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Ground-based observations have revealed in 1984 and 1985 the 
existence of interrupted ring-like structures, or "arcs" around Nep- 
tune. Recent observations by the Voyager 2 spacecraft in August 
1989 have confirmed the presence of stable, dense arcs, embedded 
in a faint continuous ring. These structures would be destroyed in 
a few years if they followed unperturbed Keplerian motions. We 
study here the stabilizing effect of corotation and Lindblad reso- 
nances on planetary arcs, along the lines of previous analytical 
work by Lissauer (Nature (London) 318, 1985, 544-545) and Gol- 
dreich, Tremaine, and Borderies (Astron. J. 92, 1986, 490-494). 
We first describe analytically the response of a test particle to the 
combined effects of corotation and Lindblad resonances, caused by 
Neptunian satellites. The evolution of the particle is shown to be 
described by two coupled dynamical systems, the coupling de- 
pending on collective effects in the arc. This yields a formula for 
the energy provided by the Lindblad resonance, which is actually 
used to confine the arc material around the corotation resonance 
radius. We show in particular that the gradient of the torque 
density across the arc must be negative for the latter to be stable. 
This confirms in a general framework the constraints, previously 
given by Lin, Papaloizou, and Ruden (Mon. Not. R. Astron. Soc. 
227, 1987, 75-95), on the relative positions of the corotation and 
the Lindblad resonances for the arc to be stable. We test our results 
with a direct numerical simulation, which takes into account inelas- 
tic collisions between identical spherical particles. Two configura- 
tions are studied: (1) an arc at a L 4 Lagrange point of a satellite, 
further perturbed by an isolated Lindblad resonance with a second 
satellite, and (2) an arc at an isolated corotation resonance with a 
single satellite on an eccentric orbit. Our main results are: (a) the 
corotation points alone are unstable against dissipative collisions, 
(b) a stable arc must be submitted to a negative gradient of torque 
density, and (c) such a stable arc reaches a limit cycle where the 
energy provided by the resonant satellite is balanced by the energy 
dissipated by collisions. ,- 1991 Academic Press. Inc. 

1. INTRODUCTION 

Ground-based  observat ions  of  stellar occultat ions by 
Neptune  have shown in 1984 and 1985 that this planet is 
surrounded by incomplete  ring-like structures,  or " a r c s "  
(Hubbard  e t  al .  1986, Brahic et  al .  1986, Sicardy et  al .  

1985, 1988). The radial width of  the detected structures 
is 15 km, and the normal optical depth is in the range 
0.06-0.075 (Nicholson et  al .  1990, Sicardy et  al.  1991). 

The recent observat ions  of  the Voyager  2 spacecraft ,  
during the encounter  with Neptune  in August  1989, has 
confirmed the existence of the arcs,  and has also revealed 
a more complete  ring sys tem around the planet (Smith et  

al.  1989). More precisely,  it appears  that Neptune  pos- 
sesses two narrow rings at a distance of  about  53,200 and 
63,000 km from the planet center.  Fur thermore ,  a faint 
sheet of  material (the " p l a t e a u " )  extends  f rom the inner 
ring to the middle of  the two rings, and a diffuse, resolved 
(Ar -- 1700 km) ring lies around the 42,000-km radius. 
Embedded in the 63,000-km ring are three conspicuous,  
denser,  arc structures,  extending over  a total azimuthal 
range of  35 °, and spanning each 4 °, 4 °. and 10 °, from the 
leading to the trailing structure,  respect ively.  Both the 
radial location and optical propert ies  of  these arcs arc 
compatible  with the ground-based observat ions .  Finally, 
the extrapolat ion of  the arc mean motion to the longitude 
of the 1984 and 1985 observa t ions  indicates that these 
structures are stable over  a scale of  at least 5 years  (Smith 
et  al .  1989). 

The mere existence of  the arcs requires an azimuthal 
confining mechanism,  since the sidereal period of  two 
particles at the inner and outer  edges of  the arc is of  the 
order of  4 years.  Some models  have been proposed to 
account  for the stability of  arcs against the spreading 
effect of  differential Keplerian motion.  Basically, all these 
models involve a corotat ion resonance  with a small satel- 
lite of  Neptune.  Corotat ion resonances  with an eccentric 
satellite have been shown to azimuthally confine test parti- 
cles (Dermott  1984). However ,  such a mechanism alone 
is unstable against the dissipative effect of  inelastic colli- 
sions, since corotat ion points are local potential  maxima.  
Lissauer  (1985) proposed that particles could be trapped 
near the L 4, or L5, stable Lagrange point of  a satellite, 
while a second moon balances the dissipated energy 
through a series of  over lapping Lindblad resonances.  
Goldreich,  Tremaine ,  and Borderies  (1986) have devel- 
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oped an al ternative model where the corotat ion and the 
Lindblad resonances  are generated by a single satellite 
with an eccentr ic  or inclined orbit. The stability of  ring- 
like arcs have been numerically tested by Lin, Papaloizou, 
and Ruden (1987), who insisted on the importance of the 
position of the Lindblad resonance with respect to the 
a r c .  

In this paper,  we derive in a general f ramework the 
equations of  motion of  a particle trapped at a corotat ion 
resonance,  and per turbed by a nearby Lindblad reso- 
nance. We show thal the two-degrees  of  f reedom motion 
of the particle may be described by two coupled, one- 
degree of f reedom dynamical  systems.  The coupling be- 
tween the two motions occurs  because of  collective ef- 
fects in the arc and is eventually responsible for the stabil- 
ity, or unstability, of  the entire structure. In a second 
part of  the paper,  we test our  results thanks to a direct 
simulation. Our code describes the 3-D motion of N identi- 
cal spherical particles,  inelastically colliding between 
themselves .  Because collisions are difficult to handle 
properly in a mathemat ical  f ramework,  this kind of simu- 
lations may cast some light on the combined role of reso- 
nances and collisions in planetary rings. We explore in 
particular the arc dynamics  by changing parameters  like 
the masses  and orbital e lements  of  the satellites, the parti- 
cle size, and the relative location of  the resonances.  

A prel iminary analysis of  the Voyager  2 observat ions 
does not show any obvious  satellite candidate for creating 
corotat ion resonances  at the arc location (Smith et al. 
1989). We feel, however ,  that the present work may be 
useful in several  aspects .  First, a more careful data pro- 
cessing may unveil smaller satellites, dynamical ly linked 
with the arcs through corotat ion resonances.  Second, and 
more important ,  the mechanism studied here is pretty 
general,  and the equations describing it are sufficiently 
versatile to be accomoda ted  to various problems of inter- 
est in the Solar Sys tem,  all involving corotat ion reso- 
nances.  One of  them is the origin and the evolution of the 
Trojan asteroids,  while further examples  are given by 
the coorbital  companions  of  Sa turn ' s  satellites Dione and 
Thetys.  More generally,  corotat ion points are natural sites 
where mat ter  can be confined. Nep tune ' s  arcs, because 
they are inside the Roche limit of  the planet, thus could 
be a " f r o z e n "  view of an important  intermediate stage of 
the accret ion process.  

The general organization of this paper  is as follows. 
Section 2 presents  a heuristic discussion about  the com- 
bined effects of  corotat ion and Lindblad resonances on a 
test particle. Section 3 gives the equations of  motkm for 
a particle near  corotat ion and Lindblad resonances  and 
analyzes the coupling between the two phenomena  in 
the presence  of  collective effects. Order  of  magnitude 
calculations are presented in Section 4. Section 5 briefly 
describes the simulation, and Section 6 presents the nu- 

merical results. Concluding remarks  are given in Section 
7. Appendix A gives a list of  the symbols  used in the text. 

2. COROTATION AND LINDBLAD RESONANCES 

In the models so far proposed,  the stability of  an arc 
depends on the balance between three basic ingredients: 
(i) a corotation resonance,  (ii) a Lindblad resonance,  and 
(iii) collective effects with dissipation of  energy. 

We first discuss the combined effect of  corotat ion and 
Lindblad resonances  on a single particle. Consider  a test 
particle 7 orbiting a central planet,  of  mass  MI,, and per- 
turbed by a satellite S, of  mass M s. Let R be the frame 
whose origin O is fixed at the planet center ,  while the 
axes remain parallel to themselves  as the planet revolves 
around the planet-satel l i te  center  of  mass.  The potential 
q~, per unit mass,  acting upon the particle in R is 
• (7a~,) = - G M p / r  + t~,tT,tn,), where the disturbing po- 
tential • , reads: 

r ,  \ r~ 

where G is the gravitational constant ,  t ~" (resp. 7"0 is the 
particle (resp. the satellite) position vector  in R, and A = 
r - r , .  Consider  now the motion of T in the frame R'  
whose origin is O. but which rotates at the part icle 's  mean 
mean motion,  (n). The potential ~ '  acting upon 7" in R'  is 
then 

( I ) ' ( ; , ~ )  G M p  (n)  "~ r 2 
- + ~ ,  (2)  

r 2 

where - (n)-' r2/2 is the centrifugal potential.  The unper- 
turbed potential in R ' ,  i.e., - G M l , l r  - 01) 2 r212 exhibits 
a maximum,  or " ' c res t , "  at r = (GMe/(n)2) 1'3. This radius 
corresponds  to equilibrium points in R ' ,  and separates  
prograde and retrograde circular orbits (Fig. la). 

2.1. ( 'orotat ion R e s o n a n c e s  

If the satellite orbit is closed, as seen in R ' ,  the averaged 
disturbing potential (¢b,) is s tat ionary in R ' ,  and a corota- 
lion resonance occurs  (here and thereafter ,  " a v e r a g e d "  
means "ave raged  over  a sidereal period be tween the parti- 
cle and the satell i te").  In this case,  the mean effect of  the 
satellite is to azimuthally modulate  the crest  of  potential 
considered before,  leading to local m a x i m a  of potential 
energy (or " 'hills"),  separated by saddle points. Note  that 
no local potential minima can be created in this way in the 
corotating f lame R' .  Three  cases o fcoro ta t ion  resonances  
may be envisaged (Fig. 1). 

Case  (!) .  The particle shares the satellite orbit. A few 
level curves of  (~,)  are shown (Fig. ib). One recognizes 
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FIG. 1. Different illustrations of  corotation resonances.  The diagrams are drawn in a frame corotating with the mean motion of  the test panicle 

around the planet P. (a) In the absence of disturbing potential, the corotation circle (solid line) separates prograde and retrograde orbits (arrows). 
(b) The panicle shares the orbit of  the satellite S. The solid lines are examples of possible orbits followed by a particle guiding center  (tadpole, 
separatrix, and horseshoe).  IJ4 and L~ are maxima of potential energy and L, is a saddle point. The other  two Lagrange points L~ and L 2 are not 
shown here. (c) The same kind of  topology is generated by a satellite with an eccentric orbit. The satellite position, as observed from the particle, 
is plotted at equal time intervals (dots). in this example,  n/n~ = (m + l ) / m  with m = - 5 ,  where n (n,I is the particle (the satellite) mean motion. 
(d) The corotation pattern generated by an inclined satellite. The inner circle is the satellite's orbit as viewed from the particle (solid line when the 
satellite is above the reference plane, dashed line when it is below). Again n/n ,  = I m  + I ) /m with m = - 5 .  

the two stable Lagrange points L 4 and L 5, corresponding 
to local maxima of  potential energy, and the unstable 
Lagrange point L 3, corresponding to a saddle point. 

Case  (2). The ratio of  the mean motion of the particle 
to that of  the satellite is close to (m + l ) /m ,  where m is 
an integer: (n) /n ,  ~ (m + l)/m, and the satellite orbit is 
eccentric.  Then the satellite orbit is closed as seen in R' ,  
and exhibits m lobes (Fig. Ic, see also Dermott  1984). The 
corotation potential is then composed of m hills in front 
of  those points where the satellite orbit is farthest away 
from the particle orbit, and m saddle points in front of  
those points where the satellite is closest. 

Case  (3). Again (n)/n~ ~ (m + I)/m, but now the satel- 
life's orbit is circular and inclined. Then the orbit exhibits 
2m arches, so that the potential felt by the particle in the 
corotating frame has 2m maxima where the orbit of  the 
satellite is farthest away (greatest elevation) and 2m sad- 

die points where the satellite's orbit is closest (nodes, see 
Fig. Id). 

In all the three cases, the qualitative structure of the 
potential is the same: a series of  hills of  potential con- 
nected by saddle points. There  is however  an important 
difference between case (!) on one hand, and cases (2) 
and (3) on the other  hand. In the first case, the disturbing 
potential due to the satellite is rigorously constant ,  but in 
the other  two cases, only the a v e r a g e d  perturbing poten- 
tial is constant while the satellite is moving along its orbit. 
In all cases, because of  the Coriolis acceleration felt by 
the particle in the corotating frame, the particle undergoes 
an epicyclic motion whose guiding center  follows the po- 
tential level curves instead of  cutting them. Thus,  the 
saddle points are unstable, and the potential maxima are 
shown to be stable, unless a dissipative force is present 
(see, e.g., Greenberg and Davis 1978). 
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FIG. 2. (a) The geometrical  interpretation of  the corotation critical argument  q',. The satellite position is plotted at equal time intervals,  as seen 
from the test particle I .  Ib) The geometrical  interpretation of the l.indblad resonance critical argument  qq. The particle position is plotted a! equal 
time intervals,  as seen from the satellite. In both diagrams m ~, (see Fig. Ic). 

Kinematic  considerat ions show that the sateli te 's  orbit 
is closed in R '  if the corotat ion critical argument q'~ is 
stat ionary.  The different expressions of  q~ are given in 
"Fable 1, for the three cases presented here. In this table. 
and thereaf ter  in this paper,  ,k(X,) is the particle (the satel- 
lite) mean longitude, and &, and .Q, are the longitudes of 
the periapse and the node of the satelli te 's  orbit. The 
geometrical  interpretation of xP'~ is given in Fig. 2a. 

2.2. Lindblad Resonances  

From a kinematic point of  view, a Lindblad resonance 
is the symmetr ic  configuration of  a corotat ion resonance.  
Consider  the motion of the particle 1' is a frame R" rotating 
with the satellite mean motion n,. l f t he  part icle 's  orbit is 
closed in R", then a l.indhlad resonance occurs.  Again. 
one can define a resonance critical argument  qq, the ex- 
pressions of  which are given in Table I, where %h is 
relevant for an eccentr ic  part icle 's  orbit (horizontal dis- 
placements) ,  while ~'l,. applies for an inclined orbit (verti- 
cal displacements) .  Finally, & and ~ are the longitudes of  
the periapse and the node of the part icle 's  orbit. The 
geometrical  interpretation of Rq is displayed in Fig. 2b. 

2.3. Corotation us Lindblad Resonance.s 

The important  proper ty  o fcoro ta t ion  resonances is that 
they can force q'+, and thus a, to librate in a finite interval. 
In that sense,  corotat ion radii are good candidates for 
arc location. On the other  hand, the basic property of  
lAndblad resonances  is that they allow a secular exchange 
of energy and angular momen tum between the satellite 
and the particle (Goldreich and Tremaine 1980). This ex- 
change occurs  as soon as the critical argument  ~ is differ- 
ent from 0 or rr. since the symmet ry  of the part icle 's  orbit 
relative to the planet-sate l l i te  line is then destroyed (Fig. 

2b). As noted by Goldreich.  Tremaine ,  and Borderies 
(1986). when there is only one satellite responsible for 
the two resonances (cases 2 and 3). then the corotat ion 
condition ~i~ -- 0 is met qua@simul taneous ly  with the 
Lindblad resonance condition xP I - 0. This is because  the 
Keplerian motion is degenerate ,  i.e., ~, ,  ~l,, ~b, ~l ~ n, n, 
around a moderately  oblate planet. 

3"he problem we have to study is thus the three-body 
problem near a first order  resonance,  with an additional 
perturbation due to the planet oblateness .  This dynamical  
system has two critical arguments  (q'~ and xtqh), in the 
planar problem, and three critical a rguments  (xp~, q'm, and 
qq,.) in the 3-D case. This problem is further  complicated 
by collective effects and dissipative processes ,  like inelas- 
tic collisions. We want to analyze the coupling between 
the different degrees of  f reedom of the sys tem,  and we 
wanl also to clarify the role of  the dissipative processes  
on the brag-term evolution of this system. Before em- 
barking on the equations,  we make some heuristic re- 
marks on the interaction between the corotat ion and the 
l.indblad resonances.  

Let E, and tt~ be the energy and angular momen tum of 
the test particle :1" in the inertial f rame R, and let ~ be the 
energy of 1 is the corotat ing frame R' .  If  1" is in Lindblad 
resonance with a satellite S. then AE, = n,AH,, from the 
conservat ion of Jacobi constant .  Fur thermore ,  :8 -- E, - 
nil,, thus 

~'{: = (n, - n ) k H  i. (3) 

In the presence of collective effects and/or  dissipation of 
energy, the net effect of  the Lindblad resonance is a secu- 
lar exchange of energy and angular momen tum between 
the satellite and the particle (Goldreich and Tremaine  
1982). In all the cases,  the satellite tends to push the 
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TABLE I 
Arguments and Functions of the Disturbing Potential 

C a s e  1 C a s e  2 C a s e  3 

xlt c X - X~ ( m  + I)X~ - mX - &~ 2[(rn ~ l lX, - rnX - D.,] 

~ ih  ( m  + l)h ' ,  - m h  - & ( m  + l )h ,  - m h  - & ( m  + l ) h ,  - rnX - & 

~ t , .  - -  - -  2 [ ( m  * I ) , k ,  - m h  - I ) ]  

~ c  e{cos(W~) - 1/12 sin(XP~/2)]} e[3Ee~.cos(qP,)  - e[3Vi~.cos(W~)  

~bh e ' [ 3 ' A ' e . c o s ( ~ ' l h )  e f l A e . c o s ( W i h )  e[3Ae.cos(q~lh)  
~ h  - -  - -  - e l3Vi" 'c°s (XPh ') 

+ 2e[3 i i , . cos[ (*~  + "1, .) /21 

--l [~[3b"°'! + (-~.) '& ] 2  

~[ (m- II 
[3 dbsn  ] N o t e .  A = 2 ( m  + I )b t  m~ ii + - - d - ~ | "  

I [ ..j ~ dht:"q 
L" = ~ t2m + l)h,..: + ~--d-ff-]" 

I 
v = g [3h!~? "~' 

particle away from its own orbit ("shepherding effect"),  
thus AH i > 0 if n~ - n > 0 and A H  i < 0 if ns -- n < 0. 
Consequently,  A~ > 0 in all cases. A naive interpretation 
of this result may lead to the conclusion that the Lindblad 
resonance always compensates for the energy lost by col- 
lisions. The difficulty is, however, that part of the energy 
% in the corotating frame is stored in the eccentricity of 
the particle orbit (i.e., kinetic energy in R'),  and another 
part is stored in the guiding center of the particle (potential 
energy, which is maximum at a stable corotation points, 
see above). As we shall see, m o s t  of the energy provided 
by the Lindblad resonance is used to excite the arc eccen- 
tricity, n o t  to confine it near the corotation point. The 
distribution of energy between these two modes actually 
depends more subtly on the interactions between the par- 
ticles, and more precisely, on collective effects (Section 
3.4). 

3. EQUATIONS OF MOTION 

3 . 1 .  D i s t u r b i n g  P o t e n t i a l  

The disturbing potential qb given in Eq. (I) may be 
expressed in terms of the particle and the satellite(s) or- 
bital elements, instead of being given in Cartesian coordi- 
nates. From now on, the orbital elements of the particle 
will be denoted a, e, i, X, fL and &. The angular quantities 
X, fL and & have already been defined in the previous 
section as the mean longitude, the longitude of the as- 
cending node, and the longitude of the periapse, respec- 
tively, while a, e, and i are, respectively, the semi-major 

axis, the eccentricity, and the inclination. Quantities with 
subscript s or s' refer to the satellite S or S' ,  respectively. 

The expansion of qb in terms of these orbital elements 
is described, e.g., in Peale (1986). It is convenient to use 
for this the ratio e = M s / M  P (e '  = M s , / M p )  of the satellite 
mass to the planet mass. Also used are the ratio/3 = a/a~ 

(/3' = a /a~ ) ,  and the so-called Laplace coefficients 
(m) by (/3), whose basic properties are described by Brouwer 

and Clemence (1961); see also Shu (1984). Besides the 
effect of the satellite(s), we include in the disturbing poten- 
tial the effect of the dynamical oblateness J:  of the planet, 
whose equatorial radius is denoted Rp. This oblateness 
yields axisymmetric perturbing terms in ~ .  

The potential ~ is expanded to the first order in e and 
e~, and to the second order in i and i~. Furthermore,  near 
a m : m  + I commensurability, only the axisymmetric 
terms and the terms containing the slowly varying critical 
arguments ~c and ~ are retained. The other high-fre- 
quency terms are assumed to average to zero over one 
sidereal period, leading to the so-called average disturbing 
potential (~s)- The averaging of the elliptic problem near a 
first-order resonance m : m + I is detailed, e.g., in Ferraz- 
Mello (1987). It leaves only the terms c~ depending on the 
critical arguments ~ and W~, plus an axisymmetric term 
~/: 

(dP~)/(na)" = ~c(Wc) + ~lh(Wih ) + ~tv(Wtv ) + ,~/. (4) 

The different expressions for the functions ~ and .~/are 
given in Table I. For order of magnitude considerations, 
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it is useful to note that in Table I, the dimensionless 
coefficient A is of  order  m, while E = O( - m). Numerical  
integrations show that both A / m  and - E / m  tend to 
~0.802 . . . as m gocs to infinity. 

S'  (Fig. 3a). Let An, = (m + I)n', - mn~ be the distance,  
in frequency,  of  satellite S'  to exact  commensurabi l i ty  
with satellite S. The corotat ion radius a0 is then defined 
by 

3.2 E q u a t i o n s  o f  P e r t u r b a t i o n  

The equations of  motion are derived from the Lagrange 
equations of  per turbat ion,  using the averaged disturbing 
potential of  Eq. (4). The following variables are used to 
describe the particle motion: 

• -6 = (a - ao)lao, where a0 is a reference radius. 
chosen to simplify as much as possible the equations.  
once the ax isymmetr ic  terms due to the oblateness of  the 
planet and the satellite orbits are taken into account  (Peale 
1986). The quantity a0 may be viewed as the corotat ion 
radius, so that 6 is the dimensionless distance to coro- 
tation. 

• q r  the corotat ion critical argument.  
• The eccentr ici ty vector ,  e = (h ,k) .  where h = 

e . c o s ( ~ p  and k = e . s in (~  0. 

The equations are derived under the following assump- 
tions: 

• The eccentricit ies and inclinations of  the particle and 
satellite orbits are small, which validates the expansion 
of  <~,). 

• ( "~ I, this assumpt ion allows one to expand the 
potential around the corotat ion radius a0. 

• ~ee  = ~ / -Ms/Mp ~ I, which simplifies the expression 
of  +~. When this assumpt ion breaks down, new terms 
enter  in q t .  In particular,  these terms eventually destabi- 
lize the Lagrange points L 4 and L, for sufficiently high 
values of  e,. 

• Only the horizontal  motion of  the particle is studied 
here. In particular,  we assume that in case (3) (inclined 
satellite), the vertical motion of the particle is decoupled 
from its horizontal motion. This can be shown to be valid 
as long as the inclination of  the part ic le 's  orbit is negligible 
with respect  to that of  the satellite: i ~ i,. Fur thermore.  
the eccentr ici ty of  the particle orbit is assumed to be much 
smaller than that of  the satellite orbit, e ~ e, .  which 
simplifies also the equations of  motion. 

Under  these assumpt ions ,  we obtain the lbllowing equa- 
tions of  motion,  near a corotat ion resonance perturbed by 
a Lindblad resonance.  

C a s e  (1). The particle shares the orbit of  satellite S and 
is at the outer  Lindblad resonance m : m + 1 with satellite 

n,  I + 3 j~  _ ~ , / 3 , ,  v2 (51 
tl 0 \ ~10 / - ~ ' 

where ai~,l ~ = G M p  and/3[, = a0/a',. Because J ,  and e'  are 
small quantities, a0 is close to a,.  Then: 

~/no 2~:(djldq' c) l-me: f loa .k ] 

q'~/no = -3(/2 

17/no = -{13m-6/2] + An,/no}.k 

k/no = {13m-6/2] + An,/no}.h + e'/3~'~A, 

(6) 

where dots stand tbr time derivat ive andJ'(qr~) = cos(qr~) 
- l/[2sin(q1J2)]. 

These four equations form a closed sys tem which com- 
pletely describes the evolution of the particle resonant 
variables -6, 'Ft., h, and k. An important  aspect  of  these 
equations is that they show how the c o u p l i n g  between the 
two resonances  occurs.  As stated in Section 2.3, this is 
this coupling which must be explicited in order  to address  
the question of the arc stability. The coupling terms are 
bracketed in Eqs. (6). When these terms are dropped,  the 
motion of the particle can be split into two simple one- 
degree of f reedom motions: a pendulum-like motion de- 
scribing the evolution of -6 and ~c,  under  the influence 
of the corotat ion resonance (first two equations) and a 
harmonic motion describing the evolution of  h and k, 
under the influence of  the Lindblad resonance  (last two 
equations). 

More precisely,  without the bracketed terms,  the first 
two equations yield 

= . en6(df/d'qt~) 

( = - 2+J(3no) ,  
(7) 

which describes the pendulum-like motion of  a particle in 
the potential -3e:n~.f, i.e., stable oscillations near  the 
minima of - f  (Lagrange points L4 and L5 at ~'~ = 7r/3 
and 27r/3, respectively),  and unstable motion near the 
maximum of --./'at q s  = rr (Lagrange point L~). Because 
( x q~c, the physical motion of the particle guiding center  
I((t), qJc(t)] in the corotatin.g f rame mimics the motion of 
a simple pendulum [ ~ ( t ) ,  qz~(t)] in the phase space. This 
motion is classically divided into librating motion around 
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FIG. 3. (a) Typical initial conditions: the 100 particles are initially near the L4 Lagrange point of a satellite S, and are resonantly perturbed by 
a satellite S '  (outer Lindblad resonance 4 : 5). For sake of  clarity, in these plots and those followings, the particles are drawn bigger than they 
actually are. (b) Run B: effect of  inelastic collisions on the stability of  the La point. The mass of  satellite S is 10 4 while S' has a zero mass. The 
radius of  the particles is ,o = 10- ~. The system is shown after 317 revolutions and 3411 collisions. The azimuthal spreading is evident by comparison 
with (a). 

L 4 and L 5, and circulat ing mot ions  b e y o n d  the separat r ix  
which passes  th rough  the saddle point  L 3 (Fig. Ib). The  
typical  oscil lat ion f r equency  o f  qt c near  the m a x i m u m  o f  

f is given by N/3el(dEf/dxlt2[, i.e., ~v/27e/4 near  q~c = ~'/3 
and 2~r/3. 

Dropp ing  again the b racke ted  terms,  the last two equa- 
t ions o f  (6) yield: 

]~ = _ (Ans)Z(h - Co) 

]~ = _ (An,)2k, 
(8) 

where  the fo rced  eccent r ic i ty  e0 is e0 = e'fl~Ano/An,. 
These  two equat ions  descr ibe  the harmonic  mot ion  o f  h 
and k a round  e 0 and 0, respect ively .  Again,  s ince / t  :~ k, 
the mot ion  o f  the eccent r ic i ty  vec to r  [h(t), k(t)] mimics 
the t ra jec tory  [h(t), h(t)] o f  a ha rmonic  osci l lator  in the 
phase  space.  These  t rajector ies  are a family o f  circles 
cen te red  a round  the forced eccent r ic i ty  (e0, 0). These  
circles are swept  at the same angular  veloci ty  An~. 

As is apparen t  f rom the equa t ions  below,  the remaining 
cases  (2) and (3) yield dynamica l  behaviors  very  similar 
to that o f  case  (I). 

Case  (2). The  particle is at a coro ta t ion  resonance  m : m 
+ I with a satellite whose  orbit  is eccent r ic  (Fig. Ic). The  
reference  radius a0 is now defined by 

.__:_ = 9 ,,,,1/2| n, m . 1 + + 3 J 2 -  eB6 (9) 
n o m + i mno \ a o /  dE J" 

Again,  e ,  J2 ,  and t~ are small quanti t ies ,  so that a0 is 
c lose  to ( m / m  + I) ~3 a s. The  equa t ions  o f  mot ion  are now 

(-~no = - 2me~o{Ee, .s in(~c)  + IA.k]} 

+ffno = 3m~/2 

/t/no = - {[3mU2] + t~ Jno}.k 

"k/no = {[3mU2] + ~ ffno}.h + efloa.  

(10) 

As before ,  the b racke ted  terms descr ibe  the coupl ing 
be tween  the coro ta t ion  and the Lindblad  r e sonances .  

Case  (3). The  particle is at a coro ta t ion  r e sonance  m : m 
+ 1 with a satellite whose  orbit  is inclined (Fig. ld). The 
reference  radius a0 is now defined by: 

_ , - i v  U U l / 2 /  n, m I + + 3 J2 - etJ6--d-~- j, (11) 
no m + I mno 

so that ao ~ ( m / m  + I) 2/3 a s. Fu r the rmore ,  

( ' lno  = 2 m e f l o { 2 i ~ V . s i n ( ~ )  - [A.k]} 

+ffno = 3m~/2 

/t/no = -{[3m~/2]  + (~ffno}.k 

"k/no = {13mU2] + (~,lno}.h + e~oA. 

(12) 

The  forced  eccent r ic i ty  e0 o f  the part icle in each  o f  these 
cases  is obta ined  by sett ing all the t ime der iva t ives  to 
zero ;  thus,  

case( l ) :  eo = - e'no[36AIAn~ 

case(2):  eo = - enoB~Al~s 

case(3):  eo = - enol3oA/O,. 

(13) 
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At the exact  Lindblad resonance (An~ = 0, ~, = 0, or 
l'l~ = 0), e0 diverges,  but then the condition of small 
eccentricit-~¢ no longer holds. In any case,  collective ef- 
fects like pressure ,  viscosity,  or self-gravitation, usually 
prevent  such an ou tcome in typical planetary rings. 

3.3.  E n e r g y  a n d  A n g u l a r  M o m e n t u m  Tran,~fer 

The eventual  fate of  the arc crucially depends on how 
the coupling occurs ,  i.e., on how energy is transferred 
from the Lindblad resonance to the corotat ion resonance.  
We first note that the energy d of  the test particle, of  mass 
M~, in the corotat ing frame R'  can be split in two parts.  
one corresponding to the pendulum-like motion, ~ .  and 
one corresponding to the harmonic motion, ~:~, so that ~, 
= "~;~ + "~1, with "~;I/n2a'-M~ = I/2e -~ and 

~Jn-a-M.r = - ~6-' ~- ~; l ' (qs ) 

"(,:Jn2a2M,r = - ~ - "  + e,13Ee,cos("P,) 

~cln2a2Ml . _ ~(2 _. t:13Vi~cos(~,. 

( 1 4 )  

now, this transfer depends on the interactions between 
the particles. 

3.4. E f f ec t  o f  Par t ic le  I n t e r a c t i o n s  

By first neglecting '~,, in the first equation of the system 
115), we obtain 

l'/n'-a'-M, r - . . . .  (m  + l)e13Ak, (16) 

which has a straightforward physical interpretation: it ex- 
presses that the torque exerted by the satellite is propor-  
tional to k = e.sin(~l).  This is because  the torque exerted 
on a given particle orbit is proport ional  to the detbrmat ion 
of the orbit, i.e., e, and is also proport ional  to the sine of 
the phase lag between the satellite and the orbit, i.e., 
sin(q~), see Fig. 2b. Note  also f rom Fig. 2b that the torque 
exerted on the streamline has the o p p o s i t e  sign ofk.  This is 
confirmed by Eq. (16), since (m + I)A is a lways positive. 

Substituting k as a function of  F in the second equation 
of the system (15) then yields 

in cases (i), (2), and (3), respectively,  where the subscript 
0 in n, a, and t3 has been .dropped for sake of clarity. 

From Eq. (3), we have "~,: = ~:~ + '~:1 = (n, - n)F,  where 
1" is the torque exerted,  in an inertial frame, by the satellite 
responsible for the Lindblad resonance on the test particle 
T. Near  the m : m + I resonance,  we have n s  - i t  ~ - t t /  

(m + 1). Fur thermore ,  from Eqs. (6), (8), and (I0), we 
obtain the rates of  change of ~:~ and ~';i as functions of  k 
and ~:. The resulting equations are similar in the three 
cases: 

~:~ + ~1 = - n F / ( m  + 1) 

~-:Jn~a2M-r = ~m£(e:13Akl 

~lln~a2Mr = s13Ak. 

( 1 5 )  

These are the basic equations which tell us how the 
total energy (; = ~ + ~ of the particle, in the corotating 
frame,  is changed by the Lindblad resonance through the 
torque 1", and how it is then transferred to the corotat ion 
resonance.  Note  that the last two equations of  this sys tem 
yield ~ / ~ l  = O(~) ~ I. For instance, in a typical Neptu- 
nian arc of  width < ~  15 km, orbiting at ~60,000 km from 
the planet, we have ~ < ~ 2  × 10-4. Consequent ly,  most 
of  the energy provided by the satellite is used to increase 
the eccentr ici ty of  the particles, not  to confine the parti- 
cles around the potential maximum due to the corotation. 
Thus stabilizing an arc requires that the total energy pro- 
vided by the satellite be transferred in potential energy, 
allowing the guiding centers  of  the particles to "'climb up"  
the potential hill created by the corotation.  As we see 

~,~ = 3 
- ~  n , ( l ' .  (17) 

The long-term stability of  the particle around the corota-  
tion radius depends on the average value of "~c, which 
must be positive to counteract  the dissipative effect of  
collisions. More precisely,  one must est imate the integral 
of  El" along a complete  libration period Tc of  the particle 
around the corotat ion equilibrium point. Two  simplifica- 
tions allow one to make this est imation: ( 1 ) the corotat ion 
variable ~ is actually little affected by the nearby Lindblad 
resonance,  tbr cases of  interest around Neptune and (2) ~: 
varies sufficiently slowly that at each moment  h and k 
have the quasi-stat ionary values they would have if~: were 
constant.  

To justify the first simplification, consider  for instance 
the case (3), where we compare  the terms 2i~V and A . k  in 
Eq. the first equation of Eqs. (12). As we shall see in 
Section 4, the term 2i~V is related to the maximum ampli- 
tude ~:,n of  the radial excursion of the guiding center  by 
2i~V - 3~m/(813~:). The actual width w of the arc must be 
less than 2a0£,, for the latter to be azimuthally confined, 
thus 2i~V > --3(w/a0)-'/(3213e). For a typical width and 
radius of  the arc w ~ 15 km, a0 ~60,000 km, and a typical 
mass of  the satellite ~: ~-10 -'~, this yields 2i~V >-~6. On 
the other  hand, A ~- m, so that [Ak[ ~ e m  ,~ 2i~V, thus the 
corotat ion resonance is little affected by the Lindblad 
resonance.  Consequent ly ,  ~ has a pendulum-like motion 
described by the first two equations in Eqs. (12), where 
the bracketed term A.k can be dropped.  

To justify the second approximat ion,  we note that the 
typical oscillation f requency for ~ is n~ ~ nk /6m2i~Ve~o 
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mnV~6-~o(W/ao), so that n~ -< 3 × 10-~n with the previ- 
ous numerical values. The typical time for two nearby 
streamlines to reach a steady state under the effect of  
collisions and under the effect of  the Lindblad resonance,  
is the time between two collisions for a given particle, 
i.e., a few revolutions around the planet. Thus,  the time 
scale for variation of  ( is sufficiently large compared to 
the revolution period, that h and k may be considered as 
constant,  depending only on the instantaneous value of~¢. 
In conclusion, we have to calculate the integral of~:(t)F(~:) 
along a libration period, where ~:(t) is a known function of 
time, and F is a known function of  ~:. 

Up to now, we have been concerned only by the evolu- 
tion of a single test particle. It may be more convenient  
to rewrite Eq. (17) per unit mass of the arc. Let )20 be the 
unperturbed surface density of  the arc, so that the mass 
of  an annulus of  radius a and width da = ad( is dM = 
2~r~oa2d(. Then,  the rate of  change of energy d ~  of  this 
annulus, at the radius a is 

aS~, JdM = - (3n~ ~)/(47ra'?~o), (18) 

where dF/d~ is the torque density, i.e., the torque exerted 
by the satellite per unit radius, or per streamline. Finally, 
if M A denotes the total mass of  the arc, the rate of change 
per unit mass (~;c)/MA, averaged over  one libration period 
Tc of all the particles around the corotation point is 

• 3 n~ . I f r ~ d F  (%~)/M A = - ~-~'a2y_, ° ~ --~dt. (19) 

This consti tutes the basic equation which tells us where,  
and how much, energy is deposited by the satellite to the 
guiding centers of  the particles, in the different places of  
the arc. One must note that Eq. (19) is very general, and 
is valid in particular whether  the torque density varies 
rapidly or not inside the arc, and also whether  the reso- 
nances are isolated or overlapping near the arc. 

Because of  the presence of the term ~: in front of  dl'/d~ 
in the integrand, the energy received by the guiding cen- 
ters is not proportional to the total torque F, but rather, 
to the gradient of  the torque density, i.e., d2F/d~ 2. Physi- 
cally, this means that a given particle must receive more 
angular momentum on the inner side of  its libration path 
than on the outer  side, in order  to compensate  for the 
spreading effect due to dissipation. 

The next step is to determine the function dF/d( as a 
function of~: near a resonance,  or near a set of overlapping 
resonances.  The effect of  a Lindblad resonance is to dis- 
turb the streamlines near the resonance radius. Because 
of  the interactions between the particles, this disturbance 
propagates away from the resonance.  Depending on the 

kind of interactions (pressure, viscosity, self-gravitation, 
collisions, gas drag . . . .  ), the disturbance may propagate 
as a wave, or may die off if the dissipative effects are 
dominant• The torque density dF/d~ mimics the behavior 
of the disturbance, i.e., damps if dissipation is dominant 
and oscillates if a spiral wave is launched (Goldreich and 
Tremaine 1982, Meyer-Vernet  and Sicardy 1987). The 
values of  the total torque I" = f(dF/d~)dG integrated over  
the resonance width, is largely independent  not only of 
the numerical values of  the disk parameters  (density, pres- 
sure, viscosity, drag coefficient), but also of the very 
physical process at work in the disk (Ibid•)• However ,  
since the value oU~c depends on the torque density gradi- 
ent, the stability of  the arc depends on the particular 
behavior of the disturbance near the Lindblad resonance.  

The general shape of  the torque density dF/d(, near 
an isolated Lindblad resonance,  is usually a bell-shaped 
function peaking at the resonance radius, with a possible 
wavy behavior if the damping is not too important (see 
Figs. 1, 2, 5-7 of Meyer-Vernet  and Sicardy 1987)• Fur- 
thermore,  the torque density peak is positive if the reso- 
nance is outside the satellite (outer Lindblad resonance) 
and negative if it is inside (inner Lindblad resonance);  
i.e., the torque tends to push the particles away from 
the satellite• Consequently the gradient of  torque density 
tends to be negative (posit ive)just  outside an outer  (inner) 
Lindblad resonance,  and positive (negat ive) jus t  inside• 
Thus, to be trapped, an arc should stay just outside (in- 
sideJ the outer (inner) Lindblad resonance radius• This 
conclusion was first derived, and numerically tested, by 
Lin, Papaloizou, and Ruden (1987) in the case where the 
interactions between particles are modeled as an exponen- 
tial decay of  the particle orbital eccentricities.  A similar 
conclusion is derived in the case where the Lindblad reso- 
nances overlap (Lissauer 1985). In this case, the torque 
density is uniformly decreasing function of  radius, inde- 
pendent of the fact that the shepherding satellite is inside 
or outside the arc, which ensures the confinement of  the 
arc in both cases. 

It should be emphasized,  however ,  that for an isolated 
resonance,  the torque density may have a wavy behavior• 
Furthermore,  the arc may have a width smaller than the 
resonance width• Thus the gradient of  the torque density 
may have some complicated variations. In this case, it not 
obvious whether  the arc should stay outside or inside the 
corotation radius• Rather, one must then go back to Eq. 
(19), and then perform the integration of~(dF/d~) for each 
case of interest. 

3.5. The Energy-Eccentricity Diagram 

For interpreting more readily the results of  the numeri- 
cal simulation, we use a (%,%1) diagram, where the value 
of ~#~, i.e., essentially the square of eccentr ici ty of a par(i- 
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cle, is plotted against the total energy :3,; = ~ + '~t in the 
corotating frame R'.  We call these diagrams "ene rgy -ec -  
cent r ic i ty"  diagrams, and they show how much e0ergy is 
dissipated in the arc (decrease of '~) and how eccentricity 
is pumped up by the Lindblad resonance (increase of~'l). 

For  sake of  conciseness,  we use dimensionless units for 
the plots. The origin of  the energy ~, denoted ~;o, is taken 
as the energy of  a particle at rest at the maximum of 
the corotation potential. The unit of energy for 8 is the 
difference A~,; between the potential maximum and the 
potential at the saddle points (see Eqs. (14)): 

~o = - {n2a2e~Mi  

Z 0 = n2a2e[3e~FElMT 

~0 = n2a2e~i~ lV lMl  

A~; = n2a2e,[3M.r 

A d = 2n2a2e[3e,[EIM.l 

A~: = 2n:a'-*73i~l V I M , ,  

(20) 

in cases (1), (2), and (3), respectively. 
Fur thermore ,  the energy unit for '8~ will be taken equal 

to n'-a2MT[3e. This value corresponds to the typical eccen- 
tricity that a particle should have to explorc the libration 
corotat ion region. The quantities plotted in the energy-ec-  
centricity diagrams are thus 

"~ ] = "gl/[n2ae[3~,M.r]. 

The (~d','d]) diagram is then divided in three regions 
(Fig. 5): 

• A f o r b i d d e n  r eg io n .  Sincc d] z, e 2, ~'1 < 0 defines a 
first forbidden region. Furthermore,  because '(,i. _< ~0, one 
must havc 

A'~ 

"~'1 >- n'-aZ"e''TtJ ~vi L ' ,  

which defines a second forbidden region, below the line 
'~'l = s~ ' ,  where the slope s is given by 

s =  I 

s = 2e,lEi 

s = 2 i ~ ! V l  

in the cases (I), (2), and (3), respectively. 

• A l ibra t ion  r eg io n .  If ~';0 - A'[: _< '~  ~ ~f0, the corota- 
tion critical argument q'~ is trapped in libration. This con- 
dition is equivalent to 

s~- ' <- ~ ] ~ s((-;' + 1). 

The libration region is confined between two parallel 

lines of slope s, one of  which defining the forbidden region 
(Fig. 5). 

• A c i r c u l a t i o n  r eg ion ,  lf~,:'l -> s('~;' + 1), qJ~ circulates 
and the particle no longer belongs to the arc. 

Dissipation of energy due to collisions decreases the 
cnergy '~i', thus pulling the particles in the arc toward the 
separatrix. As wc saw before, the energy provided by 
the satellite tends essentially to increase "~'~, while little 
affecting (,~, (Eqs. (15)). Thus thc Lindblad rcsonancc 
tends to move the particles parallel to the inclined lines 
in the energy-eccent r ic i ty  diagram (see, for instance, Fig. 
12b). 

4. ORDER OF MAGNITUDE CONSIDERATIONS 

The aim of our simulation is to describe a dynamical 
system which, hopefully, has the same qualitative behav- 
ior as the system wc want to study. Then,  scaling factors 
should allow us to apply the results obtained in the simula- 
tion to real systems. The three basic ingredients which 
must be common to the simulation and real arcs are: 
(I) inelastic collisions between finite-size particles, (2) 
a maximum of potential energy created by a corotation 
resonance,  and (3) a nearby Lindblad resonance.  The 

(21) corresponding parameters arc: the particle size, the mass 
of the satellite responsible for the corotation resonance,  
and the mass of the satellite responsible for the I,indblad 
resonance (which may be the same satellite, sec above). 

We shall see in the next section that the typical satellite 
masses used in the simulation are in the range e -- 
10 s -10  4 while the typical particle sizes a re - -10  ~, i.e.. 
about 50 km when scaled to Neptune ' s  size. As we see, 
this does not correspond,  by far, to real parameters:  for 

(22) instance, the small newly discovered Neptune ' s  satellites 
have masses in the rangc ~: - I0 'j .... 3 x 10 ; (Smith et 
a/. 1989), while the arc contains billions of  small particles, 
not hundred big particles. From a computational  point of 
view, however,  the requirement is that significant effects 
appear after a reasonable consumption time. In particular, 
the number of particles cannot be too large, the dissipation 
of energy through collisions must be large enough, and 

(23) 
the balancing energy from the satellite must bc corre- 
spondingly large. This section is thus intended to give a 
few order of magnitude calculations which may be useful 
(1) for estimating typical time scales of evolution in real 
arcs. (2) for connecting these time scales to those of  the 
numcrical codc, and finally, (3) for determining a reason- 
able sets of the parameters to be entered in the runs. 

P a r t i c l e  s i ze  a n d  o p t i c a l  d e p t h .  The finite size of  the 
particles is important, since it causes nearby particles on 

(24) different orbits to collide, thus dissipating energy while 
conserving angular momentum, and eventually leading to 
the spreading of narrow rings (Brahic 1977, Brahic and 
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Henon 1977). The time scale for this spreading is directly 
linked to the collision frequency,  i.e., the optical 
depth.The optical depth r of  an arc of  length L and width 
w, and composed of N particles with radius p is 

N p  2 
r ~ - -  (25) 

wL ' 

which shows that the collisional evolution time of the 
system scales like Np2; in other  words, a few hundred 
big particles can represent the evolution of many small 
particles (Brahic 1976). 

Width o f  the  coro ta t ion  r e sonance .  The maximum 
width of  the region where the guiding centers of the parti- 
cles are trapped in libration motion, due to the corotation 
resonance,  is directly linked to the mass of the satellite 
causing the resonance.  We derive here the value of this 
width in the case of  a satellite with an inclined orbit, the 
other cases being treated in very much the same way. The 
energy "~ associated with the corotation resonance is 
proportional to - (3/8)~ :2 - eflVi2~cos(Xl'~) (Eq. (14c)), 
which is thus conserved if we neglect the perturbations 
due to the Lindblad resonance.  The maximum radial ex- 
cursion ~:~ of a particle is reached on the separatrix be- 
tween libration and circulation motions (Fig. Id). The 
saddle points correspond to q'c = 0 and ~: = 0, so that 
along the separatrix, we have - (3 /8)s  c: - e ~ V i ~ c o s ( ~ )  
= - e ~ V i ~ .  The maximum radial excursion ~:m is thus 
reached for ~¢ = rr, which yields 2i~V = 3(~/(8fl~:). 

S t reng th  o f  the  coro ta t ion  r e sonance .  Equations (14) 
show that the difference of  potential energy (per unit 
mass) between the stable corotation point and the unstable 
saddle point is 

N d J M ,  r ~ en2a 2, (26) 

with additional factors of order  e~ and i-'~ in the right-hand 
side of  the equation in cases (2) and (3), respectively. On 
the other  hand, the energy dissipated per particle, per 
revolution, and per unit mass, is 

A%d/MT ~ C2 7" 
To m , (27) 

where Tomb is the period of revolution and c is the velocity 
dispersion in the arc, i.e., also the typical relative velocity 
of  two colliding particles. This equation assumes that a 
substantial amount  of  the relative kinetic energy of the 
particles is lost during the collision. We assume also that 
c is maintained by the Keplerian differential motion, i.e., 
c ~ pn.  Thus,  the typical time for a particle to fall down 
from the stable corotation point to the unstable saddle 
point is 

/ spread  - -  A ~  d t3 r - ( 2 8 )  

which is the typical time for an arc to be des t royed by 
inelastic collisions. This timescale must be multiplied by 
factors of order  e~ and i2~ in cases (2) and (3), respectively.  
Note also that the spreading time scales like e /p  2. 

S t reng th  o f  the  L indb lad  r e s o n a n c e .  For the arc to be 
stable, the energy (go) provided to the guiding centers of 
the particles should be comparable to the. dissipation rate 
due to collisions. The estimation of  (~gc) is, however,  
rather difficult because it depends on the particular phys- 
ics of  particles interactions (see Eq. (19) and the subse- 
quent discussion). 

A crude estimate of  (¢~,~) may be nevertheless derived as 
follows. First we note that the gradient of  torque density, 
normalized to the total torque F~ exerted by the satellite 
at the m : m  + 1 resonance,  may be written under the 
form: 

(dF/d~) /F  m = g(~:), (29) 

where g(s c) is a dimensionless function whose integral is 
equal to unity. The function g reaches a maximum value 
of  I /a  at the resonance (~: = 0), and decays over  a typical 
distance of  ~ - a on each side of  the resonance.  Thus, 
the typical value of  the derivative of  g near the resonance 
is dg/d~ ~ l / a  2. The dimensionless coefficient a describ- 
ing the behavior of g takes into account  the physics at 
work in the arc, and is a function of  various parameters 
like the viscosity coefficients, the velocity dispersion, and 
the disk surface density (see Table I of Meyer-Vernet  and 
Sicardy 1987). 

We use, on the other  hand, the standard torque formula 
1-" m = o~ ~ 2 ~ , "  ~,4~2 ,2 o m . . . .  o,s,,~e , where the number ~m is a slowly 
varying function of  m, which tends toward - 8 . 5  for large 
m (Goldreich and Tremaine 1982). Combining this result 
with Eqs. (17) and (29) yields the instantaneous value of  
~ per unit mass: 

~c/ M A ~ 3.~mm2a2n~e'2~ g(~)/4rr. (30) 

The average value of ~:g(~:) during one libration period 
of  a particle in the corotat ion potential may be estimated 
by expanding g to first order  around ~ = 0 and by noting 
that the variation of  ~: with time is approximately har- 
monic; thus, 

2dsc '  

where ~:m is the radial amplitude of  the libration motion of 
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the particle, i.e., the hall" width of  the arc. From d~,,/d( -~ 
~2, we finally obtains 

LJ . . . .  t . . 3.~,,,m a~n,r (,i,o~ /8rr. (32) 

As seen before,  the typical dissipation rate per unit 
-~ , . )  

mass duc to collisions is ~o/MA ~ 7"c-n/,Tr --, 7"p'-n~/27r. 
Thus,  wc have ~L. ~ ~d for 

I 

,.~ 147" i ~  

The last pa ramete r  to be est imated is now ~. The arc 
that we simulate is dominated by collisions, i.e.. pressure 
and viscosity,  with no self-gravitation, so that ~ is given 
by (Meyer-Vernet  and Sicardy 1987): 

are modified according to Gauss" equat ions of pertur- 
bation. 

• Units arc such thai the gravitational constant  (; = 1, 
and thc angular velocity on circular orbits of  radius unity 
is equal to unity. 

The main advantage of our model is that it is entirely 
deterministic,  with no a priori assumpt ions  regarding the 
statistics of  collisions. The accuracy  of the calculation is 
high: typically the angular momen tum is conserved  with a 

(33) r c l a t i vcaccu racyo f5  × 10 7af te r l000col l i s ions(S icardy  
1991), so that small systematic  trends like exchange of 
angular momentum with a satellite may bc easily Iracke, d. 
The main limitation of the code remains,  however ,  the 
time consumption,  typically 8 sec of  CPU time per arc 
revolution on a Cray 1 computer ,  and about 100 sec on a 
Sun 4 computer ,  with N -- 100 particles. The runs were 
achieved on a Cray 1 computer ,  at the Centre  de Calcul 
Vcctoriel pour la Recherche (Palaiseau, France) and on a 

134) Sun 4 compute r  at Cornell Universi ty.  

5. NUMERICAL SIMULATION 

5.1.  The C o d e  

The code used here is an extension of a code initially 
developed by Brahic (1976) to study the flattcning and the 
radial spreading of  a collisional disks (Brahic 1977, Brahic 
and H6non 1977). This code has bcen modified to take 
into account  the disturbing effect of  small satellites, with 
arbi trary eccentrici t ies and inclinations (Sicardy 1988. 
1991). The main characteris t ics  of  the code are the fol- 
lowing: 

• The code calculates the 3-D motion o f N  = 100 parti- 
cles orbiting a massive central body (the planet). Each 
particle is followed step by step in a deterministic way. 

• The only interactions between particles are inelastic 
collisions. Self-gravitation, radiation drag, and plasma 
drag are ignored. 

• The particles are identical hard spheres which suffer 
instantaneous collisions. No accret ion or fragmentation 
occurs.  The relative velocity V ~  of two particles just 
before a colli~sion is split into two components :  a radial 
componen t  V,. which is the projection of Vr~ ~ along the 
line joining ~ e  center  of  the par t~ les ,  and a t ransverse  
componen t  V t perpendicular  to V,. Just after the col- 
lision, V r and V, are multiplied by the rebound coefficients 
k ~ a n d k  t . w i t h  - 1  -< k~ <- 0 and 0 -< k t < 1. 

• Between two collisions, each particle follows a 
Keplerian orbit gravitationally perturbed by the satellites. 
The satellites are not per turbed by the particles and do 
not interact with each other. The particle orbital e lements  

5.2.  Choi~'e o f  P a r a m e t e r s  

The various parameters  used in our runs are summa-  
rizcd in Table II. They correspond to a compromise  be- 
tween the mechanisms we want to display and the avail- 
able computing time. The calculations of  Section 4 allow 
one to est imate these parameters ,  and to show also how 
they scale to real parameters .  

Par t ic le  s ize.  In our runs, the particle size has been 
adjusted so that a given particle undergoes  about one 
collision per revolution, i.e., the optical depth is of  order 
unity. If there are many collisions, then a hydrodynamical  
approach is more appropr ia te ,  and if there arc significantly 
fewer collisions, the dynamical  evolution of  the sys tem is 
too slow. For the differential Keplerian motion to be visi- 
ble in a few revolutions,  the width of  the arc must be a 
few times the radius of  the particles,  i.e., p must be a few 
times L r / N ,  according to Eq. (25). Taking L --- 0.1 (the 
initial length of  the arc), 7" -~ I and N = 100, this relation 
requires that p b c a  few times 10 -~ 

S t r e n g t h  o f  the  c o r o t a t i o n  r e s o n a n c e .  The spreading 
time of an arc under the effect of  inelastic collisions (Eq. 
(28)) must be small enough so that the spreading be visible 
during the run, but not too small, so that the resonant 
satellite has time to provide the energy balancing this 
dissipation. The typical time between encounters  of  the 
resonant satellite and the arc is the sidereal period ml~,~h, 
where m refers to the m : m + I resonance.  Taking t,p,c,d 
-- mTo, h, we obtain 

- -  " ~  t H .  

T 

(35) 
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TABLE II 
P a r a m e t e r s  o f  the  R u n s  
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Run e a~ e~ go~ ~' ,~ e', p 

Coefficient 

of rebound 

(k,,kO 
Number  of Number  of 
revolut ions coll isions 

A 0 
B 10 .4 

C 10 -4 

D 10 -4 

E 5 x 10 -4 

F 10.4 

G 2 × 10 -s 
H 10 -4 

I 10 -4 

J 7 × 1 0  ~ 

K 7 × 10 -~ 

0.86177 

0.86777 
0.85557 

0.86526 

0.85836 

0 0 0 0.86177 0 10 -s 
0 0 0 0.86177 0 10 

0 0 0 0.86177 0 2 × 10 3 

0 0 2 x 10 -~ 0.86177 0 2 × 10 -3 
0 0 2 x 10 -4 0.86177 0 10 ..3 
0 0 2 x 10 -~ 0.86177 0 10 -t  

0.1 0 0 0.86177 0 10 -t  

0 0 1.3 × 10 4 0.86777 0 10 -~ 

0 0 1.3 × 10 .4 0.85577 0 10 -~ 
0.1 +3  × 10 ..2 0 0.86177 0 10 .3 

0.1 - 3  x 10 -2 0 0.86177 0 10 -3 

-0.1 
-0 .2  
-0.1 
-0.1 
-0 .3  
- 0.2 
-0.1 
-0 .2  
-0 .2  
-0 .2  
-0 .2  

0.1 160 1,116 

0.2 318 3,423 

0. I 73 3 ,240  
0.1 50 4,439 

0.3 30 439 

0.2 315 13,297 

0.1 97 6,393 

0.2 160 1,42 I 

0.2 160 10,9(18 
0.2 160 6,904 

0.2 160 8,487 

With r - 1, a = 1 and O - 10-3, this gives e - 10 5 
used in our  runs. 

Streng th  o f  the L indb lad  resonance .  The mass of  the 
satellite causing the Lindblad resonance is est imated by 
using Eq. (33). The half width ~m of the arc should be at 
least a few times the size of  the particles. In our runs, we 
have SCm - 10p/a, and from r - 1, p/a  ~ 10 -3 and m = 
- 5, we get 

e ' ~  10 -5 (36) 

With the set of  parameters  chosen here, the mass of  
the satellite responsible for the Lindblad resonance is 
comparab le  to the mass of  the satellite responsible for 
the corotat ion resonance.  This coincidence allows one to 
study the cases where there is only one satellite on an 
eccentr ic  orbit.  

We note finally that the exchange of  energy at the Lind- 
blad resonance is achieved in our runs through collisions 
only, i.e., viscosi ty and acoustic waves.  Real rings, how- 
ever ,  in regions with typical optical depth of order  unity, 
are dominated by self-gravity rather  than viscosity. Nev-  
ertheless,  the torque formula is sufficiently robust so that 
it applies to a very wide range of  physical processes  
(Goldreich and Tremaine  1982, Meyer-Vernet  and Sicardy 
1987). Consequent ly ,  the basic dynamics  of  the arc con- 
finement is conserved  in our  numerical  experiment .  Obvi- 
ously, a more general code taking into account  collective 
effects like self-gravitation would be most  interesting, but 
this is present ly beyond the capabili ty of  the computers  
used for this work.  

6. N U M E R I C A L  R E S U L T S  

Initial Condi t ions  

Among the various initial conditions used in this work,  
we will present  here four typical configurations: 

• A free arc,  with no disturbing satellites, which 
evolves under the effect of  collisions only. 

• An arc initially confined near  the L4 Lagrange point 
of  a satellite S. 

• An arc initially confined near  the L4 Lagrange point 
of  a satellite S, and at an isolated Lindblad resonance with 
a second satellite S ' .  

• An arc initially confined near  an isolated corotat ion 
resonance with a single satellite S, whose orbit is ec- 
centric. 

On the other  hand, for these configurations,  we have 
explored two different kinds of  dependence:  (I) the depen- 
dence on physical parameters  like the mass  of  the satel- 
lites, the size of  the particles,  etc. ,  and (2) the influence 
of  the position of the Lindblad resonance  with respect  to 
the arc. 

Some of our results can be compared  to those of  Lin, 
Papaloizou, and Ruden (1987), who use a rather  similar 
code in the great lines, but with significant differences in 
the details: 

• Their  code is two-dimensional  and semi-determinist ic  
since particles entering in a box of a fixed mesh are given 
the same velocity relative to their center  of  mass.  This 
allows them to handle a large number  of  particles (N = 
2000). 

• The arc is initially widely spread be tween  the L 4 and 
the L3 points, and new particles are re introduced in the 
system as particles escape  through the separatr ix.  In our 
runs, the arc is initially well confined around the corota-  
tion point, and we study its spreading, or  confinement ,  
with no further assumpt ions  as particles escape.  

• We study also the stability of  an arc at a corotat ion 
resonance of  a single satellite with an eccentr ic  orbit, 
which is not done by Lin, Papaloizou,  and Ruden. 
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FIG. 4. Run C: the parameters  of this run are identical to Run 13. except for the particle radius 0 = 2 x 10-~. (a) The sys tem after five 
revolut ions and 815 coll isions.  (b) after 24 revolutions and 1930 collisions. (el after 47 revolutions and 2737 coll isions,  and (d) after 73 revolut ions 
and 32411 collisions.  The coll is ions spread the arc on a shorter time scale than in Run B (Fig. 3b). 

6. I. Free  Arc" 

Typical initial conditions used in several of  our runs are 
shown in Fig. 3a. In Run A considered here, the masses  
of  the satellites have been set to zero. After 40 revolutions 
and about  15 collisions per particle, the arc has completely  
spread along the orbit (Fig. 16a). The azimuthal spreading 
is essentially due to the differential Keplerian motion be- 
tween the outer  and inner edges of  the arc of  width w. The 
spreading time scale is thus: 

2 a  
t,p,e,,,i - ~ 7],,.,. (37) 

With a = 1, w = 0.01, and ]/orb = 2n', we have t,prc,d 
65 revolutions,  in agreement  with the observed spreading 
time. 

6.2. Arc  neat" a / ,  4 Point  

In the next exper iment  (Run B), we take the same pa- 
rameters  as for the previous Run A, except  that the parti- 
cles are initially located near  the 1, 4 Lagrange point of  a 
satellite S of  mass i0 -4, while the mass  of  satellite S '  is 
set to zero. The azimuthal spreading is now much slower 
than for the previous run. For  instance we see that after 
317 revolutions and 3411 collisions, i.e., nearly 70 colli- 
sions per particle, the arc is still strongly confined near 
the L4 point of  the satellite S (Fig. 3b). Everything else 
equal, the radius of  the particles has been doubled in Run 
C, p = 0.002. The spreading of  the arc,  shown in Fig. 4, 
has the same qualitative aspect  as in Run B, except  that 
it is now taster. 

Contrarily to Run A, the azimuthal  spreading in Runs 
B and C is no longer due to the differential Keplerian 
motion, but is actually caused by the dissipation of energy 
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FIG. 5. Evolution o f  the arc of  in the " ' energy-eccen t r ic i ty"  dia- 
gram, for Runs  B and C. The  quanti ty ~ '  is the average energy of a 
particle in the corotat ing frame,  while "Y] is the average energy of  a 
particle stored in the eccentric motion (see Eq. (21)). The hatched region 
is forbidden,  the libration region is enclosed by the forbidden region and 
the separatr ix,  and the circulation region is at the left of  the separatrix 
(see Section 3.5). Particles o f  Run B are half as big as particles of  Run 
C (radius 10 -~ instead of  2 x 10-~), and the collisions are a little less 
dissipative ( - k ,  = k t = 0.2 in Run B and - k r  = k. = 0.1 in Run C). 
Otherwise,  the parameters  are identical (see Table IlL After  a few 
collisions, the orbital eccentrici ty of  the particles reaches  a finite value, 
due to their finite size. Collisions dissipate energy and thus drive the 
particles to the left, toward the separatrix.  At the end of  each run, the 
total numbe r  o f  collisions is about the same 13411 for Run B, and 3240 
for Run C). The bigger the particles, the bigger the velocity dispersion 
and the faster  the dissipation rate. The vertical bars allow compar ison 
of  the average radial excurs ion  of  the particles to their own size (see lext 
for details). 

due to inelastic collisions. This is apparent when consider- 
ing the evolution of  the arc in the (~',%'t) diagram (Fig. 5). 
First, the average value of  %], or equivalently the mean 
orbital eccentrici ty of  the particles, rapidly reaches a finite 
value due to the finite size of the particles. In a second 
step, the particles move parallel to the ~ '  axis toward the 
separatrix, due to loss of  energy. We see in Fig. 5 that the 
particles in Run C have higher orbital eccentricities and 
dissipate energy faster. This is because the average dissi- 
pation rate due to collisions increases with the velocity 
dispersion, which in turn increases with the particle size. 
More precisely, the average eccentricity induced by colli- 
sions is such that the random excursion of  a particle during 
one revolution is a few times the size of  the particles. This 
can be checked by considering the vertical bars in Fig. 5, 
where each bar represents the value of  %] for particles 
whose radial displacement during one revolution is equal 
to the particle 's  diameter.  At the end of each run of Fig. 
5, the total amount  of collisions is about the same 
(3200-3400), but the energy lost by the bigger particles (p 
= 0.002) is about twice the energy lost with the smaller 
particles (p = 0.001). 

The evolution of  the arc in Run C is shown in a (~c, r) 
diagram, where ~c = k - ~.~ is the critical corotation 

argument,  and where r is the distance to the planet center  
(Fig. 6). In this diagram, each particle is plotted together 
with its guiding center.  Since the eccentr ici ty of the parti- 
cles remains small, the particles are at any time very  close 
to their guiding center.  Dissipation of  energy slowly drives 
the particles from the potential maximum L 4 to the saddle 
point L~. Some particles have lost enough energy to cross 
the separatrix and fall on horseshoe orbits. 

6.3. Arc  near a L 4 Point ,  in R esonance  with a Second  
Satelli te 

In order  to balance the energy lost by the arc, a second 
satelite S ' ,  called the " s h e p h e r d , "  has been added. Its 
position is such that the arc lies on the outer  Lindblad 
resonance 4 : 5 of  the new satellite (Fig. 3a). Three  typical 
configurations are investigated in thi,s subsection. They 
correspond to the dividing points between stable and un- 
stable arcs. More precisely, we show here: (I) a case 
where the mass of  the shepherd is too small for balancing 
the energy dissipated by collisions, so that the arc eventu- 
ally spreads, (2) a case where the mass of  the shepherd is 
too large, so that the arc receives too much energy and 
spreads also, and (3) an intermediate case where the arc 
remains confined. 

In the first case of the three examined here (Run D), 
the parameters are the same as for Run C, except  that the 
second satellite S'  has a mass e' = 2 x 10 -5, instead of 
zero. The arc now gains energy from S' ,  but dissipation 
is still too important to prevent the arc from spreading. 
The corresponding arc is shown in Fig. 7a, after 45 revolu- 
tions and 4100 collisions, with half a dozen particles al- 
ready lost on horseshoe orbits. On an energy-eccent r ic i ty  
diagram like that of  Fig. 5, we would see the particles 
moving to the left, slower than in case B, but fast enough 
to see the arc dest royed during the time of  the simulation. 

The next case (Run E) shows the opposite trend. Now, 
the Lagrange satellite has a mass e = 5 × 10-4  while the 
shepherd has a mass e' = 2 × 10 4and the particle radius 
is p = 10 3. Thus the shepherd is 10 times more massive 
than in Run D, and the particles are half the size. In 
other words, the arc receives more energy from S' and 
dissipates less energy through collisions. No balance can 
be reached because the arc cannot  dissipate all this en- 
ergy. Consequently,  the eccentrici ty forced by the Lind- 
blad resonance increases, and the particles cross the sepa- 
ratrix not because they lose energy (leftward motion), but 
because they increase their value of  ~l (upward motion). 
The destroyed arc is shown in Fig. 7b, after 28 revolutions 
and 2440 collisions. 

In the last case (Run F), we use the same parameters  
as for Run D, except  that the particles are half as big, and 
the collisions are slightly less dissipative. The energy loss 
rate is accordingly reduced,  which allows the arc to re- 
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FIG. 6. Run C: the positions of the particles are plotted as dots and 
their guiding centers are plotted as crosses. The abscissa is the corotation 
critical argument (W, = h - h ,  i.e., the azimuthal distance to the 
Lagrange satellite, see Table I). and the ordinate is the distance to 
the planet 's center. The solid curves represent a typical tadpole, the 
separatrix, and a horseshoe orbit, respectively. Three different snap- 
shots of the system have been plotted together (after 7. 61. and 73 
revolutions, or 2737, 2896, and 3240 collisions, respectively). This dia- 
gram shows how inelastic collisions drive the particles away from the 
L 4 point (q', = 60 °, r = 1.0). The particles cross the separatrix and then 
follow horseshoe orbits. Note that each particle is close to its guiding 
center because the eccentricity induced by collisions is small. 

main in the libration zone, even alter about 11,300 colli- 
sions, i.e., more than 220 collisions per particle (Fig. 8). 
We also see on this figure that in spite of  its high eccentric- 
ity, the arc remains remarkably well confined. This is due 
to the combined effect of collisions and the forcing effect 
of  the shepherd,  which drives the particles in coherent  

motion, on almost identical epicycles.  This may appear 
paradoxical since collisions tend to destroy such coherent  
motion, but remember  that the present system is not iso- 
lated because of  the forcing effect of  the shepherd. 

Another result provided by Run F is that the average 
eccentricity of the panicles increases monotonically with 
time. This is because the arc is at the exact location of the 
Lindblad resonance (see the dashed line in Fig. 8). so that 
the forced eccentricity e0 is infinite (An~ = 0, see Eq. 
(13)). In contrast ,  the torque density gradient is zero at 
the resonance,  so that no.energy is given to or removed 
from the guiding centers ( ~  = 0, see Eq. (19)). This case 
is thus a typical example where all the energy provided 
by the shepherd is used to pump up the eccentricity of the 
arc. 

6.4. Art" at a Corotat ion Point  o f  an Eccentr ic  Satellite 

The arc is now placed near an external corotat ion point 
4 : 5 of  a satellite S with orbital eccentrici ty e~ = 0.1 and 
mass e -= 2 × I0 -5 (Run G). The same qualitative behav- 
ior as for Run F is observed.  The arc remains relatively 
well confined around the corotat ion point, even after 6313 
collisions (Fig. 9). A few particles escape however  on 
circulating orbits. This occurs  not because of  dissipation 
of energy, but because the corotat ion potential is actually 
averaged over  one synodic period. Thus high frequency 
terms in the disturbing potential can let the particle cross 
the separatrix. Otherwise,  the same remarks as for the 
previous subsection apply: the eccentricit ies and the or- 
bital phases of the particles tend to remain coherent  in 
spite of  the collisions. Moreover ,  the average eccentricity 
increases monotonously with time because the Lindblad 
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FIG. 7. (a) Run D, after 45 revolutions and 4100 collisions. The parameters are identical to those of Run C, except for the mass of  the shepherd. 
which is now 2 × 10 '~, instead of zero. In spite of the presence of this shepherd, the energy given to the arc is still too small to prevent the 
spreading, see Fig. 3 for comparison. (b) Run E. This is a case where the energy provided by the shepherd is too large. The mass of the Lagrange 
satellite S is 5 × 10 -~, and the mass of the shepherd S'  is 2 × 10 -~. After 28 revolutions and 437 collisions, the particles are given high eccentricities 
and escape on horseshoe orbits. 
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FIG. 8. Run F: this is an intermediate case between the Runs D and 
E shown in the previous figure. The Lagrange satellite has a mass 10.4 
while the inner shepherd has a mass 2 x 10 -5. The inner satellite has a 
4 : 5 Lindblad resonance whose location (dashed line) is coincident with 
the corotation radius. The particles (dots. squares, and triangles) are 
shown at three different moments  (after 297,306, and 316 revolutions, 
respectively, or 10,600, 10,900, and 11,300 collisions), together with their 
guiding centers (crosses). The shepherd forces a secularly increasing 
eccentricity on the arc, while the guiding centers remain well confined 
inside the separatrix. Note also that because of the coherent motion of 
the panicles,  the arc is at any moment well confined spatially. See Fig. 
6 for comparison. 

resonance radius (the dashed line in Fig. 9) lies right on 
the corotation radius. 

6•5. Lffect of the Torque Density Gradient 

We now study the effect of  the Lindblad resonance 
location on the arc stability• As we have noted in the 
previous subsection, if the Lindblad resonance radius co- 

incides with the corotation radius, there is a secular in- 
crease of  eccentricity,  which eventually leads to the cross- 
ing of  the shepherd orbit, and thus the destruct ion of the 
arc. Displacing the Lindblad resonance location yields a 
finite forced eccentrici ty (Eq. (13)), and thus prevents 
such an outcome.  Fur thermore,  this creates a torque den- 
sity gradient across the arc, which can stabilize, or desta- 
bilize the arc, as discussed in Section 3.4. 

In order to test this effect, we displace the Lindblad 
resonance radius with respect to the corotat ion radius. In 
the first configuration (two satellites on circular orbits), it 
is enough to change the inner satellite semi-major axis to 
change accordingly the Lindblad resonance radius• In the 
second case (a single satellite on an eccentr ic  orbit), the 
splitting between the two resonances requires that an apsi- 
dal motion ~ be given to the satellite (see Eq. (9)). In our 
simulations, the value and sign of ~ do not correspond to 
the particular value induced by Neptune 's  oblateness• 
Rather, this parameter  has an arbitary value, which is 
intented to test the stabilizing, or destabilizing, effect of 
the Lindblad resonance• 

In the first two runs examined here,  all the parameters 
are the same, except for the semi-major axis of  the shep- 
herd (see Table II). In one case (Run H), the Lindblad 
resonance radius is at the distance 0.0069 outside the 
corotation radius, and in the other  case (Run I), it lies 
at the distance 0.0069 inside the corotat ion radius• The 
position of the Lindblad resonance is shown as dashed 
lines in Figs. 10 and I i. As expected from the discussion 
of Section 3.4, the torque density gradient across the arc 
is positive in Run H, so that the arc should be unstable• 
This is verified in Fig. 10, where the arc is shown when it 
is about to disrupt, after 35 revolutions and 1260 colli- 
sions. In Run I on the contrary,  the torque density gradient 
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FIG. 9. The same as Fig. 8, but with a single eccentric satellite (Run G). The corotation critical argument is now xp' = (rn - l),k, - m h  - 

&s (see Table 1). The dashed line shows the location of the Lindblad resonance, coincident with the corotation radius. (a) The panicles have been 
plotted after 58, 89, and 96 revolutions, or 3406, 5840, and 6313 collisions (dots, square, and triangles, respectively). (b) The corresponding positions 
of the guiding centers. The same qualitative behavior as in Fig. 8 is observed: the particles follow a coherent eccentric motion while the guiding 
centers are locked around the stable corotation point. 
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FIG. 10. The effect of the torque density gradient. Run H has the same parameters as Run F. except that the mass of the shepherd has been 
increased to 1.3 × 10 '4, and that the Lindblad resonance (dashed line) has been shifted outward by a distance of 0.0069. so as to create a torque 
density gradient across the arc. (a) Initial conditions. (b) The guiding centers of the particles after 35 revolutions and 1260 collisions, when the arc 
is being disrupted. See Fig. 8 for comparison. 

is negat ive ,  and the arc is stabil ized, as shown in Fig. I 1, 
after 153 revolut ions  and 10,425 coll is ions.  

Figure 12 s h o w s  the evolut ion  of  the arc in the en- 
ergy -eccentr i c i ty  diagram, for Runs H and I. In Run H, 
the particles are driven away  from the libration region, 
their eccentric i t ies  increase,  and they eventual ly  cross  the 
separatrix. In Run I, the points representing the arc go 
back and forth against the forbidden region, indicating 
that the guiding centers  arc locked on the maximum of  
potential ,  while  the particles have a forced,  coherent .  
mot ion with finite eccentric i ty  (see also Fig. 11). Thus,  
the arc reaches a limit cyc le  wherc the energy provided 
by the shepherd is dissipated by col l is ions.  

In Fig. 13, the k c o m p o n e n t  o f  the eccentricity vector  
o f  each particle is plotted as a function of  the distancc 

o f  the guiding center to the corotat ion radius. R e m e m b e r  
that k represents also the oppos i te  o f  the torque exerted 
on each particle, according Eq. (16). We can check  that 
in the unstable case  (Run H, Fig. 13a), the torque gradient 
is posi t ive ,  while it remains negative in the stable case 
(Run 1, Fig. 13b). 

Runs J and K are the equivalent  o f  Runs H and I in the 
case  where there is only  one  satellite with an eccentric  
orbit. The parameters used in these two  runs are identical,  
cxccpt  for the apsidal precess ion  rate cb, which has been 
adjusted so that the Lindblad resonance  lies at the dis- 
tance 0.004 outside the corotat ion radius for Run J, and 
at the distance 0.004 inside the corotat ion radius for Run 
K (see Table II). The same qualitative behavior  as for 
Runs H and I is observed .  When the Lindblad resonance  is 
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F I G .  l I .  E f f e c t  o f  the torque  dens i ty  gradient .  Run 1: ident ica l  to Run H s h o w n  in Fig. 10, e x c e p t  that the l , indblad  r e s o n a n c e  (dashed  line) 
has  b e e n  m o v e d  i n s i d e  the c o r o t a t i o n  radius  by the d i s t a n c e  0 . ( X ) 6 9 .  s o  that to c h a n g e  the sign o f  the torque  dens i ty  gradient  wi th  re spec t  to Fig. 
1 0 .  T h e  arc is s h o w n  af ter  153 r e v o l u t i o n s  and  10,425 co l l i s ions .  (a) The  guid ing  c e n t e r s  c e n t e r s  are l o c k e d  ins ide  a tadpo le  orbit .  (bJ The  part ic les  
t h e m s e l v e s  f o l l o w  c o h e r e n t  m o t i o n s ,  with  a finite forced  eccentr i c i ty .  
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FIG. 12. Evolut ion of  the arc in the energy-eccent r ic i ty  diagram. (a) Run H: energy is removed from the particle guiding centers ,  which 
eventual ly  c ross  the separatr ix.  Note,  however ,  that energy is given to the arc under  the form of  eccentr ic  motion.  (b) Run I: the average value 
of  ~.' and '/~ o f  the particles have been plotted at different t imes (from 0 to 160 revolutions).  The points go back and forth against  the forbidden 
region, indicating that a limit cycle is reached,  where the energy provided by the inner satellite (essentially under  the form of  eccentr ic  motion) 
is dissipated by collisions. 

outside the corotation radius, the arc is rapidly destroyed 
(Run J, Fig. 14a), while it remains stable in the opposite 
case (Run K, Fig. 14b). Figure 15 shows the arc in the 
energy-eccentric i ty  diagram in both cases. Again, the 
particles are driven toward the separatrix in the unstable 
case, and they are trapped in a limit cycle in the stable 
case. 

7. D I S C U S S I O N  

Our main analytical results are contained in Eqs. (6), 
(10), and (12), which describe the motion of  a particle 

near a corotation resonance,  and perturbed by a Lindblad 
resonance. On the other hand, Eq. (19) gives the rate of 
transfer of energy from the Lindblad resonance to the 
guiding centers of the particles in the arc. Our analytical 
results are tested with a direct numerical simulation, 
which takes into account inelastic collisions between finite 
size particles. Our numerical results are summarized in 
Fig. 16. These two different approaches show that 

• The motion of a particle near a corotation resonance 
and a Lindblad resonance may be described by two cou- 
pled dynamical systems,  namely a simple pendulum and 
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FIG. 13. Evidence for a gradient of  torque densi ty across  the arc. For each particle, the value of  k (proportional to the opposi te  o f  the torque 
densi ty,  see Eq. (16)) is plotted against  ~, the d imensionless  dis tance to the corotat ion radius. (a) Run H: when the Lindblad resonance  (dashed 
line) is outs ide the arc, the gradient o f k  is negative (i.e., the gradient of  torque densi ty is positive), and the arc is des t royed.  The  values o f k  against 
,f are plotted here before the arc is des t royed,  after 19 revolutions and 1054 collisions. (b) Run I: in the opposi te  case,  the gradient  of  k is positive, 
which ensures  the arc stability (Eq. (19)). The diagram is shown after 157 arc revolutions,  and 10,682 collisions. Note  the change of  scale between 
(a) and (b). 
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FIG. 14. Stability of  the arc with a single satellite on an eccentric orb i t .  ] h e  m a s s  o f  the satellite is 7 × 10 ~. (a) Run J: due to the precession 
rate ~,, o f  the satellite's orbit periapse, the l.indblad resonance is shifted at a distance 0 .004  o u t ~ i d e  the corotation radius (see Table 11). T h e  a r c .  

shown here after 112 rcvolutions and 6236 co l l i s ions•  is being disrupted. (b) Run K: everything cqual besides, the periapse precession ratc has the 
opposite v a l u e  (Tab l e  I l l .  so  that the l.indblad resonance i,, n o w  al 0.(11)4 in.~ide the arc. The arc. shown after 157 revolutions and 8423 collisions. 
is then stabilizcd. 

a harmonic  oscil lator.  The coupling between the two mo- 
tions is determined by col lect ive  effects in the arc. 

• Equation (19) gives the part of  the energy provided 
by the Lindblad resonance ,  uscd to confine the arc, that 
is, used to maintain the guiding centers of  thc particles 
at the maximum of  potential created by the corotation 
resonance•  This energy is posit ive,  i.e., the arc is stable 
is, if thc g r a d i e n t  of  the torque density across  the arc is 
negative. As a c o n s e q u e n c e ,  the posit ion of  the Lindblad 
resonance  relative to the corotation radius determines the 
arc stability. More prcciscly,  an outer (inner) Lindblad 
resonance  should be insidc (outside) the arc lbr thc lattcr 
to be stable• This confirms previous work by l,issatter 
(1985), where the resonanccs  overlap,  and by Lin, Pa- 

paloizou,  and Ruden (1987), where thc resonances  are 
isolated. However ,  our analysis shows  that the response 
of  the arc to the IJndblad resonance  may bc complicated 
by the presence  of  waves•  In this case,  a more careful 
evaluation o f  the integral in Eq. (19) must be done to 
decidc whether  the resonance  stabilizes or dcstabilizes 
the arc. 

• The numerical simulation shows  that dissipation of  
energy through col l is ions is responsible for the azimuthal 
spreading of  an arc (Fig. 3). This confirms previous analyt- 
ical work on the stability of  Lagrange (see, for instancc, 
Grccnberg and Davis  1978). 

• The arc stability is testcd in our simulation by displac- 
ing the l,indblad resonance  with rcspcct to thc corotation 
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F I G .  15. E q u i v a l e n t  to Fig .  12. but with a satellite on  an  eccentric orbit. (a) Run .1: the arc escapes the libration region after about 70 revolution.,, 
and 4240 coll isions,  because of  the negative gradient o f  k across the libration region (sce Figs. 12a a n d  14a fl~r c o m p a r i s o n ) .  (b) R u n  K: the arc 
reaches a limit cycle,  and is trapped in the libration region. The total number of  revolutions of  the arc is 157. and the total number of  coll isions 
is 8423 Isee also Figs. 12b and 14hi. 
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FIG. 16. Summary. (a) Run A: a free arc spreads very rapidly due to the Keplerian differential motion. (b) Run C: a corotation resonance may 
slow this spreading, but dissipation of energy destroys the arc because corotation points are maxima of potential energy. (c) Run I: a second 
satellite may confine the arc, provided that the torque density decreases outward (negative gradient of the torque density). Otherwise, the arc is 
destroyed, see Fig. 10. (d) Run K: the same kind of confinement may be achieved with only one eccentric satellite. Again, the gradient of torque 
density across the arc must be negative for the latter to be stable, otherwise the arc is destroyed (Fig. 14a). 

radius. The two cases investigated here (two satellites on 
circular orbits, or one satellite on eccentric orbit) show a 
similar dynamical behavior. In particular we confirm that 
the arc is confined if the gradient of  the torque density 
across the arc is negative (Figs. I1 and 14). 

Our simulation is focused on the role of inelastic colli- 
sions only, so that self-gravitation, Poynting-Robertson 
effects, and plasma drag, among others, are ignored. Sev- 
eral points have not been addressed in this paper, and 
they should be nevertheless important for a better knowl- 
edge of planetary arcs. Without being exhaustive, we can 
note the following: 

Equation (19) allows one, in principle, to make an en- 
ergy budget of the arc and thus, to decide whether the 
latter is stable or not against collisions. However, this 
budget depends on physical parameters whose values are 
still poorly known in the case of Neptune arcs (pressure, 
viscosity, velocity dispersion, self-gravitation, coeffi- 
cients of restitution, effect of particle spin, plasma drag, 

Poynting-Robertson effect, etc.). More detailed analysis 
of Voyager 2 observations could fill some of these gaps. 

Collective effects in the arc are essentially due to big 
particles, which contain most of the mass of the arc, while 
the photometric properties of the arc are dominated by 
microscopic particles. The latter are submitted to non- 
gravitational forces like Poynting-Robertson drag and/or 
plasma drag, so that they can escape confinement. A di- 
rect integration of the orbit, or the use of the averaged 
equations of motion (Eqs. (6), (10), and (12)), where dissi- 
pative forces are accounted for, would be most useful 
to assess the importance of nongravitational forces on 
grains. 

The present work has been developed in a frame where 
the standard shepherding mechanism applies, i.e., assum- 
ing that there are frequent interactions between arc parti- 
cles. This may be not the case for Neptune 's  arcs, if most 
of the mass is contained in very few big particles with 
little interactions, while most of the optical depth is ac- 
counted for by small (dust) particles. Such a model would 
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deserve  a study of its own, after  more detailed analysis of  
the Voyager  2 images has been done.  

Other  problems in the Solar Sys tem could receive a 
new insight as Nep tune ' s  arcs are probed.  We can think of 
dust t rapped near corotat ion points of  satellites or planets,  
accret ion processes  near corotat ion resonances  in the 
early history of the Solar Nebula ,  and the format ion and 
evolution of  thc Trojan asteroids or coorbital  satellites. 

A P P E N D I X  A 

l,ist ~f" Symbols  

A: a combinat ion of  I,aplace coefficients,  see Table 1. 
a. a~: semi-major  axis of  the orbit of  the test particle, of  the satellite. 
u0: reference semi-major  axis defining the corotat ion radius. 
b~': Laplace coefficient. 
c: velocity dispersion among  the particles of  the arc. 
E: a combinat ion of  Laplace coefficients,  see Table 1. 
E,: mechanical  energy oi" the lest particle in an inertial frame. 
e. e,: eccentrici ty of  the orbit of  the test particle, of  the satellite. 
e.: the forced eccentr ici ty near  a Lindblad resonance.  
~': mechanical  energy of  the test particle in a frame corotating with 

the particle. 
t~. ~:t: parts of  ~ associa ted  to the corotat ion and the I,indblad reso- 

nances ,  respectively.  Note that ,~ = ~, - ";i. 
~' ,  ~i: d imens ionless  express ions  of ,~ and t l .  See Eqs. (21) for 

definition. 
f ( ~ )  = cos (~ , )  - 1 i2s in (~ j2) :  the function describing the variation 

of the potential energy along the satellite orbit. The ext rema of f give 
the positions of  the Lagrange  points L~. L4. and L,. 

:.Y~: a d imens ionless  coefficient depending on m. Used for calculating 
the s tandard torque at a Lindblad resonance.  

G: gravitational constant .  
H~: angular  m o m e n t u m  of  the test particle in an inertial frame. 
h . e . cos (~0 :  the first componen t  of  the eccentricity vector ~',. 
i, i,: inclination of  the orbit of  the test particle, of  the satellite. 
J , :  dynamical  obla teness  of  the planet. 
k = e.sin(W0: the second componen t  of  the eccentricity vector ~',. 
k,, kt: radial and tangenital rebound coefficients,  respectively,  fi>r tv, o 

colliding particles. 
L: length of  the arc. 
L I . . . . .  Ls: Lagrange  equilibrium points of  the circular three body 

problem. 
M a, M~,, Ms,  M.i: masses  of  the arc, the planet, the satellite, and the 

test particle, respectively.  
m: integer defining the resonance  condition n/n,  - (m ~ IL, m. 
N: number  of  particles used in the numerical  simulation. 
n. n,: mean  mot ions  of  the test particle and of  the satellite. 
n~: mean  motion at radius a0. 
Rp: equatorial  radius of  the planet. 
~". ~,: position vector  of  the test parlicle and of the satellite, respec- 

tively. 
s . .C:  subscr ipts  referring to satellites S and S' ,  respectively.  
L :  period of the libration motion associated to the corotation reso- 

nance.  
T¢,rh: orbital period. 
7: subscript  referring the test particle. 
V: a combinat ion of  Laplace coefficients,  nee Table 1. 
w: radial width of  the arc. 
¢~: a d imens ionless  coefficient describing the response  of a disk near 

a resonance .  It depends  on physical parameters  like pressure,  viscosit}. 
density,  etc. 

/3 = a ' a , :  ratio of  the semi-major  axis of  the test particle orbit to the 
semi-major  axis of  satellite S orbit. 

3'  = a/a,,: ld. with satellite S' .  
/3o ~ , 0 / , , :  see the definition of a~. 
1": torque exerted by the satellite on the test  particle. 

=- 7 ~,: relative position vector  of  the test particle w.r.t, the 
satellite. 

~: - Ms/Mp: ratio of  the mass  of  satellite S to the mass  of  the planet. 
~:' Ms,/Mp: ld. for satellite S' .  
x, h,: mean longitude of  the particle, of  the satellite. 
( = (a aq0/,: the d imensionless  dis tance to the corotation radius. 
p: radius of  the arc particles. 
"Yc~: the unper turbed surface densi ty of  the ring-like arc material. 
r: normal optical depth of the arc. 
• : total potential energy of  the test particle, per unit mass.  
d~,: potential energy of  the test particle due to the interaction with the 

satellite, per unit mass .  
q~, ~ :  critical a rguments  of  corotation and Lindblad resonances ,  

respectively,  scc Table I. 
IL ~Z,: longitude of  the node of the orbit of  the test particle, of  the 

satellite. 
6J. &,: longitude of  the periapse of  the orbit of  the test particle, of  the 

satellite. 
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