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Mercury is locked into a 3/2 spin-orbit resonance where it rotates
three times on its axis for every two orbits around the sun1–3. The
stability of this equilibrium state is well established4–6, but our
understanding of how this state initially arose remains unsatis-
factory. Unless one uses an unrealistic tidal model with constant
torques (which cannot account for the observed damping of the
libration of the planet) the computed probability of capture into
3/2 resonance is very low (about 7 per cent)5. This led to the
proposal that core–mantle friction may have increased the
capture probability, but such a process requires very specific
values of the core viscosity7,8. Here we show that the chaotic
evolution of Mercury’s orbit can drive its eccentricity beyond
0.325 during the planet’s history, which very efficiently leads to
its capture into the 3/2 resonance. In our numerical integrations
of 1,000 orbits of Mercury over 4 Gyr, capture into the 3/2 spin-
orbit resonant state was the most probable final outcome of the
planet’s evolution, occurring 55.4 per cent of the time.

Tidal dissipation will drive the rotation rate of the planet towards
a limit equilibrium value x l(e)n depending on the eccentricity e and
on the mean motion n (see Methods). In a circular orbit (e ¼ 0) this
equilibrium coincides with synchronization (x l(0) ¼ 1), but
x l(e0) ¼ 1.25685 for the present value of Mercury’s eccentricity
(e0 ¼ 0.206), while the equilibrium rotation rate 3n/2 is achieved
for e3/2 ¼ 0.284927. In their seminal work5, Goldreich and Peale
assumed that Mercury passed through the 3/2 resonance during its
initial spin-down. They derived an analytical estimate of the capture
probability into the 3/2 resonance and found P3/2 ¼ 6.7% for the
eccentricity e0. With the updated value of the momentum of inertia9

ðB2AÞ=C. 1:2£ 1024; this probability increases to 7.73%, and
our numerical simulations with the same setting give P3/2 ¼ 7.10%
with satisfactory agreement.

In fact, using the present value of the eccentricity of Mercury is
questionable, as the eccentricity undergoes strong variations in
time, owing to planetary secular perturbations. Assuming a random
date for the crossing of the 3/2 resonance for 2,000 orbits, we
found numerically PBVW50

3=2 ¼ 3:92% and PBRE74
3=2 ¼ 5:48% for these-

cular (averaged) solutions of Brouwer and Van Woerkom10 and
Bretagnon11. It should be stressed that with the regular quasiper-
iodic solutions BVW50 or BRE74, as for the fixed value of the
eccentricity e0, the 3/2 resonance can be crossed only once, because
e , e3/2. This will no longer be the case with a complete solution for
Mercury’s orbit that takes into account its chaotic evolution12,13. In
this case, Mercury’s eccentricity can exceed the characteristic value
e3/2 (Fig. 1), and additional capture into resonance can occur.

To check this new scenario, it is not possible to use a single orbital
solution because, owing to its chaotic behaviour, the motion cannot
be predicted precisely beyond a few tens of millions of years. We
have thus performed a statistical study of the past evolutions of
Mercury’s orbit, with the integration of 1,000 orbits over 4 Gyr in
the past, starting with very close initial conditions. This statistical
study was made possible by the use of the averaged equations for the
motion of the Solar System12,13 that have recently been readjusted
and compared to recent numerical integrations14, with very good

agreement over nearly 35 Myr.
Owing to the chaotic evolution, the density function of the 1,000

solutions over 4 Gyr is a smooth function (Fig. 1), similar, but not
equal, to a gaussian curve14. The mean value of the eccentricity �eLA04

is slightly higher than �eBVW50 and �eBRE74; but the main difference is a
much wider range for the eccentricity variations, from nearly zero to
more than 0.45. The planet eccentricity can now increase beyond e3/

2 during its history. Even if these episodes do not last for a long time,
they will allow additional capture into the 3/2 spin-orbit resonance.

For each of these 1,000 orbital motions of Mercury, we have
numerically integrated the rotational motion of the planet, taking
into account the resonant terms of equation (2), for p ¼ k/2 with
k ¼ 1,…,10, the tidal dissipation, and the planetary perturbations,
starting at t0 ¼ 24 Gyr, with a rotation period of 20 days. Because e
is not constant, the ratio x(t) of the rotation rate of the planet to its
mean motion n will tend towards a limit value ~xlðtÞ (see Methods)
that is similar to an averaged value of x l(e(t)), and capture into
resonance can now occur in various ways.

Type I is the classical case, where e , ep (Fig. 2a). It is only in this
case that the probability formula of Goldreich and Peale5 will apply.
In type II, the eccentricity oscillates around ep at the time when the
spin rate x(t) decreases towards p. The tidal dissipation thus drives
x(t) several times across p, greatly increasing the probability of
capture (Fig. 2b). Types I and II can only occur in the first few Myr,
as the spin rate decreases from faster rotations. We distinguish these
cases from type III, where the planet is not initially captured into

Figure 1 Probability density function of Mercury’s eccentricity. Values are computed over

4 Gyr for the two quasiperiodic solutions BVW50 (ref. 10) (a) and BRE74 (ref. 11) (b) and

for the numerical integration of the secular equations of refs 12 and 14 for 1,000 close

initial conditions (LA04, c). The mean values of the eccentricity in these solutions are

respectively �eBVW50 ¼ 0:177; �eBRE74 ¼ 0:181; and �eLA04 ¼ 0:198: The vertical dotted

line is the characteristic value e 3/2.
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resonance p; but later on, as the orbital elements evolve, the
eccentricity increases beyond ep, and tidal dissipation accelerates
the spin rate beyond p, leading to additional capture (Fig. 2c).

Over 1,000 orbits, a few were initially trapped in high-order
resonances (one in 7/2, one in 4/1, two in 9/2 and three in 5/1), but
these were associated with high values of the planet’s eccentricity. As
the eccentricity decreased these resonances became unstable, and
none of these high-order resonances survived. They did eventually
get trapped for a long time into the 5/2 resonance, but even that did
not survive over the full history of the planet. Indeed, the stability of
the resonances depends on the eccentricity of Mercury, and except
for the 1/1 resonance, the resonances may become unstable for very
small values of the eccentricity (Table 1).

We followed all 1,000 solutions, starting from 24 Gyr, until they
reached the present date or were captured into the 2/1, 3/2 or 1/1
resonances. Unlike in previous studies, we found that capture into
the 1/1 resonance is possible, because the eccentricity of Mercury
may decrease to very low values at which capture can occur and the
resonance remain stable. Over 554 solutions that were captured into
the 3/2 resonance, a single one, initially captured at 23.995 Gyr,
escaped from resonance at about 22.396 Gyr. The solution then got
trapped into the 1/1 resonance at 22.290 Gyr, capture that was
favoured by the very low eccentricity required to destabilize the 3/2
resonance (Table 1). Out of the 56 solutions initially trapped into
the 2/1 resonance, ten were destabilized, and only two of them were
further captured, one into the 3/2 resonance, and one into the 1/1
resonance. Globally, we obtained a final capture probability:

P1=1 ¼ 2:2%; P3=2 ¼ 55:4%; P2=1 ¼ 3:6% ð1Þ

The remaining 38.8% non-resonant solutions end with nearly the
same final rotation rate of x f ¼ 1.21315, because all the orbital

solutions are very close in the vicinity of the origin. Among the
solutions captured into the 3/2 resonance, we can distinguish 31
solutions of type I, 168 of type II and 355 of type III (Fig. 2).

With the consideration of the chaotic evolution of the eccentri-
city of Mercury, we thus show that with a realistic tidal dissipative
model that properly accounts for the damping of the libration of the
planet, and without the need for some additional core–mantle
friction, the present 3/2 resonant state is the most probable outcome
for the planet.

Additionally, from the present state of the planet, we can derive
an interesting constraint on its past evolution. Of all 554 orbits
trapped into the 3/2 resonance, for 521 of them (94.0%) Mercury’s
eccentricity exceeded 0.325 in the past 4 Gyr. The conditional
probability that Mercury’s eccentricity exceeded 0.325, given that
its rotation is trapped into the 3/2 resonance, is thus 94.0%. The 3/2
resonant state of Mercury thus becomes an observational clue that
the chaotic evolution of the planet orbit led its eccentricity beyond
0.325 over its history.

The largest unknown in this study remains the dissipation factor
k2/Q of K (equation (4)) (ref. 15). A stronger dissipation would
increase the probability of capture into the 3/2 resonance, because
x(t) would follow more closely x l(e(t)) (Fig. 2), whereas lower
dissipation would slightly decrease the capture probability. This study
should apply more generally to any extrasolar planet or satellite
whose eccentricity is forced by planetary perturbations. A

Methods
Tidal dissipation and core–mantle friction will drive Mercury’s obliquity (the angle
between the equator and the orbital plane) close to zero. For zero-degree obliquity, and in
the absence of dissipation, the averaged equation for the rotational motion near resonance
p (where p is a half-integer) is4,5:

_x¼2
3

2
n
B2A

C
Hðp; eÞ sin2ð‘2 pMÞ ð2Þ

where ‘ is the rotational angle, x¼ _‘=n is the ratio of the rotation rate to the mean motion
n, M is the mean anomaly and H(p, e) are Hansen coefficients5,16. The moments of inertia
areA , B , C, with C ¼ ymR2, where m and R are the mass and radius of the planet, and
y is a structure constant.

Tidal models independent of the frequency (constant-Q models) do not account for
the damping of the amplitude of libration that is at present observed on Mercury5,17.
Moreover, these models introduce discontinuities into the equations and can thus be
considered as unrealistic approximations for slow rotating bodies18. Therefore, we use here
for slow rotations a viscous tidal model, with a linear dependence on the tidal frequency.
Its contribution to the rotation rate is given by5,18,19,20:

_x¼2K½QðeÞx2NðeÞ� ð3Þ

with QðeÞ ¼ ð1þ 3e2 þ 3e4=8Þ=ð12 e2Þ9=2;NðeÞ ¼ ð1þ 15e2=2þ 45e4=8þ 5e6=16Þ=ð12
e2Þ6; and

K ¼ 3n
k2

yQ

R

a

� �3 m0

m

� �
ð4Þ

where k2 and Q are the second Love number and the quality factor, while a, m and m0 are
the semi-major axis, the mass of the planet and the solar mass, respectively. Equilibrium is
achieved when _x¼ 0; that is, for constant e, when x ¼ x l(e) ¼ N(e)/Q(e).

For a non-constant eccentricity e(t), the limit solution of equation (3) is no longer
x l(e), but more generally:

~xlðtÞ ¼ xð0Þ þK

ðt
0

NðeðtÞÞgðtÞdt

� �
=gðtÞ ð5Þ

where gðtÞ ¼ expðK
Ð t

0QðeðtÞÞdtÞ:

Figure 2 Typical cases of capture into the 3/2 resonance. The rotation rate x(t ) (bold

curve) and limit value x l (e(t )) (dotted curve) are plotted versus time (Gyr). a, Type I is the

classical case5: As e , e 3/2, the limit value x l is always lower than 3/2. b, In Type II, at

the time when x reaches the resonant value 3/2, e is oscillating around e 3/2, leading to

multiple crossings of the resonance, with ultimately a capture. c, Type III corresponds to

solutions that have not been captured during the initial crossing of the resonance, but later

on, as the eccentricity increases beyond e 3/2.

Table 1 Critical eccentricity ec(p) for the resonance p

p ec(p)
.............................................................................................................................................................................

1/1 –
3/2 0.000026
2/1 0.004602
5/2 0.024877
3/1 0.057675
7/2 0.095959
4/1 0.135506
9/2 0.174269
5/1 0.211334
.............................................................................................................................................................................

If e , ec(p), the resonance p becomes unstable, and the solution may escape the resonance.
The critical eccentricity e c(p) is obtained by the resolution of ½QðeÞp2NðeÞ�=Hðp;eÞ ¼
ð3=2KÞ n½ðB2AÞ=C�:
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Using y ¼ 0.3333, k 2 ¼ 0.4 and Q ¼ 50 (refs 15, 21), we have
K ¼ 8.45324 £ 1027 yr21. Assuming an initial rotation period of Mercury of 10 h, we
estimated that the time needed to despin the planet to the slow rotations would be about
300 million years. This is why we started our integrations in the slow-rotation regime, with
a rotation period of 20 days (x < 4.4) and a starting time of 24 Gyr, although these values
are not critical.
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All magnetically ordered materials can be divided into two
primary classes: ferromagnets1,2 and antiferromagnets3. Since
ancient times, ferromagnetic materials have found vast appli-
cation areas4, from the compass to computer storage and more
recently to magnetic random access memory and spintronics5. In
contrast, antiferromagnetic (AFM) materials, though represent-
ing the overwhelming majority of magnetically ordered
materials, for a long time were of academic interest only. The
fundamental difference between the two types of magnetic

materials manifests itself in their reaction to an external mag-
netic field—in an antiferromagnet, the exchange interaction leads
to zero net magnetization. The related absence of a net angular
momentum should result in orders of magnitude faster AFM spin
dynamics6,7. Here we show that, using a short laser pulse, the
spins of the antiferromagnet TmFeO3 can indeed be manipulated
on a timescale of a few picoseconds, in contrast to the hundreds of
picoseconds in a ferromagnet8–12. Because the ultrafast dynamics
of spins in antiferromagnets is a key issue for exchange-biased
devices13, this finding can expand the now limited set of appli-
cations for AFM materials.

To deflect the magnetization of a ferromagnet from its equili-
brium, a critical field HFM

cr <HA of the order of the effective
anisotropy field is required. In contrast, the response of an anti-
ferromagnet to an applied field remains very weak before the
exchanged-enhanced critical field HAFM

cr <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HAHex

p
is reached. In

most materials the exchange field H ex .. HA (HA , 1 T,
H ex < 100 T) and thus HAFM

cr ..HFM
cr : This difference is related to

the fact that in an antiferromagnet, no angular momentum is
associated with the AFM moment. This large rigidity of an anti-
ferromagnet to an external field also shows up in the magnetic
resonance frequency14, where spin excitations start at q<
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HAHex

p
: This is in contrast to q< gHA in a ferromagnet,

which can result in a difference of more than two orders of
magnitude.

Indeed, dynamical many-body theory calculations15 show a
possibility of AFM dynamics with a time constant of a few
femtoseconds only. Experimentally, the ultrafast dynamics of an
antiferromagnet is still an intriguing question. The problem how-
ever is far from trivial, as there is no straightforward method
for the manipulation and detection of spins in AFM materials.
Therefore, an appropriate mechanism should be found that would
deflect the AFM moments on a timescale down to femtoseconds,
and this change should subsequently be detected on the same
timescale.

The solution to this problem can be found in the magnetocrystal-
line anisotropy. Indeed, a rapid change of this anisotropy can lead,
via the spin–lattice interaction, to a reorientation of the spins11,12.
Such anisotropy change, in turn, can be induced by a short
femtosecond laser pulse in a material with a strong temperature-
dependent anisotropy. The subsequent reorientation of the spins
can be detected with the help of time-resolved linear magnetic
birefringence16, which enables us to follow the change of the
direction of spins in antiferromagnets, similar to the Faraday and
Kerr effects in ferromagnets.

The rare-earth orthoferrites RFeO3 (where R indicates a rare-
earth element) investigated here are known for a strong tempera-
ture-dependent anisotropy17,18. These materials crystallize in an
orthorhombically distorted perovskite structure, with a space-
group symmetry D16

2h (Pbnm). The iron moments order antiferro-
magnetically, as shown in Fig. 1, but with a small canting of the
spins on different sublattices. The temperature-dependent aniso-
tropy energy has the form19,20:

FðTÞ ¼ F0 þK2ðTÞsin2vþK4sin4v ð1Þ

where v is the angle in the x–z plane between the x axis and the AFM
moment G, see Fig. 1, and K2 and K4 are the anisotropy constants of
second and fourth order, respectively. Applying equilibrium con-
ditions to equation (1) yields three temperature regions corre-
sponding to different spin orientations:

G4ðGx FzÞ : v¼ 0; T $ T2

G2ðGz FxÞ : v¼ 1=2p; T # T1

G24 : sin2v¼ K2ðTÞ=2K4; T1 # T # T2 ð2Þ

where T1 and T2 are determined by the conditions K2(T1) ¼ 22K4
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