

Analysis of 31 stellar occultations by Centaurs and Transneptunian Objects

<u>Flavia Luane Rommel^{1;2}</u>, Felipe Braga Ribas^{3;1;2;4}, Roberto Vieira Martins^{1;2;4;5}, Julio Ignacio Bueno de Camargo^{1;2}, Marcelo Assafin^{2;5}, Josselin Desmars⁴, Gustavo Benedetti Rossi^{4;1;2}, Bruno Sicardy⁴, José Luis Ortiz⁶, Pablo Santos-Sanz⁶, and the worldwide community of observervers.

¹ Observatório Nacional, ON, Rio de Janeiro (RJ) - Brazil, ² Laboratório Interinstitucional de e-Astronomia, LIneA, Rio de Janeiro (RJ) - Brazil, ³ Federal University of Technology - Paraná, UTFPR, Curitiba (PR) - Brasil, ⁴ LESIA/Observatorie de Paris, Paris - France, ⁵ Valongo Observatory, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro (RJ) - Brazil, ⁶ Instituto de Astrofsica de Andaluca (CSIC), Granada, Spain

Introduction - Background

- Trans-Neptunian Objects (TNOs) are a population of small bodies orbiting the Sun beyond Neptune, in the Kuiper Belt region (30 - 100 UA);
- Centaurs are believed to be a transient population between TNOs and Jupiter-family comets, orbiting between Jupiter and Neptune;
- Stellar occultation (Fig. 1) happens when a small body temporarily blocks the light of a star to a given observer. The analysis of the resulting light curve allows the determination of sizes, shapes, topographic features as well the detection and characterization of rings, tenuous atmospheres and satellites;

Results: astrometric positions

2004 NT ₃₃	2017-11-16	Asiago (Italy);
2004 PF ₁₁₅	2018-09-28	Santa Fe and Cerro Burek (Argentina);
2005 TV ₁₈₉	2012-11-13	Kninice (Czech Republic);
2007 UK ₁₂₆	2014-11-15	Benedetti-Rossi et al. 2016;
Eris	2010-11-06	San Juan (Argentina), San Pedro de Atacama and La Silla (Chile);
Eris	2013-08-29	Alice Springs and Samford Valley (Australia);
Haumea	2017-01-21	Ortiz et al. 2017;

Astrometric positions from stellar occultations are more accurate than classic methods and help to improve the objects ephemerids.

Methods

Data reduction

- This study employs images obtained from stellar occultations to determine astrometric and physical parameters of TNOs and Centaurs. The basic steps are:
 - Aperture photometry of a sequence of images obtained in one (or more) site, to obtain a light curve ;

Figure 1: images acquired with a WATEC 910BD, with 0.32 seconds of exposure time. They ilustrates the occultation of an star by the TNO, 2002 VE₉₅, observed by Jonathan Bradshaw in Samford Valley/AU on December 03, 2015.

From each data set it is possible to derive times of disappearance and reappearance of the star resulting in one chord along the body;

Ixion	2014-06-24	Alice Springs (Australia);
Makemake	2011-04-23	Ortiz et al. 2012;
Quaoar	2011-02-11	Westford (United States of America);
Quaoar	2011-05-04	Braga-Ribas et al. 2013;
Quaoar	2012-02-17	Gnosca (Switzerland), Tourrette-Levens, Calern and Valensole (France);
Quaoar	2012-10-15	Cerro Tololo (Chile);
Quaoar	2013-07-09	Merida (Venezuela);
Sedna	2013-01-13	Cairns (Australia);

Table 1: stellar occultation events that participate in this study

Conclusions

- ▶ Before the launch of *Gaia* catalog our predictions had error bars of a few object radii at sky plane (≈ 30 mas);
- With stellar positions from the first data release (DR1) we improved our positions errors to the order of 10 mas;
- Now DR2 + p.m + parallax gives the star's position with an error of the order of fractions of mas;

Fit of an ellipse, or a circle, to determine the center of the object relative to the star, for an observer at the geocenter.

Figure 2: occultation light curve (left) and on the right side is the chord projected at sky plane. An ellipse with the same equivalent size as calculated using other technique, was fitted over the extremities of these single chord of occultation by 2002 VE₉₅.

Results: astrometric positions

- This work analyzes 24 events by TNOs and 7 events by Centaurs (Table 1), resulting on 31 accurate astrometric positions;
- ► Gaia DR2 star positions, corrected by proper motion at the date of the occultation;

Figure 3: uncertainties of target stars right ascension (blue) and declination (red), taked from both *Gaia* catalog. The black dotted line represents the iguality between the two catalog's uncertainties.

- We use positions from classic astrometry and the ones obtained from stellar occultations to:
 - 1. improve the object's ephemeris and thus;
 - 2. have accurate predictions.

Centaurs				
Asbolus	2013-11-24	San Pedro de Atacama (Chile);		
Bienor	2017-12-29	Yoron Island, Miharu, Hitachi and Musashino (Japan);		
Bienor	2018-04-02	Konkoly (Hungary), Zeddam (Netherlands) and Borowiec (Poland);		
Chiron	1993-11-07	Bus et al. 1996;		
Chiron	2011-11-29	Ruprecht et al. 2015;		
Echeclus	2012-06-25	Zeddam (Netherlands);		
		TNOs		
2002 KX ₁₄	2012-04-26	Alvarez-Candal et al. 2014;		
2002 KX ₁₄	2018-09-19	Murrumbateman and Yass (Australia);		
2002 TX ₃₀₀	2009-10-09	Elliot et al. 2010;		
2002 VE ₉₅	2015-12-03	Flynn, Murrumbateman and Samford Valley (Australia);		
2002 WC ₁₉	2018-12-30	Rockhampton (Australia);		
2003 AZ ₈₄	2011-01-08	Dias-Oliveira et al. 2017;		
2003 AZ ₈₄	2012-02-03	Dias-Oliveira et al. 2017;		
2003 AZ ₈₄	2013-12-02	Dias-Oliveira et al. 2017;		
2003 AZ ₈₄	2014-11-15	Dias-Oliveira et al. 2017;		
2003 FF ₁₂₈	2017-05-24	Flynn and Murrumbateman (Australia);		

Figure 4: upper graphs presents the ephemeris of 2002 WC₁₉ made by NIMA (Desmars, J. et al. 2015) and using just positions from classic astrometry. The lower fits were plotted adding one position from stellar occultation (yellow dot). The black lines are the ephemerids relative to JPL6 one, and the gray regions are the uncertainties of NIMA ephemerids.

References

Desmars, J. et al. Orbit determination of trans-Neptunian objects and Centaurs for the prediction of stellar occultations. **Astronomy & Astrophysics**, v. 584, p. A96, dez. 2015.

38th European Symposium on Occultation Projects (ESOP), 30 August - 01 September 2019 | Paris - France

flaviarommel@on.br