Kronos IDL library

Library to retrieve and process CASSINI-RPWS-HFR data

single page | use frames     summary     class     fields     routine details     file attributes

./

correl.pro


Contains the correl procedure

Author information

Author

Laurent Lamy or Philippe Zarka

History

2009/11/24: Created

2009/11/24: Last Edit

Routines

top source CORREL

CORREL, X, Y, C, P

Calcule le coefficient de correlation C et son degre de confiance P de 2 tableaux X(N) et Y(N). $$C = \frac{\sigma_{XY}}{\sigma_{X} * \sigma_{Y}}$$ avec $$\sigma_X^{2} = \frac{1}{N} \sum_{i=1}^{N} (X_{i}-X_{m})^{2}$$ $$\sigma_{Y}^{2} = \frac{1}{N} \sum_{i=1}^{N} (Y_{i}-Y_{m})^{2}$$ $$\sigma_{XY} = \frac{1}{N} \sum_{i=1}^{N} (X_{i}-X_{m})*(Y_{i}-Y_{m})$$ et $$P = 100 * \left|\frac{2}{\sqrt{\pi}} \frac{\Gamma(\frac{N-1}{2})}{\Gamma(\frac{N-2}{2})} \int_0^C (1-u^{2})^{\frac{N-4}{2}} \mathrm{d}u \right|$$

Pour le calcul de P, on opere de la maniere suivante:

1) $$\frac{\Gamma(\frac{N-1}{2})}{\Gamma(\frac{N-2}{2})}$$ est calculé avec la fonction LNGAMMA (erreur < 1%)

2) $$\int_0^C (1-u^{2})^{\frac{N-4}{2}} \mathrm{d}u $$ est calculée par recurrence: si $$I_{k} = \int_0^C (1-u^{2})^{k} \mathrm{d}u $$ $$ I_{k} = \frac{1}{2k+1} C(1-C^{2})^{k} + \frac{2k}{2k+1} I_{k-1} $$ $$I_{0} = C$$ $$I_{1/2} = \frac{1}{2} \arcsin C + \frac{C}{2} \sqrt{1-C^{2}}$$

Le calcul de P n'est pas effectue pour N > 23000.

Parameters

X in required type=fltarr

Tableau

Y in required type=fltarr

Tableau

C out required type=float

coefficient de correlation (-1.<=C<=1)

P out required type=float

degre de confiance ( 0.<=P<=100.)

Statistics

Lines:
28 lines
Cyclomatic complexity:
5
Modified cyclomatic complexity:
5

File attributes

Modification date: Fri Jan 9 19:59:00 2015
Lines: 28