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The rotation of Mercury is presently captured in a 3/2 spin–orbit resonance with the orbital mean
motion. The capture mechanism is well understood as the result of tidal interactions with the Sun
combined with planetary perturbations [Goldreich, P., Peale, S., 1966. Astron. J. 71, 425–438; Correia,
A.C.M., Laskar, J., 2004. Nature 429, 848–850]. However, it is now almost certain that Mercury has a
liquid core [Margot, J.L., Peale, S.J., Jurgens, R.F., Slade, M.A., Holin, I.V., 2007. Science 316, 710–714] which
should induce a contribution of viscous friction at the core–mantle boundary to the spin evolution.
According to Peale and Boss [Peale, S.J., Boss, A.P., 1977. J. Geophys. Res. 82, 743–749] this last effect
greatly increases the chances of capture in all spin–orbit resonances, being 100% for the 2/1 resonance,
and thus preventing the planet from evolving to the presently observed configuration. Here we show that
for a given resonance, as the chaotic evolution of Mercury’s orbit can drive its eccentricity to very low
values during the planet’s history, any previous capture can be destabilized whenever the eccentricity
becomes lower than a critical value. In our numerical integrations of 1000 orbits of Mercury over 4 Gyr,
the spin ends 99.8% of the time captured in a spin–orbit resonance, in particular in one of the following
three configurations: 5/2 (22%), 2/1 (32%) and 3/2 (26%). Although the present 3/2 spin–orbit resonance
is not the most probable outcome, we also show that the capture probability in this resonance can be
increased up to 55% or 73%, if the eccentricity of Mercury in the past has descended below the critical
values 0.025 or 0.005, respectively.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

Mercury’s present rotation is locked in a 3/2 spin–orbit reso-
nance, with its spin axis nearly perpendicular to the orbital plane
(Pettengill and Dyce, 1965). The stability of this rotation results
from the solar torque on Mercury’s quadrupolar moment of iner-
tia, combined with an eccentric orbit: the axis of minimum mo-
ment of inertia is always aligned with the direction to the Sun
when Mercury is at the perihelion of its orbit (Colombo, 1965;
Goldreich and Peale, 1966; Counselman and Shapiro, 1970). The
initial rotation of Mercury was presumably faster than today,
but tidal dissipation along with core–mantle friction brought the
planet rotation to the present configuration, where capture can oc-
cur. However, the exact mechanism on how this state initially arose
is not completely understood.

In their seminal work, Goldreich and Peale (1966) have shown
that since the tidal strength depends on the planet’s rotation rate,
it creates an asymmetry in the tidal potential that allows cap-

* Corresponding author at: Departamento de Física, Universidade de Aveiro, Cam-
pus de Santiago, 3810-193 Aveiro, Portugal.

E-mail address: correia@ua.pt (A.C.M. Correia).
0019-1035/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.icarus.2008.12.034
ture into spin–orbit resonances. They also computed the capture
probability into these resonances for a single crossing, and found
that for the present eccentricity value of Mercury (e = 0.206), and
unless one uses an unrealistic tidal model with constant torques
(which cannot account for the observed damping of the planet’s li-
bration), the probability of capture into the present 3/2 spin–orbit
resonance is on the low side, at most about 7%, which remained
somewhat unsatisfactory.

Goldreich and Peale (1967) nevertheless pointed out that the
probability of capture could be greatly enhanced if a planet has a
molten core. In 1974, the discovery of an intrinsic magnetic field
by the Mariner 10 spacecraft (Ness et al., 1974), seemed to im-
ply the existence of a conducting liquid core and consequently an
increment in the capture probability in the 3/2 resonance. How-
ever, according to Goldreich and Peale (1967), this also increases
the capture probability in all the previous resonances. Peale and
Boss (1977) indeed remarked that only very specific values of the
core viscosity allow to avoid the 2/1 resonance and permit the
capture in the 3/2 configuration.

More recently, Correia and Laskar (2004) (hereafter denoted by
Paper I) have shown that as the orbital eccentricity of Mercury is
varying chaotically, from near zero to more than 0.45, the capture
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probability is substantially increased. Indeed, when the large ec-
centricity variation is factored into the capture, the rotation rate of
the planet can be accelerated, and the 3/2 resonance could have
been crossed many times in the past. Performing a statistical study
of the past evolutions of Mercury’s orbit, over 1000 cases, it was
demonstrated that capture into the 3/2 spin–orbit resonant state
is in fact, and without the need of specific core–mantle effect, the
most probable final outcome of the planet’s evolution, occurring
about 55.4% of the time. In contrast, because the eccentricity can
decrease to near zero, all resonances except the 1/1 become unsta-
ble, allowing the planet to escape from resonance. This mechanism
suggests that in presence of core–mantle friction the planet can
escape to a previous capture in the 2/1 or higher order spin–orbit
resonances.

The present paper continues the work started in Paper I. In ad-
dition to the effects of tides and planetary perturbations, we will
consider here also the core–mantle friction effect as described by
Goldreich and Peale (1967), since the presence of a liquid core in-
side Mercury is now confirmed by radar observations (Margot et
al., 2007). In the next section we give the averaged equations of
motion in a suitable form for simulations of the long-term vari-
ations of Mercury’s spin, including the resonant motion, viscous
tidal effects, core–mantle coupling and planetary perturbations. In
Section 3 we discuss the consequences of each effect into the spin
evolution and evaluate the capture probabilities in resonance. Fi-
nally, in last section we perform some numerical simulations to
illustrate the different effects described in Section 3.

2. Equations of motion

We will adopt here a model for Mercury which is an ex-
tension of the model from Poincaré (1910) of a perfect incom-
pressible and homogeneous liquid core with moments of inertia
Ac = Bc < Cc inside an homogeneous rigid body with moments of
inertia Am � Bm < Cm, supported by the reference frame (�i,�j, �k),
fixed with respect to the planet’s figure. Tidal dissipation and
core–mantle friction drive the obliquity close to zero (Yoder, 1997;
Correia et al., 2003). Since we are only interested here in the study
of the final stages of evolution (where capture in spin–orbit reso-
nance may occur), we will neglect the effect of the small obliquity
variations on the equations of motion. Moreover, since for a long-
term study we are not interested in diurnal nutations, we can
average over fast rotation angles and merge the axis of principal
inertia and the axis of rotation (Boué and Laskar, 2006). Therefore,
the mantle rotation rate is simply given by ω = θ̇ + ϕ̇ , where θ is
the rotation angle and ϕ the precession angle.

2.1. Precession torque

The gravitational potential V generated at a generic point of the
space �r is given by (e.g., Tisserand, 1891; Smart, 1953):

V (�r) = − Gm

r
+ G(B − A)

r3
P2

(�ur ·�j)
+ G(C − A)

r3
P2

(�ur · �k)
, (1)

where terms in (R/r)3 were neglected. G is the gravitational con-
stant, m the mass of Mercury, �ur = �r/r and P2(x) = (3x2 − 1)/2
is the Legendre polynomial of degree two. When interacting with
the Sun’s mass, m� , the spin of Mercury will undergo important
changes. The middle term in the above potential will be respon-
sible for a libration in the spin, while the last term causes the
spin axis �k to precess around �K, the normal to the orbit. Since
we are only interested in the study of the long term motion, we
will average the potential over the rotation angle θ and the mean
anomaly M , after expanding the true anomaly v in series of the
Table 1
Coefficients of H(p, e) to e7. The exact expression of these coefficients is given by
H(p, e) = 1

π

∫ π
0 ( a

r )3 exp(i2ν)exp(i2pM)dM .

p H(p, e)

1/1 1 – 5
2 e2 + 13

16 e4 – 35
288 e6

3/2 7
2 e – 123

16 e3 + 489
128 e5 – 1763

2048 e7

2/1 17
2 e2 – 115

6 e4 + 601
48 e6

5/2 845
48 e3 – 32525

768 e5 + 208225
6144 e7

3/1 533
16 e4 – 13827

160 e6

7/2 228347
3840 e5 – 3071075

18432 e7

4/1 73369
720 e6

9/2 12144273
71680 e7

eccentricity e and mean anomaly. However, when the rotation rate
ω and the mean motion n = Ṁ are close to resonance (ω � pn, for
a semi-integer1 value p), we must retain the terms with argument
(2θ − 2pM) in the expansion

cos(2θ − 2v)

r3
= 1

a3

+∞∑
p=−∞

H(p, e) cos(2θ − 2pM), (2)

where a is the semi-major axis of the planet’s orbit and the func-
tion H(p, e) is a power series in e (Table 1). The exact averaged
contributions to the spin are given in a suitable form for our study
by expression (15) in Correia (2006).2 For zero obliquity we have:

dω

dt
= − β

cm
H(p, e) sin 2(θ + ϕ − pM − �), (3)

where � is the longitude of the perihelion, cm = Cm/C = 0.55
(Margot et al., 2007), and

β = 3Gm�
2a3

B − A

C
� 3

2
n2 B − A

C
. (4)

The Mariner 10 flyby of Mercury provided information on the
internal structure of the planet, though subject to some uncer-
tainty. For the gravity field it has been measured J2 = (6.0 ±
2.0) × 10−5 and C22 = (1.0 ± 0.5) × 10−5 (Anderson et al., 1987).
Modeling the interior structure of Mercury, it has been estimated
for the structure constant ξ = C/(mR2) � 0.3359 (Spohn et al.,
2001). Thus, for the moments of inertia we compute (B − A)/C =
4C22/ξ � 1.2 × 10−4.

2.2. Tidal torques

Tidal effects arise from differential and inelastic deformations of
Mercury due to the gravitational effect of the Sun. Their contribu-
tions to the spin variations are based on a very general formulation
of the tidal potential, initiated by George H. Darwin (1880). The
distortion of the planet gives rise to a tidal potential,

V g(�r,�r′) = −k2
Gm�

R

(
R

r

)3( R

r′

)3

P2
(�ur · �ur′

)
, (5)

where R is the average radius of the planet and �r′ the radial dis-
tance from the planet’s center to the Sun. In general, imperfect
elasticity will cause the phase angle of V g to lag behind the per-
turbation (Kaula, 1964), because there is a time delay 
t between
the perturbation of the Sun and the maximal deformation of Mer-
cury. During that time, the planet rotates by an angle ω
t , while
the Sun also changes its position. Assuming a constant time de-
lay allows us to linearize the tidal potential and simplify the tidal

1 We retain the use of semi-integers for better comparison with previous re-
sults.

2 There is a misprint in the sign of φ in Correia (2006).
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equations (Mignard, 1979, 1980; Hut, 1981). For zero obliquity, the
averaged contributions to the spin are then given by:

dω

dt
= − K

cm

[
Ω(e)

ω

n
− N(e)

]
, (6)

where

Ω(e) = 1 + 3e2 + 3e4/8

(1 − e2)9/2
, (7)

N(e) = 1 + 15e2/2 + 45e4/8 + 5e6/16

(1 − e2)6
, (8)

K = n2 3k2

ξ Q

(
m�
m

)(
R

a

)3

, (9)

and Q −1 = n
t . This tidal model is particularly adapted to de-
scribe the planets behavior in slow rotating regimes (ω ∼ n), which
is the case of Mercury during the spin–orbit resonance crossing. In
the present work we will adopt k2 = 0.4 and Q = 50, which yields
K = 2.2 × 10−5 yr−2. This choice is somewhat arbitrary, but based
on the parameter values of the other terrestrial planets (Goldreich
and Soter, 1966).

2.3. Core–mantle friction effect

The Mariner 10 flyby of Mercury revealed the presence of an
intrinsic magnetic field, which is most likely due to motions in a
conducting fluid core (for a review see Ness, 1978). Subsequent ob-
servations made with Earth-based radar provided strong evidence
that the mantle of Mercury is decoupled from a core that is at
least partially molten (Margot et al., 2007).

If there is slippage between the liquid core and the mantle,
a second source of dissipation of rotational energy results from
friction occurring at the core–mantle boundary. Indeed, because of
their different shapes and densities, the core and the mantle do
not have the same dynamical ellipticity and the two parts tend to
precess at different rates (Poincaré, 1910). This tendency is more or
less counteracted by different interactions produced at their inter-
face: the torque of non-radial inertial pressure forces of the mantle
over the core provoked by the non-spherical shape of the inter-
face; the torque of the viscous friction (or turbulent) between the
core and the mantle; and the torque of the electromagnetic fric-
tion, caused by the interaction between electrical currents of the
core and the bottom of the magnetized mantle. The two types of
friction torques (viscous and electromagnetic) depend on the dif-
ferential rotation between the core and the mantle and can be
expressed by a single effective friction torque, Υ (Mathews and
Guo, 2005; Deleplace and Cardin, 2006):

Υ = Ccκδ; δ = ω − ωc, (10)

where κ is an effective coupling parameter, ωc the core’s rotation
rate and cc = Cc/C = 1 − cm = 0.45 (Margot et al., 2007). Accord-
ing to Mathews and Guo (2005) we may write κ � 2.62

√
νω/Rc,

where Rc is the core radius and ν is the effective kinematic vis-
cosity of the core. Adopting Rc/R = 0.77 ± 0.04 (Spohn et al.,
2001) and ν = 10−6 m2 s−1, we compute for the 3/2 resonance:
κ = 5 × 10−5 yr−1. The uncertainty over ν is very large, according
to Lumb and Aldridge (1991) it can cover about 13 orders of mag-
nitude. As in former studies on planetary evolution (Yoder, 1997;
Correia and Laskar, 2001, 2003), we used the same value as the
best estimated so far for the Earth (Gans, 1972; Poirier, 1988).

Another important consequence of core–mantle friction is to
tilt the equator of the planet to the orbital plane, which re-
sults in a secular decrease of the obliquity (Rochester, 1976;
Correia, 2006), reinforcing the previous assumption that the obliq-
uity remains close to zero during the last evolutionary stages.
Since the core and the mantle are decoupled, we need a differ-
ential equation for each rotation rate, the coupling equation being
given by the friction torque (Peale, 2005; Correia, 2006):

dω

dt
= − ccκ

cm
δ and

dωc

dt
= κδ. (11)

2.4. Planetary perturbations

When considering the perturbations of the other planets, the
eccentricity of Mercury is no longer constant, but undergoes strong
chaotic variations in time (Laskar, 1990, 1994, 2008). These vari-
ations can be modeled using the averaging of the equations for
the motion of the Solar System, that have been compared to re-
cent numerical integrations, with very good agreement (Laskar et
al., 2004a, 2004b). These equations are obtained by averaging the
equations of motion over the fast angles that are the mean lon-
gitudes of the planets. The averaging of the equation of motion is
obtained by expanding the perturbations of the Keplerian orbits in
Fourier series of the angles, where the coefficients themselves are
expanded in series of the eccentricities and inclinations. This aver-
aging process was conducted in a very extensive way, up to second
order with respect to the masses, and through degree five in ec-
centricity and inclination, leading to truncated secular equations of
the Solar System of the form

dw

dt
= i

[
Γ w + Φ3(w, w̄) + Φ5(w, w̄)

]
, (12)

where w is the column vector (z1, . . . , z8, ζ1, . . . , ζ8), with z j =
e j exp(i� j), ζ j = sin(I j/2)exp(iΩ j) and � and Ω , respectively,
the longitude of the perihelion and node. The 16 × 16 matrix
Γ is the linear Lagrange–Laplace system, while Φ3(w, w̄) and
Φ5(w, w̄) gather terms of degree 3 and 5, respectively.

The system of equations thus obtained contains some 150,000
terms, but its main frequencies are now the precession frequencies
of the orbits of the planets. The full system can thus be numer-
ically integrated with a very large step-size of 250 years. Contri-
butions due to the secular perturbation of the Moon and general
relativity are also included (for more details and references, see
Laskar, 1990, 1996; Laskar et al., 2004a).

This secular system is then simplified and reduced to about
50,000 terms, after neglecting terms of very small value (Laskar,
1994). Finally, a small correction of the terms appearing in Γ

(Eq. (12)), after diagonalization, is performed in order to adjust the
linear frequencies, in a similar way as it was done by Laskar (1990).
The secular solutions are very close to the direct numerical inte-
gration La2004 (Laskar et al., 2004a, 2004b) over about 35 Myr,
the time over which the direct numerical solution itself is valid
because of the imperfections of the model. It is thus legitimate to
investigate the diffusion of the orbital motion of Mercury over long
times using the secular equations.

Over several millions years, the eccentricity of Mercury presents
significant variations (Fig. 1) that need to be taken into account in
the resonance capture process (Paper I).

3. Spin evolution and capture probabilities

The evolution of the spin for zero obliquity is completely de-
scribed when we put together the contributions from the different
effects presented in Section 2:{

ω̇ = P + T − Υ/Cm,

ω̇c = Υ/Cc,
(13)

where P is the precession torque (Eq. (3)), T the tidal torque
(Eq. (6)) and Υ the friction torque (Eq. (10)). In order to better
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Fig. 1. Evolution of Mercury’s eccentricity over 50 Myr in the past (Laskar et al.,
2004a, 2004b).

study the capture probabilities in spin–orbit resonances, we will
adopt a change of variables that is valid around each resonance p:

γ = θ + ϕ − pM − �, (14)

and thus,

γ̇ = ω − pn − �̇ and γ̈ = ω̇ − �̈ . (15)

In absence of planetary perturbations, for a Keplerian orbit, �̇ = 0
and thus γ̈ = ω̇. Instead of the core rotation ωc we will also adopt
the differential rotation δ = ω − ωc as variable. The above system
of Eqs. (13) becomes then:{

γ̈ = P (γ ) + T (γ̇ ) − ccκmδ − �̈ ,

δ̇ = P (γ ) + T (γ̇ ) − κmδ,
(16)

where κm = κ/cm. In general, we like to express γ̈ as the sum of
the precession torque P (γ ) and a global dissipative torque D(γ̇ )

such that

γ̈ = −βm sin 2γ + D(γ̇ ), (17)

with

βm = β

cm
H(p, e) (18)

and

D(γ̇ ) = −D0

(
V + μ

γ̇

n

)
, (19)

where D0, V and μ are “constant” quantities. Indeed, under this
linearized form we are able to estimate the capture probabilities
using a simple expression derived by Goldreich and Peale (1966):

Pcap = 2

[
1 + π

2

n


ω

V

μ

]−1

, (20)

where 
ω is the maximal amplitude of libration in resonance, i.e.,

ω = √

2βm.

3.1. Effect of tides

Let us consider first the simplified case where the spin of
the planet is only subject to the precession and tidal torques
(Goldreich and Peale, 1966). Thus, we may use expression (17) to
express γ̈ , where D(γ̇ ) is given by expression (6):

D(γ̇ ) = T = − K

cm
Ω(e)

[
p − E(e) + γ̇

n

]
, (21)

with E(e) = N(e)/Ω(e). The limit solution of the rotation for a
constant value of the eccentricity is obtained when D(γ̇ ) = 0, that
is, for γ̇ /n = E(e) − p ⇔ ω/n = E(e). If the planet encounters a
spin–orbit resonance in the way to the equilibrium position, cap-
ture may occur with a probability computed from expression (20):

Pcap = 2

[
1 + π

2

n


ω

(
p − E(e)

)]−1

. (22)

Using the present value of the eccentricity of Mercury and cm = 1
we compute for the p = 3/2 resonance a probability of capture of
about 7%, which is unsatisfactory given that this is the presently
observed resonant state.

3.2. Effect of core–mantle friction

We now add the effect of core–mantle friction to the effects
already considered in the previous section. In this case we must
take into account the rotation of the core, and the complete rota-
tion rate evolution is given by system (16) with �̈ = 0.

The general solution for the differential rotation in system (16)
is given by:

δ(t) = δ0e−κmt + e−κmt

t∫
t0

[
P (γ ) + T (γ̇ )

]
eκmt′dt′, (23)

where δ0 is the initial value of δ(t) for t = t0. In Section 2.3 we
estimate for the present rotation of Mercury 1/κm � 104 yr, which
can be seen as the time scale needed to damp the initial differ-
ential rotation δ0 to zero. Thus, for t � 1/κm the evolution of the
differential rotation is given only by the last term is expression
(23). It also means that for time intervals 
t � 1/κm, we can write
for t < t0 + 
t:

δ(t) � δ0 +
t∫

t0

γ̈ dt′, (24)

that is,

δ(t) � δ0 + γ̇ − γ̇0 = γ̇ − γ̇c0 , (25)

where γ̇c0 = γ̇0 − δ0 = ωc0 − pn, and ωc0 is the value of the core
rotation for t = t0. This approximation is very useful because we
can express γ̈ by means of expression (17) with

D(γ̇ ) = − K

cm
Ω(e)

[
p − E(e) + γ̇

n

]
− ccκ

cm
(γ̇ − γ̇c0 )

= − K

cm
Ω(e)

[
p − E(e) − χ

γ̇c0

n
+ (1 + χ)

γ̇

n

]
, (26)

where χ = ccκn/[KΩ(e)]. It allows us easily to compute the cap-
ture probabilities using expression (20) provided that we are able
to estimate correctly γ̇c0 just before the planet crosses the reso-
nance:

Pcap = 2

[
1 + π

2

n


ω

p − E(e) − χγ̇c0/n

1 + χ

]−1

. (27)

According to expression (11) we have ω̇c = κδ. Since κ � 
ω,
the core is unable to follow the periodic variations in the mantle’s
rotation rate. Thus, only the secular variations on the mantle will
be followed by the core and we may write: ωc = ω − δ, where ω
is the averaged rotation of the mantle and

δ � e−κmt

t∫
t0

T eκmt′ dt′ � T

κm
. (28)

Just before crossing the pth spin–orbit resonance we have ω0 =
pn + 2
ω/π , and thus
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γ̇c0 = ωc0 − pn = ω0 − δ − pn

= 2

π

ω − T

κm
� 2

π

ω + KΩ(e)

κ

[
p − E(e)

]
. (29)

When using the present eccentricity of Mercury and the values of
κ and K estimated in previous sections, we compute χ = 19.5.
Substituting this into expression (27) we obtain a probability of
capture of 100% in the 3/2 spin–orbit resonance. However, as no-
ticed by Peale and Boss (1977), if we compute the probability
for the 2/1 resonance we also get 100%. Thus, either the planet
started its rotation below the 2/1 resonance, which is unlikely, or
there must be another mechanism to avoid capture in the 2/1 and
higher order resonances.

3.3. Effect of planetary perturbations

The orbital eccentricity of Mercury undergoes important sec-
ular perturbations from the other planets (Fig. 1) and its contri-
bution needs to be taken into account. The mean value of the
eccentricity is ē = 0.198, slightly lower than the present value
e � 0.206, but we also observe a wide range for the eccentricity
variations, from nearly zero to more than 0.45 (Paper I; Laskar,
2008). Even if some of these episodes do not last for a long
time, they will allow additional capture into and escape from
spin–orbit resonances. Moreover, the capture probabilities are also
modified for different eccentricities: for the same resonance we
can have zero or 100% of captures depending on the eccentric-
ity value (Fig. 2). For all resonances, the capture probability is
100% whenever the eccentricity is close to the equilibrium value
for the rotation rate, E(e) = N(e)/Ω(e) (Eq. (21)), but it tends
to decrease as the eccentricity moves away from this equilibrium
value. If the eccentricity is too high (or too low if the spin is
increasing from lower rotation rates) some resonances cannot be
reached and the probability of capture suddenly drops to zero
(Fig. 2).
Fig. 2. Probability of capture in some spin–orbit resonances for different values of the eccentricity, under the effect of tides and core–mantle friction (Eq. (27)). The dashed line
corresponds to a planet increasing its spin from slower rotation rates, while the solid line corresponds to a planet de-spinning from faster rotation rates. For all resonances,
capture probability is 100% whenever the eccentricity is close to the equilibrium value for the rotation rate, ω/n = E(e) (Eq. (21)). It suddenly decays to zero when the
equilibrium rotation rate falls outside the resonance width, i.e., the tidal evolution prevents the planet from crossing the resonance.
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Table 2
Critical eccentricity ec for the resonance p. If e < ec , the resonance p becomes un-
stable, and the solution may escape the resonance (Paper I). The critical eccentricity
ec is obtained when βH(p, e) < K [Ω(e)p − N(e)].
p ec

5/1 0.211334
9/2 0.174269
4/1 0.135506
7/2 0.095959
3/1 0.057675
5/2 0.024877
2/1 0.004602
3/2 0.000026
1/1 –

For a non-constant eccentricity e(t), the limit solution of the
rotation rate when D(γ̇ ) = 0 (Eq. (17)) is no longer ω/n = E(e),
but more generally:

ω(t) = 1

g(t)

t∫
0

K

cm

[
N

(
e(τ )

) − ccκ

K
δ(τ )

]
g(τ )dτ , (30)

where

g(t) = exp

(
K

cmn

t∫
0

Ω
(
e(τ )

)
dτ

)
. (31)

The dissipation torques can thus drive the rotation rate several
times across the same spin–orbit resonance, increasing the chances
of capture.

Another important consequence of a non-constant eccentricity
is that all resonances but the 1/1 may become unstable. Indeed,
the amplitude of the libration torque depends on the coefficient
H(p, e) (Eq. (3)), which goes to zero with the eccentricity, except
for the 1/1 resonance (Table 1). Whenever the amplitude of the
libration restoration torque becomes smaller than the amplitude
of the dissipation torque, equilibrium in the spin–orbit resonance
can no longer be sustained and the resonance is destabilized. Crit-
ical eccentricities for each resonance are listed in Table 2, obtained
when the torques become equivalent (Eqs. (3) and (6)):

Ω(e)p − N(e)

H(p, e)
= β

K
. (32)

4. Numerical simulations

We will now use the dynamical equations established in Sec-
tion 2 to simulate the final evolution of Mercury’s spin by perform-
ing massive numerical integrations. The main goal is to illustrate
the effects described in Section 3, in particular the probabilities of
capture and escape from spin–orbit resonances. Mercury geophys-
ical models and parameters in use are those listed in Section 2.
We recall here the most uncertain values: k2 = 0.4, Q = 50 and
ν = 10−6 m2 s−1.

4.1. Simulations without planetary perturbations

Before considering the effect of planetary perturbations we can
test numerically the theoretical estimates of the capture probabil-
ity given by expressions (22) and (27). Since capture in resonance
is a statistical process we need to perform many integrations with
slightly different initial conditions. For that purpose we ran 2000
simulations using a fixed eccentricity (e = 0.206), initial rotation
period of 2 days, zero obliquity and different initial libration phase
angles with step-size of π/1000 rad. Results are listed in Table 3.
We can see that there is a good agreement between the theoret-
ical previsions and the numerical estimation of the probabilities.
Table 3
Capture probabilities in several spin–orbit resonances (in percentage). In the left
panel (T only) we consider the effect of tides alone, while in the right panel
(T + CMF) both tides and core–mantle friction effects are taken into account. The
first column (Pcap) refers to the theoretical estimation given by expression (20),
while the next column (Num.) refers to the estimation obtained running a nu-
merical simulation with 2000 close initial conditions, differing by π/1000 in the
libration angle. Planetary perturbations are not considered and we used a constant
eccentricity e = 0.206.

p T only T + CMF

Pcap (%) Num. (%) Pcap (%) Num. (%)

5/1 – – 1.6 0.3
9/2 – – 3.1 1.3
4/1 0.1 – 5.9 4.8
7/2 0.1 0.1 11.4 10.9
3/1 0.3 0.4 22.6 22.8
5/2 0.7 1.4 46.6 46.2
2/1 1.8 1.7 100.0 100.0
3/2 7.7 7.2 100.0 100.0

As discussed in Sections 3.1 and 3.2 the probability of capture
when considering only the effect of tides is very small (∼7% for
the 3/2 resonance), while it becomes very important when core–
mantle friction is added (100% for the 3/2 resonance). They are
also in conformity with those obtained in the previous studies by
Goldreich and Peale (1967) and Peale and Boss (1977). As they all
noticed, when the effect from core–mantle friction is considered,
the probabilities of capture are greatly enhanced for all spin–orbit
resonances. In particular, capture in the 2/1 resonance also be-
comes 100%, preventing a subsequent evolution to the 3/2 reso-
nance.

4.2. Inclusion of planetary perturbations

When planetary perturbations are taken into account, the ec-
centricity presents chaotic variations with many excursions to
higher and lower values than today (Laskar, 1990, 1994, 2008; Pa-
per I). It is then impossible to know its exact evolution at the time
the planet first encountered the spin–orbit resonances. A statistical
study with many different orbital solutions is the only possibility
to get a global picture of the past evolution of the spin of Mercury.
In Paper I we performed such a study by integrating 1000 orbits
over 4 Gyr in the past starting with very close initial conditions.
This statistical study was only made possible by the use of the av-
eraged equations for the motion of the Solar System (Laskar, 1990,
1994).

In Fig. 3 we show five examples of the eccentricity evolution
through 4.0 Gyr. We choose some cases illustrative of the chaotic
behavior, where we can see that the eccentricity can be as small as
zero, but it can also reach values as high as 0.5. In some cases the
eccentricity can remain within [0.1,0.3] throughout the evolution,
while in other cases it can span the whole interval [0,0.5] (Laskar,
2008).

Owing to the chaotic evolution, the density function of the
1000 solutions over 4 Gyr is a smooth function (Fig. 4), well ap-
proximated by a Rice probability distribution (Laskar, 2008). The
eccentricity excursions to higher values allow the planet to cross
the 3/2 resonance several times, and thus increase the probability
of capture. This behavior becomes very important if the evolution
is driven by tidal friction alone. Even though the probability of cap-
ture in a single crossing of the 3/2 spin–orbit resonance is only
around 7%, multiple crossings increase it up to 55% (Paper I).

4.3. Planetary perturbations with core–mantle friction

In presence of an efficient core–mantle friction the multiple
crossings of the 3/2 resonance are no longer needed, since the
capture in this resonance after a single crossing is already 100%
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Fig. 3. Some examples of the possible variations of the eccentricity of Mercury
through the past 4.0 Gyr. The eccentricity can be as small as zero, but it can
also reach values as high as 0.5. In some cases the eccentricity can remain within
[0.1,0.3] throughout the evolution, while in other cases it can span the whole in-
terval [0,0.5]. All these solutions converge to the known recent evolution of the
planet’s orbit (Fig. 5).

Fig. 4. Probability density function of Mercury’s eccentricity (Paper I). Values are
computed over 4 Gyr for the numerical integration of the secular equations (Laskar
et al., 2004a, 2004b; Laskar, 2008) for 1000 close initial conditions (LA04). The
mean value of the eccentricity is ē = 0.198.

(Fig. 2). Nevertheless, eccentricity excursions to lower values can
destabilize the equilibrium in any spin–orbit resonance different
from the 1/1 (Table 2). This effect was already present when the
core–mantle friction was not considered (Paper I), but with small
influence on the results, while here it becomes of capital impor-
tance. Indeed, it may allow the evasion from previous captures in
Table 4
Capture probabilities in several spin–orbit resonances (in percentage). We per-
formed a statistical study of the past evolutions of Mercury’s spin, with the in-
tegration of 1000 orbits over 4 Gyr, a initial rotation period of 10 days and zero
obliquity. In the “1st cap.” column we list the resonances in which the spin was
first captured (before being destabilized). In the “final” column we list the results
after the full 4 Gyr of simulations. For comparison we also list the results obtained
with a constant eccentricity e = 0.206 (“Const.”) and the final results obtained in
Paper I (“C&L04”), with a model without core–mantle friction.

p Number of captures

Const.
(%)

1st cap.
(%)

Final
(%)

C&L04
(%)

6/1 – 0.1 – –
11/2 – 0.4 – –
5/1 0.3 1.3 – –
9/2 1.3 2.7 – –
4/1 4.7 5.3 – –
7/2 10.3 8.7 4.7 –
3/1 19.0 15.5 11.6 –
5/2 29.8 26.5 22.1 –
2/1 34.6 31.2 31.6 3.6
3/2 – 8.1 25.9 55.4
1/1 – 0.2 3.9 2.2
None – – 0.2 38.3

higher order resonances than the 3/2 and permit subsequent evo-
lution to the present observed spin state.

In order to check this new scenario, we have performed a sta-
tistical study of the past evolutions of Mercury’s orbit, with the
integration of the same 1000 orbits over 4 Gyr in the past used
in Paper I. We now additionally include the effect of core–mantle
friction as described by Goldreich and Peale (1967), i.e., we will
consider the full dynamics of the spin governed by Eq. (13).

Assuming an initial rotation period of Mercury of 10 h, we es-
timated that the time needed to de-spin the planet to the slow
rotations would be about 300 million years. We will then start our
integrations already in the slow-rotation regime, with a rotation
period of 10 days (ω � 8.8n), zero obliquity and a starting time
of −4 Gyr, although these values are not critical. In Table 4 we
show the amount of captures for each resonance at the end of the
simulations (column “final”). We also list the resonances in which
the spin was first captured before being destabilized (column “1st
cap.”) and we recall the results obtained for a constant eccentric-
ity (e = 0.206) and in Paper I, with a model without core–mantle
friction.

After running 1000 trajectories we observe that the spin of
Mercury preferably chooses one of the three final configurations:
5/2, 2/1 or 3/2 (Table 4). With 26% of captures, the present con-
figuration no longer represents the most probable final outcome,
as it was in absence of core–mantle friction (Paper I). However, it
is still among the most probable scenarios, the alternatives receiv-
ing comparable amounts of captures (22% and 32% respectively for
the 5/2 and the 2/1 resonances). The 5/2 and the 2/1 spin–orbit
resonances benefit from the fact that the planet must cross them
first. On the other hand, the 3/2 resonance is more stable and the
chances of capture are higher when crossed.

Since the eccentricity of Mercury 4.0 Gyr ago can be around
0.4 (e.g., Fig. 3), at the moment of the first encounter with
the spin–orbit resonances, capture in resonances as high as the
6/1 can occur (Fig. 2). Because the probability of capture is
small and because there are not many orbital solutions reach-
ing such high values for the eccentricity, we only count about
10% of captures in resonances above or equal to the 4/1 (Ta-
ble 4). Once captured, these equilibria can be maintained as long
as the eccentricity remains above the respective critical values (Ta-
ble 2).

Contrary to the results predicted for a constant eccentricity (Ta-
ble 4), we also registered a few trajectories directly captured in
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Fig. 5. Some examples of the recent evolution of the eccentricity of Mercury. During the last 50–60 Myr all the orbits present the same evolution, before which the chaos
effect takes place. Horizontal lines correspond to the critical eccentricities that destabilize the equilibrium in a given spin–orbit resonance (Table 2). During the last 50 Myr
the eccentricity was certainly below 0.13, thus the 4/1 resonance is not a possible final outcome for Mercury. For some orbits the eccentricity is below 0.09 in the last
100 Myr and the 7/2 resonance was also destabilized. However, since this scenario is not true for all orbital solutions, we may expect a few final evolutions captured in this
last configuration (Table 4).
the 3/2 resonance just after the first passage through the reso-
nance area. When we used the present value of the eccentricity
(e = 0.206), the 3/2 resonance could not be attained because for
that value the capture probability in the 2/1 resonance is 100%
(Fig. 2). However, for eccentricity values lower than about 0.19,
the probability of capture in this resonance decreases, as well as
for higher order resonances. For instance, when the eccentricity
is 0.09, capture in the 2/1 resonance drops to 50%. Thus, since
the eccentricity of Mercury is varying, it may happen that about
4.0 Gyr ago its value was much lower than today and the spin
managed to avoid all the spin–orbit resonances higher than the
3/2 and was directly captured in the present observed configura-
tion. We estimate nevertheless that the probability for this sce-
nario to occur is very low, only about 8% (Table 4).

4.4. Critical eccentricities

Over 4.0 Gyr of evolution the eccentricity has many chances of
experiencing a period of very small values (e.g., Fig. 3). Even when
a period of low eccentricity does not last for a long time, a single
passage of the eccentricity below a critical value (Table 2) can be
enough to destabilize the corresponding spin–orbit resonance.

All orbital solutions were generated starting from initial condi-
tions close to the present values (see Laskar, 2008), and therefore
converge to the same final evolution. The eccentricity behavior is
thus identical for the last 50–60 Myr (Fig. 1), before which the
chaotic diffusion dominates (Fig. 5). During the last 50 Myr the ec-
centricity certainly reached values lower than 0.13, thus the 4/1
and above spin–orbit resonances cannot represent a possible final
outcome for Mercury (e4/1 ≈ 0.136). For the 7/2 and lower order
spin–orbit resonances, capture until the present day is not forbid-
den by the last 50 Myr of Mercury’s evolution, but depends on
the true orbital evolution of the eccentricity (Fig. 5). The higher
is the critical eccentricity, the lower is the probability of remain-
Fig. 6. Cumulative distribution of the minimal eccentricities attained for the 1000
orbital solutions that we used. Straight lines represent the critical values of the ec-
centricity for each spin–orbit resonance (Table 2), while dots represent the amount
of captures obtained numerically for spin–orbit resonances that are still stable be-
low each critical value of the eccentricity (Table 4).

ing trapped, because more orbital solutions will come below this
value.

In Fig. 6 we plot the cumulative distribution of the minimal ec-
centricities attained for each one of the 1000 orbital solutions that
we used. We also mark with straight lines the critical values of
the eccentricity for each spin–orbit resonance (Table 2) and use
dots to represent the amount of captures obtained numerically for
spin–orbit resonances that are still stable below each critical value
of the eccentricity. Since a large amount of the orbital solutions
experience at least one episode with an eccentricity below 0.05
(log10 e ≈ −1.3), about 84% of the final evolutions will end in the
5/2 spin–orbit resonance or lower (Table 4). By comparing the ec-
centricity instability thresholds for each spin–orbit resonance with
the amount of captures obtained numerically below that resonance
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Fig. 7. Four possible final evolutions for the spin of Mercury. Adopting a particular orbital solution, which presents a gradual decrease in the eccentricity (Fig. 3a), we integrate
close initial conditions for the spin. We observe that spin–orbit resonances are quit immediately after the eccentricity is below the critical values listed in Table 2. After
being destabilized, the spin can evolve directly to the present 3/2 configuration, or can be trapped in an intermediate spin–orbit resonance. We purposely left one situation
where the spin does not end in the 3/2 resonance. At the moment the eccentricity becomes lower than e2/1 ≈ 0.0046, the spin is still captured in the 5/2 resonance.
This resonance is then destabilized, but when the spin encounters the 2/1 resonance the eccentricity is already higher than e2/1. Thus, there is a chance of capture in this
resonance, preventing a subsequent evolution toward the 3/2 state.
we see that there is a good agreement, suggesting a strong corre-
lation between the orbital evolution of the eccentricity and the
percentage of captures in each resonance. The reason why there
is not full agreement between the two is because spin–orbit reso-
nances below critical values of the eccentricity can also be attained
by trajectories that escaped capture in higher order resonances,
that is, they can be attained even if the eccentricity is never below
the critical value for that resonance (Fig. 2).

When comparing the results after 4.0 Gyr with those after
the first capture, we verify that the 5/2 resonance (and above)
lose a significant amount of previously captured solutions. The
amount of orbits captured in the 2/1 resonance remains roughly
the same, because the number of trajectories quitting this reso-
nance is more or less compensated by the incoming trajectories
from higher order resonances. The 3/2 is the real winner of this
transition process, as the amount of trajectories that end in this
last configuration is about 4 times larger than it was initially. An
identical scenario was already observed in Paper I, except that only
a few captures occurred in spin–orbit resonances higher than the
2/1 and they were all subsequently destabilized (Table 4).

As in Paper I, we also noticed about 4% of the trajectories cap-
tured in the 1/1 spin–orbit resonance (Table 4). Since the prob-
ability of capture in the 3/2 spin–orbit resonance is almost 100%
even for very low values of the eccentricity (Fig. 2), the major pos-
sibility of evolving into the 1/1 resonance is by destabilizing the
3/2. This becomes a possibility if the eccentricity is almost zero,
that is, for e < 3 × 10−5 (Table 2).

4.5. Different scenarios of evolution

The critical eccentricity needed to destabilize the 2/1 spin–
orbit resonance is e2/1 ≈ 0.0046 (Table 2). Whenever the orbital
eccentricity is below this value, the spin will then evolve towards
the 3/2 resonance or below (Fig. 7). However, this is not the only
possibility of achieving this last configuration if the planet was
first captured in a higher-order resonance. Indeed, as discussed for
the 1st capture column (Table 4), if the eccentricity is lower than
0.19 at the time the planet crosses the 2/1 resonance (Fig. 2), the
chances of capture are lower than 100%, opening some space for
subsequent evolution to the 3/2 resonance. For instance, for a pre-
vious capture in the 5/2 resonance, an eccentricity of e5/2 ≈ 0.025
will destabilize it and produce a capture probability of only 14.4%
in the 2/1 resonance, i.e., when the 5/2 resonance is destabilized
there is about 85% of chance of ending in the 3/2 present config-
uration (Fig. 7).

In order to exemplify the multitude of possible evolutionary
scenarios, we performed another kind of experiment. Adopting a
particular orbital solution, which presents a gradual decrease in
the eccentricity (Fig. 3a), we integrated close initial conditions for
the spin. Since for this orbital solution the eccentricity is high at
the time of the first encounter, there is a great chance of capturing
the spin in a spin–orbit resonance with p > 5/2. In Fig. 7 we plot
the behavior of four trajectories, each one initially captured in a
different spin–orbit resonance, when the eccentricity approaches a
zone of very low values. As expected, the spin–orbit resonances are
sequentially abandoned as the eccentricity assumes small values.
In particular, we observe that the resonances are quit immediately
after the eccentricity is below the critical values listed in Table 2.
After being destabilized, the spin can evolve directly to the present
3/2 configuration, or can be trapped in an intermediate spin–orbit
resonance. In this example, the eccentricity becomes lower than
e2/1 ≈ 0.0046 around −1.79 Gyr and captures in the 2/1 resonance
becomes destabilized after that date.

We purposely plot one situation, where the spin does not end
in the 3/2 resonance, however. In this case, at the moment the ec-
centricity becomes lower than e2/1, the spin is still captured in the
5/2 resonance. This resonance logically becomes destabilized and
the rotation rate decreases. Nevertheless, at the moment the spin
encounters the 2/1 resonance the eccentricity is again higher than
e2/1, and therefore there is a chance of capture in this resonance,
preventing a subsequent evolution toward the 3/2 state (Fig. 7).

4.6. Constraints on the orbital evolution

We have seen in previous sections that there is an important
correlation between the minimal eccentricity attained by Mercury
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Table 5
Capture probabilities in spin–orbit resonances (in percentage), when the eccentricity
descends below a given critical value (Table 2).

p e3/2 e2/1 e5/2 e3/1 e7/2 e4/1

7/2 – – 1.2 2.6 3.8 4.7
3/1 – 2.0 4.2 7.2 10.7 11.6
5/2 – 3.2 5.2 16.0 20.7 22.1
2/1 3.1 5.4 23.9 30.5 32.6 31.6
3/2 25.0 73.2 55.1 37.2 27.7 25.9
1/1 68.8 15.4 9.7 6.1 4.2 3.9
None 3.1 0.7 0.5 0.3 0.2 0.2

through its orbital evolution and the probability of capture in a
given resonance (Fig. 6). The lower is the minimal eccentricity, the
higher is the probability of achieving a low order spin–orbit res-
onance. In particular, each time the eccentricity descends below a
given critical value for a spin–orbit resonance (Table 2), the spin
will evolve into a lower resonance.

Since we know the distribution of the minimal eccentricities
(Fig. 6), we can estimate the probability of ending in a specific
spin–orbit resonance given the value of the minimal eccentricity
of a considered orbit, Pcap/ec . For that purpose we eliminate all the
trajectories for which the minimal eccentricity is above the critical
value (Table 2) and then count the number of captures in each
resonance for the remaining orbital solutions. Results are listed in
Table 5. While for an arbitrary orbital solution the probability of
capture in the present 3/2 spin–orbit resonance is only 25.9%, this
value rises to 55.1% if we assume that the eccentricity of Mercury
was below e5/2 ≈ 0.025 at some time in the past, or even up to
73.2% if the eccentricity descends below e2/1 ≈ 0.0046. Results for
the critical eccentricity e4/1 ≈ 0.136 are the same as the global
results shown in Table 4, because the eccentricity of Mercury was
below that value in the most recent 50 Myr, where the chaotic
behavior is not significant (Fig. 5). Notice also that there are always
a few captures left in resonances above the corresponding critical
value. This can be explained by the same effect described in the
last paragraph of Section 4.5 and illustrated in Fig. 7.

Inversely, since we know that the rotation of Mercury is
presently captured in the 3/2 spin–orbit resonance, we can esti-
mate the probability for the eccentricity to have descended during
its past evolution below a specific critical level, Pec . Using condi-
tional probabilities, we have then

Pec = Pcap/ec × Porb

Pcap
, (33)

where Pcap/ec is the probability of ending in a specific spin–orbit
resonance given the value of the minimal eccentricity (Table 5),
Porb the probability for the eccentricity to reach that minimal ec-
centricity (Fig. 6) and Pcap the global capture probability in the
specific spin–orbit resonance (Table 4). Results for the 3/2 spin–
orbit resonance are given in Table 6. These probabilities for the
orbital evolution of the eccentricity are the same as if we select
only the evolutions that finished in the 3/2 spin–orbit resonance
and then look at the minimal eccentricity distribution. From the
above analysis we conclude that there is a strong probability that
the eccentricity of Mercury reached very low values; in particular
there is about a 77% chance that it descended below e2/1 ≈ 0.0046
(but only a 3% chance of going below e3/2 ≈ 0.00003).

5. Conclusions

Due to the increasing evidence of a molten core inside Mer-
cury (Ness et al., 1974; Margot et al., 2007), viscous friction at
the core–mantle boundary is expected and its consequences to the
spin must be taken into account. An important consequence is a
considerable increase in the probability of capture for all spin–orbit
Table 6
Probability (in percentage) for the eccentricity of Mercury to have descended below
a specific critical level (Pec ) given that its rotation is captured in the 3/2 spin–orbit
resonance today. Results for each critical eccentricity ec (Table 2) are obtained from
Eq. (33) with Pcap = 25.9% (Table 4).

P e3/2 e2/1 e5/2 e3/1 e7/2 e4/1

Pcap/ec 25.0 73.2 55.1 37.2 27.7 25.9
Porb 3.2 27.1 40.3 64.5 99.7 100.0

Pec 3.1 76.6 85.7 92.6 98.8 100.0

resonances; in particular, for the 2/1 and the 3/2 it can reach 100%
(Peale and Boss, 1977). Since it is believed that Mercury’s initial
rotation was much faster than today, a destabilization mechanism
is then required to allow the planet to escape from the 2/1 and
higher order resonances and subsequently evolve to the present
observed 3/2 configuration.

With the consideration of the chaotic evolution of the eccen-
tricity of Mercury we show that such destabilization mechanism
exists whenever the eccentricity becomes smaller than a critical
value for each spin–orbit resonance (Table 2). This mechanism was
already described in Paper I, but becomes of capital importance
when core–mantle friction is taken into account. There are two
main possibilities to evolve into the 3/2 configuration:

• The eccentricity becomes lower than the critical value for the
2/1 spin–orbit resonance (e2/1 ≈ 0.005) and evolves into the
3/2.

• The eccentricity becomes lower than the critical value for a
higher order resonance than the 2/1, and then crosses this res-
onance with an eccentricity lower than e < 0.19. This allows a
non zero probability of escaping the 2/1 resonance, and sub-
sequent evolution into the 3/2.

The other mechanism of capturing in the 3/2 resonance de-
scribed in Paper I, consisted in a returning to the 3/2 spin–orbit
resonance after an increase in the eccentricity. This effect is not as
important when we take into account core–mantle friction, since
the most part of the trajectories are captured in resonance after a
single passage.

After running 1000 orbital solutions, starting from 4 Gyr in the
past until they reached the present date, the spin of the planet
was captured in a spin–orbit resonance 99.8% of the time. The
main resonances to be filled and the respective probability were
(Table 4):

P5/2 = 22.1%, P2/1 = 31.6%, P3/2 = 25.9%. (34)

Although in this case the present configuration no longer repre-
sents the most probable final outcome, as it was in absence of
core–mantle friction (Paper I), it is still among the most probable
scenarios.

Moreover, if we assume that at some time in the past, the ec-
centricity of Mercury becomes lower than e5/2 ≈ 0.025 or e2/1 ≈
0.005 respectively, the probability of reaching the 3/2 spin–orbit
resonance rises to 55% and 73%, respectively (Table 5). Given that
Mercury is presently trapped in the 3/2 configuration, we can
also estimate that the eccentricity of Mercury has known at least
one period of very low eccentricity during its past evolution, with
about 86% and 77% of chances of being below e5/2 ≈ 0.025 and
e2/1 ≈ 0.005 respectively (Table 6).

The probability of capture in the 3/2 resonance can also be in-
creased if the orbital eccentricity experiences more periods near
zero. This can be achieved if we use direct integration of the So-
lar System instead of the averaged equations, because the true
eccentricity is expected to undergo some additional small varia-
tions around the value obtained for the averaged equations (Laskar,
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2008). Alternatively, the probability of capture in the 3/2 reso-
nance can still be increased if we are able to increase the critical
eccentricities that destabilize spin–orbit resonances (Table 2). This
can be achieved if the tidal dissipation is stronger (k2 > 0.4 and/or
Q < 50) or if C22 < 1.0 × 10−5 (Eq. (32)).

Lower values for the core effective viscosity, ν , will not change
the critical eccentricities, but will decrease the amount of captures
for all spin–orbit resonances. As a consequence, it becomes easier
to escape from the capture in spin–orbit resonances, and all those
trajectories that also escape the 3/2 resonance can be later trapped
there when the eccentricity experiences a period with e > 0.325
(Paper I). The true scenario for the evolution of the spin of Mercury
may be somewhere between the scenario described here, with an
efficient core–mantle friction effect, and the scenario described in
Paper I, for a total absence of core–mantle friction. In the future,
different dissipative parameters and models could be tested as well
as the effect of the obliquity, that was supposed to be zero in the
present study.
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