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Spin—-Orbit Coupling

This common body,

Like to a vagabond flag upon the stream,
Goes to and back, lackeying the varying tide,
To rot itself with motion.

William Shakespeare, Anthony and Cleopatra, I, tv

5.1 Introduction

In the last chapter, we considered the effect of tides raised on a satellite by a planet
where we assumed that the satellite was in a synchronous spin state (i.c., that the
rotational period of the satellite was equal to its orbital period). As mentioned
in Sect. 1.6, most of the major natural satellites in the solar system are observed
to be rotating in the synchronous state. How did this situation arise and what
determines the spin—orbit state of a given satellite or planet? In this chapter, we
start by further examining the effects of a tidal torque on a satellite’s rotation.
This analysis reveals why, for example, in order to maintain its synchronous
spin—orbit resonance, the Moon must have a permanent quadrupole moment.
The consequences of this extra torque on the system are then examined and this
leads to a general approach to the concept of spin—orbit resonance in the solar
system. The origin and stability of these resonances are also discussed.

5.2 Tidal Despinning

Consider the case of a satellite orbiting a planet in an elliptical orbit. Those parts
of the orbit in which the satellite’s spin rate, which we denote by 7 + n, 18 les_s
(or greater) than its angular velocity or the rate of change of its true anomaly f,
are shown in Fig. 5.1a. If we transform to a reference frame that is centred on
the satellite and rotates with the satellite’s mean motion #, then in this rotating
frame the planet moves about its guiding centre in a 2:1 ellipse (cf. Sect. 4.5) as
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Fig. 5.1. (a) The path of a rotating satellite in an inertial reference frame centred on a
planet. The nonshaded region shows that part of the orbit for which the spin rate of the
satellite in inertial space, 7 +n > f. The dashed line denotes the axis of the tidal bulge.
(b) The path of the planet in a reference frame centred on the satellite and rotating with
its mean motion, n. The nonshaded region corresponds to the range of true anomaly for
which 1 > ¢.

shown in Fig. 5.1b. The rotation rate of the satellite in the rotating frame is 5
and the case (i) = 0 corresponds to the synchronous spin—orbit state.

For small values of the satellite’s eccentricity e, the angle ¢ shown in Fig. 5.1b
1s given by

@ ~ 2esinnt. (5.1)

Thus ¢ is a function of time and changes sign as the planet moves around the 2:1
ellipse. If 7 < 2en, then when the satellite is close to pericentre, it is possible
that ¢ > 5. In Fig. 5.2a, the angular range over which, for some value of 7,
this applies is denoted by the shaded area. In this region, the tide raised on the
satellite by the planet lags behind the satellite—planet line (cf. Fig. 4.6) and a
couple acts on the satellite to increase 7 and spin up the satellite (see Fig. 5.2a).
In the unshaded region where ¢ < », the situation is reversed and the tide raised
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satellite

~ Fig.5.2. (a) On the shaded part of orbit for which ¢ > 7, the tide raised on the satellite
by the planet lags behind the satellite~planet line (the dashed line denotes the axis of the
. tidal bulge) and a positive couple acts on the satellite to increase its spin rate. (b) On all
- other parts of the orbit, ¢ < 7, the tidal bulge is carried ahead of the satellite—planct line
- and the spin of the satellite is braked.

{,& on the satellite is carried ahead of the satellite—planet line (cf. Fig. 4.6). In this
~ case, the resulting couple brakes the spin of the satellite and decreases 7 (see
Fig. 5.2b):

- By analogy with the situation examined in Sect. 4.3, the tidal torque acting to
~ change the spin of the satellite is

a\b | L
Ns=—D (=) sign( - g), (5.2)
where
p=--2"R 3
20.7 " 53

and is a positive constant, and Qs, k;, and Ry are the tidal dissipation function,
Love number, and radius of the satellite, respectively. A positive torque will act
to increase the spin of the satellite, . To find the mean torque, (N), we need
to average N; over one orbital period of the satellite. If we consider the special
case where the satellite is in synchronous rotation ( = 0), then the torque is
positive on the near side of the centred ellipse and negative on the far side (see
Fig. 5.3a). The planet spends equal intervals of time on each half of a 2:1 ellipse.
However, since the radial distance is smaller on the near side, the mean torque
1s positive and will act to spin up the satellite. For equilibrium and zero mean
torque, we must have 5 > 0. In this case, the sign of the torque does not reverse
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atellite (Ng}) =0

Fig. 5.3. (a) If n = 0, then the tidal torque is positive and stronger on the near side of
the planet’s path and negative and weaker on the far side. Thus, the resultant net torque
on the satellite is positive and the spin rate is increased. (b) In the equilibrium case,
n > 0 and the sign of the tidal torque on the satellite reverses closer to pericentre than
apocentre. The stronger, positive torque (shaded area) now acts for less time than the
weaker, negative torque.

at the midpoints of the 2:1 ellipse and equilibrium is achieved because the torque
acting on the shaded part of the planet’s path is stronger than that on the unshaded
portion but acts for a shorter period of time (see Fig. 5.3b).

This argument suggests that the synchronous state is not stable and leads to a
spinning up of the satellite. 1f this is the case, why are so many satellites observed
to be in synchronous rotation? The answer is that other torques are acting,
because, as in the case of the Moon, most satellites are at least partially solid and
have permanent quadrupole moments, that is, permanent bulges or departures
from sphericity. Before examining the effect of the quadrupole moment, we
follow Goldreich (1966) and calculate the equilibrium spin rate in the absence
of a permanent deformation.

The sign reversal in Eq. (5.2) occurs at those two points in orbit at which
n=g,or

f=n+n. (5.4)

It + = 018 the time of pericentre passage and sign reversal occurs when ¢t = £ T,
then, since

f = nt + 2esinnt + %ez sin 2nt, (3.5)
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. sign reversal occurs when

J 5
n=2encosnT + "2

5 ncos2nT.

;
- At the time of sign reversal, let

i
¥ _

f=+(3-9),

e
LT, [
b

 Then

~ From Eq. (5.6),
cosnT = S Ze cos2nT.

;_EI‘IEIICE, to @(E),

".. ) r:.l 5 1 l 2

SMdéd=— — —e+ zesin"nT.
2en 4 2

;f.":;[hﬂ mean tidal torque acting on the satellite is given by

i nD 2/ g6
Ny = ——— (_) . o ds
: {Ns) I 5 . S1 gﬂ(n f,!?}

D (¥ ra\4sign(j— ¢)
T 2n )y (F) a—enz 9

Allowing for the change of sign, this reduces to

D [/
(N5}=+—f (1+4ecos f)df
T Jo
- _D (1 +4ecos fHdf
T J(mj2)-8

= +2—D(4ecns.5 — 8).
T

5 For equilibrium, we must have (V) = 0 and this requires that

§ = 4decoss ~ de (1 - 152) ~ de.

1 _
-

2

sinnT = sin f ~ sin[+(7r/2 — §)]
= 0S8 ~ cosde ~ 1 — 8e?

: ~~ 1,

Substituting into Eq. (5.10), we obtain the result

19,
n= EE n.

sind = cos f = cos(nT + 2esinnT) = cosnT — 2esin” nT.

.~ Ttfollows from this and Egs. (5.5) and (5.7) that we have the relationship
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Thus, in the absence of a permanent quadrupole moment, the Moon, for example,
would rotate about 3% faster than the observed synchronous rate, and over a
period of about 2.6 y, we would see both sides of the satellite.

Before closing this introductory section, we need to emphasize thatin Eq. (5.2)
we formulated the effects of tidal drag using the model due to MacDonald (1964)
that assumes a constant lag angle for the tidal bulge. If we had chosen to use the
alternative formulation of Darwin (1908) in which the tidal potential is expanded
in a Fourier time series and each component of the tide 1s given a constant phase
lag, then our conclusions would be substantially different. Goldreich & Peale
(1966) discuss this in detail.

5.3 The Permanent Quadrupole Moment

To calculate the external gravitational field of a permanently deformed satellite at
any distance from its centre of mass, we require a description of the distribution
of mass within the satellite. At very large distances, the field is well represented
by that of a point mass. At lesser, but still large, distances, the information on the
mass distribution provided by the satellite’s principal moments of inertia proves
to be sufficient. The derivations that follow are based chiefly on those given by
MacMillan (1936) and Ramsey (1937, 1940).

Consider an element of mass at a point P within a body and let the position
vector of this element with respect to an arbitrary origin at O be p = (x, y, 2)
(see Fig. 5.4). We define the following moments of inertia with respect to the
coordinate axes:

A=Y "mG* + 2%, (5.15)
B=Y ém@*+x7), (5.16)
C=) dm@x*+y% (5.17)
and the following products of inertia
D= ZSm vz, (5.18)
£ = Zﬁmz,r, (5.19)
F =3 8mxy. (5.20)

The moment of inertia I; about any line OL can be expressed in terms of A,
B,C, D, £, and F and the direction cosines I/, m, and n of the line OL withrespect
to the x, y, and z axes. Let PQ be the perpendicular from the point P(x, y,z)to |
the line 0L, where the position vector of Q is given by q = (x’, ¥, Z’). Hence .
OP = p and OQ = 4, the magnitudes of the vectors p and q. Because PQ 18
perpendicular to OL, we have

P-q=q~ (5.21)
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ector p = (x, ¥, 2). OL is an arbitrary line from the origin of the coordinate system at
). PQ is the perpendicular from P to the point @ with position vector q = (x’, y', 2')
long the line O L. The arbitrary point R with position vector r = (x, y”, z’) also lies

P a=xx +yY +2 = xg) +y(mg) + 2(ng) = gUx +my +nz)  (5.22)

qg=Ix+my+nz. (5.23)

The moment of inertia 7, is given by

I.=) m(PQ’* =) bm [.s:2 +y*+ 22— (x+my+ nz)z] . (5.24)

..'; ,'!'::.
et s .
et "

Because I + m? + n? = 1, we can write

I; = z ém [(.tz + yl + zz)(fz +m* 4+ ”2} —({x +my + nz)z] , (5.25)

| which, on expanding and rearranging, gives

| I =17 Z Sm(y* + z°) + m? E sm(z% + x%) + n* Z sm(x% + y?)
—2mn Y Smyz—2nl) Smzx — 2m Y " 8mxy. (5.26)

_ This can be written as

I; = AI* + Bm? +Cn? — 2Dmn — 2&nl — 2FIm. (5.27)
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If we now consider an arbitrary point R(x”, y”, z”) a distance r from O on the
line OL and write
_ms 14
L="—"73""

(5.28)

where mg = ¥ 8m is the total mass of the deformed body and A is an arbitrary
length, then, given that x” = Ir, y" = mr, and z” = nr, Eq. (5.27) becomes

m514 _ AJCHE + B},HE + Cznl B 21}}’”2” _ 28"y — ZFI”}}H, (5.29)

which is the general equation of a triaxial ellipsoid. If the coordinate axes are
chosen to coincide with the axes of symmetry of the ellipsoid, then the products
of inertia D, £, and F, with respect to the new axes, vanish and Eq. (5.29) reduces
to

mﬂ.ld =Axrf2+ﬁyffz+{jzﬁ2- (530)

These new axes are the principal axes of inertia of the body defined with respect
to the point 0. Equation (5.30) defines the ellipsoid of inertia (see Cauchy
(1827) for details of the above calculation). This is an invariant of the body;
it is independent of the orientation of the axes but varies with the position of
the origin 0. If O is the centre of mass, then the ellipsoid is called the central
ellipsoid of inertia. 1t follows from the properties of this ellipsoid that every
body, regardless of its shape, possesses three mutually perpendicular axes, such
that the moment of inertia about one of these axes is a maximum, while another
is 2 minimum and the third is either intermediate or equal to one of the other
two.

We now derive an expression for the external gravitational field of a perma-
nently deformed satellite in terms of its principal moments of inertia, A, B, and
C defined with respect to the centre of mass. In our new system (see Fig. 5.5),
we take the point O to be at the centre of mass of the satellite and let P bea

point a distance r from 0. We will assume that r is very much greater than the

mean radius of the satellite. Let the coordinate system be defined such that the
%, y, and z directions lie along the principal axes of inertia of the satellite (see
Fig. 5.5). :

If §m is the mass of a small mass element at the point Q, distance R from 0O,
then the potential of the satellite at P is given by

gam Gsm :

V==Y ——=- , 5.31)

A Z (r2 + R? —2rRcos9)1/? C 4

where ¢ is the angle between OP and OQ and the summation is taken over
all mass elements. Expanding Eq. (5.31) binomially and neglecting high-order

terms (r > R for all Q), we obtain

gm; Y. GémRcosé 23 GsmR? ~ 33 ¢smR?sin*

VA — ,
r r2 2r3

(5.3
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Fig. 5.5. A coordinate system with origin at the centre of mass O of a satellite with
~axes aligned with its principal moments of inertia. The point P is at a distance r from
~ 0. The small mass element 8m at the point Q is at a distance R from O, and the line

- 00 makes an angle 6 with the line O P.

2y

B -
P

Zﬂm Rcos® = 0. (5.33)

2y smR*=2) sm(x*+y* + 7

= Zﬁm(y2 +32) + Zﬂm{32 + 12) + Zﬂm(xz + yz)
=A+B+C. (5.34)

 If we denote the moment of inertia of the body about the line O P by I, then

I = Z ém R%sin” 6 (5.35)

i
it
3

e

B

‘and, to the extent that (5.32) is a good approximation,
_ Gms

G(A+ B+C - 3I)
e V= )
E - r 2r3
This 1s MacCullagh’s formula (MacCullagh 1844a,b; Haughton 1855).
If we now let x, y, and z denote the coordinates of the point P, then x/r, y/r,

- and z/r are the direction cosines of P with respect to the principal axes of inertia
and, from Eq. (5.27), we have

(5.36)

I = (Ax* + By? +Cz%)/r2. (5.37)
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On substituting this expression for / into MacCullagh’s formula, we obtain
Ggms

r

V=—

M [(A,B,C,x,y,2), (538)
where

f(A: Br c, X, ¥, E) —
(B+C—2Ax* + (€ + A-2B)y* + (A+ B —20)z%. (539) ]

The components of the gravitational force per unit mass at P derived from the
gradient of this potential are g

oV _ Gmex (GBFC—2Mx 0% . po (5 40)

i i S T
F, = _% -y (GCH LI D pABCr YD 41)
F, = _%;. - _Q:';sz g“‘”i 20z 553 22 £(A,B.C.x, ¥, 2). (542)

These forces exert a couple on a unit mass at P and an equal and upposite"'

couple acts on the deformed body about its centre of mass. The latter couple has
components

Ny = zF, — yF, = +3G(C — B)yz/r’, (5,43};

N, =xF, — zF; = +3G(A — C)zx/ro, (5.44)

N, = yF. — xF, = +3G(B — A)xy/r’. (5.45)

Euler’s full equations of motion are
Ad, — (B - C)wyw, = Ny, (5.46)_;_

Biy — (€ — Aw.w, = Ny, (5.47)

Ci, — (A— Byw,w, = N,, (5.48)

where w,, w,, and w, are the projections of the spin vector on the principal axﬂs
In our problem, we wish to calculate the rotational motion of a satellite due
the torque exerted on its quadrupole moment by a distant planet. We will assum&i
that the spin axis of the satellite is normal to its orbital plane and that w, and w,
are zero. We now denote the direction cosines of the planet with respect to the','
x axis and y axis by x/r = cos ¢ and y/r = siny, respectively (see Fig. 5.6), Iu i
this case, Euler’s equations of motion reduce to Eq. (5.48), which can be written

Co — %(E = A}ES—IE sin 2y = 0, (5
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planet

5 6. Rotation of a satellite with its spin axis normal to the orbit plane. ' is the angle
een the planet—satellite line and the principal axis A associated with the minimum
_ sment of inertia of the satellite. The angle @ is measured with respect to a direction
fixed in inertial space.

ere the angle 6 is measured with respect to a direction fixed in inertial space.
-- that, in some other formulations of the above equation of motion, for
exan ple, that given by Danby (1988), the sign of 0 is negative rather than positive.
his arises because Danby’s choice of coordinate system implies that w, = —6.
‘We can obtain a simple, heuristic verification of Eq. (5.49) by considering
fu]luwmg Represent a satellite with a permanent quadrupole moment by
T sphem:al satellite with two equal, diametrically opposed point masses, m,
‘embedded 1n its equatorial (and orbital) plane (see Fig. 5.7). Let the respective
3 -r nces of these small masses from the planet be r; and r; and let » denote the
tance between the centre of the satellite and the centre of the planet. The line
g the planet and satellite centres makes an angle  with the principal axis
sociated with .4, the minimum moment of inertia, that is, the line joining the
y0 small masses, m.
If the satellite has a mean radius R;, then the torque on the satellite due to
the gravitational forces between the planet and the two small masses is Ny + N,
where

i

MM

Y, P R.sina, Ny = —g—L
jl" FE
i 2

Rs sin B. (5.50)

. angle:s o and g are defined in Fig. 5.7; the sign of N is positive because it
ts to increase 6. Applying the cosine and sine rules, we have

sina = — sin U, sin g = L sin vy, (5.51)

r r2
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Fig. 5.7. Representation of a satellite with a quadrupole moment as a spherical object
with two diametrically opposed small masses. |
defines the axis with the minimum moment of inertia and makes an angle v with the

5 Spin—-Orbit Coupling

planet—satellite line (ct. Fig. 5.6).

planet

The diameter joining the two masses

and
— ) -
Lj R~ —13- 1 - 3 (EE) +3E cos Y (5.52)
ry ¥ i 2 r r i .
1 1|, 3(R ' 4
r% = .il"3' ] — —2" ('—r—) — 3—— COS l,ff (553)

Hence the equation of motion for ¢ reduces to

. 3 o\ Om
CH-E(ZmHH)r—Sqm&ﬁr ()

(5.54)
and, given that B — A = ZmRE_ the PHL':IHEI with Eq. (5.49) is complete. i

5.4 Spin—-Orbit Resonance

The gravitational interaction between the orbital motion of a planet and r
quadrupole moment of an attendant satellite results in small, short-period oscil-
lations in the rotation rate of the satellite that, usually, are of little consequence,
However, there are circumstances in which this is not the case. These arise when
there is a simple integer, or near-integer, relationship between the spin period ofa
satellite and its orbital period, in which case there may be significant spin—orbit
coupling. The following discussion is based on the pioneering work of h:;'
dreich & Peale (1966, 1968), Wisdom, Peale & Mignard (1984), and Wis n
(1987a,b). !
Consider the motion of a small satellite whose spin axis is normal to the plan u
of its fixed elliptical orbit. Let the long axis of the satellite make an angle 6 wl
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satellite

planet pericentre

2. 5.8. The long axis of the satellite makes an angle 6 with a reference axis that is

g fixed in inertial space, which we take to be the major axis of the satellite’s fixed orbit.

--" '::
e
Lo

reference axis that is fixed in inertial space, which in this two-body, keplerian
stem we can take to be the major axis of the satellite’s orbit. The long axis of
e satellite makes an angle ¢ with the satellite—planet centre line. Hence

y=/r-9, (5.55)

: here f is the true anomaly (see Fig. 5.8). In the absence of tidal torques, the
. matmn of motion for 6 is (see Eq. (5.49))

Q’

(5.56)

Becausc r and y vary with f, which is a nonlinear function of time, this equation
-'f; 18 nﬂmntegrable However, in those cases of interest here, in which the spin rate
g ﬁ is commensurate with the mean motion n, we can derive an equation of motion
ﬁ:; ﬂlﬂt, although an approximation, is both useful and mtegrable

Because we are interested in those cases for which 6 is a rational multiple of

&ﬂlﬂ mean motion, we introduce a new variable

y =6 — pM, (5.57)

- where p is a rational and M is the mean anomaly. Given that » is a constant,
ﬂ ¥ and the equation of motion for y 1s (cf. Eq. (5.56))

| j+ on? (ﬁ;ﬂ) (-) sin(2y +2pM —2f) =0, (5.58)
- 2 C r

?:{This equation can be expanded in a Fourier-like Poisson series in terms of e
- and M using standard expressions for (a/r)?, sin f, and cos f (see Sect. 2.5).
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Including all terms of O(e?), we have

sin f — (1 _ %eﬂ) sin M + e sin 2M + gei sin3M. (5.59)
cos f = (1 - gez) cos M + e(cos2M — 1) + %ez cos3M,  (5.60)
and
&l 3 3 2
(;) =1+ 3ecos M + 5¢ (1 + 3cos2M). (5.61)

We can write

sin(2y 4+ 2pM = 2f) =sin2y(cos2pMcos2f +sin2pMsin2f)
+cos2y(sin2pMcos2f — cos2pMsin2 f). ]

(5.62)

Hence

3
(EE ) sin(2y +2pM —2f) =[81 + S2]sin2y + [§3 — S4]cos2y,  (5.63)

where
S| = (;)33052;:11:! cos2f, Sy = (2)3 sin2pM sin 2 f, |
S3 = (%)3 sin2pMcos2f,  Sq= (g)Bms 2pMsin2f.  (5.64)
To O(e?), the S; are given by ]

51 = % [cos 2(1 — p)M +cos 2(1 + p)M]

+ 1e17c053 + 2p)M +7cos(3 ~ 2p)M
—cos(l +2p)M — cos(l — 2p)M]
+ %eﬂ [~5c0s2(1 + p)M — Scos2(1 — p)M
+17¢0s22 + p)M + 17cos 22 — p)M], (5.65)

Sy = %[cns 2(1 — p)M —cos2(1 + p)M|

+ ze[~TcosG +2p)M +Tcos(3 — 2p)M

—cos(l = 2p)M + cos(1 +2p)M]
+ %ez [Scos2(1 + p)M — Scos2(1 — p)M
—17¢cos2(2 + p)M + 17 cos 2(2 — p)M], (5.66)
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55 — % [sin2(1 + p)M — sin2(1 — )M}

+ 2e[7sinG +2p)M — 7Tsin — 2p)M
+sin(1 —2p)M —sin(1 + 2p)M]
+ 132 [=S5sin2(1 + p)M 4+ 5sin2(1 — p)M

4
+17sin2(2 + p)M — 17sin2(2 — p)M], (5.67)

- % [sin2(1 + p)M + sin2(1 — p)M]

+ %e [75in(3 + 2p)M + Tsin(3 — 2p)M
—sin(l — 2p)M — sin(1 4 2p)M]
+ —11:3 [-3sin2(1 + p)M — S5sin2(1 — p)M

4
+17sin2(2 + p)M + 17sin2(2 — p)M]. (5.68)

herefore, the equation of motion for y, Eq. (5.58), can be written as

3B-A ,
ta ¢

that S; and S, only contain cosines, whereas S3 and S4 only contain sines.
equatmn 1s exact, but the §; are infinite series in ¢ and M and thus the
uatmn is still nonintegrable. To progress, we must resort to approximations.

~ If the spin rate of the satellite is close to a spin—orbit resonance, then é =~ pn
md Y is slowly varying, that is, ¥ « n and we can produce an approximate
- equation of motion by averaging all the terms in Eq. (5.69) over one orbital
. g- eriod while holding y fixed. We then obtain

([S1 + S2]sin2y + [S3 — S4]cos2y) = 0. (5.69)

-
o

F+§( c e ([(S1) + (S2)1sin2y + [(S3) — (Sa)]cos2y) =0,  (5.70)
-

(S) = = f SdM,  i=1,2.3.4 5.71)
27 Jo

~ and it is now understood that y refers to the averaged value. The 5; have to be
- evaluated for a particular value of the rational p corresponding to the particular
spm-orblt resonance under consideration. Because cosines and sines with argu-
~ ments that are integer multiples of M average out to zero over one orbital period,
the only terms in S; that make a nonzero contribution to the equation of motion
f-are those cnsme terms with zero arguments. Fur E}Ldlllp].ﬁ in the synchmnnus

*‘ns a factor mntrlbute to the equatmn of motion. Inspechun of Egs. (5.81) to
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(5.84) shows that in this case, to (e?), we have
. 5.\ . :
([(S1) + (82)]18in2y + [(S3) — (S4)] cos 2?)p=l = (1 ~ ﬁez) sin2y.  (5.72)

If we carry out the same procedure for other values of p, then inspection of the __
same equations (or the equivalent set that contains terms of higher order ine)
shows that only values of p that are an integer multiple of 1/2 can contribute to '
the averaged equation of motion. In those cases, we can write .

3 5(B-A)
ytant

where, for example, to O(e*),

H(p,e)sin2y =0, (5.73)

1

H(=10) =43¢ (5:14)
H(—1/2,¢e) = +%ES (5.75)
AR = ‘%‘” i 57

H(+1,e) = +1 — i@z + ig 4 (5.78)

7 123,

H(+3/2,¢) = +5¢ — —=¢’, (5.?9)--:
H(+2,e) = Eez - 1—!-5-5-“ (5.80)

2 6

H(H+5/2,¢) = +%e3 (5.81)
HH3,0) = 472" (5.82)

Inspection of the eccentricity function, G, (e), defined by Kaula (1966) shows :5'
that

H(p, e) = Gaop-2)(e) (5.83)

and that, except for the case p = 0, H(p, e) = O (e?P~11),
Thus, by introducing an approximation, we have reduced the full equation uf
motion, Eq. (5.56), to the pendulum equation, which we can write as

¥ = —[sign H(p, e)] Ewﬁ sin 2y, (534){

where
B-A

1,2
wy =N [3 (T) |H(p, f]"] (5853
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the libration frequency. In the presence of a tidal torque acting to brake the
spin of the satellite, a term representing the mean tidal torque averaged over one
‘orbital period, (Ns), can be added to the averaged equation of motion to give

y = —[sign H(p, e_}]%mﬁ sin 2y + (Ng)/C. (5.86)
1
[(Ns)] /C < 5% (5.87)

' then the sign of j must reverse periodically and thus it is possible for the satellite
o be trapped in a spin—orbit resonance for which (#) = pn. If Eq. (5.87), the
. strength criterion, is satisfied, then the mean torque due to the resonant interac-
 fion between the planet and the quadrupole moment of the satellite compensates
the mean tidal torque acting to change the spin period of the satellite, (y) = 0,
" and y librates about an equilibrium value yy given by

l S | E{Nﬂ}
= — . 5.88
ro 2 St |:—[sign H(p, e)]m%ﬂ] ( )

. The equilibrium orientation of the satellite and the sign of yy are determined
* by the sign of H(p, ). For small displacements of y from yy, the sign of  must
" be such as to return y to the equilibrium displacement, yy. If the mean tidal
_:;5?- torque is weak in comparison with the resonant torque, that 1s, if

1
(N /C & 5 (5.89)

then, if H(p,e) > 0, yp ~ 0 or w and the long axis of the satellite points
* towards the planet on passage of the satellite through pericentre. Conversely,
- if H(p,e) < 0, yo ~ n/2 or 37/2 and the long axis of the satellite points in
a direction perpendicular to the planet—satellite line on passage of the satellite
~ through pericentre.

~ . We now consider the rotation of Mercury and give a simple, physical interpre-
~ fation of the averaged equation of motion. The case of Mercury is particularly
interesting because it was only after radar observations revealed that the planet
is trapped in a 3:2 spin—orbit resonance with the Sun, rather than the expected
~ 1:1 synchronous state, that the dynamics of spin—orbit resonance was first in-
. vestigated. A good history of these events has been given by Goldreich & Peale
- (1968). The rotational and orbital motions of Mercury in an inertial reference
. frame are shown in Fig. 5.9.

The spin period of the planet is 58.65 d, while its orbital period is 87.97 =
1.5 x 58.65 d. Thus, the planet rotates on its axis three times while it orbits the
Sun twice and on successive passages of Mercury through perihelion, opposite
faces of the planet are presented to the Sun. The physical meaning of the angle



206 5 Spin—-Orbit Coupling

—
~

Fig. 5.9. In an inertial frame centred on the Sun, the planet Mercury completes 3/2 4
rotations each orbital period. 4

y is that it describes the orientation of the long axis of the satellite on passage nf :
the satellite through pericentre, that is, it is a stroboscopic angle that is evaluated
when M = 0. Given that H(p,e) =~ +(7/2)e > 0, we expect that y ~ 0 and
that at perihelion the long axis of the planet points towards the Sun (Fig. 5.10).
However, it is possible for y to librate about the equilibrium value with an
amplitude < n/2. If Mercury were trapped in the p = +1/2 resonance, fur
which H(p, e) < 0, then we would expect the orientation of the planet to be as
shown in Fig. 5.11.

Figure 5.10a shows the motion of the Sun in a reference frame centred on
Mercury and rotating with the planet’s mean, resonant spin rate, (3/2)n, whem
n is Mercury’s mean motion. The points on the looped path indicate the position =
of the Sun at equal intervals of time. The path of the Sun in this rotating frameis
closed only because the spin—orbit resonance exists and it is this crucial fact thal
validates our use of the averaging method. The average gravitational interaction
between the quadrupole moment of the planet and the Sun can be modelled b}r
spreading the mass of the Sun along this closed path in such a way that the
local line density is proportional to the time spent by the Sun in that part uf
the path. This line density is inversely proportional to the spacing of the points
shown in Fig. 5.10a. The angle y can now be interpreted as the deviation of -
the long axis of the planet from the planet—perihelion direction in the rutatmg
frame (Fig. 5.10a). From the symmetry of this figure, we further deduce that the
gravitational interaction could be modelled by replacing the mass distribution
of the Sun with a circular distribution of uniform line density that does nut
contribute to the torque plus two point masses, fmsun, positioned as shownin
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fMsun

(b)

f Msun

ig.5.10. (a) The motion of the Sun as seen in a reference frame centred on Mercury and

plating with Mercury’s resonant spin rate, (3/2)n, where n is Mercury’s mean motion.
graﬂtatmnal interaction between the quadrupole moment of Mercury and the Sun
¢an be modelled by spreading the mass of the Sun around the closed path with a local
'T‘  density proportional to the time spent in that part of the path (the points on the closed
it shuw successive positions of the Sun at equal intervals of time) or by two point
s, fmqn where f = (1/2)H(3/2, e), placed as shown in (b).

5.10b, where
b f= %H(p, e) ~ %e (5.90)

nd mgyn is the mass of the Sun.
: Aclnsedpathmamtatmg reference frame, as shown in Fig. 5.11, 1s anecessary
ut not a sufﬁment condition for spin—orbit coupling. Equations (5.65) and

@ planet

....

'f ﬁg 5.11. The orientation of a satellite trapped in a p = +1/2 resonance is anomalous
- ﬁ that on passage of the satellite through pericentre its long axis points in a direction
2 - perpendicular to the planet-satellite line. The path of the planet in a rotating reference
: m centred on the satellite is shown for (a) a small eccentricity and (b) a large eccen-

 tricity.
=
e
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(b) Fmp

Fig. 5.12. (a) The path of a planet in a reference frame centred on a satellite and rotating '
with the satellite’s mean spin rate, in this case (4/3)n, where n is the satellite’s mean
motion. The averaged gravitational torque on the planet due to the satellite’s quadrupole
moment can be modelled by replacing the looped path of the planet in the rotating
reference frame by a circular distribution of mass plus three point masses placed as
shown in (b). :

(5.56) show that p must also be an integer multiple of 1/2 (this is determined
by the twofold symmetry of the satellite’s gravitational potential). It is worth
considering why other values of p do not contribute to any resonant interaction. ._
In Fig. 5.12 we show the motion of a planet as seen in a reference frame centredon
a satellite and rotating with the satellite’s mean rotation rate, in this case (4/3)n,
where n is the satellite’s mean motion. From the shape of the closed path in
Fig. 5.12a, we can see that 1n this case the average gravitational force of the planct
could be modelled by replacing the looped path by a circular distribution of mass
and three equal point masses (see Fig. 5.12b). Now compare the cnnﬁguratlun i
shown in Fig. 5.10b with that shown in Fig. 5.12b. In Fig. 5.10b, if N sin2y is
the torque acting on the satellite due to one of the point masses, then the total
torque on the satellite acting to restore the equilibrium configuration is 2N sin2y.
However, in the case depicted in Fig. 5.12b for which p = 4/3, the total tm'quﬂ

acting to change y is determined by

N sin 2y +Nsin2(§

o (T

+ y) — Nsin2 (—3— — y) =0 (5.91)._.
and the system is neutrally stable. '
The special case of p = 018 shown in Fig. 5.13. The torque N on the aateﬂltu
due to the mass element dm is given by

G 5’” sin 24 (ngi‘

= —(B A)
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pericentre

5 13. The path of a planet in an inertial reference frame centred on the satellite.
— 0, then the orientation of the satellite is fixed in inertial space and there is no

sonant interaction with the planet.

From Kepler’s law of areas, we obtain

r2sy

i | 5.93
= " 2na2(1 - D)2 29
* ence, the total torque on the satellite is given by

 3B-AG ([ |

N = dmad ()P fﬂ [1 4 ecos(y + 6)] sin 2y di, (5.94)

and given that the satellite is not rotating in inertial space, ¢ is fixed and the
tegral IS Zero.

~ For a satellite to be trapped in a particular spin—orbit resonance, the torque
on the satellite due to the resonance must exceed that due to tidal drag. From
"- strength criterion, Eq. (5.79) and Eq. (5.2), we calculate that (B — A)/C must
*m ceed a critical value given by

4 3
(53%)  =32(2) Zaear (5.95)
; C critical 2 € ms |H(p, e)|

there my, is the mass of the primary and we have assumed that C ~ (2/5)msR2.
:-_Cntmal values of (B — A)/C for a series of Splﬂ—ﬂl‘blt resonances in the Sun—
 Mercury and the Earth-Moon systems are listed in Table 5.1. The orbital ec-
’j-ﬂcnmcltles of the Moon and Mercury are, respectively, 0.0549 and 0.206, while
f;;{B A)/C ~2.28 x 10~* for the Moon (Yoder 1995) and it is reasonable Lo as-
me that (8 — A)/C for Mercury is comparable. Inspection of Table 5.1 shows
f'f.'that there is certainly no problem in understanding the stability of Mercury’s
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Table 5.1. Critical values of (B — A)/C for Mercury and the Moon. We assume for
Mercury that k» =~ 0.1 and Q@ = 100 and for the Moon that k» =~ 0.03 and Q = 27
(Yoder 1995).

S —————

Mercury Hunﬁ
p (B-A)/C (B-A)/C

+3 2% 1078 7x1073
4+5/2 7x107° 7x107°
+2 3Ix 1072 8x 1077
+3/2 2x107° 10~7
+1 107° 2x108

present spin—orbit state, or that of the Moon. However, if we allow that the
spins of both of these bodies have been tidally braked and that their initial orbital
periods were short, then we do need to understand not only how these bodies
came to be trapped in their present spin—orbit states but also how they were able
to evolve through many other strong resonances without trapping. ;

5.5 Capture into Resonance

That there is a problem with understanding capture into resonance can be seen. ]
by following the evolution of a satellite’s spin rate on encounter with a spin—orbit
resonance. We assume that, initially, § > pn and that tides act to brake the spin
of the satellite. Thus, initially, ¥ > 0 and the resonance is approached from
above (Fig. 5.14). The equation of motion of the resonant argument, y, in the
presence of drag, is 7

Cy + %(B — An*H(p, e)sin2y = (Nj). (5.96)
Integrating with respect to time, we obtain the energy integral
%C}?z - %(H — An*H(p,e)cos2y = E, (5.97)
where E, the total energy, is given by 4

E = (Ny)y + Eo (5.98)
and E is a constant determined by the initial conditions. For the energy equation,
Eq. (5.97), to have physical solutions (y% > 0), we must have 4

E> —%(3 — An*|H(p, e)|. (5.99)

If E > +(3/4)(B — A)n?|H(p, ¢)|, then the sign of y does not change and the
motion of y is one of circulation. However, given that (Ns) < 0, tidal forces act =
to reduce E and resonance encounter occurs when y is reduced to zero.
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(a) (b)

5.2 L.2

18 27
y y

Fig. 5.14. (a) Variation of (1/2)y? with the resonant argument y. (b) Separation of
the variation of (1/2)y? with y into a potential term that varies sinusoidally with y and
a term due to the tidal torque that decreases linearly with increasing . In the latter
treatment, (1/2)y? is given by the difference of these two terms.

In Fig. 5.14a we show the total variation of y? with y, while in Fig. 5.14b
we separate the variation of y2 into two components, one due to the potential
. term that varies sinusoidally with y and a drag term that decreases linearly with
~increasing y before resonance encounter and increases linearly with decreasing
-y after resonance encounter. In the latter representation, the variation of y2 with
y 18 given by the difference of the two terms. If (N;) is constant, then the equation
of motion is perfectly reversible: The sign of y changes on resonance encounter,
but the trajectory of the system in (y, y) space after encounter duplicates that
before encounter and capture into resonance cannot occur.

Goldreich & Peale (1968) explain this passage through resonance without cap-
ture using the following “pendulum” analogy. While the pendulum is circulating,
a constant torque acts to brake its rotation. Thus, after a while, the pendulum
will pass over its point of support for the last time (in the initial direction for
which y > 0) and its rotation rate will be reduced to zero. The sense of rotation
of the pendulum then reverses. However, both the magnitude and sign of the
torque remain unchanged and thus the torque now acts to increase the rotation
rate of the pendulum. Whatever energy was removed from the pendulum before
it was braked is now resupplied and the pendulum swings back over its point of
support and the magnitude of the rate of rotation (with ¥ < 0) then continues to
Increase.

Given that the amplitude of the sinusoidal potential term in the energy equation
1s constant, it follows that for capture into resonance to occur, (a) (N;) must
somehow vary with y and (b) during the last swing of the pendulum, during which
the sign of y reverses, the decrease in E before resonance encounter (y = 0)
must be greater than the increase in E after resonance encounter, preventing the
pendulum from swinging back over its point of support.

As we have already noted, the incorporation of energy dissipation into tidal
theory is in many ways poorly developed. However, Goldreich & Peale (1966,
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Table 5.2. Physical and orbital quantities for Mercury and the Moon.

Quantity Mercury  Moon

ko 0.1 0.03

Q 100 27

e 0.206 0.0549

(B- A/ 107 2.28 x 1074
H(p,e) 0.65 0.99

Tlibration 17y 2.88y

Yo 2arcsec  9.6arcsec

27 /6 9h 9h

Tdeﬁpiu 5 % 109 b 3 x 10? Y

(Ng)m /U 104 6x 10~

1968) give several plausible models of tidal dissipation that allow (Ng} to vary
with y and they have used these models to estimate the probability of capture
into resonance. We will describe two of these models, both based on that due
to Darwin (1908), but before doing so we need to estimate the magnitudes of
the various terms in the energy equation. Tidal forces in the solar system are
extremely weak and produce significant changes in some spin rates and orbital
periods only because they act over billions of years. Using the values of k> and
0, etc., listed in Table 5.2, we calculate that if the initial spin periods (27 /@nitia)
of Mercury and the Moon were, say, 9 hours, then the times needed to brake these
bodies were 5 x 107 and 3 x 107 years, respectively, implying that the Mercury-
Sun spin—orbit resonance may be comparatively young. The lag angles, yy, given
by Eq. (5.88) are only a few arcseconds and if we denote the amplitude of the
potential term, (3/4)(B — An?H(p, e) cos 2y, in the energy equation by U, then
(N\m/U <« 1. We also note that the libration periods, Tijpration = 27 /g (using
Eq. (5.85)), are greater than the orbital periods, but not by large factors.

Using Darwin’s procedure for calculating the tidal torque on a satellite due to
the tide raised on it by a planet, we expand the tidal potential in a Fourier time
series and assume that each component raises an equilibrium tide on the satellite.
The effects of tidal dissipation are then modelled by giving each component a
phase shift such that the component either leads or lags the associated term in
the potential. In our first model, we assume that the magnitudes, but not the
signs, of the phase shifts are independent of the tidal frequencies. In this case,
the mean tidal torque is given by

(Ng) ==D Y [H(h,e))* sign(® — hn), (5.100)

h==o0

where h is a half-integer, D is a positive constant given by Eq. (5.3), and we
have assumed that the spin axis of the satellite is normal to its orbital plane. For
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trapping in the pth resonance, 6 — pn = y and we can write

2

R

=

(Ns) = —W — Zsign (), (5.101)

4 W=+D Z [H (h, .ts'}]2 sign(p — h) (5.102)
he#p

Z=+D[H(p,e)]*. (5.103)

i1 rate of change of energy is given by

e

dE B
the energy changes with y according to
: [ae=[" gy (5.105)
i £ "

- Because 7 (N;) <« (3/4)(B — A)n*H(p, e), the slopes of the straight lines in
.~ Fig. 5.15 are negligible and we can assume that in all integrations y; — y; = 7.
ﬁ Because the initial conditions are unspecified, the energy at the point P, where
].r is first reduced to zero (Fig. 5.15), can lie anywhere in the range E| to E, + AE,
f Where

AE = (W + Z)7. (5.106)

encounter with the pth resonance the sign of the 2 = p term in Eq. (5.101)
- changes. Before resonance encounter, y > 0 and

(Ng) = —W — Z, (5.107)

b .
s -

Fig. 5.15. Capture into resonance depends on the magnitude and sign of 4 E and the
value of y at the location P where (1/2)y? is first reduced to zero. The locations of P
show an encounter with a resonance (a) without capture and (b) with capture. The capture
probability is given by | E/AE| and capture is certain if £ < Oand |8 E| > |AE].
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and after resonance encounter, y < 0 and
(Ng) = —W + Z. (5.108)

Thus, on resonance encounter, the magnitude of (N;) decreases by 2Z. It tollows
that the decrease in E over one libration period is given by

and that the probability P, of capture into the pth resonance is given by

b 22 _ 2|H(p, o)) |
T Z+W  [H(p. o) + Ly, [Hp, o) sign(p —h)

In this case, the probability of capture does not depend on either (B — .A)/C or
(assuming that the strength criterion, Eq. (5.87), is satisfied) on the magnitude
of the tidal drag, that is, on D; It is determined by p and e alone.

Capture probabilities into the pth Mercury resonance calculated by Goldreich
& Peale (1968) for ¢ = 0.2 and Q independent of frequency are shown in
Table 5.3. The frequency-independent model gives a good explanation for both
capture into the p = +3/2 resonance and avoidance of the other, higher-order
resonances. However, it does not account for the damping of the amplitude of li-
bration. For the case H(p, €) > 0, y librates about y =~ 0 with an amplitude ymax
obtained by solving Eq. (5.97) for y = 0. If we ignore the small displacement of
vo from zero, we get ;

(5.110)

1

Ewg €08 2¥max ~ —E/C (5.111)

and
2E

max A . (5.112)
Yimax Cmﬁst}fm ) 9

Damping of the amplitude of libration requires that E < 0. However,

E = (N | 5.113)

Table 5.3. The probability, P,, of capture into the pth Mercury resonance for e = 0.2.

Py P,
p (1/Q ~Constant) (1/Q ~Frequency)
+5/2 0.03 0.007
+2 0.15 0.016
+3/2 0.73 0.067

+1 1 0
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and if {N;) does not depend on y, then (y) = (E) = 0 and the librations are
undamped.

The second model considered by Goldreich & Peale (1968) allows that the
fidal dissipation function is frequency dependent. In this case, they assumed that

(Ns) = —K' Y [H(h, &)]* (6 — hn), (5.114)

A=—n0

where K' is a positive constant. Near a resonance # = pn + y and we can write

(Ng) = —K (v + E) , (5.115)
where
K=Kn)Y [H(he] (5.116)
P
and
3 2
V= 2 n(p h)lH(h-;)} | (5.117)
E,ﬁ [H(h! 'E"]']
The probability of capture into the pth resonance is given by
Heo/n) (5.118)

PT RV + 2(wg/n)

For the frequency-dependent case, the probabilities depend on the low-amplitude
libration frequency (wp/n) and the eccentricity e. The probabilities shown in
Table 5.3 are low, but they are not negligible and, in this case, the dependence
of (Ng) on ¥ does result in a term in the expression for E that is proportional
to y2. This term does not average to zero and thus the amplitude of libration is
damped.

5.6 Forced Librations

For a satellite trapped in a spin—orbit resonance, for example, the synchronous,
1:1 resonance, analysis of the averaged equation of motion with the drag term
included shows that any libration about the equilibrium configuration is damped
to zero and the satellite then rotates uniformly with its long axis pointing exactly
towards the planet on passage through pericentre. However, the full equation of
motion contains short-period terms; consequently the rotational motion of the
satellite has short-period librations about the equilibrium configuration.
Consider the rotation of a satellite in a reference frame centred on the satellite
and rotating with the satellite’s mean motion (see Fig. 5.16). The gravitational
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< a >

Fig. 5.16. Rotation of a satellite in a rotating reference frame centred on the satellite
and rotating with the satellite’s mean motion. The planet moves in a 2:1 ellipse about
its guiding centre, which, in this frame, is stationary.

torque on the satellite due to the planet is determined by the angle v, which in
this case is given by

Y=¢—y=x2esinnt —y (5.119)

to @(e), and the full equation of motion, Eq. (5.56), can be written

3
Cy — %{5 — A)n? (;) sin(de sinnt — 2y) = 0. (5.120)

For small deviations from the equilibrium configuration, given that the contribu-
tion due to the radial variation in distance r is (a/r)* =~ 1 + 3ecos nt, Eq. (5.120)
reduces to

Cy = *%[E — A}HE(Z}' — 4e sinnt) (5.121)

or
y = —mﬁy + 2&)%8 sin nt, (5.122)

where ay is the libration frequency (see Eq. (5.85)). Substituting y = ypsinat 1
into this equation and solving for yy, the amplitude of the forced libration, we
obtain

2
ane

y = ———L sinnt. (5.123)
n _mﬂ

Note that the variation in r does not contribute to this equation. If the forcing
frequency » is less than the natural frequency wy, then the librations are in phase
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with the force. However, if n > ay, then the librations and the force are 180° out
. of phase.

~ For the Moon, the libration period is 2.86 y while the amplitude of forced
~libration is ~ 15 arcsec and is too small to detect. However, in the case of Phobos,
" the highly distorted, innermost satellite of Mars, Duxbury & Callahan (1982)
* using a control network of ninety-eight craters on forty-three Viking Orbiter
Phobos pictures obtained a value of 0.8° (+0.2°) for the amplitude of the forced

.~ libration. If we assume that the satellite is homogeneous, then the observed value

~ of y requires that (B — .A4)/C = 0.1. However, if the satellite is homogeneous,
~then the observed shape of Phobos implies that (B — .4)/C ~ 0.2. These two
~ widely different values of (B — A)/C could be reconciled if the satellite is not
e homogeneous but has a dense core surrounded by a deep, low-density regolith
(Thomas et al. 1986).

5.7 Surface of Section

The method outlined in Sect. 5.4 suggests that, if 6 ~ pn, we can analyse the
motion in the vicinity of a resonance in terms of the slowly varying resonant

argument y = 0 — pM using Eq. (5.73). InFig. 5.17a, we show analytic solutions
for the variation of 8 /n with 6 using values of ¢ obtained from the energy integral
for the motion for y, which is given by
1 2 Eq

1 —[Slgﬂ H(p, e}]m{, Cos2y = A (5.124)

where Ej is a constant determined by the initial conditions. Analytic solutions
are shown for the resonances corresponding to p = +1/2, +1, and +3/2 and also
for the nonresonant case associated with p = 0. For the cases corresponding to
p = +1, +3/2, for which H(p, ¢) > 0, stable equilibrium points exist at § = 0
and v, whereas for the case corresponding to p = +1/2, for which H(p,e) <0,
a stable equilibrium point exists at § = 7/2. In all cases, for y = 0 at the stable
equilibrium points, we must have

and Ey is a local (remember that wo depends on p) minimum at these points. For
values of Ej in the range

1

—TadC < By < +ulC (5.126)

4

v librates about the equilibrium position with an amplitude determined by Eo.
The value of Ep associated with the separatrix that separates regions of libration
from those of circulation 1s given by

Eqn =
ﬂ+4
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1.5! —

R

m 05— |

ol 0
— o

Fig. 5.17. (a) Analytic variation of 8/n with 0 on the separatrices of the p = +1/2,
+1, +3/2 resonances (and in the libration region of the p = +1 resonance) for o =
V3(B—A)/C = 0.2 and e = 0.1. (b) A surface of section plot for seven different
trajectories in (#, 6 /n) phase space for the same values of « and e. Values of 8 and # /n
are plotted at every passage of the satellite through pericentre.

For motion on the separatrix, the maximum value of |y| is given by

|Ymax| = @y (5.128)

and is a measure of the half-width of the resonance. In Fig. 5.17a we show
the separatrices associated with various resonances fore =(0.1 and @ = (3(B—A)/
C)!/? = 0.2. Note that, for small amplitudes of libration, the period of libration
is 27 /wg, whereas the period of libration on the separatrix is infinite.

To investigate how good an approximation this is, we can integrate the full
equation of motion, Eq. (5.56), numerically for fixed values of ¢ and the as-

phericity parameter . However, rather than trying to show the full variation of ¢
and ¢ with time, we choose to produce a surface of section of the motion, which

illustrates the fundamental properties of each solution. This involves solving the

full equation of motion, Eq. (5.56), numerically and plotting the values of  and
6 /n each time the satellite passes through pericentre. The choice of pericentre is

arbitrary, but it is a natural choice in this case because at pericentre M = 0 and
thus, in this case, the surface of section is equivalent to a plot of y against y/n.

In Fig. 5.17b we show surface of section plots for the range of initial conditions
(8, 8/n) corresponding to the values of Ey/C used to plot the analytic curves
shown in Fig. 5.17a. In both cases, we use ¢ = 0.1 and & = 0.2. These large
values of ¢ and o help to illustrate the sizes of the resonant regions. However, the
resonant half-widths are large. For example, in the case of the p = +1 resonance,
we have wy = (0.2 and it is questionable whether analytic solutions with large
amplitudes of libration satisfy our requirement that they are in the “vicinity” of
the resonance and that 6 ~ pn. The surface-of-section method allows us to test
the limitations of our analytical theory.

Numerical experiments show that in the heart of each resonant region, close
to a stable equilibrium point where the amplitude of libration of 6 is small, the
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" surface of section trajectories in (8, 6/n) space mimic the analytic curves with the
~ exception that there is a displacement associated with the forced libration. For
. example, for the p = +1 resonance there is a contribution to y /n from the forced
~libration of —0.0083 (see Eq. (5.115)). This small negative displacement is just
- about visible in Fig. 5.17b, as are the small positive displacements associated
with the p = +1/2 and p = +3/2 resonances (the displacements are more
. obvious in Fig. 5.18b where we use even larger values of e and «). For small
" amplitudes of libration, successive points on the surface-of-section trajectory
~ follow each other in a regular sequence, completing a closed path in a time given
by the libration period. However, it is clear from Fig. 5.17b that motion at the
separatrix has an additional property. This is particularly evident around the
strong p = +1 resonance. Motion on the separatrix in our full integration is
chaotic in the sense that although the evolution of # follows deterministic laws,
it is nevertheless unpredictable and wanders within some finite limits. This
accounts for the “fuzzy” appearance of the separatrix trajectory at the p = +1
and the p = +3/2 resonances.

The trajectories shown in Fig. 5.17b are in very good agreement with the
analytic curves shown in Fig. 5.17a, despite the fact that our analysis assumes
that we can investigate each resonance in isolation and that the averaged effect
of all the other resonances and forced librations is zero. However, it 1s obvious
that as the half-widths of the resonances increase, we must reach a point where
this assumption breaks down. In Fig. 5.18a, we show analytic solutions for
the motion of ¢ for the case e = 0.15 and @ = 0.3. In this case, the curves
associated with the p = +1 and the p = +3/2 separatrices overlap close to
9 = 0 and # = m, suggesting simultaneous libration in two spin—orbit states,

0 ®

H. . - o e 0.‘ .

Fig. 5.18. (a) Analytic variation of 8 /n with 6 on the separatrices and in the libration
regions of the p = +1, +3/2 resonances for & = /3(B — A)/C =03 and e = 0.15.
(b) A surface of section plot for three different trajectories in (&, 6 /n) phase space for
the same values of & and e. Values of 6 and @ are plotted at every passage of the satellite
through pericentre.
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which is impossible. Chirikov’s resonance overlap criterion states that when the
sum of the two unperturbed half-widths equals the separation of the resonance
centres, large-scale chaos ensues (Chirikov 1979). In the spin—orbit problem,
the resonance overlap criterion for the two strongest resonances, the p = +1 and
the p = +3/2, can be written

n
@ (p=+1) T @0(p=43/2) = 5> (5.129)

which is satisfied if

o > ! (5.130)

2+ 4/1de

(Wisdom et al. 1984).
Chirikov (1979) also estimated that the half-width of the chaotic separatrix,
expressed in terms of the chaotic variations of the energy integral, is given by

AEy

~ 4rer’ exp(—mh/2), (5.131)
Ey

where ¢ is the ratio of the coefficient of the nearest perturbing high-frequency
term to the coefficient of the perturbed term and A (= AQ2/wyp) 18 the ratio of the
frequency difference, AQ, between the resonant term and the nearest nonresonant
term to the frequency of small-amplitude librations, wg. For the synchronous
spin—orbit state perturbed by the p = +3/2 term, ¢ = H(4+3/2,e)/H(+1,e) =
Te/2 and A = AQ/wy = n/na = 1/a. Hence

AEy 14me
3

exp(—mn/2«) (5.132)
Fo o

(Wisdom et al. 1984).

The width of the chaotic separatrix depends linearly on the eccentricity e but
exponentially on the asphericity parameter «, and a small increase in « produces
a dramatic increase in the width of the chaotic band. The quantity AEq/Eqg
is extremely small for near-spherical bodies like Mercury and the Moon but is
of the order of unity for irregular bodies like Hyperion and can be appreciable
even for bodies like Mimas that have regular shapes but significant permanent
distortions (see Table 3.4).

The chaotic zones associated with the separatrices may have had a role in the
evolution of the spin rates and orientations of some satellites (Wisdom 1987a,b).
The reduction in the energy integral on resonance encounter that must occur
if permanent capture into resonance is to be achieved depends on the particular
spin—orbit resonance encountered and on the nature of the tidal dissipation mech-
anism (see Sect. 5.5). However, capture into resonance will occur as described
in Sect. 5.5 only if the energy reduction due to tidal forces that occurs in one
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. Table 5.4. Resonance half-widths.
. Budy (B-A)/C e p  H(pe) w/n AEo/Eo AEies/Fo

- Mercury  0.0001 0.2 +3/2 064 0.014
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+1 090 0016 1073 10—
+1/2 -=0.10 0.006
Moon 0.000228 0.055 +3/2 0.19 0.011

+1 0.99 0.026 10~7 1073
+1/2 —0.03  0.005

Hyperion .26 0.1 +3/2 034 0515
+1 097 0.870 1.1 107°
+1/2 —0.05 0.198

Mimas  0.06' 0.02 +43/2 007 0.112
+1 1.00 0424 0.28 106

+1/2 —0.01 0.042

"The value of (B — A)/C for Mimas is taken from Dermott & Thomas (1988).

librational cycle is significantly greater than the width of the chaotic separatrix.
In this regard, it is useful to compare the energy change

8 Egides ~ 7 (Ng) ~ T = —— —R? (5.133)

with the width of the chaotic separatrix, 2A E. Estimates of these quantities for
the synchronous case are shown in Table 5.4. Note the marked contrast between
the widths of the chaotic zones associated with Mercury and the Moon and those
associated with Hyperion and Mimas.

Wisdom (1987a,b) has shown that the synchronous states of all small irregu-
larly shaped satellites in the solar system, even some such as Deimos (¢ = 0.8,
¢ = 0.0005) with near-circular orbits, have significant chaotic zones. Further-
more, analysis by Wisdom et al. (1984) and Wisdom (1987a,b) of the stability
of the spin axis orientation (we assume in this chapter that the spin axis is al-
ways perpendicular to the orbital plane) has shown that the chaotic zone of the
synchronous state is attitude unstable. While the satellite is in the synchronous
chaotic zone, the slightest deviation of the spin axis from the orbit normal grows
exponentially on a very short timescale and the satellite tumbles chaotically in
three-dimensional space. All synchronously rotating satellites in the solar sys-
tem with irregular shapes may have spent a period of time comparable to the
tidal despinning time tumbling chaotically before the spin evolved out of the
chaotic zone. Wisdom (1987a,b) has speculated on some of the possible geo-
physical consequences of a prolonged period of tumbling. Of particular interest
is the fact that the tumbling state would have involved a significant enhancement
in the rate of tidal dissipation as compared to that in the regular synchronous
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state. This is because the amplitude of the variation of the tidal distortion in the
tumbling state is a factor 1/ greater than that in the regular synchronous state
(see Sect. 4.10) and the rate of tidal heating of the satellite 1s increased by a
factor 1/e2 while the eccentricity damping timescale is decreased by the same
factor. Wisdom (1987a,b) has given an interesting discussion of the possible
role of chaotic tumbling in the heating of Miranda and the damping of the orbital
eccentricity of Deimos.

Exercise Questions

5.1 Where necessary use the data in Appendix A to answer the following
questions. (a) Estimate a — c for Jupiter’s satellite lo, due to the combined eftfects
of rotation and tidal distortion. (Give your answer in kilometres, and in fractions
of the mean radius: assume uniform density.) (b) Repeat part (a) for the Earth’s
moon, in its current orbit. (c) At an early stage in the history of the Earth—-Moon
system, the Moon was probably at a distance of only 10 Earth radii, while the
Earth’s rotation period was about 10 h. Estimate the oblateness, €, and J; of the
Earth at this time, as well as a — ¢ for the Moon. (d) Mercury rotates with a
period of 56 days, or 2/3 of its orbital period of 88 days. Calculate its hydrostatic
oblateness, assuming a Love number k, = 3/2. Do you think ¢ is detectable by
current techniques of measurement? Is there any other practicable way to obtain
an estimate of the planet’s moment of inertia? (e) Both Pluto and its moon
Charon are believed to be in states of synchronous rotation. Estimate a — ¢ for
each object, assuming that they have equal densities. (You will have to estimate
the density first, from Kepler’s third law.)

5.2 The current semi-major axis of Charon’s orbit is 19,636 km, while the
orbital period (and Pluto’s spin period) is 6.3872 days. The radius of Pluto is
~ 1,137 km and that of Charon approximately 600 km. Charon is assumed to
be synchronously rotating also, so that the system has reached a stable end point
of tidal evolution. (a) Calculate the total mass of the system and the average
density of the two bodies. What measurements would be necessary to ascertain
the individual masses and densities of Pluto and Charon? (b) Show that the time
taken by tides in Pluto to synchronize its spin is

o — 2ypQp mp(mp + mc) ( a )3 wp
P'= 3 (k) p mZ Rp) n?’

where y = C/mR?, the initial spin period of Pluto is 27 /wp, and the subscripts P
and C refer to Pluto and Charon respectively. Estimate tp, assuming reasonable
values for the unknown physical parameters Q, y, and k3, and 27 /wp = 10h. (c)
Write down (by inspection) the analogous expression for Charon’s despinning
timescale, rc, and show that ¢/t ~ (Rc /Rp)® = 1/50. (d) What was the initial




Exercise Questions 223

~ semi-major axis of the system and the corresponding orbital period if both Pluto
* and Charon started with spin periods of 10 h?

5.3 Show from first principles that the approximate potential, V, experi-
enced at a point P at a distance r from the centre of mass, O, of a body of mass
m is given by MacCullagh’s formula,

Gm G(A+B+C—-3I)

A L ,
r 2r3

where A, B, and C are the principal moments of inertia of the body defined with
respect to O, and [ is the moment of inertia of the body along the line from O
to P.

54 Consider the rotation of a satellite as it moves in an equatorial orbit
around a planet. Let the satellite’s orbital radius, semi-major axis, eccentric-
ity, mean anomaly, and true anomaly be r, a, ¢, M, and f, respectively. An
analytical approach to the study of spin—orbit resonance, where the spin rate
is approximately p times the mean motion, requires averaging the expression
(a/r)? sin(2y + 2pM — 2 f) over one orbital period (see Sect. 5.4); here y is an
orientation angle. Use the fourth-order expansions of (a/r)°, cos f, and sin f
given in Sect. 2.5 to derive expressions (to fourth-order in the eccentricity e) for
the quantities Sy, S, §3, and Sy in the equation

3
G) sin(2y + 2pM —2f) = (81 + S2) sin2y + (53 — S4) cos 2y.
By finding the time-averaged values, (S;) = (1/2x) 2 S; dM, show that
0

((E)S sin2y + 2pM —Zf)) — H(p,e)sin2y

r

and verify the expressions for H(p, ¢) given in Egs. (5.74)—(5.82). Given that
H(p, ) is related to the strength of a spin—orbit resonance, find the smallest value
of e for which the p = | resonance is weaker than the p = 3/2 resonance.

5.5 The long axis of a small, ellipsoidal satellite makes an angle ¢ with
the pericentre direction of its orbit. The differential equation describing the
evolution of ¢ 1s

Co — E(B - A)% sin2y =0,
2 ri

where A, B, and C are the (constant) moments of inertia about the different axes,
myp is the mass of the planet, r is the radial distance of the satellite from the
planet, and ¥ = f — 0 where f is the true anomaly of the satellite in its orbit.
Theoretically, the maximum variation in @ for a satellite trapped in the 1:1 spin-—
orbit resonance is +90° (see Fig. 5.17a). However, the effect of other resonances
reduces this amplitude. Assuming that the satellite is on a fixed orbit such that r
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can be found at any time by solving Kepler’s equation, write a computer program
to solve this differential equation. Taking (3(B — A) /OV2 =025and e = 0.2,
start the satellite at its pericentre with 8 = 0. Use different initial values of ¢ /n
(where n is the satellite’s mean motion) to determine the maximum variation of
g in the 1:1 spin—orbit resonance.

5.6 Use the analytical theory given in Sect. 5.7 to derive an expression
for the minimum and maximum values of 8/n on a surface of section for the

retrograde rotation of a satellite trapped in the p = —1/2 and the p = —1 spin-
orbit resonances. If the eccentricity e of the satellite’s orbit is fixed, derive an
expression for the value of ¢ = (3(8 — A)/C) 12 at which you expect the libration
“islands” from these two resonances to intersect. Similarly, if « 1s fixed, derive
an expression for the value of e at which intersection occurs. Use the program
written for Question 5.5 to produce a surface of section fora = 0.25and e = 0.15
showing clear examples of libration, circulation, and motion near the separatrix
for the p = —1/2 and p = —1 spin—orbit resonances.




