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ABSTRACT

In recent years, stellar occultations have been a powerful tool in the study of small bodies of the solar
system (e.g., rings, satellites, asteroids). Diffraction effects have to be taken into account in order to
interpret light curves. We develop here theoretical models, from the Fresnel-Kirchhoff diffraction the-
ory, of occultations by semitransparent strips and opaque elliptical disks, and we give explicit methods
for computing them. We discuss the theoretical implications of diffraction during stellar occultations
and use our own models to distinguish the dips that are artifacts from those that can correspond to real
planetary objects. We apply these considerations to some observations of Uranus’ rings and Neptune’s

arcs.

I. INTRODUCTION

Observation of stellar occultations by solar system objects
has proved to be an efficient method of studying both the
occulting objects and the occulted stars. This technique con-
sists in recording, with high-speed photometry (typically 10
ms), the stellar flux when an object approaches the star and
then occults it on the celestial sphere. A general advantage of
these observations is the high spatial resolution they achieve,
in addition to the possible discovery of material otherwise
seen only with difficulty from the ground. Let us briefly re-
call two important applications of such a method (see Sec. V
for more details):

(1) Occultations by the Moon, which allow estimates of
the sizes of the stars as well as the detection of double stars
(Nather and Evans 1970). Regular observations have led to
the discovery of double stars, even down to vector separa-
tions of a few thousandths of an arcsecond, and have yielded
data on magnitude differences between the companions (Ev-
ans 1984).

(2) Occultations by the planets, which yield important
results about planetary stratospheres and environments (EI-
liot 1979). The arcs of Neptune were discovered in this way
(Hubbard et al. 1986), as well as the rings of Uranus (Elliot
et al. 1977), the positions of which are now known with an
accuracy of a few hundred meters (French et al. 1986).

Theoretical models taking light diffraction into account
have been successfully used for analyzing occultation data.
In particular, models of occultation by semitransparent
rings have been already used to study the Uranus system and
have given very precise values of widths and optical depths
(Hubbard and Zellner 1980; Elliot ez a/. 1984). On the other
hand, during occultations by the remote planets, the record-
ed light curves often exhibit dips, and there has been a great
deal of interest recently in their interpretation.: Are they real
planetary objects (i.e., ring structures or satellites), or arti-
facts (e.g., electrostatic or guiding problems, seeing fluctu-
ations)? Because of their characteristic shape, many arti-
facts can be eliminated. The apparent size of the occulted
star provides a minimal width to an occultation profile. Dif-
fraction effects, which give a minimal width for a “real”
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event (the Fresnel scale, defined in Sec. IT), provide another
important test. Nevertheless, some dips “resist” these kinds
of analysis; thus, in order to test these isolated events and
also to discuss theoretical bases of previous diffracting mod-
els, we have been induced to study, in a general way, the
diffraction pattern produced by small occulting objects,
rings, or solid bodies.

The aim of this paper is (i) to present and justify numeri-
cal algorithms necessary for generating diffraction patterns
(such algorithms can be implemented on mini- or micro-
computers) and (ii) to discuss the theoretical implications
of diffraction during observations of stellar occultations.
The diffraction theory is presented in Sec. II. The diffraction
pattern of rectangular objects is easily obtained in terms of
the “Fresnel” functions. An algorithm for the calculation of
these functions with arbitrary precision is presented in Ap-
pendix A. Generalizing the rectangle formula when one or
several edges are infinite, diffraction patterns of a strip and a
“grey” strip (the square-well ring model, cf. Elliot ez al.
1984) are derived in Sec. III. The diffraction pattern of a
complex body can be constructed from an addition of simple
rectangles, and, using this method, the diffraction patterns
of circular or elliptical objects (moonlet model) are present-
ed in Sec. IV. The circular case can be treated directly with
the “Lommel” functions (Appendix B). In the last section
(V), we review how diffraction is taken into account in the
analysis of stellar occultation data, namely for occultations
by the Moon, asteroids, and semitransparent rings (in the
last case, we discuss optical-depth interpretation when mea-
sured from the Earth or from a spacecraft). Finally, we pres-
ent some examples of applications of our models to the anal-
ysis of occultations by Uranus’ rings and Neptune’s arcs.

II. DIFFRACTION THEORY

The diffraction pattern of a planar wave produced by an
object with abrupt edges will be calculated as a proper case of
Fresnel diffraction, expressed from Kirchhoff’s diffraction
theory.

Fresnel diffraction refers to the diffraction phenomena
obtained at finite distance by application of the Huygens-
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Fresnel principle of wave propagation: each point of a wave
front may be considered as the center of a secondary distur-
bance giving rise to spherical wavelets, which mutually in-
terfere. If part of the original wave front is blocked by an
obstacle, the system of secondary waves is incomplete, so
that diffraction occurs. From a less intuitive point of view,
Kirchhoff has built up a diffraction theory on the basis of the
homogeneous scalar-wave equation of Helmholtz, which
embodies the Huygens-Fresnel principle and describes ex-
plicitly the variation of the amplitudes of secondary waves as
a function of the direction. This theory is entirely adequate
for problems where the dimensions of diffracting obstacles
are large compared to the wavelength and small compared to
the distance of observation (cf. Born and Wolf 1980, Chap.
VIII).

The occulting object is represented as an opaque flat sur-
face S (i.e., we assume that intercepted light is entirely ab-
sorbed and there is no scattering by the edges) located at a
large distance D from the observer (but not too large to re-
main in the frame of Fraunhofer diffraction, see Born and
Wolf 1980, p. 382). .5 lies in a plane P perpendicular to the
line of sight (denoted by 0 — S, see Fig. 1). If we choose as
origin of P the intersection M with the line of sight 0 — S,
then the complex diffracted amplitude ag of an incident mo-
nochromatic plane wave of wavelength A is given, at the
observation point O, by the Fresnel-Kirchhoff diffraction
formula

ag(0) = fo
X2+ Y2+D2

X (14 cos 8)dXdY, D

where P — S denotes the complement of S'in P, #is the angle
of diffraction, and NV is a complex normalizing parameter
which ensures ag (0) = 1 when S vanishes; i.e., when there is
no object. We will see in the next section that N = 1/24i.

When both the dimension of .S and its distance to M are
small compared to D (i.e., X?> + Y2« D?), the normalized
amplitude diffracted by S reads

aS(O)—l——ff By )

Expression (2) is well adapted to the calculation of the
diffraction by a rectangular screen R. Consider a Cartesian
reference frame with fixed origin 0’ in P and 0'x, 0’y axes
parallel to the sides of rectangle R. We denote by (x,, y,)

2’”( x4+ v2+D?—

and (x,, y,) the minimum and maximum coordinates of R,

Line of 519ht

—
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FIG. 1. Geometry of Fresnel diffraction.
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respectively, and by (x,p) the coordinates of M. The integral
(2) now reads

X, —x T y2 yy—y 1T p2
agep) =1-2 e ax [ e ay, ()

X1 —Xx =y

and choosing {AD /2 as length unity (Fresnel scale), we
obtain

ag (x,p) =1—NA[F(x, —x) — F(x; —x)]

X[F(y,—y) —F(y,—»], (4)
where F(x) is the complex Fresnel function defined by

x T g2
F(x) = f e? dX.
0
We have developed an algorithm which allows one to
compute F with arbitrary accuracy, and which is easily us-
able even with a small computer (see Appendix A).

ITII. DIFFRACTION BY A STRIP: CASE OF THE OCCULTATION
BY A RING

Equation (4) enables one to compute the diffracted inten-
sity I = |a|* not only for rectangular screens of small sizes,
but for all limiting cases (half-plane, rectangular wedge,
strip, or truncated strip) near the edge, by use of the asymp-
totic values: F(+ ) = —F(— ) =14 (1+1). How-
ever, this point needs further explanation. Actually, it seems
rather contradictory to let a dimension of the rectangle go to
infinity and to apply the formulas (2) and (4), where we
assumed small surfaces; i.e., X * + Y2« D2 It is possible to
avoid this problem by using for these infinite screens a rigor-
ous (expressed from Maxwell’s equations) diffraction the-
ory introduced by Sommerfeld for the perfectly conducting
half-plane. This theory confirms the validity of Fresnel’s ap-
proximations, particularly for optical wavelengths out of the
screen plane and its vicinity (Born and Wolf 1980, Chap.
XI). Nevertheless, we will briefly show why we can use Eq.
(2) instead of Eq. (1) even for asymptotic cases: the key
point is that only a small neighborhood of the origin (where
X? 4+ Y2«D?) contributes effectively to the result of an inte-
gration of Eq. (1) on an infinite domain. The asymptotic
part cancels out because the phase of the integrand varies
very rapidly.

If, for instance, Y goes to infinity in Eq. (1) when X is
fixed and negligible compared to D, we must then evaluate

re YD
J. e—(\/Y2+D2+D) dy. (5)
o Y2+ D?

We can avoid the complex exponential by substituting

Y = Du\u® 4 2 and by integrating along the edges of the
sector 0 < Arg(z) < /4 in the complex plane. Then integral
(5) is given by

+ o —217'th 2_ A
2J U
o

e
12—

where tZ — 2i is the principal determination of the square
root. So, owing to the very large size of the factor 2D /4,
this integral is virtually equal to A /D ¢™*, which is the
result we obtain if we consider Y negligible compared to D,
as in Eq. (2). Thus, Eq. (4) gives the diffracted amplitude
produced by rectangular screens of small and/or infinite di-
mensions. In particular, this equation is valid when the
screen is the whole plane, and we obtain in this case
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NA[2F(0)]?*=1, ie, N=1/24i.

Now, for an opaque strip of halfwidth w, we have

a,(x)=1+1(-D[Fw—x)+Fw+x)], (6)
and writing F(x) = C(x) + iS(x),

I,(x)=3{[C(w—x) + C(w+x) —1]*

+ [S(w—x) +S(w+x) —1]%}. (7

It is straightforward to compute the intensity of light
when the occulting body is homogeneously semitransparent;
that is, it removes a fraction p (0 < p<1) of the amplitude of
the wave at any point of its surface. Then the intensity trans-
mitted by such a “grey strip” is

L,x)=1{[pClw—x)+pCw+x) —1]*

+[pSw—x)+pSw+x)—11"}. (8)

In fact, a planetary ring is not a homogeneous grey strip
but is composed of a large number of small diffracting o-
paque particles. In this case the value of the formal opacity
parameter p is discussed by Cuzzi (1985) and reanalyzed in
Sec. V.

Examples of theoretical light curves calculated with Egs.
(7) or (8) are in Elliot ez al. 1984 (in the Appendix) and in
this paper Fig. 4 (profile (c)).

IV. DIFFRACTION BY ELLIPTIC SCREENS: CASE OF THE
OCCULTATION BY A LITTLE SATELLITE OR AN ASTEROID

It is of interest to construct diffraction patterns caused by
more realistic objects than “parallelepipeds” of the previous
section, such as moonlets or asteroids. We can think of
spherical bodies, but also of ellipsoids or merely irregular
bodies.

We first consider an opaque disk of radius p. In the plane
of the object, we use polar coordinates, denoted by (R,p),
with fixed origin 0 at the center of the disk, and argument
origin 0'M (Fig. 1). We denote ||0'M|| by 7; thus the optical
path difference becomes X? + Y>=R?+7* — 2 R r cos g,
and carrying in Eq. (2), we obtain

2me*? (P G5 R? ( 27 )
r) = B —— _

a,(r)=1 DI J;e A ADrR RdR, (9)

where

Jo(x) = iJ. cos (xsint) dt
T Jo

is the Bessel function of zero order.

The function to be integrated oscillates more and more
rapidly as R increases, invalidating usual integration algo-
rithms for practical calculations. Lommel (1884) gave a
complete analytical solution of such a problem using the so-
called Lommel’s functions: we outline in Appendix B the
principle of his method and give the solutions expressed with
our notations. We have implemented this method on com-
puters: it yields good results but rather slowly near the edge
of the geometric shadow, where the alternate series of Bessel
functions, which defines the Lommel functions, have many
significant terms (see Eq. (B3) in Appendix B). On the other
hand, our specific problem of occultation by a moonlet or an
asteroid does not need a perfect circular model but rather a
sufficiently isotropic diffraction pattern, in which the light
intensity mainly depends on r. Furthermore, it is actually
interesting to extend the calculation to elliptical bodies,
which is not possible from Eq. (9).

1551

For these reasons, we have developed a numerical integra-
tion of Eq. (2) on a circular or elliptical screen, directly
inferred from the rectangular case, for which a fast algo-
rithm is available. We consider a circle or an ellipse, which
will be the model’s envelope, and a Cartesian reference sys-
tem with fixed origin at its center. The model is composed of
joined rectangles whose edges are parallel to the reference
axes and constructed as follows (see Fig. 2).

We divide the arc (0,7/2) in successive powers of 2, so
that, at step n, we have determined 2" — 1 points on this arc.
Each of these points defines the maximum coordinates of a
rectangle. To obtain the complete model, we finally make
two symmetries with respect to the reference axes (note that
we omit some rectangles which have negligible contribu-
tions: their exact number is indicated in the caption to Fig.
2).

The calculation of Eq. (2) for four rectangular screens
symmetric with respect to the reference axes, from a positive
coordinates rectangle (x,, y;) and (x,, y,) (see the hatch-
ings in Fig. 2), can be simplified using a complex function f
defined, in units of Fresnel scale, by

X+ x; T g2

Sflxx;) =J e?

x—xj

dX=F(x+x;) —F(x—x;),

and we obtain the contribution to the amplitude from these
four symmetric rectangles (denoted &) by

&('x’y) =§ [f(x»xz) —f(x,x,)][f( ,V,,Vz) _f( y’yl)] . (10)

At a given step n, the f(x,x,) and f{ y,y;) terms have been
already calculated, so that calculation of @(x,y) needs only
four further Fresnel integral values. Consequently, the com-
plete model needs a number of Fresnel integral calculations
that is equal to the number of considered rectangles (twice
less if the envelope is a circle, because of symmetry with
respect to the frame’s diagonals).

The choice of n, which can be regarded as an irregularity
factor, mainly depends on the obstacle size. To control how
the method converges, we first computed the diffraction pat-
tern of a circular screen; we consider the multirectangle
model suitable when the diffracted-light intensities comput-
ed along two radial axes of argument 0 and 7/4 do not differ
more than a given tolerance (the most different profiles of
intensity are obtained along these axes). It appears that the
parameter » must be increased to ensure a given tolerance
when the object’s radius increases. We have indicated in Fig.
3 the maximum allowable radii (in Fresnel scale units) in
order not to exceed 5% or 1% of error of the model “isot-
ropy.” Otherwise stated, small irregular objects (i.e., with
small n) can reproduce the diffraction pattern of disks, in-
cluding the presence of a central spot (see below and Fig. 4).

Furthermore, we have checked that, for adequate n, the
direct integration of Eq. (9) with Lommel’s method (Ap-
pendix B) and the multirectangle models for circular disks
are in excellent agreement. We noted that the multirectangle
calculation requires less computer time than Lommel’s
method for small disks—i.e., radius less than 1.5 times the
Fresnel scale—and also for larger disks near the edge of the
geometric shadow.

Finally, when 7 is adequate for a disk, we assume that its
value is also adequate for elliptical screens of comparable
size.

Some occultation profiles produced by squares, strips,
disks, and ellipses are presented in Figs. 4 and 5 and dis-
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FIG. 2. Elliptical object model (n = 5). We do not take into account, to obtain the model “n,” the rectangles whose areas are
less than the greatest rectangle area of step # + 1. The following table gives the exact number of rectangles considered for each
step #; that is, the number of Fresnel functions calculated to obtain a point of the profile (rectangles over frame axes are
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counted for two):

n= 2 3 4 5
12 28 60 116

cussed in their captions. The most obvious property of circu-
lar disk profiles is the presence of a central flash (the so-
called Poisson spot) whose intensity is equal to 1, as if no
screen were present. This result is easy to predict using Eq.
(9) with r = 0. The area of this central flash decreases when
the size of the object is increased. From the Lommel formula
(see Appendix B), we see that the first zero of the Poisson
spot is given by J,(7pr) = 0, and so the radius of the spot is
given by 0.76/p Fresnel scale, if p is the radius of the object,
also in Fresnel scale. In the case of an elliptical obstacle, the
Poisson spot decreases when the eccentricity increases, but it
depends, too, on the object size: A numerical study shows
that its maximum intensity is higher than 0.5 if the product
of the object semimajor axis (in Fresnel scale units) by the
eccentricity is less than ~ 1.2,

V. PHYSICAL APPLICATIONS TO STELLAR OCCULTATIONS
a) Occultations by the Moon

Stellar occultations by the Moon are widely used to detect
double stars, to measure the limb-darkened angular diame-
ter of the occulted stars (see, for example, Ridgway et al.

6 7 8 9 10
236 468 932 1868 3724

1979), and, more recently, to study stars with emission
shells (White and Slettebak 1980). Diffraction effects are
necessarily taken into account in these observations, for
which the Fresnel scale in visible wavelengths is about 10 m,
and a deep study of the lunar limb effect has been made by
Evans (1970). Nevertheless, the lunar limb is merely mod-
eled by a half-plane single edge, because, as Evans points out,
it is difficult to refine this model and to separate the effects of
the irregular lunar surface and of the stellar properties. On
the basis of diffraction by a half-plane single edge, Nather
and McCants (1970) give appropriate models for the analy-
sis of lunar occultation data and the procedure for model
fitting, using nonlinear least-squares techniques.

b) Occultations by Asteroids

Observations of stellar occultations by asteroids provide
accurate sizes and shapes of the objects, via comparison of
the different emersion and immersion timings from different
sites (for instance, this method gives Ursula’s diameter as
216 4+ 10km, Millis ez al. 1984). Secondary events observed
during occultations can be interpreted as satellites (Arlot et
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Object radius [’
30 |(Fresnel scale) _
20 — —
10 - —
+
S —
0 i1 I I n
0 2 3 4 5 6 7 8 9 10

F16. 3. Radii of circular objects allowable for each step # and for
isotropy tolerances of 1% (heavy lines) and 5%.

al. 1985). Diffraction is very important during asteroid oc-
cultations (the Fresnel scale in visible wavelengths is about
300 m) and the fringes have already been observed (Leca-
cheux 1986) but have never been used to study asteroids.
Indeed, such a study should require high-quality occultation
recordings, quite rare because the objects are small, so that
catching the event from a large telescope is difficult. We note
that, even if the asteroid is sufficiently smooth and circular,
the chance to observe the Poisson spot during such an obser-
vation is vanishingly small, because the size of the spot does
not exceed a few meters for typical asteroids.

¢) Occultations by the Planets

Stellar occultations by remote planets like Uranus and
Neptune are a very efficient method for studying the sur-
roundings of these planets, including rings, isolated objects,
and diffuse matter. A very good knowledge of the position
and the width of the Uranian rings has now been achieved
(Nicholson et al. 1982; Elliot et al. 1984; French et al. 1986):
the error in position is less than one kilometer for objects
virtually invisible from the Earth.

Our group has observed a certain number of occultations
by Uranus and Neptune which exhibit several dips, some-
times corresponding to known rings and sometimes not (iso-
lated events) (Roques 1986). In order to test these dips and
to study the characteristics of the small occulting objects, we

1553

have developed a diffraction model of occultation profiles by
semitransparent rings and by isolated opaque and spherical
objects. The synthetic profiles are computed, for a point light
source at a given wavelength, with methods given in Secs. I11
and IV. The profile is then convolved with the filter band-
width and the stellar disk- (which can have an adjustable
size, see below). The limb-darkening parameter is not used.
These synthetic profiles are used to fit by least squares the
recorded occultation profiles. This correlation gives the mid-
time of the occultation and the best values of the two free
parameters of the synthetic profile, which are, for a ring, its
width and its opacity (projected in the sky plane), and for a
circular object its radius and the impact parameter of the
encounter.

In the special case of a ring profile, width and opacity must
be corrected for physical interpretation. For the width it is
enough to take into account the angle between the star path
and the ring perpendicular, but the interpretation of ring
opacity needs further explanation.

The opacity parameter p is simply related to the optical
depth of the ring 7 by (1 — p)? =f=e ™", where f denotes
the fractional transmitted energy. These parameters must
then be corrected to take into account the elevation angle B
of the line of sight with the plane of the studied ring. We
finally obtain the normal fractional transmission £, and the
normal optical depth 7, by the relation (see Elliot et al.
1984) 1, = 7 sin B if we assume the ring is many particles
thick (polylayer), and (1 —f,) = (1 —f) sin B if we as-
sume the ring forms a monolayer without significant shad-
owing, i.e., with B close to 90°. Now, the key point to phys-
ical interpretation of these formal parameters is that the
transmitted energy measured from the Earth depends not
only on the fractional area covered by the particles but also
on a diffraction effect induced by each ring particle. The
importance of diffraction by the ring particles has been
pointed out by Cuzzi (1985). He underlines that the optical
depths derived for the Uranian rings during stellar occulta-
tions (observed from the Earth) are twice the actual optical
depths, which was confirmed during the Voyager PPS occul-
tation experiment (Lane et al. 1986). This can be shown by
using a slightly different approach than Cuzzi.

Let us consider a ring of area S, composed of particles
which cover a total area s, so that the fractional covered area
is s/.S, corresponding to an optical depth e~ ° =1 — s/S.
Clearly, such a ring removes a fraction s/S of the total inci-
dent energy. Consequently, the integral in Eq. (2) is the sum
of many integrals, each of them corresponding to one parti-
cle. Assuming that the radius 7 of the particles is small com-

pared to the Fresnel scale, yAD /2, as (0) may be rewritten

4 (0) = 1 IN X e%(xhri)
(0) =1—2=2
D =
QT(uXk+va)
XJJ e'P dudy, (11)
Sk

where u,v are the coordinates measured from the center X,
Y, of the k th particle and .#" is the number of particles.
So it appears that the observed profile is the interference
figure of many elementary diffraction patterns represented
by the integrals in Eq. (11). The width of these diffraction
patternsis ~AD /r, typically several thousand kilometers at
the Earth, with r~1 m. If the width of the rings is small
compared to AD /r, and if we remain close to the geometric
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FI1G. 4. Occultation profiles with diffraction for a point source, produced by squares, strips, and circular disks. Upper panels show profiles produced
by square screens when the source is kept along a diagonal (profile (a)) and along a median line (profile (b)). Lower panels show profiles produced by
opaque strips when the source is kept along a perpendicular line to the edge (profile (¢)), and by quasicircular objects (profile (d)) along a radial axis,
with n such that we ensure an isotropy better than 1%. In each of these cases, we show three object sizes: 1.5, 5, and 10 km halfwidth of geometrical
shadow (indicated by dotted lines), with 1.7 km Fresnel scale corresponding to Uranus distance at A = 2.2 um. We see that the amplitude of the
fringes is very attenuated when the source immerses behind a rectangular wedge (profile (a)) compared to the fringes produced when the source im-
merses behind a straight edge (profiles (b) and (c)). For small squares (1.5 km), we note a central flash of almost 1 intensity which is much greater
than in the strip case (c). For broader cases, (b) and (c) profiles are quite similar (and so not very different from profiles produced by a half-plane
single edge). In circular cases (profile (d)), the Poisson spot, of exactly unit intensity, is produced by any object size, but its width decreases when the
object size increases. For 1.5 km radius, the profile (d) is a middle term between the profiles (a) and (b). For greater radii, the fringes are not very
different from ones produced by strips, or squares (or half-planes) along a line perpendicular to the edge, except for the Poisson spot.

shadow of the ring, then each integral in Eq. (11) is equal to
unity, so that

2N s T x24 v
as(0)=1—=2= | | &P . dxdy. 12
«0=1-2s ] (12)

Otherwise stated, the ring which initially removes a frac-
tion s/S of the energy is now equivalent to a uniform grey
strip which removes a fraction s/.S of the amplitude. Conse-
quently, the energy transmitted by the ring, f, = 1 — s/, is

the square root of the energy transmitted by the profile
f=(1—s/8)?, and the derived optical depth
7= —In (1 —s/S)? is twice the actual optical depth
7o = —In (1 — s/S). The energy difference (1 — s/S)s/S'is
lost over a much larger scale than the ring width, and is thus
indistinguishable from the noise of the signal.

d) Some Examples

We have analyzed two occultations by Uranus, on 15 Au-
gust 1980 and 22 April 1982. The 1982 occultation has been
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FIG. 5. Occultation profiles with diffraction for a point source, produced by elliptical disks. This figure shows profiles produced by opaque elliptic
screens when the source is kept along the major axis (profile (e)) and the minor axis (profile (f)) of an ellipse of 0.9 eccentricity, and when the source is
kept along the major axis of an ellipse of 0.4 eccentricity (profile ( g)). As in Fig. 4, we show three object sizes: 1.5, 5, and 10 km halfwidth of
geometrical shadow (indicated by dotted lines), for 1.7 km Fresnel scale. Results are the expected ones: a rapid change of the curvature at the immer-
sion point strongly attenuates the diffraction fringes (profile (e)). The profile (f) is very near to the profile (c) of the opaque strip in Fig. 4, with very

large fringes for the 1.5 km semiminor-axis case. For this large eccentricity,
On the profile (g), the fringes are slightly attenuated compared to the circula
km object produces a central flash of only 0.5 intensity and the phen

observed with two telescopes from the ESO. One event ap-
pears simultaneously in the two recordings, and its width is
greater than the stellar diameter and the Fresnel scale. We
have studied it with our models and found that it is compati-
ble with an occultation profile of a 1.4 km diameter circular
object or with a ring of 0.7 km width and 0.6 km optical
depth (Sicardy et al. 1986).

The 1980 occultation was observed with only one tele-
scope. Six isolated events were detected that have the neces-
sary width to be real (Sicardy ef al. 1982). We have tested
these events with our models: one of these dips is an artifact,
and the other ones are compatible with rings or isolated
moonlets (Roques et al., in preparation).

At first sight, the occultation data processing requires
knowledge of the stellar size. This parameter may be ob-
tained from classical photometry methods. For outer plan-
ets, the apparent stellar diameter may range from 1 to 20 km,
depending on the occulted star, so it smooths the diffraction
profile of the rings (The Fresnel scale for the infrared wave-
length used is about 1-2 km). However, the star radius can
be considered, in the model, as an adjustable parameter, and
thus the value given by the photometry can be confirmed or

the Poisson spot virtually disappears, except for very small object areas.
r case; the 1.5 km semimajor-axis object keeps the Poisson spot, but the 5
omenon almost disappears for the highest size.

invalidated. As an example of such a method, we present a
short analysis of our data of a Neptune arc profile, recorded
at the ESO 0.5 m telescope.

The observation of an appulse of the star SAO 186001 by
Neptune, on 22 July 1984, allowed the discovery of a Nep-
tune ring arc (Hubbard et al. 1986). We recall that the event
was observed at two different observatories in Chile, the
CTIO and the ESO, separated by 100 km. A cross correla-
tion of the two sets of observation data shows that the two
events are virtually identical (Brahic ef al., in preparation;
Roques 1986) and, from this similarity over a 100 km base-
line, it is clear that a ring-like feature has been observed
(which is denoted as an “arc” because of lack of continuity
around the planet).

The best simulated profile obtained with the nominal star
radius of 5 km shows a flat bottom not visible in the actual
profile (Fig. 6(a)). If the star radius is an adjustable param-
eter, the best correlation (Fig. 7) is obtained with a star
radius of 8.5 km, for which the synthetic profile correctly fits
the data (Fig. 6(b)). The parameters of the ring are w, = 15
km and 7, = 0.68. Arguments of Cuzzi (1985) for occulta-
tions by Uranus are also valid for this occultation, and, if
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FIG. 6. Neptune arc profile, recorded at the ESO 0.5 m telescope
on 22 July 1984, compared with the superposed theoretical profile
(dotted line) for a 5 km star radius (profile (a)) and for an 8.5 km
star radius (profile (b)).

Voyager should observe this arc, it will probably measure an
optical depth reduced by half because of the abovementioned
diffraction effect.

We have also fitted with the grey-strip model a Neptune
arc(?) observed during the occultation of 20 August 1985
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F1G. 7. Minima of the residuals obtained by fitting the Neptune arc
profile with synthetic profiles for star radii between 4 and 12 km.
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from the Canada-France-Hawaii Telescope. The curve giv-
ing residuals as a function of star radius shows two minima:
A 4 km star radius corresponding to w, = 24.8 km and 7,
= 0.08, and a 6.5 km star radius corresponding tow, = 13.5
km and 7, = 0.15. For star radii between 4 and 7 km, the
equivalent width w(1 — f) of the best synthetic profile in
the sky plane remains equal to 1.9 km (Sicardy et al., in
preparation).

VI. CONCLUSIONS

We have considered here the Fresnel-Kirchhoff diffrac-
tion theory, from which we have derived some useful formu-
las: a formula for computing the grey-strip diffraction pat-
tern and a method for computing the diffraction pattern of
an opaque circular (or elliptical) object, based on the dif-
fraction produced by a rectangular screen. Models based on
these diffraction calculations allow one to distinguish, in oc-
cultation light curves, real events from spurious ones. We
show that a ring composed of small particles which remove a
fraction f of the energy is observed from the Earth as a grey
strip which removes a fraction f of the amplitude. The fact
explains why, as emphasized by Cuzzi (1985), the optical
depth of the Uranian rings observed from the Earth is twice
as much as from a close observation point. We show too that
aring occultation profile, analyzed with a diffraction model,
can give a measure of the star diameter.

One of the goals of this paper was to present some efficient
algorithms for modeling diffracting patterns observed dur-
ing stellar occultations. Extensions of this work may be ap-
plied to more complicated situations than the square-well or
elliptical models treated here:

(1) multibar models, using the additivity of amplitude,
are easily derived from our square-well model. Many ring-
occultation light curves are probably better fitted when us-
ing this kind of model. For instance, the 20 August 1985
occultation profile by an arc of Neptune observed at Canada-
France-Hawaii Telescope clearly exhibits secondary struc-
ture extending over a few Fresnel scales.

(2) Figure 3 shows that diffraction patterns of small ob-
jects are easily derived from the Fresnel functions only. It
would be of interest to generate diffraction patterns pro-
duced by a large number of small particles with a given size
distribution law and compare the result with the Voyager
PPS occultation experiment.

(3) Equation (11) implicitly assumes that the particles
are randomly distributed. However, the diffraction pattern
of a set of particles may be strongly affected by the pair corre-
lation function of such particles. This may be the case for
planetary rings where Keplerian motion and collisions do
not distribute the particles randomly. This point deserves
further investigation.

We thank André Brahic for helpful discussions, and Wil-
liam B. Hubbard for a careful reading of this paper.

APPENDIX A: CALCULATION OF FRESNEL’S FUNCTIONS

C(x) =J cosimfzdt, S(x) =J sinlﬂ'tzdt.
o 2 o 2
Since we are dealing with odd functions, we may assume
x>0 and, to treat both integrals at once, we will describe the
calculation of the complex Fresnel integral:
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F(x) =f a7 dr = C(x) +iS(x) . (Al)

0

From Eq. (A1), we have
+ 2
F(x) =f dmary L[ amg-igs, (A2)
(] 2 + oo
and successive integrations by parts yield the asymptotic ex-
pansion of F:

n

FG) = (140 467 3 (=D, (x) + R, (x),

k=1
(A3)
where
U (x) =—7;1;
2% —1 (A4)
U1 (x) ==—=U,(x) for k>1,
X
and
R,(x)=(—-0D"U,(x)(2n — 1)x*"~!
XJ. A =y, (A5)
+

From Eq. (A5) we deduce that |R, (x)| < U, (x) for any
n, and since the real positive sequence {U, (x) } is decreasing
if (2k — 1) <7x?, Eqgs. (A3) and (A4) enable one to com-
pute F(x) with + € accuracy if there exists an integer
k < (1/2) (mx* + 3) such that U, (x) <e. So, for a given ac-
curacy, there exists a lower limit of positive arguments x for
which the asymptotic expansion can be used (for example, if
€ = 1075, x must be greater than 2.7). For smaller values,
the simplest way is to use the regular series expansion

F(x) = S tk_(ii’ﬁk_ A6
@ =x Y kLD (A®)

with + accuracy reached when the absolute value of the last
computed term is smaller than e. However, two difficulties
are encountered when using this procedure: we cannot sim-
ply get any arbitrary accuracy because the switchover point
from the regular to asymptotic series expansion depends on
this accuracy, and, above all, the computation of terms of the
series (A6) for x such that (1/2)7x* > 1, requires many sig-
nificant digits (11 digits if € = 10~5). This arises because
these terms first enormously increase in absolute values,
compared to |F(x)|.

These difficulties are removed as follows: we compute the
asymptotic expansion for any x such that (1/2)7x*>1 as
long as the terms of the expansion decrease, and we estimate

the remainder R, (x) of Eq. (A3) thanks to the regular se-

ries expansion (this expansion can be deduced from expan-
sion 8.354,(2) in Gradshteyn and Ryzhik 1980):

R,(x) = -%(1+i)+<—i)"<2n— 1)U, (x)

o0 2vk
x 3 k_GmT A7
kgol k!'(2k+1—2n) (A7)

It is now possible to choose any accuracy: the remainder
R, (x) is computed only if the asymptotic series expansion is
not sufficient. To complete the algorithm in the case
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(1/2)mx* <1, we carry in Eq. (A7) Uy(x) = —x, so
F(x)=(1/2)(1 +1i) + Ry(x), and we find again Eq.
(A6).

APPENDIX B: CALCULATION OF THE DIFFRACTION
INTEGRAL FOR CIRCULAR SCREENS IN TERMS OF
LOMMEL FUNCTIONS

In this Appendix, we shall evaluate the integral (9),
which describes the diffracted amplitude produced by an
opaque circular disk of radius p. The distance between the
line of sight and the center of the disk is r, D denotes the
distance from the disk to the observer, and A is the observed
wavelength. Expressing the lengths 7 and p in terms of Fres-
nel scale 4D /2, the integral (9) becomes

P 2
a,(r)=1 +i77'e“’"2f et ™ (mrR)R dR . (B1)

0

Using the well-known recursion relation between Bessel
functions:

% [xn+lJn+1(x)] =x"+‘J,,(x),

and successively integrating by parts in Eq. (B1), we obtain
(for further details about such a calculation, see Born and
Wolf 1980, p. 435)

a,(r) =1+e""*DU,(pr) +iU,(p)],  (B2)
where U, and U, are the Lommel functions defined by

Uypry =3 (= Do/r)" ), (mpr) . (B3)
k=0

These series converge if 7>p, so that Eq. (B2) provides the
amplitude outside the geometrical shadow. In an analogous
way, now using the recursion relation

_d_ [Jn(x)] — _Jn+1(x)

dx x" x"

to integrate by parts in Eq. (B1), we obtain
a,(r) =™+ [Uy(rp) — iU, (rp)], (B4)

which gives the amplitude inside the geometrical shadow.
From the Egs. (B2) and (B4), we obtain the following in-
tensities:

if r>p:
L(r)=1+U3(pr) + Ul(p,r)
+ 2{U,(p,r) cos § w(P* + p*)
—U(p,r) siny 7 (¥ +pH)}, (BS)
ifr< p:
L(r)=Uj(rp) + Ui(rp). (B6)
The series (B3) converges rather slowly when r~p, i.e.,
near the edge of the geometrical shadow. However, the com-
putation of U, and U, exactly on the shadow’s boundary
r = p is simplified by identification with the expansions of

cosine and sine in series of Bessel functions (Gradshteyn and
Ryzhik 1980, formulas 8.514), i.e.,

Us(pyp) =1} [cos (mp?) + Jo(mp?) ],
Uy(p,p) =}sin(mp?)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/cgi-bin/nph-bib_query?1987AJ.....93.1549R&amp;db_key=AST

rT987AJ.- - C.J93 I549R

1558 ROQUES ET AL.: OCCULTATIONS BY SMALL BODIES

so that
I (p) =4 [J3(mp®) + 2 cos(mp®)Jy(mp?) + 1] . (BT)

Another exact but obvious result of Eq. (B6) is
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1,(0) = 1,i.e, the Poisson spot at the center of the geometri-

cal shadow, discussed in the text.
Other analytical methods devised to evaluate the integral
(9) are reviewed in Barakat (1961) and Boivin (1964).
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