Overview of solar instrumentation during cycle 24 and beyond

G. Trottet & K.-L. Klein Observatoire de Paris, LESIA

NRH:

Imaging (disk + limb) of the solar corona in the 150-450 MHz range i.e., ~ 0.1 to 1 solar radii above the photosphere

Scientific topics:

- Collective emission processes
- Structure and modeling of the quiet corona
- Energetic processes such as
 - particle acceleration and transport
 - large scale disturbances

Diagnostics from NRH observations are both unique and complementary to those obtained from other remote and in-situ observations.

Quiet corona

NRH:

 geometry of coronal structures (loops, coronal holes, filament cavities, ...) as a function of height

- free-free emission: N_e², T integrated along LOS
- Polarization measurements: B along LOS Joint measurements
- EUV-SXR: line-band emission selective in T
- B extrapolation over large FOV: potential vs force-free
- Coronagraphs: N_e integrated along LOS (low corona)

Particle acceleration and transport

RH: Imaging of radio burst sources:

- highly sensitive signature of non-thermal e⁻ in the mid-corona
- Tracer of large-scale B structures that guide e⁻

Some scientific topics:

- Large-scale B associated to $\gamma R,\ HXR,\ submm-cm\ sources$ during flares
- Long duration acceleration of e⁻ in large-scale B linked to nonflaring AR and associated with weak XR transients
- Tracer of open B structures: particle access to IP, origin of SEP
- Joint observations:
- γR, HXR, SXR, SEP,
- B extrapolation over large FOV

LESIA

Large-scale disturbances

Some scientific topics with key observations by NRH:

- Triggering and early evolution of CMEs on the disk: filament cavities, radio bursts
- Non thermal processes associated to CMEs: radio CMEs (gyrosynchrotron); electron acceleration due to magnetic restructuring of the corona driven by filament eruptions and CMEs
- Coronal shock waves (type II)
- Radio counterpart of EIT waves

Joint observations

XR, EUV imaging over wide FOV (disk + limb) UV spectro-coronagraph (post UVCS)

Nançay RH 1998/04/20

WL coronagraphs probing the low corona (LYOT, CIHR/Proba3)

Needed solar observations from ground during cycle 24 and beyond

- Full disk images in photospheric and chromospheric lines
- Full disk magnetograms
 - Solar TERrestrial Investigations and Archive: SOTERIA
 - Synoptic Optical Long-term Investigations of the Sun: SOLIS
 - Global Oscillation Network Group: GONG
- High cadence (< 1 s) chromospheric line observations during flares
- B extrapolation over wide FOV
 - PFSS and others
 - Potential, force-free: improved extrapolation algorithms

Solar observations from space during cycle 24 and beyond

Mission	γR	HXR	SXR	Opt/EUV	Coronag	SEP	SW Radio	Launch	Duration
RHESSI								Feb 2002	?
HINODE								Sep 2006	
STEREO								Oct 2006	?
CORONA S-PH								Jan 2009	> 3 y
FERMI								Jun 2008	10 y
SDO								Oct 2009	5 y
PROBA 2								Nov 2009	2 у
PROBA 3								2014 ?	
Solar Orbiter								2017 ?	5 y ?
Solar P + PHOIBOS								2017 ?	
Solar C A or B ?								2016 ?	

Coronal-heliospheric physics is a key topic in the coming decade

Radio imaging of the corona is a unique tool for establishing the link between dynamical processes in the solar atmosphere and in situ measurements

Coverage of dm-m waves by the NRH is necessary for the optimum scientific return of projects like Solar Orbiter

