

Using radioheliographs to study global coronal waves

Alexander Warmuth

Astrophysikalisches Institut Potsdam

Overview

- **1. Introduction: Coronal waves**
- 2. Observations of coronal waves with radioheliographs
- 3. Kinematics
- 4. Relationship with type II bursts
- 5. Interaction with coronal structures
- 6. Physics of waves & emission mechanism
- 7. Possible launching mechanisms

Signatures of large-scale wave-like coronal disturbances

- 1. Globally propagating wavefronts
 - Corona: wavefronts in EUV & SXR
- **Chromosphere:** wavefronts in $H\alpha$ and Hel

2. Excitation of local oscillations

- Corona: oscillating loops in EUV
- **Chromosphere:** oscillating filaments in $H\alpha$

3. Metric type II radio bursts

- plasma emission generated by shocks
- observed in dynamic radio spectra and radioheliograms

Moreton waves

2006 Dec 06 (OSPAN)

- observed in emission in Hα line center & blue wing, in absorption in red wing
 → depression of chromosphere
- propagating away from flaring AR
- speeds of 600-1000 km/s
 → coronal origin of phenomenon

EIT wave of 1997 May 12 images

- observed at 195 Å (Fe XII; 1.5 MK)
- diffuse globally propagating disturbances

"Classical" wave/shock scenario

- dome-shaped fast-mode wavefront expands through corona (EUV, SXR)
- where wave steepens to shock
 → type II burst source (radio)

...however, not everything fits this picture...

- most EIT waves without Moreton counterpart
- speeds below 400 km/s
 → much slower than Moreton waves
- stationary EIT fronts
- coronal dimming
- rotation of EIT waves
- speed of many EIT waves lower than magnetosonic speed
- large differences in velocity of EIT waves (25-438 km/s)
- EIT waves retain coherence over large distances

Alternative models

- Solitons (Wills-Davey et al. 2007)
- nonlinear MHD waves
- remain coherent
- velocity dependent on amplitude
- Magnetic reconfiguration (e.g. Delannée & Aulanier 1999, Attrill et al. 2007)
- restructuring of magnetic field in transverse framework of CME leads to stationary and propagating brightenings
- Hybrid model (Chen et al. 2002)
- CME-driven shock \rightarrow fast Moreton wave & type II
- successive opening of field lines → slow EIT wave ^s

Can we observe coronal waves with radioheliographs?

First observation of a coronal wave with the Nobeyama Radioheliograph at 17 GHz

¹⁹⁹⁸ Aug 08

difference images

- wave seen as enhanced emission front
- kinematics consistent with associated Moreton wave

Warmuth et al. 2004

On-disk event with NoRH

1997 Sep 24 images runnning difference

- spectrum consistent with optically thin thermal free-free emission from corona → disturbance is compressive
- constant speed (835 km/s)

White & Thompson 2005

First observation of a coronal wave with the Nancay Radioheliograph

151 MHz

164 MHz

235 MHz

Vrsnak et al. 2005

NRH sources: type II, type IV, wavefront

Vrsnak et al. 2005

NRH wave characteristics

- weak broad-band source at all NRH freqencies ≤ 327 MHz
- centroid at heights between 0 and 200 Mm
- horizontal extension equal beam width, vertical extension larger → narrow, vertically elongated source

What can we learn about kinematics?

NRH wave intensity profile (along limb) versus time (237 & 164 MHz)

NRH wave source centroid PA versus time

 \rightarrow NRH, H α , and EIT wavefronts lie on same kinematical curve

Vrsnak et al. 2005

What can we learn about the relationship with type II bursts?

Dynamic spectrum and imaging of the type II burst source

Vrsnak et al. 2006

NRH emission pattern connects Moreton wave to type II burst source

What can we learn about the interaction with coronal structures?

Interaction with coronal holes: stopping at CH boundary

EIT wave of 1997 Nov 06

Interaction with coronal holes: refraction around CH boundary

SXI wave of 2003 Oct 29

Interaction with coronal holes: reflection from a coronal hole

- observation enabled by high cadence of EUVI
- EUV transients are truly waves

Gopalswamy et al. 2009

Interaction with enhanced coronal structures

- NRH wave brightest when passing enhanced coronal structures, prolonged radio emission
 - \rightarrow localized energy release has been triggered

What can we learn about the physics of the waves?

NRH wave brightness

151 MHz

164 MHz

235 MHz

- brighter at lower frequencies
- weaker than type II source by factor of 10 to 1000
- intensity decreases with time/distance by factor of 2-10
- bright & prolonged emission when passing enhanced coronal structures → localized energy release triggered

NRH wave: physical interpretation

- emission stronger at lower frequencies
 → optically thin gyrosynchrotron emission
- connection between wave and type II source
 → fast-mode MHD wave/shock generates signatures
- shock enhances magnetic field and increases electron density and energy
 → enhanced gyrosynchrotron emission

What can we learn about the origin of coronal waves?

Possible generation mechanisms of global coronal waves

1. Flares

 Plasma or magnetic pressure pulse launching blast wave

2. Small-scale ejecta

 temporary piston launching blast wave

3. CMEs

- piston-driven shock / bow shock
- blast wave (only initially driven)
- successive brightenings due to field line opening/reconfiguration/ reconnection

POS positions of type II sources, wavefronts, and CME fronts

→ type II sources and wavefronts inconsistent with driving by CME Vrsnak et al. 2006

Conclusions

- coronal waves can be observed with radioheliographs
- radioheliographic observations offer:
 - complementary information (different emission process)
 - unrivaled temporal cadence
 - precise characterization of type II burst kinematics
- NRH wave supports notion of single physical disturbance creating different wave signatures
- NRH observations link coronal wave to type II-producing shock

AIP

Outlook

- search for more events in the existing radioheliographic observations
- use radioheliographic data both for study of waves and associated type II bursts
- upcoming new instruments: LOFAR, FASR
 - use improved spectral resolution to understand emission process