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Abstract. We derive general results on the existence of stationary configurations for N co-orbital
satellites with small but otherwise arbitrary masses mi , revolving on circular and planar orbits around
a massive primary. The existence of stationary configurations depends on the parity of N . If N is odd,
then for any arbitrary angular separation between the satellites, there always exists a set of masses
(positive or negative) which achieves stationarity. However, physically acceptable solutions (mi > 0
for all i) restrict this existence to sub-domains of angular separations. If N is even, then for given
angular separations of the satellites, there is in general no set of masses which achieves stationarity.
The case N = 3 is treated completely for small arbitrary satellite masses, giving all the possible
solutions and their stability, to within our approximations.
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1. Introduction

Configurations with a massive central body surrounded by small co-orbital satel-
lites are found in several instances in the Solar System. Examples are found in the
Saturnian system: a satellite (Helene) librates near the L4 point of Dione, and two
satellites, Telesto and Calypso, librate near the L4 and L5 of Tethys, respectively,
while the co-orbital satellites Janus and Epimetheus oscillate in horseshoe orbits
around their mutual L3 point.

In another context, the four co-orbital Neptune ring arcs might be explained,
at least partly, by the presence of several hypothetical co-orbital satellites which
would confine the observed dusty ring material (Renner and Sicardy, in prepara-
tion). More generally, a ring close to the Roche zone of its planet might evolve,
through accretion, into a collection of N co-orbital satellites which gather most of
the mass of the ring material.

Our aim in this paper is to derive some general results on stationary planar
configurations for N co-orbital satellites orbiting a much more massive central
planet (planar 1 +N body problem). These stationary configurations are some-
times called relative equilibria, that is, special configurations of masses of the N
body problem which rotate rigidly, with a constant angular velocity about their
center of mass, if given the correct initial momenta. In rotating coordinates these
special solutions become fixed points, hence the name relative equilibria. The
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relative equilibria are solutions of the planar N body problem resulting from an
appropriate choice of initial velocities of a central configuration. Central configu-
rations are the configurations of the N body problem such that the total newtonian
acceleration on every body is equal to a constant multiplied by the position vector
of this body, the center of mass of the configuration being taken as the origin.
Such configurations give rise to simple, explicit solutions of the N body problem
(homothetic collapse if the bodies are released with zero initial velocity, relative
equilibria, . . .).

To within our approximations, detailed herein, we generalize the work by Salo
and Yoder in 1988 (hereafter referred to as SY88) to the case of satellites with
small but arbitrary (not necessarily equal) masses. Indeed, in SY88, only the sta-
tionary configurations of N (N � 9) identical co-orbital satellites are mapped out.
This work was itself an extension of Maxwell’s study (1859) on the stability of
Saturn’s rings in his Adams prize essay of 1856. This latter work was restricted to
symmetrically spaced identical many particles.

However, other papers concerning relative equilibria with a dominant mass,
stayed fairly independent from SY88 because of the use of the different termi-
nology mentioned above. Hall (1987) also studied the planar relative equilibria of
the 1 + N body problem where one mass is large and the other N masses are
small and equal. He found that, when N is sufficiently large, the only possible
relative equilibrium is Maxwell’s ring, that is, a regular N-gon with a central mass,
and that other configurations are possible for small N . In particular, he solved the
problem of 1 large + 3 small identical bodies. Moeckel (1994) found a necessary
and sufficient condition for the linear stability of relative equilibria of the 1 +N

body problem with N small but not necessarily equal masses. He showed that
Maxwell’s ring is linearly stable if and only if N � 7. A bifurcation value Mbif

was found such that this configuration is linearly stable if and only if the central
mass M>Mbif (Roberts, 2000).

In a related but different vein, Albouy (1996) recently classified all the relative
equilibria for four equal masses. There are essentially only four configurations: a
collinear solution, a square, an equilateral triangle with a body at the center and an
isosceles triangle with a body on the axis of symmetry. No complete classification
exists for four unequal masses or for the N body problem with N � 5. In the 5-
body problem, Roberts (1999) found a one-parameter family of degenerate relative
equilibria which includes a negative mass, and thus concluded that the masses
being positive is a necessary condition for the set of relative equilibria equivalence
classes to be finite. Albouy and Llibre (2002) investigated the 3-D configurations
for 1 large + 4 small identical bodies. No stationary configurations are possible in
the non-planar case, but homothetic central configurations are possible. This 3-D
situation will not be considered here.

What we show in this paper is that the existence of possible planar station-
ary solutions of the 1 +N body problem depends on whether N is odd or even.
Namely, if N is odd, and for a given angular configuration, there is always a set
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of satellite masses (although not always physically meaningful, as some of them
may be negative) which achieves stationarity. For N even on the contrary, there is
in general no combination of masses which ensures stationarity for a given angular
configuration.

We give some general results on the linear stability of the stationary configura-
tions, and we treat completely the case of N = 3 satellites with arbitrary masses.

We finally present numerical methods to derive the possible stationary config-
urations for given satellite masses, or conversely, to derive the satellites masses,
given a stationary configuration.

2. Equations of Motion

Consider the 1 +N body problem with N co-orbital satellites moving with the
same average mean motion n0 and the same average orbital radius r0 around a
point mass M.

We assume that all the satellites lie on the same plane (planar problem), and
that the satellite masses are small with respect to the central mass M: for all
i = 1, . . . , N , 0 � mi/M � 1, where mi is the mass of the i-th satellite. A more
rigorous way to define the N infinitesimal masses is the following: for all
i = 1, . . . , N , mi = εµi , where µi ∈ IR+ and ε > 0 is a small parameter that
tends to zero.

We write the equations of motion in a coordinate system with origin at M and
rotating with the angular velocity n0. We assume that the orbital eccentricity of
each satellite is zero and that any two satellites i and j never get closer than a few
mutual Hill sphere radii rH = r0[(mi + mj)/M]1/3. This avoids chaotic motion
and ensures that the satellites remain co-orbital. In particular, we will not consider
here the stationary points aligned with the satellite and the planet (like the L1 or
L2 Lagrange points of the N = 2 problem).

The motion is described by the coordinates (φi, ξi), i = 1, . . . , N , where φi is
the longitude of satellite i with respect to an arbitrary origin, and ξi =�ri/r0 is the
relative radial excursion of that satellite with respect to the average radius r0 (see
Figure 1).

For convenience and with no loss of generality, we assume that n0 = 1, r0 = 1
and M = 1. Classical derivations based on the above assumptions then show (see
e.g. SY88) that the equations of motion are:

φ̇i = −3

2
ξi, ξ̇i = −2

∑
j 	=i

mjf
′(φi − φj ), (1)

where

f (φ) = cosφ − 1

2| sin φ/2| , (2)
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Figure 1. Notations for the dynamics of co-orbital satellites. The satellites move around a central
point mass M with the same average mean motion n0 and the same average orbital radius r0. The
equations of motion (Eqs. (1)) are written in a coordinate system with origin at M and rotating with
the angular velocity n0. The motion is described by the coordinates (φi, ξi), i = 1, . . . , N , where φi
is the longitude of satellite i with respect to an arbitrary origin, and ξi =�ri/r0 is the relative radial
excursion of that satellite with respect to the average radius r0.

from which we derive:

f ′(φ) = sin φ

[
−1 + 1

8| sin φ/2|3
]
, (3)

f ′′(φ) = − cos φ − 3 + cos φ

16| sin φ/2|3 · (4)

The first equation in (1) represents the differential keplerian velocity of each
satellite with respect to the mean orbital radius r0. The second equation contains,
in a derivative form, all the terms arising from the mutual interactions between the
satellites. The function f (φ) in Equation (2) is the sum of the indirect and direct
potentials exerted by a given satellite on the other co-orbital bodies. It is an even
function of φ and its graph is plotted in Figure 2, together with the first and second
derivatives f ′(φ) and f ′′(φ).

Since f ′ is odd, it is easy to show from (1) that
∑

i miξi = constant. Because
the reference radius r0 is arbitrary, it can be chosen so that

∑
i miξi = 0, with no

loss of generality. Thus the system (1) has the following integrals of motion:∑
i

miξi = 0,
∑
i

miφi = constant, (5)
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Figure 2. The function f (φ) (Eq. (2)), describing the potential created by a satellite on a co-orbital
particle, together with its first and second derivatives f ′(φ) and f ′′(φ) (Eqs. (3) and (4)).
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which stem from the conservation of the total angular momentum. This conser-
vation results itself from the global invariance by rotation of the whole problem
considered here.

There is another integral of the system (1):

J =
∑
i

mi


−3

4
ξ 2
i +

∑
j 	=i

mjf (φi − φj)


 = constant. (6)

This is an energy integral, called the Jacobi constant.

3. Equilibrium Points

3.1. GENERAL RESULTS

The fixed points of system (1) are given by:

ξi = 0 (7)

and ∑
j 	=i

mjf
′(φi − φj ) = 0 (8)

for all i = 1, . . . , N .
Equation (7) means that in a stationary configuration the N co-orbital satel-

lites have the same orbital radius.1 Equation (8) involves the angular separations
between the satellites and can be written in a matrix form. Defining f ′

ij ≡ f ′(φi −
φj ) and noting that the function f ′ is odd, we obtain from Equation (8):



0 f ′
12 · · · · · · f ′

1N−f ′
12 0 f ′

23 · · · f ′
2N

... 0

...
. . .

−f ′
1N 0







m1

m2
...
...

mN


 ≡ MN




m1

m2
...
...

mN


 = 0RN . (9)

The N ×N matrix MN defined above is antisymmetric and depends only on the
longitudes φi’s, through the coefficients f ′

ij .
Our aim here is to find all the angles φ1, . . . , φN such that there are physically

meaningful (i.e. positive definite) solutions (m1, . . . , mN) of Equation (9). It is
impossible to do this analytically for an arbitrary number N of satellites. However,
some general properties of the solutions can be derived from the fact that MN

1In the exact problem, this is true to zeroth order in the mi ’s only. Small corrections of order mi

are not considered here.
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is antisymmetric. We assume that for all i 	= j , φi 	=φj (f ′ is not defined on
zero).

PROPOSITION 1. Let (φ1, . . . , φN) ∈ [0, 360o[N be such that φi 	= φj for all i 	=
j . If N is odd, then the rank of MN is rk(MN) = N − k where k is an odd integer.
Therefore there exists a k-parameter family of mass vectors (m1, . . . , mN) ∈ IRN

for which (φ1, . . . , φN) is a stationary configuration. If N is even, then rk(MN)

is generally N , and there is in general no family of mass vectors that leads to a
stationary configuration.

Proof. This results from a classical theorem of linear algebra: since MN is
antisymmetric, its rank is even. Consequently, for given arbitrary angles φi’s, the
existence of non-trivial solutions (positive or not) of the linear system (9) depends
on the parity of the number N of satellites. �

Remarks. If N is odd, rk(MN) = N − k with k odd, but k = 1 almost every-
where (in the space of the φi’s, the set for which the rank of MN is N−3, N−5, . . . ,
has measure zero). Thus, given arbitrary non-zero angular separations between all
the satellites, there is a one-parameter family of mass vectors for which the con-
figuration is stationary: given for example m1, there is a single non-trivial solution
(m1,m2, . . . , mN) of (9). Note, however, that all the masses must be positive for
the solution to be physically meaningful. This will reduce the possible angular
configurations φ1, . . . , φN to a subspace of [0, 360◦[N , as illustrated for instance in
Figure 3 for the case N = 3.

If N is even, the rank of MN is generally N : given an arbitrary angular con-
figuration φ1, . . . , φN , there are in general no non-trivial solutions (m1, . . . , mN)

which achieve the equilibrium. This is well known for the case N = 2, where only
the triangular points L4 and L5 and the diametral point L3 allow the satellites to be
stationary with respect to each other. Thus, one must first cancel the determinant
of the matrix, det(MN), in order to obtain non-trivial solutions of (9).

Let D = {(φ1, . . . , φN) ∈ [0, 360◦[N | det(MN) = 0}. On this subspace, the
rank of MN is N − 2, almost everywhere, and this time there is a two-parameter
family of mass vectors for which the configuration is stationary. This is easily
verified for N = 2. For instance, two satellites at 60◦ from each other are stationary
with arbitrary choices on both m1 and m2.

3.2. APPLICATION

Let us examine some practical cases (N � 4), and let us search for stationary con-
figurations with definite positive masses. For convenience, we can assume with no
loss of generality that one of the satellites, for example m1, is the most massive of
all. In addition, the problem is invariant by rotation of the system as a whole, so we
can measure all the longitudes with respect to m1. More precisely, we henceforth
assume that φ1 = 0, so that φi (i 	= 1) will now denote the angular separation of
the i-th satellite with respect to m1.
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Figure 3. Domains of stationary configurations for three co-orbital satellites with non-zero positive
masses m1, m2 and m3. The angles φ2 and φ3 are the angular separations of m2 and m3 with respect
to m1, respectively, assumed to be at longitude φ1 = 0 with no loss of generality. As discussed in the
text, it is sufficient to restrict the study to the left quadrant 0<φ2 � 180◦ and φ2 <φ3 � 360◦ −φ2.
All the possible solutions are then obtained by symmetries with respect to the two diagonals. The
grey areas S1, S2 and S3 corresponds to solutions with all three masses m1, m2 and m3 positive,
while the black areas are restricted (with no loss of generality) to cases where m1 is the largest of the
three masses. Each point of these areas is an equilibrium point that fixes the mass ratio between the
satellites. There is an infinity of solutions that fill the three areas. The various curves and straight lines
are boundaries where two masses are equal. The points Ia, II and IIIa are the stationary configurations
for three identical co-orbitals, already described in SY88. Note that the particular line φ3 =φ2 has
no physical meaning since it corresponds to two zero masses at the same point.

3.2.1. The classical case of two co-orbital satellites
With N = 2, the equilibrium condition yields ξ1 = ξ2 = f ′(φ2) = 0, so that:

ξ1 = ξ2 = 0, φ2 = 60◦, 180◦ or 300◦.

So the stationary points are the classical Lagrangian equilibrium points L4, L3 and
L5, respectively. Note that the Lagrange points L1 and L2 do not appear here,
because we have assumed that the satellites remain far from their mutual Hill
sphere.
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3.2.2. The case of three co-orbital satellites
The equilibrium condition yields:

ξ1 = ξ2 = ξ3 = 0, (10)

meaning that the three co-orbitals have the same orbital radius, and
 0 f ′

12 f ′
13−f ′

12 0 f ′
23−f ′

13 −f ′
23 0





 m1

m2

m3


 = M3


 m1

m2

m3


 =


 0

0
0


 . (11)

From the previous general result, the rank of M3 is 2 (it is easy to verify that the
rank cannot be zero). So, given the angular separations between the satellites, there
is a one-parameter family of mass vectors that leads to a stationary configuration:
given for example m1, there is a single solution (m1,m2,m3) that satisfies Eq. (11).

Note that there are now only two independent angular variables, φ2 and φ3, from
the choice φ1 = 0.

We only search the non-zero positive solutions for m1, m2 and m3. Solving the
linear system (11) then yields:

m2

m1
= −f ′

13

f ′
23

> 0,
m3

m1
= f ′

12

f ′
23

> 0. (12)

From this system, one can deduce immediately that if (φ2, φ3) is solution, then
(φ3, φ2), (360◦ −φ2, 360◦ −φ3) and (360◦ −φ3, 360◦ −φ2) are solutions too. Thus,
without loss of generality, we can restrict the search for the stationary configura-
tions to the following subspace:

0 < φ2 < φ3 < 360◦ − φ2.

This restricts our search to the left quadrant of the total space [0, 360◦[2 available
to (φ2, φ3), see Figure 3. Geometrically, this means that the three satellites m1,
m2 and m3 are always ordered in the direct trigonometric sense, that φ2 is always
between 0◦ and 180◦, and that the satellite closest to m1 is always m2.

In this subspace, one can find analytically from the relations (12) all the angular
separations between the satellites that correspond to a stationary configuration with
all masses definite positive, see the grey shaded regions in Figure 3. There are three
areas that contain an infinity of equilibrium points, each associated with a mass
ratio m3/m1 and m2/m1 given by (12). These three areas are:

S1: 0 < φ2 < 60◦, 60◦ < φ3 < φ2 + 60◦,
S2: 0 < φ2 < 60◦, 300◦ < φ3 < min(φ2 + 300◦, 360◦ − φ2),

S3: 60◦ < φ2 < 150◦,
max(180◦, φ2 + 60◦) < φ3 < min(φ2 + 180◦, 360◦ − φ2).
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As stated above, m1 can moreover be assumed to be the most massive satellite.
This restricts the equilibrium point (φ2, φ3) to be in one of the black regions of
Figure 3, where all the mass ratios m2/m1 and m3/m1 in the ]0, 1] interval are
represented.

Since the assumption that m1 is the most massive satellite can be made without
loss of generality, it follows that the grey regions in Figure 3 can be reduced to the
black regions, through an appropriate permutation in the indexes i = 1, 2, 3. The
black regions thus concentrate all the possible co-orbital stationary configurations
for N = 3 satellites, to within the approximation mi � 1 for all i = 1, . . . , N .

The boundaries between the grey and black regions are straight lines or oval-
shaped curves where m2 or m3 is equal to m1. The line φ3 = φ2 must be excluded
because it corresponds to two zero masses m2 and m3 at the same point. The three
lines φ3 = φ2 + 60◦, φ3 = φ2 + 180◦ and φ3 = φ2 + 300◦ (not plotted in Figure 3)
must be excluded as well because they correspond to ratios m2/m1 or m3/m1 going
to infinity, with m2 and m3 separated by 60◦, 180◦ or 300◦, thus meaning that we are
back to the problem of N = 2 co-orbital satellites only. The same is true for φ2 =
60◦ (corresponding to m3 = 0) and for φ3 = 60◦ or 180◦ or 300◦ (corresponding
to m2 = 0).

The equations of the oval-shaped curves of Figure 3 are obtained numerically
from Equation (12). The oval-shaped curves m2 = m1, m2 = m3 and m3 = m1 are
given by f ′(φ3) + f ′(φ3 − φ2) = 0, f ′(φ2) + f ′(φ3) = 0 and f ′(φ2)+ f ′(φ3 −
φ2)= 0, respectively. All the lines or curves where any two of the masses are equal
have been labeled accordingly in Figure 3.

There are three stationary configurations with equal masses. These configura-
tions are already described in SY88 and referred to as types Ia, II and IIIa. They
appear in Figure 3 with the same notation. One is when all three satellites are
equally spaced by 120◦, see label II in Figure 3. A second configuration is when the
angular separation between two adjacent satellites is 47◦.361. This configuration
appears twice in the quadrant considered in Figure 3 (labels Ia). The third possible
stationary configuration with equal masses occurs when two satellites are 138◦.765
away from the third one (and thus at 82◦.470 from each other). This configuration
also appears twice in Figure 3, see labels IIIa.

3.2.3. The case of four co-orbital satellites
The stationarity now requires:

ξ1 = ξ2 = ξ3 = ξ4 = 0, (13)

meaning that the satellites have the same orbital radius, and


0 f ′
12 f ′

13 f ′
14−f ′

12 0 f ′
23 f ′

24−f ′
13 −f ′

23 0 f ′
34−f ′

14 −f ′
24 −f ′

34 0






m1

m2

m3

m4


 =




0
0
0
0


 . (14)
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The 4 × 4 matrix is antisymmetric, the rank is even. Therefore, in order to have
non-trivial solutions, one must first cancel the matrix determinant, that is:

f ′
14f

′
23 + f ′

12f
′
34 − f ′

13f
′
24 = 0. (15)

The actual determinant of the matrix is the square of the left-hand side of the
equation above, commonly called the Pfaffian of the antisymmetric matrix. If (15)
is satisfied, then the matrix rank is 2 (again, it is easy to verify that it cannot be
zero). Therefore there is a two-parameter family of mass vectors for which the
configuration is stationary: given for example m1 and m2, one deduce m3 and m4,
solving Equation (14). In fact, in order to have non-zero positive solutions, the
resolution of the linear system yields:

sgn(f ′
34)×

[
f ′

14 + f ′
24
m2

m1

]
< 0, sgn(f ′

34)×
[
f ′

13 + f ′
23
m2

m1

]
> 0,

(16)

where sgn denotes the sign.
Thus, for angles which are solutions of (15), and for a given m1, there is an

infinity of solutions that depend on the choice of m2 that satisfies the relations
(16). The same symmetry arguments as those quoted previously for three satel-
lites enable us to search the stationary configurations in the following subspace:
{(φ2, φ3) | 0 < φ2 < φ3 � 180◦, φ3 < φ4 < 360◦}.

The Equations (16) cannot be solved analytically for any arbitrary ratio m2/m1.
Therefore, for N � 4, the possible stationary configurations can only be derived
using numerical schemes, see Section 5.

4. Linear Stability of the Stationary Configurations

4.1. GENERAL RESULTS

Given a stationary configuration φs = (φ1s , φ2s , . . . , φNs) and ξs = (ξ1s, ξ2s, . . . , ξNs)

which is a solution of (7) and (8), we classically expand the equations of motions
(1) to first order in �φ and �ξ , where:

�φ ≡




φ1 − φ1s

φ2 − φ2s
...

φN − φNs


 and �ξ ≡




ξ1 − ξ1s

ξ2 − ξ2s
...

ξN − ξNs


 .

This yields:

[
�φ̇

�ξ̇

]
=

[
0 −3

2
IN

−2A 0

][
�φ

�ξ

]
≡ LN

[
�φ

�ξ

]
, (17)
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where:

A =




∑
j 	=1

mjf
′′
1j −m2f

′′
12 · · · −mNf

′′
1N

−m1f
′′
12

∑
j 	=2

mjf
′′
2j · · · −mNf

′′
2N

...
. . .

...

−m1f
′′
1N −m2f

′′
2N

∑
j 	=N

mjf
′′
Nj



, (18)

IN is the N ×N identity matrix, and f ′′
ij ≡ f ′′(φi − φj ). Note that when writing

the expression of A, we have used the fact that f ′′ is an even function of φ, that is,
f ′′

ij = f ′′
ji .

The eigenvalues of the matrix LN defined in (17) are the eigenfrequencies of
the system near the stationary configuration (ξs, φs).

PROPOSITION 2. Within the assumption that mi � 0 for all i= 1, . . . , N , the
2N eigenvalues λ1, λ1, . . . , λ2N of the 2N × 2N matrix LN are either purely real
or purely imaginary. Thus, a stationary configuration is linearly stable if all the
eigenvalues are purely imaginary.

Proof. Consider the eigenvector (�φλ,�ξλ) associated with an eigenvalue λ of
LN . From the structure of Equation (17), it is easy to see that (�φλ,−�ξλ) is also
an eigenvector of LN with eigenvalue −λ. Furthermore, it is easy to show that

A · �φλ = 1
3λ

2�φλ.

Conversely, if A · �φ=α�φ (α complex), then one can see that (�φ,�ξ =
∓√

4α/3�φ) are eigenvectors of LN associated with the eigenvalues ±√
3α.

Thus, searching for the 2N eigenvalues λ’s of LN is equivalent to searching for
the N eigenvalues α’s of A and then taking

λ = ±√
3α. (19)

Although A is not symmetric, its eigenvalues are real. This can be shown by
considering the symmetric matrix S constructed by multiplying the first row of A
by m1, the second row by m2, etc.:

S =




∑
j 	=1

m1mjf
′′
1j −m1m2f

′′
12 · · · −m1mNf

′′
1N

−m1m2f
′′
12

∑
j 	=2

m2mjf
′′
2j · · · −m2mNf

′′
2N

...
. . .

...

−m1mNf
′′
1N −m2mNf

′′
2N · · ·

∑
j 	=N

mjmNf
′′
1N



, (20)

If Xα = (X1α,X2α, . . . , XNα) is an eigenvector of A with eigenvalue α, then

S · Xα = αYα,
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where Yα = (m1X1α,m2X2α, . . . , mNXNα). Since S is real and symmetric, we have
S = S̄ = ST, where the bar denotes the complex conjugate, and the superscript T
denotes the transpose operator. From S ·Xα =αYα, we get successively:

XT
αS

T = αY T
α , S̄ · X̄α = S · X̄α = ST · X̄α = ᾱȲα.

Multiplying both sides of the last equation by XT
α , we obtain:

αY T
α X̄α = ᾱXT

α Ȳα.

Since the mi are non-negative, XT
αȲα =Y T

α X̄α =m1|X1α|2 + m2|X2α|2 + · · · +
mN |XNα|2 	= 0, so that ᾱ = α, showing that α is real. Therefore, λ = ±√

3α
is either purely real or purely imaginary. �

Finally, we note that det(A) = 0 since the columns of the matrix are not linearly
independent: adding all the columns yields the N-dimensional zero vector. Thus, at
least one of the eigenvalues of A (and at least two eigenvalues of LN ) is zero. Note
that this is for the same reason that we have

∑
i miξi = 0. This expresses the con-

servation of angular momentum commented after Equation (5). This conservation
eventually stems from the invariance by rotation of the problem, as already noted
by SY88. This double zero eigenvalue of LN actually disappears if one lowers the
dimension of the system by the change of variables where one of the satellites, for
example, m1, is considered as the origin of coordinates (ui = ξi−ξ1, vi = φi −φ1).

In summary, the characteristic polynomial P(x) of the 2N × 2N matrix LN is
an even polynomial of the form P(x) = x2Q(x2), where Q(y) is a polynomial of
degree N−1. As seen above, yQ(y) is proportional to the characteristic polynomial
of A, and all the roots α of Q are real. Consequently, from (19), the eigenvalues λ
of LN are either purely real or purely imaginary (or zero).

The condition of linear stability is thus that all the non-trivial eigenvalues λ’s
[that is, the roots of Q(x2) = 0] are purely imaginary, that is, that all the roots
of Q(y) = 0 are negative. This can easily be verified in the case of the lag-
rangian stationary points with N = 2 satellites, for which the eigenfrequencies
associated with L4 or L5 are purely imaginary, λ = ±j

√−3(m1 +m2)f ′′(φs) =
±j

√
27(m1 +m2)/4, where j = √−1 and φs = 60◦ or 300◦.

Notice in passing that for some specific stationary configurations, some of the
roots of Q(y) = 0 may also be zero, independently of the zero values associated
with the rotational invariance discussed above, see an example below for N = 3
satellites.

4.2. APPLICATION TO THE CASE OF THREE CO-ORBITAL SATELLITES

Besides the double eigenfrequency λ = 0, the other four non-trivial eigenfrequen-
cies are given by:

Q(x2) = x4 − [(m1 +m2)f
′′
12 + (m2 +m3)f

′′
23 + (m3 + m1)f

′′
31]x2 +

(m1 +m2 +m3)[m1f
′′
12f

′′
31 + m2f

′′
23f

′′
12 + m3f

′′
31f

′′
23] = 0,
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where we can use f ′′
ij = f ′′

ji . The two real roots of Q(y) = 0 have the following
sum and product:

s = (m1 +m2)f
′′
12 + (m2 +m3)f

′′
23 + (m3 + m1)f

′′
31,

p = (m1 +m2 +m3)[m1f
′′

12f
′′

31 +m2f
′′

23f
′′

12 +m3f
′′
31f

′′
23], (21)

so that the linear stability (roots of Q(x2) = 0 purely imaginary) of a given
stationary configuration requires:

s < 0, p > 0. (22)

The domains in the (φ2, φ3) plane where both conditions are fulfilled are plotted
in Figure 4 as light grey areas. Practically, the only linearly stable stationary config-
urations with N = 3 satellites are those enclosed in the two triangular areas S1 and

Figure 4. Stability of the stationary configurations for N = 3 satellites. The black and dark grey
areas have the same meaning as in Figure 3, namely the only physically meaningful stationary
configurations (all three masses positive), restricted to the left quadrant for clarity. The light grey
areas correspond to the domains of linear stability, that is, where the eigenvalues of LN are all purely
imaginary. Thus only the stationary configurations in the two triangular areas S1 and S2 are linearly
stable. The four closed curves are the sets of points where the product p (Eq. (21)) is zero, that is,
where one of the non-trivial eigenfrequencies λ is zero, see text for details.
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S2 defined before and shown in Figures 3 and 4. They correspond to configurations
where the less two massive satellites m2 and m3 are either positioned on each side
of m1, near the L4 and L5 points of m1, or are grouped together near one of these
two points, see examples in Figure 5.

The four closed curves in Figure 4 indicate the points where one of the roots of
Q(x2) = 0 is zero, that is, where

p = (m1 +m2 +m3)[m1f
′′

12f
′′

31 +m2f
′′

23f
′′

12 +m3f
′′
31f

′′
23] = 0.

At those points, one of the non-trivial eigenfrequencies of LN is zero, indicating
that one of the satellites is at equilibrium at a singular point which suffers a tran-
sition between elliptic and hyperbolic topologies. At that point, the equilibrium is
neutral, hence the zero eigenfrequency.

5. Numerical Search for Stable Stationary Configurations

Because the analytical resolution of Equation (9) is untractable for N � 4, a simple
numerical scheme is useful for finding the possible linearly stable stationary con-
figurations, given the masses m1,m2, . . . , mN .

The idea is to add in the equations of motion a non-conservative term so that
the satellites will converge towards the linearly stable stationary configurations.
Specifically, let us consider the perturbed equations of motions:

φ̇i = −3

2
ξi, ξ̇i = −2

∑
j 	=i

mjf
′(φi − φj )− νξi, (23)

where ν is a positive real number. It is straightforward to see that near a (conser-
vative) stationary point, the linearized equations of motions are:

[
�φ̇

�ξ̇

]
=

[
0 −3

2
IN

−2A −νIN

][
�φ

�ξ

]
≡ LN,ν

[
�φ

�ξ

]
, (24)

and that the eigenvalues λ’s of the new matrix LN,ν are given by:

λ2 + νλ = 3α, (25)

where the α’s are the real eigenvalues of A. If α is positive, then the two solutions
of (25) are real, with one of them positive. This shows that a linearly unstable
configuration in the conservative case remains linearly unstable when introducing
the non-conservative term −νξ in Equation (23).

Conversely, if α is negative, then the solutions of (25) are real or complex,
but the real parts of these solutions are negative anyway, because ν > 0. Thus a
linearly stable configuration in the conservative case will locally be an attractor for
the solutions of Equation (23).
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Figure 5. Stable stationary configurations for N = 3 co-orbital satellites with m2 = m3 = 10−2m1.
The satellite m1 is at φ1 = 0. To within the possible symmetries discussed in the text, there are ex-
actly two linearly stable solutions in this case. From left to right, the angular separations of satellites
2 and 3 with respect to satellite 1 are: (φ2, φ3)= (54◦.84, 66◦.75), (59◦.82, 300◦.18).

Figure 6. The same as for the previous figure, but with N = 4 co-orbital satellites with
m2 = m3 = m4 = 10−2m1. To within the possible symmetries, there are two linearly stable
solutions in this case. From left to right, the angular separations of satellites 2–4 with respect to
satellite 1 are: (φ2, φ3, φ4)= (51◦.46, 61◦.29, 71◦.91), (54◦.67, 66◦.56, 300◦.35).

Figure 7. The same as for the previous figure, but with N = 5 co-orbital satellites with
m2 = m3 = m4 = m5 = 10−2m1. To within the possible symmetries, there are three linearly stable
solutions in this case. From left to right, the angular separations of satellites 2–5 with respect to satel-
lite 1 are: (φ2, φ3, φ4, φ5)= (48◦.92, 57◦.64, 66◦.29, 76◦.29), (51◦.31, 61◦.11, 71◦.71, 300◦.52),
(54◦.52, 66◦.37, 293◦.63, 305◦.48).

Physically, the introduction of the term −νξ in Equation (23) brings energy to
the system in the rotating frame of the co-orbital satellites. More precisely, this
term increases the Jacobi constant (6) since:

dJ

dt
= −3

2

∑
i

miξi ξ̇i . . . = 3

2
ν

∑
i

miξ
2
i . . . > 0. (26)

This forces the solution to converge towards a local maximum of J (with respect
to small variations of ξi and φi). These local maxima actually correspond to the
linearly stable configurations, a property demonstrated by Moeckel (1994).
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Integrating numerically Equation (23) with a suitable value of ν, and using
random initial coordinates with given mass ratios 0 < mi/m1 � 1 (i 	= 1), we
can find the stable stationary configurations.

Exploring various positive values of m1,m2, . . . , mN then provides the domains
of stable stationary points. We have checked that for the case of N = 3 satellites,
we retrieve the areas found analytically and shown in Figure 3. We have also no-
ticed that for N small but N � 4, the linearly stable stationary points correspond to
configurations where the co-orbitals are either positioned near the L4 and L5 points
of the most massive satellite, or are grouped near one of these two points.

For sake of illustration, we give here some typical cases of stable stationary
configurations. In all Figures 5–7, the satellite m1 is the most massive and is located
at φ1 = 0 (the right-most position).

6. Conclusions

We have derived general results concerning the existence of stationary configura-
tions for N co-orbital satellites with non-zero and small (but otherwise arbitrary)
masses revolving around a massive primary.

The existence of stationary configurations depends on the parity of N . If N is
odd, then for any arbitrary choice of longitudes for each satellite, φ1, φ2, . . . , φN ,
with φi 	= φj when i 	= j , there always exists a set of masses (positive or negative)
m1,m2, . . . , mN for which the stationarity is achieved. However, because we re-
quire that mi > 0 for all i, the physically acceptable solutions actually correspond
to sub-domains of (φ1, φ2, . . . , φN). Example of such domains are given in the
case of N = 3 satellites, see Figure 3. In general the solution m1,m2, . . . , mN is
a one-parameter family scaled, for instance, by m1. It can be a three-parameter,
five-parameter family, but only on a space of measure zero.

If N is even, then for a given angular configuration φ1, φ2, . . . , φN , there is
in general no non-trivial solution m1,m2, . . . , mN for which the stationarity is
achieved. When the φ1, φ2, . . . , φN configuration permits the existence of a non-
trivial solution (which happens when det(MN) = 0), then there is in general a
two-parameter family of masses m1,m2, . . . , mN which achieves the stationarity.

The linear stability of the stationary configurations has been investigated. The
eigenfrequencies of the system near stationarity are either purely real or purely
imaginary, or zero. These eigenfrequencies are the square roots of all the eigenval-
ues (which are real) of the matrix A defined in (18).

Our results apply to the limiting case where mi = εµi , i = 1, . . . , N , where
µi ∈ IR+ and ε −→ 0. The more general problem where ε does not tend to zero
is non-trivial and beyond the scope of this paper. Indeed, not all of the stationary
configurations with ε −→ 0 are limits of equilibria with ε not tending to zero. A
family of relative equilibria xε converging, as ε −→ 0, to a stationary configuration
x of the (1 +N) body problem exists only if x is a non-degenerate local minimum
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of the potential V = ∑
i<j µiµj [1 − f (φi − φj )] (Hessian of V positive semi-

definite with nullity equal to one). Moreover, xε is linearly stable for ε sufficiently
small if and only if x is a local maximum of f . These questions are discussed in
Hall (1987) and Moeckel (1994).

We have not treated the global (non-linear) stability of the stationary configu-
rations. This is well outside the scope of this paper. Note however that, within the
frame of the restricted circular 3-body problem, the problem has been completely
answered in the planar case, with the essential aid of KAM theory. Some progress
has also been made in the spatial case: it has been shown for instance that L4 and
L5 are Nekhoroshev-stable (namely stable over exponentially long times) for all
but a few values of the reduced mass up to the Routh critical value µ ∼ 0.0385209
(Benettin et al., 1998).

The case N = 3 is treated completely in the frame of our approximations.
Figures 3 and 4 give all the possible solutions with positive masses, and their linear
stability.

Finally, we propose a numerical scheme (the integration of Eq. (23)) to find rap-
idly the possible linearly stable stationary configurations for a given set of masses
m1,m2, . . . , mN . Conversely, if an angular configuration φ1, φ2, . . . , φN is given,
the inversion of Equation (9) provides the corresponding solution m1,m2, . . . , mN .
This is an easy task for modest values of N , using classical numerical schemes to
search for the eigenvectors of the matrix MN .
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