./
correl.pro
Contains the correl procedure
Author information
- Author
Laurent Lamy or Philippe Zarka
- History
2009/11/24: Created
2009/11/24: Last Edit
Routines
top source CORREL
Calcule le coefficient de correlation C et son degre de confiance P de 2 tableaux X(N) et Y(N). $$C = \frac{\sigma_{XY}}{\sigma_{X} * \sigma_{Y}}$$ avec $$\sigma_X^{2} = \frac{1}{N} \sum_{i=1}^{N} (X_{i}-X_{m})^{2}$$ $$\sigma_{Y}^{2} = \frac{1}{N} \sum_{i=1}^{N} (Y_{i}-Y_{m})^{2}$$ $$\sigma_{XY} = \frac{1}{N} \sum_{i=1}^{N} (X_{i}-X_{m})*(Y_{i}-Y_{m})$$ et $$P = 100 * \left|\frac{2}{\sqrt{\pi}} \frac{\Gamma(\frac{N-1}{2})}{\Gamma(\frac{N-2}{2})} \int_0^C (1-u^{2})^{\frac{N-4}{2}} \mathrm{d}u \right|$$
Pour le calcul de P, on opere de la maniere suivante:
1) $$\frac{\Gamma(\frac{N-1}{2})}{\Gamma(\frac{N-2}{2})}$$ est calculé avec la fonction LNGAMMA (erreur < 1%)
2) $$\int_0^C (1-u^{2})^{\frac{N-4}{2}} \mathrm{d}u $$ est calculée par recurrence: si $$I_{k} = \int_0^C (1-u^{2})^{k} \mathrm{d}u $$ $$ I_{k} = \frac{1}{2k+1} C(1-C^{2})^{k} + \frac{2k}{2k+1} I_{k-1} $$ $$I_{0} = C$$ $$I_{1/2} = \frac{1}{2} \arcsin C + \frac{C}{2} \sqrt{1-C^{2}}$$
Le calcul de P n'est pas effectue pour N > 23000.
Parameters
- X in required type=fltarr
Tableau
- Y in required type=fltarr
Tableau
- C out required type=float
coefficient de correlation (-1.<=C<=1)
- P out required type=float
degre de confiance ( 0.<=P<=100.)
Statistics
Lines: | 28 lines |
Cyclomatic complexity: | 5 |
Modified cyclomatic complexity: | 5 |
File attributes
Modification date: | Fri Jan 9 19:59:00 2015 |
Lines: | 28 |