHz/4000/20 ms
	Number antennas	A: ~45 (990 pairs) B: ~15 (105) C: ~15 (105)
FASR A: ~2.5-21 GHz	Size antennas	A: 2 m B: 6 m
FASR B: ~0.25-3 GHz FASR C: ~50-300 MHz	Size antennas	C: LPD tiles or similar
	Polarization	Stokes IV(QU)
	Angular resolution	$20/v_9$ arcsec
	Footprint	~3 km
Proposed site is OVRO	Field of View	>0.5 deg

Recent Developments

• In Aug. 2008, we were informed that, despite excellent reviews, NSF faced unforeseen fiscal constraints and they could not fund the proposal (or any other proposal of significant size)

 Following much discussion in Sep-Oct 2008 NSF agreed to consider a proposal for the "FASR Pathfinder" (16 + 16 antennas)

• The FASR Pathfinder proposal was submitted in March 2009 for \$8M and we are now awaiting a decision

The EVLA

- Continuous frequency coverage, 1-50 GHz
- Order of magnitude improvement in continuum sensitivity
- 100 ms dump time; 10 ms possible
- 16k spectral line channels per IF band
- High dynamic range solar observing to be supported in the 1-2 and 12-18 GHz bands (~70 dB)
- Solar observing otherwise supported in the 2-4, 4-8 and 8-12 GHz bands (30-40 dB)