The Quiet Sun at metric and decimetric wavelengths

G. Chambe and C. Mercier

Observatoire de Paris LESIA

Contents

- Scientific and observational context
- Observing the Quiet Sun with the NRH
- Recent results
 - Radio coronal morphology
 - Coronal holes' spectrum
- Perspective

Scientific Context

Freq. range 100 - 1000 MHz: allows observation of the low and middle corona

absorbtion/emission : thermal free-free,

$$\alpha = \frac{\xi(n,T)n^2}{\nu^2 T^{3/2} \mu}$$

propagation: refraction indice,

$$\mu = \sqrt{1 - 81 \times 10^6 \, n \, / v^2}$$

- At higher frequencies the corona is transparent.
- At lower frequencies, the corona becomes thick,

=> decrease of the contrast between different structures.

• The corona is well seen in the considered frequecy range, and : the lower the frequency, the higher the observed level.

New view of the solar corona:

The radio probes at different altitudes,

whereas the XUVs probe at different temperatures.

Observational Context

2D imaging instruments (i.e. 2D arrays):

NRH	150 - 450 MHz,	(every day)	
Culgoora	80 and 160	(in the past)	
CLRO (Clark Lake)	~30 - 120	()	
VLA	327 and 1420	(ocasionnally)	
Gauribidanur	100		

Rotational Aperture Synthesis with the NRH

- The only way to get good high resolution images (quiet conditions)
- Improvements since Marqué, 2004: shorter baselines, 10 frequencies

Units: 1000 / rad

However, the QS is a large and complex source

=> difficult deconvolution, sensitivity to calibration errors: Cygnus calib. unsufficient.

Cygnus calibration

Self calibration

Recent Results / solar cycle declining phase

NRH 432 - 150 MHz

Nobeyama

SoHo EIT 195 A

Recent Results

Sumary of morphological aspects

- Large scales structures :
 - Coronal holes, long dark channels, often aside bright ribbons
- Evident changes with altitude (i.e. with wavelength)
- Evolution with solar Cycle :
 - many short-lived (~ 1 day) small structures during minimum
- Coronal holes
 - appear very dark at high frequencies,
 - show internal small scale structure (\neq network)
 - and behave differently while crossing the disk (occultation ?)

Recent Results / spectra

$$\begin{aligned} T_B &= T_{chrom} + T_{cor} \tau_{cor} \\ \text{HF} & T_B &= 2 T_{cor} \tau_{cor} \end{aligned}$$

Two-component model Best fit: T = 6.2 e5 K, n = 1.3 e8 /cm3

Recent Results / spectra

Perspective

- Understanding the large scale morphology
- Study of specific coronal structures
- Spectrum of equatorial coronal holes (compatibility with EUV models)
- Density profile over polar limbs
- Circular polarisation
- Joint NRH GMRT observations
- Position of bursts relative to the radio coronal structures

Perspective / large scale morphology

Radio 408 MHz vs PFSS extrapolation

Perspective / spectrum of equatorial holes

Agreement between EUV and radio models ? Last measurement with the NRH:

v (MHz)	410	327	236	164	
<i>Tb</i> (kK)	360	580	640	<900	(CD et al, 1999 - snapshot images)
Tb (kK)	120	200	350	670	(M and C, 2009)

Difficult to inverse the radio spectrum Tb(v) in order to get T(z) and n(z)Conversely, use EUV models to compute radio spectrum and compare to the observed one:

$$n^{2} \frac{dz}{dT} = DEM(T)$$

$$\frac{d(nT)}{nT} = -\frac{dz}{\eta T}$$

$$\implies T(z), \ n(z) \implies Tb(v)$$

- Large dispersion among the different DEM determinations from EUV- data / authors

- Need for simultaneous radio/EUV measurements

Perspective / density profile over polar limbs

At some distance over the limb, where refraction effects and optical thickness are small:

$$T_b = T\tau \propto T \frac{n^2}{v^2 T^{3/2}} L \propto \frac{n^2}{v^2}$$

- Tb does not depend anymore on T, only on n
- Two ways to obtain the density profile n(z):
 - changing the line of sight
 - changing the observing frequency

Perspective / mapping of the circular polarisation

- Aim: to measure the magnetic field in equatorial coronal holes
- Gel'freikh (1972), Grebinskij et al (2000) For longitudinal field and optically thin amosphere :

$$P \propto \lambda \frac{d \log T_b}{d \log \lambda} B_l$$

- Borovik et al(1999) reported (Ratan, 1D array) :
 P = 3-4 % at 29 cm (1000 MHz)
 Bl up to 10 G
- => Good possibilities at 300 450 MHz
- However, our first attempt was not conclusive (contamination I/V)

Perspective / joint NRH - GMRT observations

- It is possible to combine NRH and GMRT observations due to:
 - Common frequencies (327, 236 MHz)
 - Overlap in observing time
 - Overlap in the *uv*-plane coverage
- Advantage:
 - The NRH has small baselines: QS imaging possible
 - The GMRT has long baselines: high resolution
- Already done successfully (Mercier et al, 2006) for snapshot imaging of solar bursts
- A campaign of joint aperture synthesis observations has just started

Perspective / joint NRH - GMRT observations

• First attempt to obtain a synthesis image from previous data

NRH alone

NRH + GMRT

Conclusions

- We already have a large collection of data, starting from 2004
- Much work to be done
- Still improve the quality and reliability of the images
 - NRH operation
 - Data reduction

Rotational Synthesis with the NRH: multi-scale CLEAN

Perspective / large scale morphology

Radio 408 MHz vs PFSS extrapolation 2004/06/29 <u>a faire</u>

Perspective / large scale morphology

Radio 445 MHz vs PFSS extrapolation

First Results / spectra

First Results / spectra

Two-component model

