

Unistellar eVscope Network and its Potential for Occultation

FRANCK MARCHIS @AllPlanets Contributors: Emmanuel Arbouch, Thomas Bellier, Emmanuel Bertin, Martin Costa, Christian Everett, Arnaud Malvache

Senior Planetary Astronomer at the SETI Institute Chief Scientific Officer at Unistellar fmarchis@seti.org

What is Unistellar?

Unistellar (HQ in Marseille, France & Offices in San Francisco, CA) is an electronic and software company that designs & makes the first IoT consumer telescope...

...and generates sky-related data

Customer Expectations

Visual wonder Beautiful and colorful objects

Ease of use Turnkey experience

Use it Everywhere Especially From Home

Infotainment Engaging, with learning, sharing

Current Customer Experience

Lack of visual power Faint and gray object

Overall complexity Long and painful to use

Unreachable From Cities Light Pollution

Not connected Less Engaging / Not Participative.

Useful for Science

eVscope

Sensitivity Accuracy Campaign Mode

- **Enhanced Vision**
- Portable
- Compact
- **Innovative Design**

consumer

Cool

product

Educative Device

Autonomous Field Detection Connected

Comet C/2017O1 seen from Aubagne, France On October 16 2017

Picture taken with a phone in the eyepiece

Unistellar, 2017. Finally You'll see

Image taken in the eyepiece with a phone

UNISTELLAR

Saturn

Orion Nebula

Galaxy NGC891

The Technology

T HARDWARE

- Magnification: 50/100/150x (numerically adjustable)
- Max magnitude: up to 16 in standard night sky
- Mirror Diameter: 4.5 inches
- Focal length: 450mm
- Focal ratio: 4
- Motorized alt-az mount
- Weight: 15.4lbs (7kg) including tripod

ELECTRONICS

- Sensor model: SONY IMX224
- Read Noise: < 1e-

UNISTELLAR

 \times

- Display: Micro-OLED (1,000,000:1 contrast ratio)
- Battery Life: up to 10 hours
- 6 axis Compass/accelerometer
- Wireless connectivity: Wifi or Bluetooth for smartphone or computer control and GPS access.

The Technology

🐔 HARDWARE

- Magnification: 50/100/150x (numerically adjustable)
- Max magnitude: up to 16 in standard night sky
- Mirror Diameter: 4.5 inches
- Focal length: 450mm
- Focal ratio: 4
- Motorized alt-az mount
- Weight: 15.4lbs (7kg) including tripod

ELECTRONICS

- Sensor model: SONY IMX224
- Read Noise: < 1e-
- Display: Micro-OLED (1,000,000:1 contrast ratio)
- Battery Life: up to 10 hours
- 6 axis Compass/accelerometer
- Wireless connectivity: Wifi or Bluetooth for smartphone or computer control and GPS access.

SMARTS

NISTELLAR

- Autonomous Field Detection
- Fully automated star alignment procedure.
- Automated Pointing
- Automated Celestial Tracking with Feedback
- Field derotation
- Intelligent Image Processing
- Intelligent Sensor Settings
- Light Pollution Reduction

•

Autonomous Field Detection

Patented algorithm to identify the FOV based on real time data acquired with the telescope.

Database will include:

- 110 Messier Objects
- 7840 NGC targets
- About ~4,000 asteroids (V<15.5)

eVscope: making astronomy fun and popular

Enhanced Vision technology Beautiful images Light pollution compensation

Autonomous Field Detection Educative and Interactive

Portable and autonomous Fits in an urban backpack

Connected Science campaign Data Sharing

Astronomy is a Citizen Science

Amateur Astronomers have discovered comets and asteroids for decades.

67P/Churyumov–Gerasimenko

From Consumer to Citizen Scientist

Occultation, Planetary Defense, Exoplanet, Supernovae, Transients....

Operating modes: Mode 1 – Requested Observations

Operating modes: Mode 2 – Event Detection

Science & EPO

- Franck Marchis (at least 50% FTE)
- Emmanuel Arbouch (80% FTE)
- SETI research Assistant: Christian Everett (<25% FTE)
- Daniel Peluso (~30% FTE)
- Emmanuel Bertin (Astronomer at IAP)
- Arnaud Malvache (President & CTO at Unistellar)

AT SETI Institute

- Pamela Hartman (Director of Education at the SETI Institute)
- Rebecca McDonald (Director of Communication at the SETI Institute)
- Simon Steel (Director of Outreach at the SETI Institute)

What kind of Science

Planetary Defense

"to detect the possibility and warn of potential asteroid or comet impacts with Earth, and then either prevent them or mitigate their possible effects"

- Early and quick detection of PHAs reported in MPC/ESA
- Orbits of NEAs, Impact zone of PHAs.

Asteroid study

More than 750,000 orbits of asteroids are known today, we don't anything about them.

Shape, Size, and multiplicity by occultation

• Exoplanet Studies

- Follow-ups of TESS, and soon Plato discoveries
- Characterization of the orbits, TTV, rings & moons

• Transient events

- Localization of gravitational wave events
- Afterglow of Gamma-ray bursts
- ET civilizations (Laser SETI)

Occultation events with the First eVscope

September 16 2018 (80) Sappho occulted a 7.5-mag star

With our First Prototype

August 15 2018 Pluto occulted a 13-mag star

Promising First Results!

Lucky Star

yyyy mm dd hh:mm:ss.s RA_star_J2000 DE_star_J2000 C/A P 2018-08-15 05:32:32.9 19 22 10.4687 -21 58 49.020 0.172 347

Goals:

- Astrometric position (Mass of Asteroids)
- Size and shape of asteroid
- Detection of an atmosphere
- Detection of rings and moons

Offset: 0.0mas 0.0mas

UNISTELLAR

The Industrialized version of the eVscope

Manufacturing

UNISTELLAR

Urban astronomy

Testing internally Beta-testing

Soon a large network around the world

Science?

Timing Accuracy Testing

Q: What is the accuracy in the time of the frame provided by the eVscope?

- Drift of the eVscope computer only 4 ms per hour
- Use of the Chronoflash (Prado et al. 2019) flash of 5 ms (accuracy of the flash 1ms source: TENUM)
- Method
 - Time in the eVscope is synchronized using NTP servers (on Android phone or computer) and GPS (iPhone)
 - Record 100 frames with 5 ms exposure time and 125 ms cadence (max currently available)
 - Compare Time stamp of those frames vs flash timing
- Best time accuracy for iPhone (14 ms), worst case for Xiaomi A2 lite (150 ms).
- Conclusion: <100 ms time accuracy if a 4G connection is available on most phones

UNISTELLAR

More Occultations with the eVscope

Goal: More observers, more collaborations, more outreach

Sensitivity limit of 1 eVscope

Good sampling (more than 10 points for 1s occultation) for V<[11.2,12.2] (depending of sky condition)

44 events per night

2019: Mag < 12.2 V Number of Events at Duration Minimums						
<u>Date</u>	<u>t > 5 s</u>	<u>5 - 4 s</u>	<u>4 - 3 s</u>	<u>3 - 2 s</u>	<u>2 - 1 s</u>	<u>1 s > t</u>
1-May	12	4	12	18	51	340
1-Aug	4	1	7	22	52	367
1-Nov	8	5	9	15	56	415
Number of events						

2019: Mag < 11.2 V Number of Events at Duration Minimums

4 - 3 s

5

4

3

3 - 2 s

8

12

8

2 - 1 s

19

28

28

1 s > t

148

157

177

Fresno

t > 5 s

5

1

2

Date

1-May

1-Aug

1-Nov

5 - 4 s

3

1

3

Summer 2019 – More Occultation

Goals:

- Testing the eVscope in real conditions for Occultation
- Validate the pipeline to extract the photometry

NISTELLAR

Thanks T. Bellier (intern and observer)

All those observations were reported to PlanetOccult

In California as well

Next Steps in Science

- Grow the group
- Funding: NASA/NSF/ESA/Private Foundations

In Conclusion

- The eVscope: a smart, powerful, and easy-to-use device for novices & experts, schools and universities
- Occultation: first science case implemented in the eVscope
- Feasibility demonstration in Summer 2019
- Alerts, backend and automatic data processing to be implemented in 2019B
- More observers, more collaborations, more outreach to support of NASA/JAXA/ESA Missions (stay tuned...) and large campaigns in collaboration with IOTA/EURASTER

The largest network of telescopes in the world to watch the sky 24/7

Contact: Franck Marchis, CSO Franck.marchis@unistellaroptics.com +1 5105990604

Properties of the Network

One eVscope:

FOV = 37 x 28 arcmin Pixel size = 3.75μm magMax = mag 18 in 5- 10 min of stacking astrometric accuracy < 0.3 px (0.5 arcsec), TBC photometric accuracy <0.02 mag @ mag 12.4

Multiple eVscopes:

Limit in magnitude:?? Astrometric accuracy:"??" Photometric accuracy:???

E. Arbouch these

Contact: Franck Marchis, CSO Franck.marchis@unistellaroptics.com +1 5105990604

O UNISTELLAR