

Systèmes de Référence Temps-Espace

"Operational" Activities of the REFMET Team: Atomic Fountains, Timescales Generation and Dissemination

Michel ABGRALL

38th European Symposium on Occultations Projects, August 31st 2019

Outline

UTC, TAI, SI

- LNE-SYRTE clock ensemble
- Atomic fountains
- UTC(OP) Timescale
- Time transfer techniques
- UTC(OP) dissemination

UTC, TAI, SI calculated by the BIPM

 UTC maintained close to UT1: |UTC – UT1| < 0,9 s UTC – TAI = - 37 s since January 1st 2017
UTC: « paper » timescale calculated for the previous month
NMI produce predictions of UTC: UTC(k)
UTC – UTC(k) published in the Circular T

The SI Second : an averaging of PFS data provided by a few NMI

SYRTE atomic clock ensemble

Atomic fountain clocks

About 20 fountains in operation or under development (LNE-SYRTE, PTB, INRIM, NPL, METAS, NIST, USNO, JPL, NICT, NMIJ, NIM, KRISS, VNIIFTRI, AOS, NPLI, NRC...) with an accuracy a few 10⁻¹⁵ and <10⁻¹⁵ for a few of them.

SYRTE Fountain performances

Fountain Stability Fountain Accuracy Uncertainty budget (x 10⁻¹⁶)

$\sigma_v(\tau=1s)$ at high atomic
densities routinely
over the past years

FO1	3.3 x 10 ⁻¹⁴
FO2-Cs	3.5 x 10 ⁻¹⁴
FOM	6.0 x 10 ⁻¹⁴
FO2-Rb	3.2 x 10 ⁻¹⁴

	FO1	FO2-Cs	FOM	FO2-Rb
Quadratic Zeeman Shift	-1280.61 ± 0.40	-1934.38 ± 0.30	-323.28 ± 1.9	-3502.02 ± 0.7
BlackBody Radiation	169.44 ± 0.60	170.69 ± 0.60	166.67 ± 2.3	126.07 ± 1.35
Collisions and Cavity Pulling	126.17 ± 1.49	125.85 ± 0.97	43.47 ± 8.69	4.00 ± 0.95
Distributed Cavity Phase Shift	-0.97 ± 2.40	-0.9 ± 1.0	-0.7 ± 2.75	0.35 ± 1.0
Microwave Lensing	-0.65 ± 0.65	-0.7 ± 0.7	$\textbf{-0.9}\pm0.9$	-0.7 ± 0.7
Spectral Purity and Leakage	<1.0	<0.5	<1.5	< 0.5
Ramsey & Rabi pulling	<0.2	<0.1	<0.1	< 0.1
Second-Order Doppler Shift	< 0.1	<0.1	< 0.1	< 0.1
Background Collisions	<0.3	<1.0	<1.0	<1.0
Total without Red Shift	-986.62 ± 3.17	-1639.44 ± 2.04	-114.74 ± 9.8	-3373.00 ± 2.45
Red Shift	-69.08 ± 0.25	-65.54 ± 0.25	-68.26 ± 1.0	-65.45 ± 0.25
Total with Red Shift	-1055.49 ± 3.18	-1704.97+/-2.05	-183.00 ± 9.86	-3438.45 ± 2.46

Long term stability of $\nu_{\text{Rb}}/\nu_{\text{Cs}}$ with dual FO2 over 6 months

Fountain Routine Operation:

•Differential measurement by varying the atomic density and extrapolate to 0 to evaluate cold collisions

•Sequential verification (every 1 h) of the Bfield and of the temperature in the interrogation zone

•Periodical verification of the DCP (Tilt, Asym1/Asym2)

•Periodical verification of perturbations on the interrogation signal

synchronous to the clock cycle

•Periodical verification of Bfield Map

•Periodical verification of light shifts

Contribution to the accuracy of TAI

- Fountain data analysis
- Automatic data processing and parameters monitoring
- ✓ Refined processing for final data analysis
- ✓ Fountain local comparison over synchronous operation

• Calibration of TAI by SYRTE fountains One report corresponds typically to a quasi continuous measurement of a H-maser frequency for 20 to 30 days $u_B \sim 2-4 \times 10^{-16}$ $u_A \sim 1-2 \times 10^{-16}$ $u_{link/maser} \sim 0.5-2 \times 10^{-16}$

- About 50 % of the calibration reports sent to the BIPM worldwide were provided by the SYRTE fountains over the past years, mainly by FO2-Cs and FO2-Rb (uptime of ~85%) with 11 to 14 reports per year
- Initiation of the process for SFS with FO2-Rb
- Calibrations by FO2-Rb used as a SFS submitted to BIPM in Jan. 2012 and evaluated by the WG PSFS
- FO2-Rb calibration reports included in Circular T starting June 2012
- Included in the steering of TAI starting July 2013
- An important step towards a possible future redefinition of the SI second based on optical

Continuous monitoring of the SYRTE

Data extracted from the BIPM Circular T 289-379 (i.e. since 2009)

Status and prospects of the fountains

Following deep refurbishment of the 3 fountains needed after continuous operation for more than 10 years

- Accuracy budget and atom physics experiments
 - Investigations on the recoil shift expected to be 7x 10⁻¹⁷ in FO1 and FO2, never observed
 - Effect of background gas collisions
 - Rb/Cs cold collision measurements with FO2
- Timescales
 - Contributions to the realization of the international time references TAI, SI, UTC
 - Continuous calibrations for the steering of UTC(OP)
- In collaboration with FOP
 - Absolute frequency measurement of optical secondary representation of the second in the frame of the redefinition of the SI second in 2026
 - Characterization of the future ultra stable microwave reference generated from an optical frequency comb referenced to an ultra stable laser as a redundancy for the cryogenic sapphire oscillator
- Improving time and frequency transfers
 - Distant comparisons using new satellite T&F transfer (TW-CP, TW SDR, GPS IPPP, GALILEO and other GNSS)
 - Comparisons to other European NMI via phase coherent optical fiber links
- Fundamental physics tests
 - Testing the stability of fundamental constants and gravitation, search of dark matter
- Contributing to ACES mission
 - as high performances clocks part of SYRTE ground segment
 - for providing the best possible time reference for the ACES MWL

Realization of the French Timescale UTC(OP)

- Universal Coordinated Time realized at Observatoire de Paris
- Real time representation of UTC for France
- Base for Legal time in France

Autonomous time reference over 30/40 d relying only on LNE-SYRTE facilities
Real contribution to international timekeeping (/GPS time, etc..)

Pivot for French contributions to international timescales (PSFS, commercial clocks)
Time reference provided to French laboratories and to society

Accuracy, stability and reliability mandatory

➤Combines the operation continuity of commercial clocks (H-masers) and the stability and accuracy of atomic fountains

Steering algorithm

H-Maser prediction

■New method based on a steered hydrogen maser since October 2012

 Automatic data processing for fountain monitoring (hourly) providing daily frequency calibrations of our 4 H-Masers by the 3 fountains at the low 10⁻¹⁵ level

Daily main steering using a linear fit of the fountain calibrations over the past 20 days updated automatically

Additional $\sim 10^{-15}$ steering towards UTC updated monthly using the last available *Circular T* compensating for:

■The slope of UTC(OP) – UTC

 Half of the phase difference over the following month

UTC Performances

- UTC(OP) is one of the best real time realizations of UTC
- Departure of a few ns since the implementation of the new method
- Approaching the uncertainty of the time transfer links

Redundant timescale

Calibration of each maser against each fountain available in real time

Two timescales based on two H-Masers using new 100 MHz frequency offset generators and a switch

Two other timescales with old micro-phase stepper for additional redundancy and experiments

Additional 100 MHz devices being implemented

Simulations and experiments for improving the steering algorithm

Preparation for using calibrations from optical clocks

Time Transfer Techniques

Two Way Satellite Time and Frequency Transfer (TWSTFT)

- Satre Modems, Frequency up/down conversion to the Ku band, Geostationary satellite
- 2 stations (EU/USA, EU/ASIA + experiments)
- Satellite simulator for accessing the stability of the internal delays
- ✓ Accuracy 1-2 ns
- Developments: TWCP/Broadband TW/TWSDR

GNSS (GPS/GALILEO/GLONASS/BEIDOU)

- About 10 receivers from different manufacturers (multi channels, multi frequency, multi GNSS)
- Main station OPMT/OPM2 being replaced by a new station OP71/OPM6/OPM9
- Geodetic station
- Traveling equipment for relative calibration
- Group 1 lab (with PTB and ROA in EU) for the relative calibration of GPS stations of TAI labs
- ✓ Accuracy 1-3 ns
- Experiments on absolute calibration of GNSS receivers
- First experiments using GALILEO signals
- TWSTFT/GPS PPP: main time transfer for TAI contributions
- GPS and TWSDR as backups

Contributions to GALILEO:

- UTC(OP) included in the steering of GST (OP, PTB, ROA, SP, INRIM): time transfer data provided daily
- Relative calibration of GPS stations of the PTF and of the participating labs

Multi-techniques comparisons: T2L2, PPP, iPPP, TWCP, TW broadband, TWSDR, Fiber networks

Improving measurement techniques for the measurement of cable delays, experiments on multipath in GNSS

Infrastructure for the ACES microwave ground terminal

Dissemination of UTC(OP)

EGNOS: European Geostationary Navigation Overlay System

- Plane navigation
- RIMS-PAR connected to UTC(OP): ENT-UTC, ENT-UTC(OP) in real time
- Preparation for the implementation of EGNOS V3

GPS CV comparisons to 12 French laboratories

- Observatories: OCA, OB, ON
- National institutions: CNES, DGA (2 centers), DCNS (French navy)
- Industry: Orange (3 centers), Spectracom Orolia, Keysight Technologies Time difference to UTC(OP) available daily (accuracy 2-10 ns)

SYREF System, operated by OB, referenced to UTC(OP) for frequency calibrations in ~10 other labs

Temps Atomique Français TA(F)

•« Paper » timescale TA(F) computed monthly from 20-30 industrial clocks (9 French labs)

•Weighted averaging of clock data based on ARIMA

- •Frequency steering using fountain calibrations
- •Collected clock data also sent to the BIPM and included in EAL computation

Dissemination of UTC(OP)

Speaking clock : 3699

- Since 1933...
- 4 redundant clocks referenced to UTC(OP) or cesium beams
- Dissemination by Orange network
- Accuracy 50 ms (analogic network)

ALS162 Signal (162 kHz) Former name « France-Inter grandes ondes »

- 2 Cesium beams connected via GPS CV to UTC(OP)
- ~1 MW emitter located in Allouis, in the center of France
- Collaboration with ANFR, TDF, CFHM, LTFB, LNE-SYRTE
- Accuracy : $\sim 10^{-12}$ with the carrier; $\sim 1 \text{ ms}$ with the code

Bulletin H published monthly summarizing the main results

Network Time Protocol (NTP)

- 2 Stratum 1 servers referenced to UTC(OP)
- Stratum 2 servers available to the public (300 000 query/h)
- Uncertainty ~10 ms depending on the network characteristics

SCPTime (Secure Certified Precise Time)

- Industrial collaboration
- Main servers installed and connected to UTC(OP)
- Distribution and supervision system ongoing implementation
- Beginning of the service foreseen in 2019

Laboratory tests on PTP (Precise Time Protocol), White rabbit in collaboration with FOP

24h/24 & 7d/7 Operation, Quality management system (ISO 17025), Service Level Agreement

Thank you !

Systèmes de Référence Temps-Espace

REFMET Staff

M. Abgrall, J. Achkar, B. Chupin, O. Chiu, E. de Clerc, B. Fang, J. Guéna, S. Guérandel, Ph. Laurent, H. Le Goff, L. Lorini, D. Rovera, Ph. Tuckey, P. Uhrich