Radio CME Observations in the m-dm Regime and the Future of NRH

> Angelos Vourlidas Naval Research Laboratory

Why treat radio & WL together?

- Both emissions are due to coronal electrons
 - THERMAL radio emission goes as N_e² dl
 - WL emission goes as N_e dl
- Both emissions are insensitive to the temperature of the plasma
- Both are probes of the extended corona & heliosphere
- Radio imaging is possible on the disk (no occulter) AND traces both flare and CMEs development

See reviews by Pick & Vilmer (AARev, 16, 2008), and Vourlidas (2004) ISSI book on CMEs (2006), CESRA Papers (Sol. Phys., 253, 2009)

How can NRH contribute?

or

what CME science is accessible below in m-dm?

1. Radio CMEs

Image directly the radio CME (Bastian et al, Maia et al)

Why Radio CMEs are important?

 Image fine-scale CME structures.
 Derive physical parameters: B_{CME} ~0.1-few G, E ~ 0.5-5MeV, n_{th} ~10⁷ cm⁻³

Radio CME Observations & the Future of NRH, Meudon June 29-30, 2009

Radio CME Observations & the Future of NRH, Meudon June 29-30, 2009

Why Radio CMEs are important?

OPEN QUESTIONS:

- Does every CME have a radio counterpart?
 - Only fluxrope-type CMEs?
- Is the emission gyrosynchrontron?
- Connectivity to low corona?
 - Understand the origin of all radio sources.
- Can we understand SEPs through radio CMEs?

2. Radio imaging of CME shocks

Identify the shock at the CME front.

Radio CME front is faint. Several candidates for Type-II emission can be identified.

Why Radio Shocks are important?

- Clarify origin/driver of type-II emission (once and for all!).
- Understand physical conditions that give rise (or not) to type-II emission.

OPEN QUESTIONS:

- Does the shock lead to other remote acceleration sites?
- What is the relation between type-IIs and SEPs?
- Can we use the type-II as a tracer/locator of the CME propagation?

3. Trace CME Initiation & Development

- 10 min of the radio CME
- 10 sec cadence
- Reveals sites of electron acceleration

May 2, 1998

NRH 236 MHz

Why Radio Imaging of on-disk CMEs is important?

Radio CME Observations & the Future of NRH, Meudon June 29-30, 2009

Radio Imaging of Limb CMEs

Trace the CME initiation and development in the low corona.

The radio sources follow the expansion.

Full CME expansion < 10 min.
Indications of long range interactions.
Erupted systems can be identified.

Why Radio Imaging of CME initiation is important?

- Fast radio cadence offers the best way to monitor CME development
- Can observe both flare and CME development

OPEN QUESTIONS:

- Can we locate the sites of SEP acceleration?
- Can we separate non-thermal from thermal radio emissions?
- Can we use the radio observations as a proxy/replacement of EUV/ WL imaging?

4. Radio precursors of CMEs (?)

 WL & EUV: Rising and expanding EUV loops and/or streamer loops for minutes/hours (days in streamer-blowouts) before the CME erupts

4. Radio Precursors of CMEs

Drifting continuum sources may mark the CME birth.

OSRA-Tremsdorf-Germany	
rີ່ນຳ່າດ ຮໍ່ບໍ່ໄຫ້ ແ ໜັ່ນຄື ແ _ນຊ(∵tensity),[cristion ta]	100
1485.6C (2:0.60) (2:0.60) (2:0.60)	_
153	
2.3.1 3.2.1 4.3.2 Main entrance in processing of the second se	
2.00×0 2.00×10 2.00×10 0.00×10 0.20×10 Surfixee.San [s]	
E-1	

The role of **Noise Storms** remains controversial.

- Some noise storm changes correlate with CME.
- Noise storm sometimes starts before CME and sometimes after.

More work is needed to establish reliable radio precursors for CMES.

5. Post-CME Sources

Is this a signature of the streamer reforming?

6. Other Radio imaging

Follow the initial activation with high cadence (<10sec). Trace the coronal structures that participate in the eruption.

Radio Filaments

3min cadence!

Advantages of radio (m-dm) CME observations

- Accurate timing of eruption initiation and development.
- Derivation of physical parameters in the erupted fluxrope (e.g., magn. field).
- Identification of electron acceleration sites (connection to SXR/ EUV signatures)
- Positional information on Type-II (shocks) sources.
- Derivation of physical parameters in the eruptive structures (when thermal).
- Evidence for precursors to solar eruptions.
- Tracking the CME evolution from birth to Earth (spectra).

Open Questions (for m-dm radio)

IMPORTANT

- What do radio observations reveal about the initiation mechanism?
- Can we probe the magnetic structure of a CME with radio?

VERY LIKELY

- Where to the accelerated particles originate (flare or CME shock)?
- Can we find a reliable CME precursor in the radio?

LESS PRIORITY

- Can we detect the thermal emission from CMEs?
- What can we learn about the CME evolution in the heliosphere from radio?

Suggestions

1. Higher sensitivity (dynamic range)

Why? Image weak radio CME/thermal emission/faint type-II sources How? More antennas (how many?), upgrade receivers

2. More frequencies

Why? Constrain spectra within the radio CME, Separate thermal/non-thermal sources, Better speed estimates for type II, III, IV
 How? Up to ~600MHz (connect w/ Artemis & Portuguese spectra)
 Down to ~74MHz (connect to AIP, observe more type-IIs)

3. Improve self-cal procedures

Why? Higher SNR, fidelity imaging, Easier removal of bright sources/image the faint ones, Removal of refraction effects

How? Monitoring/calibrating radio equipment, other ideas?

4. Implement better RFI rejection schemes

Why? Imaging in more frequencies, better data quality

How? Use experience from FASR development, narrowband receivers

5. Concurrent spectra (GHz \rightarrow kHz)

Why? Follow structures to heliosphere, connect w/ STEREO, etc

How? Incorporate spectrographs (at least in same timerange) into a single 'radio observatory'.

For discussion

- How many antennas?
- How many frequencies (10 currently)?
- Frequency range (600 80 MHz)?
- Which narrowband receivers?
- New correlator?
- **RFI**, ionosphere rejection?
- Formation of a joint imaging/spectral radio observatory (a sort of 'FASR')