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Two possible types of resonant spin rates for planets and satellites are investigated. The first occurs in
eccentric orbits at rotation rates which are commensurate with the orbital mean motion. A resonant spin
state exists at each half-integer multiple of the mean motion, the simplest case being the well-known syn-
chronous rotation. The second class of resonant spins involves the presence of another planet or satellite.
A planet (or satellite) with such a resonant spin always aligns the same axis toward the second planet (or
satellite) at each conjunction.

Averaged equations of motion are derived, and stability criteria are formulated for both types of resonance.
Probabilities of capturing a planet (or satellite) into one of the commensurate rotation states as it is being
despun by tidal friction are calculated.

Application of the results to Mercury reveals that the very small value of (B-4)/C~10"8 would suffice to
stabilize Mercury’s rotation period at § of its orbital period. The probability that Mercury would be cap-
tured at this resonance is calculated for several assumed forms of tidal torques. Venus may be in a resonant
spin state of the second kind. A sidereal rotation period of 243.16 days retrograde would be commensurate
with its synodic motion. However, a large value of (B—4)/C(>107%) seems to be required to stabilize
this rotation. In addition, the capture probability at this resonance appears to be small.

I. INTRODUCTION tidal torque. Here, 4, B, and C are the principal mo-
ments of inertia in order of increasing magnitude. For
the moon in its present orbit with the known value of
(B—A)/C~2X10~*, stable resonant spin states exist

EVERAL theoretical discussions of planetary and
satellite rotation rates have followed the recent

radar determination of Mercury’s rotation period .
(Pettengill and Dyce 1965). (Hereafter we only refer at rotation rates of 0.5%, n, 1.5z, 2n, 2.5% and perhaps

" at several others. Thus for Mercury and the moon
to planets, although our results may be applied to ble spi . : P 4
satellites as well.) In the first, Peale and Gold (1965) Stﬁ. E Spin statei appear fo exist with rotation rates
showed that in an eccentric orbit tidal friction could "y . 4¢ both faster and slower than the observed

bring an axially symmetric planet to an asymptotic Kaluez Almost certaini.y Mercury and the moon must
rotation rate which is somewhat faster than its orbital ¢ ypassgd. some o these stablg resonances on the
mean motion. In the asymptotic spin state the tidal way to attaining their present spins. Similar strong
torque averaéed over an orbit period vanishes. For a indications that satellites may pass through stable
broad class of tidal torques the maximum torque occurs ;Est(a),rtlﬁ)?lcsei fals.zvlzl;orldidlﬁg th; fc)lliserve.d sylllchr:;)nogi
at perihelion, and the final spin velocity will lie between a’ satetites ol the major plancts.

the mean motion and the instantaneous orbital angular special mtler(?st lls I.apetus, .because Of. l.ts weak tidal
velocity at perihelion. The precise value of the final torque, relatively high orbital eccentricity, and well-

spin is determined by the amplitude and frequency cm\%{}hrmed S}g}c.h ronous robtatlon' gg;n_iom 1950)'.
dependence of the planet’s Q, where 1/Q is the specific atdcon itions must be satisfied if a planet is to be
dissipation function (MacDonald 1964). In Fig. 1 we captured at one of the resonant st?,tesP The present
have displayed the asymptotic rotation rate of an investigation is devoted to answering this question.
axially symmetric Mercury as a function of eccentricity
for four types of tidal torques, where & is the angle by
which the high tide leads the sun. We discuss the differ-
ent forms of tidal torque in Sec. ITI.

Colombo (1965) has suggested that Mercury may be
spinning with an angular velocity of precisely 1.5#,
where » is its orbital mean motion. Subsequent in-
vestigations have shown that a sufficient deviation
from axial symmetry would stabilize this resonant
spin (Liu and O’Keefe 1965; Colombo and Shapiro
1965; Goldreich and Peale 1966a). The existence of
other resonant spin states at rotation rates of pz, where
p is any half-integer (negative or positive), has been 30 . ,
suggested by the latter two sets of authors. We have 0 ol o2 03 04
shown that the exceedingly small value of (B—A4)/C ECCENTRICITY
~10~% would suffice to stabilize many of these reso- Fic. 1. Mercury’s asymptotic tidal spin period
nances against the disruptive influence of the solar for four types of tidal torque.
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v F1c. 2. Coordinates
and angles used in dis-
cussion of first type of
(] 9 resonance.
I F
S

In the following, approximate equations of motion for
a spinning planet are derived by averaging the complete
equation of motion over an orbit period. From the
averaged equations criteria for the stability of resonant
spin states are established. Details of the capture into
stable spin states are emphasized, and techniques for
calculating capture probabilities are developed. Capture
probabilities are calculated for both the synchronous
and the 1.5# resonance and are applied to Mercury
and the moon. Similar techniques are used in a dis-
cussion of the Venusian spin, which may be commen-
surate with its synodic mean motion. A stability
criterion is determined, and the possibility of capture
into such a resonant state is considered. As a check on
the validity of the averaged equations of motion the
complete equations of motion were directly integrated
in several cases, and the results were shown to agree
with those derived from the averaged equations.

II. EQUATIONS OF MOTION AND STABILITY

Let us consider a planet whose spin axis is normal
to its orbit plane. The principal moments of inertia
are A, B, and C, where C is the moment about the spin
axis. The orbit is taken to be a fixed ellipse specified by
a semimajor axis @, eccentricity e, and instantaneous
radius 7. Position in the orbit is determined by the true
anomaly f or the mean anomaly M. Other angles we
use are displayed in Fig. 2. Line IF is an inertial line,
whereas PS is the planet-sun center line. The angle
between the planet’s long axis and the center line is .
The angular position of the long axis relative to the
inertial line IF is denoted by 6. From Fig. 2 we see
that

0= f+¢. )
The equation of motion for § is (Danby 1962),
Ci+3(B—A)(GM /%) sin2y =0, (2)

where G is the gravitational constant and Mo is the
solar mass. In writing Eq. (1) we have specifically
excluded the solar tidal torque as well as torques
produced by other planets or satellites.

As it stands Eq. (2) is insoluble. Fortunately, in
the cases of interest to us it may be reduced to a more
tractable form. We are concerned with planetary spin
rates having values near pn, where p is a half-integer
and # is the orbital mean motion. It then becomes
convenient to introduce a new angle vy such that

y=0—pM. 3)

AND S. PEALE

Substituting Egs. (1) and (3) into Eq. (2), we obtain
3/a\* /B—A4
)%
2\r, C
Xsin2y (cos2f cos2pM+-sin2f sin2pM)
X cos2y(cos2f sin2pM —sin2f cos2pM)=0, (4)

If § is very close to pn and (B—A4)/C<K1, v will only
change very slightly during each orbit. This suggests
that we average Eq. (4) over an orbital period holding
v fixed. Using Cayley’s tables (Cayley 1859), we find
the averaged equation to be

Cy+35n2(B—A)H(p,e) sin2y=0, ®)

where H(p,e) are power series in e. Several of the
H(p,e) are listed in Table I. One of their important
properties is that the leading term in H(p,e) is of order
32|P"”.

From Eq. (5), which is the ordinary pendulum
equation, we observe that in the absence of tidal
torques a planet could exhibit stable librations about
spin rates of pn. If H(p,e) is positive, the stable libra-
tion is about y=0, and the position of the planet’s
long axis at perihelion will oscillate about the solar
direction. For H(p,e) negative, the stable libration
occurs about y=3, and now it is the planet’s short
axis which tends to point toward the sun at perihelion.

When tidal torques are present, the averaged (over
an orbit period) tidal torque (7") must be added to the
right-hand side of Eq. (5). If {T') is essentially constant
(i.e., if (T) is independent of v, v and #), the stability
condition for a resonant spin state is easily determined.
For stability it is only necessary that the tidal torque
not exceed the maximum possible restoring torque,
which occurs at v displaced by 4= from its equilibrium
value. Thus the stability criterion becomes

(T)| <3(B—A)H (p,e)n*. (6)

An expression for the instantaneous tidal torque on
a spinning planet is (MacDonald 1964)

3k GM*R®
T=—————s5in 2}, @)
278
where k&, is the tidal Love number and R the planet’s

TaBLE I. Coefficient of restoring torque to order .

? H(p,0)
—1.0 —/24
—0.5 — /48
0.5 —e/2 +é8/16
1.0 - +13¢4/16
1.5 Te/2 —123¢8/16
2.0 17¢2/2 —115¢4/6
2.5 845¢3/48
3.0 533¢4/16
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mean radius. As MacDonald shows, §~1/Q; this rela-
tion together with Eq. (6) may be used to express the
sufficient stability condition for the pth resonance as

B—4 7.1X10°8

> )
C  QlH(pe)l
for Mercury and
B—4 3.8X1077

> )
C  QlH(pe)l

for the moon. In arriving at Egs. (8) and (9) we have
assumed k2=0.05 for Mercury and k.=0.02 for the
moon (MacDonald 1964). The Q’s appropriate to
Mercury and the moon almost certainly satisfy

10< Q<500

(Goldreich and Soter 1966). Even if Q=10 for Mercury,
the large orbital eccentricity of 0.206 would permit a
stable resonance to exist at p=% for (B—A4)/CZ 1078,
In fact, if Mercury supported internal stress differences
of the same order as those of the moon [which would
imply (B—A4)/C~4X10"%], many other resonant
spins including all those with —0.5<$<3.0 would also
be stable. For the moon (B—A)/C~2X10~* (Jeffreys
1961). Using Q=10 and ¢=0.0549, we find that in-
equality (9) is satisfied when 0.5<$<2.5 and possibly
in other cases as well.

We have demonstrated the stability of several
resonant spin states for both Mercury and the moon.
We turn next to the question of capture into these
states.

®

©)

III. CAPTURE PROBABILITIES

We consider the rotation of a nonaxisymmetric
planet as tidal friction slows its spin from an initial
rate which is much larger than ». The orbit of the planet
is assumed to be a fixed ellipse. Complications which
arise when the orbit is varying are treated later.

As the planet’s rotation slows, it will occasionally
approach one of the resonant spin values. Near the pth
resonance we may use the averaged equation of motion

Cy+3(B—A)n*H (pye) sin2y=(T). (10)
If (T) is constant, the first integral of this equation is

Cy?

%—%(B—Awm,e) cos2y=(T)y+Eo, (11)

where E=Ey+{T)y is referred to as the energy. For
E>32(B—A)n*H (p,e), v is an angle of rotation, whereas,
for E<3(B—A)n?H (p,e), v is an angle of libration. At
the minimum energy, E=—%(B—A4)n*H (p,e), the
amplitude of libration vanishes.

In Fig. 3 we have plotted 372 vs v using Eq. (11).
The magnitude of (T') has been greatly exaggerated in
order to better illustrate the principles involved. We
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F16. 3. Schematic diagram of 32 vs v for (T)
constant. No capture.

have chosen v initially as an angle of rotation with
¥>0. This corresponds to an initial planetary spin
which is faster than the resonant one. From Fig. 3
we see that v increases up t0 Ymax, where 4 vanishes.
The motion then reverses with v becoming negative and
v decreasing indefinitely. Since ¥<<0 corresponds to a
rotation rate less than the resonant one, we observe
that the planet has successfully skirted the resonant
spin state. Thus we may draw the general conclusion
that if (7') is constant, the planet cannot be trapped
at a spin rate which is commensurate with its orbital
mean motion.

On the other hand, if the dependence of 3v? on v
is not symmetric about y=0, but is as depicted in
Fig. 4, the planet will be trapped into stable libration
about the resonant spin value. What kind of tidal
torque would give rise to this situation? Obviously,
the torque must show a dependence on the sign of 7.
Near y=0, two simple torques of this form may be
written as

¥
(T)= —K( V+;>, (12a)
and
(TY=—W—Z sign v, (12b)

where K, V, W and Z are positive constants. We shall
derive capture probabilities in terms of the torques
given by Egs. (12a) and (12b) and subsequently relate
these torques to physical models of frictionally retarded
tides.

We consider first (T) as given by Eq. (12a). Sub-
stituting this equation into Eq. (10) we arrive at
(d/d)[3CYy*— % (B—A)n*H (p,e) cos2y]

=—K[Vy+GY/m)], (132)
or equivalently,

dE/di=—K[Vy+(*/n)]. (13b)

For v>0 the amount by which a minimum of 142
falls below the preceding one is denoted by AE. To
illustrate this point in Fig. 4 the second minimum has
been drawn (dashed) even though v2/2 never reaches it.
In actual cases, where the tidal torque is much smaller
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y2/2
=

Fic. 4. Schematic diagram of 2/2 vs v for
(T)=—K(V++v/n). Capture.

than depicted, the zero of %y? (at y="ymax) occurs
just before y=+,. Thus, we may replace ymax by 72
in the integrals which follow. From Fig. 4 and Eq.
(13b), we have

2

2 % T2 0%
AE=—K / (Vy+—>dt= -K / (V+—>d7, (14a)
1 n 71 n

1 .)}2 71 fy
AE’=—K[ (V’)’/+—>dt= —K/ <V+—)d'y, (14b)
2 n Yo n

and

0E=AE+AE'. (14¢)
For weak tidal torques, the return path from vy, to v;
falls just slightly below the incoming path from v; to

~3. Hence
2K r2 2K rve
5Ez———/ 'y"’dt=—-——/ ydy.
”Ji1 nJr

As we have drawn Fig. 4, |6E| > E;, which leads to a
second zero in 14?, this time near y=+;. Near v, ¥
again reverses sign, and v is now trapped into a libration
between v, and .. The term in (7’) which is propor-
tional to v will cause the amplitude of this libration to
slowly decay. Thus the planet has become trapped in the
resonant spin state. On the other hand, if |6E| <E; as
displayed in Fig. 5, then the planet will escape the
resonance and continue to despin. Therefore, unlike
the case of constant (7), which never permits capture,
when (T) contains a term proportional to v, trapping
at a resonance will sometimes occur.

We may calculate the probability that a torque
of the form given in Eq. (12a) will lead to capture.
Since the values of E, are distributed with uniform
probability between 0 and AE, the probability of
capture is

(15)

oE 2

) (16)
T2y

1+7rV/ —dy
Y1 n

GOLDREICH
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where we have used y,—v1=~r. Of course, if SE/AE> 1,
P=1.

We again make use of the condition that the tidal
torque is much smaller than the typical solar torque
on the planet’s permanent deformation from axial
symmetry. Then, the solutions of equation (5), which
does not include the tidal torque, represent excellent
short-term approximations to the actual motions. Thus,
the solution of this equation for vy may be substituted
in the right-hand side of Eq. (16) in order to evaluate
the capture probability. We are interested in the
singular solution which separates the rotations from
the librations [see discussion following Eq. (11)]. In
this case we find

7/n={3[(B—A)/CIH (p,e)} cosy, (17)

hence
2

= 14+-7V/2[3(B—A)H (p,e)/CT

From the expression for P we see that a nonnegligible
capture probability requires a small value for V,
because (B—A)/C is small for all planets and satellites.
Thus a sizable fraction of the total tidal torque must
be proportional to 4 for capture to become likely. We
emphasize that for (T)=—K(V+v/n) the capture
probability is dependent on the value of (B—A4)/C.

Let us repeat the arguments just given using
(T)=—W—_Zsigny [Eq. (12b)]. Defining AE and AE’
as before, we easily show that

(18)

AE=—[W+2Z)m, (19a)
AE =+ (W—2Z)m, (19b)
so that
SE=AE+AE'=—2rZ. (19¢)
Thus, the capture probability becomes
P=2Z/(W+2Z). (20)

Unlike the previous case, this capture probability is
independent of (B—A)/C.

Y¥2

F16. 5. Schematic diagram of 342 vs v for
(TY=—K(V++/n). No capture.
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We shall employ expressions for the tidal torques
which were developed by MacDonald (1964) and
Darwin (1908). MacDonald assumes that the lunar
tidal potential produces a second harmonic distortion
of the earth. The effects of friction are modelled by
delaying the time of high tide. Thus, unless the month
and day are equal (and e=0), the tidal bulge is dis-
placed by an angle § from the position directly under
the moon. An ad hoc feature of this model is that the
angle & incorporates the entire physics of the frictional
process. In particular, for constant § the time lag of the
tide varies with the moon’s position in orbit if >0
(see Kaula 1964).

In terms of his model MacDonald finds the instan-
taneous tidal torque to be that given by Eq. (7). We
have used this expression for three different functional
forms of é. In all cases we have §<1, so that sin26~25.
In Fig. 1 we have displayed the asymptotic tidal spin
rates for the three types of é.

In his development of the tidal disturbing function
(Kaula 1964) follows the procedure first applied by
Darwin (1908). The tidal potential at the planet is
expanded in a Fourier time series. Each component of
the series raises a tide in which the effects of dissipation
are modelled by a phase lag, causing each component
tide to lag behind the potential which raises it. The
phase lag e; in each component tide is simply related to
the planet’s Q by

sine~1/Q. (21)
If Q is independent of both tidal amplitude and fre-
quency, as experiments at much higher frequencies on
rocks suggest it might be (Knopoff 1964), then |e|
will be the same for all component tides. The sign of
e; will be determined by the sign of the frequency of
the component tide. Of course, we could also consider
cases where 1/Q (and hence the ¢;) is proportional to
frequency. However, qualitatively at least, these cases
are similar to the ones obtained using MacDonald’s
torques [i.e., {T)=K(V+v/n)] so we do not consider
them.

It is easily shown (Kaula 1964) that the tidal torque
on a planet whose spin axis is normal to its orbit
plane is

(D=-K 5 [HpeFsglb—pn), (22)

where H (p,e) is given in Table I, K is a positive con-
stant, and Q is assumed constant. For small e, (T) is
negative for 6>#, and the tidal torque will drive the
planet to synchronous rotation. For >0.235, (T)
changes sign from negative to positive at §=32n. The
final asymptotic spin rates are shown in Fig. 1 under the
heading Q= const.

Let us now proceed to calculate capture probabilities
using first MacDonald’s and then Darwin’s forms for
the tidal torque.

429

A. MacDonald’s Torques

We shall show that these torques are well approxi-
mated by one of the two forms:

(TY=const or (T)=—K(V+v/n).

The simplest functional dependence occurs for & pro-
portional to tidal frequency. Then Eq. (7) assumes

the form .
T= —](d/f)GE(G_f)/”J’

where J is a positive constant. Averaging T over an
orbit, we find that (T') takes the form of Eq. (12a) with

(14-15¢2/2+45¢4/8+3¢5/16)

V=
? (143¢243¢4/8) (1—e2)} @

where Eq. (3) has been used. Use of Eq. (24) together
with Eq. (18) yields the capture probability for the
pth resonance when 6 is proportional to tidal frequency.

If 6 is dependent of both tidal frequency and ampli-
tude, the expression for the averaged tidal torque be-
comes more cumbersome. In this case ¢, and hence the
tidal torque, will change sign if Eq. (25) has a solution

for f=fi:
cosfi= ({L(p+ (v/m)J(1—e)H}i-1)/e.  (25)

The reversals of the tidal torque will then occur at
both f= fiand f=2r— fi. In terms of f; we may write
the averaged tidal torque in the form

(T)y=—D:i{ (1+3e+3¢*/8) (r—2f1)

— (8e+6¢®) sin f1— (3¢*+¢%/2) sin2f;
—2¢%sin3 f1/3—e* sind f,/16},

(23)

(26)

where D, is a positive constant. If |cosfi|>1, then
there is no torque reversal, and f; must be set equal to
zero in Eq. (26), which makes (7") independent of 7.
In general, to determine the transition probability for
this type of tide, we must evaluate AE and AE’ (see
Figs. 4 and 5 for their definition) in terms of the more
general expressions

2 2
AE= / (T)ydt= / ' (T)dy, (272)
1 71

AE'= f (T)ydt= / n(T)d—y. (27b)

To express (T') as a function of v, and hence v, we use
Egs. (25) and (17). The evaluation of these integrals
may now be performed on a computer. However, if f;
does not come too close to zero, we may derive approxi-
mate analytic expressions for AE and AE'. Setting

f1=f0+6f7
cosfo={[p(1—e)¥]i—1}/e,

(28)
where
(29)
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F16. 6. Capture probability into § resonance from faster
spin for (B—A4)/C=10"% MacDonald’s torques.

we find
v(1—e)t

B 2 ne(p)} sinfo.

Substituting Eq. (30) into Eq. (26), we are able to put
(T) in the form of Eq. (12a) with

2e (P)% Sinfol_ <T>
(1—e)t L T>/df1]f,=fo’ 1)

(30)

Thus, even for constant §, if the resonant angular
velocity lies between the orbital angular velocities at
perihelion and aphelion, the reversals of tidal torque
will lead to a term proportional to v in (7). Equation
(31) may be used in Egs. (14) to give approximate
expressions for AE and AE’.

For a linear amplitude dependence § « (a/7)%. As for
the case of constant §, the averaged tidal torque may
be written in terms of f; defined by Eq. (22). Now

(T)=Dyf (1421¢*/2+105¢*/8463¢5/16) (2 fr—)

+ (14e+105¢2/24-105¢4/4-+35¢%/16) sin f;

+ (21¢?/2+35¢%/24-105¢%/32) sin2 f1

+ (35¢%/6-+105¢°/24+4-7¢/32) sin3 f1

+(356%/16+105¢%/32) sind f,

+ (21¢5/40-+7¢7/160) sin5 fy

+ (7¢8/96) sin6 f1+¢€7/224 sin7 f1}, (32)

where D, is a positive constant. An approximate

expression for the tidal torque in the form given by
Eq. (12a) may be derived. As in the case of constant g,

1.0
3~
8 CONSTANT

8~ AMPL|TUDE 8~ FREQUENCY

6

4

T T T T T

2F

CAPTURE PROBABILITY

— | . L L
180 .200 220 240 .260 .280

ECCENTRICITY

Fi1c. 7. Capture probability into § resonance from faster
spin for (B—A4)/C=10"5. MacDonald’s torques.

AND S. PEALE
the appropriate value of V, expressed in terms of the
torque (T'), is given by Eq. (31).

B. Darwin’s Torques

These torques are of the form (T)=—W—Zsgny
near each resonance [see Eqgs. (12b) and (22)]. Thus,
the probability that a despinning planet will be cap-
tured in the pth resonance as it despins is just

P=2A(GIL S || ssnlptn—aT, (3)

where 0<7<3}. We emphasize once again the striking
difference between the capture probabilities calculated
here and those calculated from MacDonald’s torques.
Here we find P to be independent of (B—A4)/C with a
nonzero capture probability at each resonance.

IV. APPLICATIONS TO MERCURY AND THE MOON

In this section we regard the orbits of Mercury and
the moon as fixed ellipses. However, capture proba-
bilities are described for wide ranges of eccentricity.

1o} 5~

AMPLITUDE 3~CONSTANT 8~FREQUENCY

8+

CAPTURE PROBABILITY

2 L L L s 1T
220 .240 260 .280 300 320 340

ECCENTRICITY

Fic. 8. Capture probability into § resonance from slower
spin for (B—A4)/C=10"% MacDonald’s torques.

A. Mercury

We shall discuss the possibilities of capturing Mer-
cury at a resonance, first assuming tidal torques of
MacDonald’s form and then of Darwin’s form with
constant Q. The results, which are quite different in the
two cases, are compared at the end of Sec. IVA.

1. MacDonald’s Torques

For Mercury’s orbit (e=0.206) the resonant spin
values at §=#, and 3n/2 both lie between the orbital
angular velocity at perihelion and aphelion. As long
as €<0.31, the resonant spin state at §=2#u, as well as
all states with |p—1|>1, will fall outside this range.
The state with p=4% will remain in this range so long
as ¢>0.19. It is important to distinguish the resonances
which lie inside and outside this range, for we have
seen in the previous section that when 8 is independent
of frequency, reversal of the tidal torque is a necessary
condition for capture into a resonant spin state.
Without reversal, even a & proportional to frequency
leads to only a very small capture probability. In
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Figs. 6-9 we have displayed capture probabilities for
the 3n/2 resonant spin as a function of eccentricity.
Calculations involving & proportional to frequency
were made using Egs. (18) and (24), whereas those
involving 6 constant and & proportional to tidal ampli-
tude were performed by integration of the complete
tidal torques given by Egs. (26) and (32), with v
determined as a function vy from Eq. (17). In the
latter two cases, the approximate forms of (T, given
by Eq. (31), were also used. The capture probabilities
derived in this way were found to be in good agreement
with the more exact values for ¢>0.195.

Figures 6 and 7 illustrate the capture probability
into the 6=4%n state from an initially faster rotation.
We observe that for a given type of §, the capture
probability is an increasing function of (B—4)/C. For
all three types of 4, the capture probability drops to
zero for e greater than some critical value. This may
be explained by noting from Fig. 1 that for e larger
than this critical value the asymptotic tidal spin is
faster than $n. The vanishing of the capture proba-
bilities for frequency independent &’s which occurs
below another critical e is a consequence of the lack of

5~

8- AMPLITUDE 3~CONSTANT 3~FREQUENCY

CAPTURE PROBABILITY

220 * 240 ' .ZGIO .280 300 .320 .340
ECCENTRICITY

Fi16. 9. Capture probability into § resonance from slower
spin for (B—A4)/C=10"% MacDonald’s torques.

reversal of the tidal torque below this value (when
j=3n). For & proportional to frequency, this lower
cutoff does not appear because now there is always a
term in (T") proportional to vy [see Eq. (24)], whatever
the value of e. However, even for (B—A4)/C=10~,
the capture probability at e=0.190 for & propor-
tional to frequency is only 0.08, making capture
without torque reversal unlikely in all cases. The
secondary maxima in the capture probabilities for §
independent of frequency, which occur near the lower
cutoff, may at first seem surprising. However, they are
a consequence of the vanishing of df/df at perihelion,
which implies that a small change in 6 will be reflected
by an exaggerated change in f; [see Eq. (25)], and
hence by a surprisingly large dependence of the tidal
torque on v. The probability of capture is unity for a
small range in e just below the upper cutoff, because
near the resonance the average torque on the planet’s
permanent bulge is no longer zero. This average torque
on the permanent bulge tends to bring the planet’s
rotation to the resonant value. It is just this effect

F16. 10. Values of 42/2 vs vy calculated from complete equation
of motion with (B—A4)/C=10*, ¢=0.2 and §=const. The value
of » has been normalized to unity. Capture at § resonance.

which allows satellites in orbits of low eccentricity to
reach synchronous rotation (Goldreich 1966).

Figures 8 and 9 again illustrate capture probabilities
into the 37 resonance, this time from initially slower
spins. The principal features of these figures may all
be understood by a simple adaptation of the discussion
of Figs. 6 and 7.

In order to check the predictions of the averaged
equations, we have performed several numerical inte-
grations of the complete equation of motion. The
equation used in the calculations was obtained by
placing T in the form of Eq. (7) into the right-hand side
of Eq. (2) and transforming the independent variable
to f from ¢ Denoting differentiation with respect to f
by a prime, this equation is

(s e ) is

7\ esinf a\? signy’
Ao 2 o

a/ (1—e?) v/ (1—e)
where & has been assumed constant and D is a positive
constant. In all computer runs (B—4)/C was set at
the reasonable value of 10~% On the other hand, the

unrealistically large value of 10~% was used for D. The
large value of D was chosen in order to keep the

LN S S HA R B B R A

(=]

F1c. 11. Values of 42/2 vs v calculated from complete equation
of motion with (B—A4)/C=10"%, ¢=0.2 and §=const. The value
of # has been normalized to unity. No capture at $ resonance.
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F1c. 12. Capture probability into synchronous resonance from
retrograde spin for (B—A4)/C=10"* Macdonald’s torques.

computer time within reasonable bounds. Since our
approximate criteria are independent of the magnitude
of the tidal torque, as long as it is small compared to
the torque on the planet’s permanent bulge, this
choice appears reasonable.

In Figs. 10 and 11 we have shown the results of two
of six numerical integrations, all using ¢=0.2, the
previously mentioned values of (B—A4)/C and D, and
initial values of 6/n slightly greater than 1.5. The six
initial values of ¥ were equally spaced between 0 and
1. The graphs of 342 vs v are to be compared with the
schematic drawing of Figs. 4 and 5. In Fig. 10 the
planet is seen to have been trapped at the $ resonance,
whereas in Fig. 11 it has escaped to a slower spin. The
predicted capture probability of 0.16 (see Fig. 6) for
these conditions agrees well with our record of one
capture in six computer trials.

Unless Mercury’s primordial spin was fortuitously
close to its present value, the planet must have
passed through either the 2% or # resonance. If Mercury
passed the 2% resonance when ¢20.31, there would
have been no tidal torque reversal near this resonance,
and if & were independent of frequency, there would
be zero probability for capture. Even if (B—A4)/C
for Mercury is as large as 10—, the capture probability
for 8 proportional to frequency would be less than 3%
at e=0.21. As capture in states with p>2 is even

8 ~ FREQUENCY

8 ~ CONSTANT

CAPTURE PROBABILITY

at
3 ~ AMPLITUDE
2}
) 1 2 3

ECCENTRICITY

F1G. 13. Capture probability into synchronous resonance from
retrograde spin for (B—A4)/C=10"% MacDonald’s torques.

P. GOLDREICH AND S.
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less likely, we could not expect Mercury to become
trapped at any of the resonances higher than p=3.
Figures 12 and 13 show the probability of capture at
synchronous rotation from an initially retrograde
rotation. Once again, these curves are easily understood
in terms of the discussion of Figs. 6 and 7. In all cases,
the capture probability is less than 109, at the present
value of e. Therefore, an initially retrograde spin for
Mercury could easily have been accelerated through the
synchronous state to its present value.

2. Darwin’s Torques

From Egs. (33) and Table I, we may compute the
probability that Mercury would have been captured at
the 2 resonance as it despun. This probability is dis-
played in Fig. 14. We note that for ¢>0.235, P=1.
This reflects the change in sign of (T') as @ crosses $% for
¢>0.235. In this case, the asymptotic spin rate (as
shown in Fig. 1) is also §=3n/2, so that if ¢>0.235, a
$n spin would result even for an axially symmetric
planet. In Figs. 15 and 16 we have drawn the capture
probability at the §# and » resonances from initially

CAPTURE PROBABILITY

o . A 2 3

ECCENTRICITY

Fi16. 14. Capture probability into 3/2 resonance from faster
spin. Darwin’s torque with constant Q.

slower spins. These figures are obtained by setting
—1<y<0in Eq. (33) with p=4% and p=1. For ¢=0.2
the capture probabilities at the p=2 and p=2.5
resonances are 0.14 and 0.03, respectively.

On the basis of the observational data and the calcu-
lated asymptotic spin rates in Fig. 1, it seems probable
that Mercury is trapped in the p=$ spin state. If any
of MacDonald’s torques or Darwin’s torques with e;
proportional to frequency are appropriate to Mercury,
this would imply that (B—A4)/C for Mercury must be
of order 10—% Even with this large value of (B—4)/C,
the capture probability at the § resonance is rather
small (<1). On the other hand, if the appropriate tidal
torque is that given by Darwin with Q=const, then
the capture probability is >0.7 for ¢=0.2 and still
>0.2 for e=0.1. Physically, Darwin’s torque is much
less arbitrary than MacDonald’s. However, as we
don’t really understand the mechanism of frictional
dissipation in planets, we prefer to reserve judgment
on this matter until more information is available. We
should mention that the crucial factor in Darwin’s
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Fi16. 15. Capture probability into 3/2 resonance from slower
spin. Darwin’s torque with constant Q.

torque with constant Q is just that the e; remain sub-
stantial for frequencies as low as [(B—A4)/CJtn. In
fact, it is this property rather than the more highly
specialized behavior with Q=const that is essential
for a substantial capture probability which is inde-
pendent of (B—A4)/C.

In any case, we have shown that Mercury was almost
certainly initially spinning faster than $» since the
asymptotic spin rates are in general slower than this
value for its orbital eccentricity. In addition, as Mer-
cury despun the only resonance having a large capture
probability (>0.15) was that with p=3%.

B. Moon

A discussion of the moon’s synchronous rotation has
been given in a previous paper (Goldreich 1966). That
investigation considered only the MacDonald-type
torques and also neglected resonances with p=1. We
shall see that conclusions based on Darwin’s torques
are quite different from those reached previously.

1. MacDonald’s Torques

Because the lunar orbital eccentricity is so low
(e~0.055), the only resonance which is a likely candi-
date for the moon’s final spin is synchronous rotation.
However, the moon might still have gone to the
asymptotic tidal state suggested by Peale and Gold
(1965). Indeed, in a previous paper (Goldreich 1966)
it was shown that the moon would not have achieved
synchronous rotation (in its present orbit with its

o

CAPTURE PROBABILITY

I 1

0 A 2 3

ECCENTRICITY

F16. 16. Capture probability into synchronous resonance from
retrograde spin. Darwin’s torque with constant Q.

present figure) from an initially forward spin. It was
concluded that the moon could have achieved syn-
chronous rotation at some past date if (B—A4)/C were
larger or e were smaller or its spin were initially retro-
grade. Of course, once the moon was trapped into
synchronous rotation and no longer librating, it would
remain trapped as long as the maximum torque on its
permanent figure could exceed the tidal torque. In
order to test the possibility for capture at synchronous
rotation from an initially retrograde spin, seven
numerical integrations of the complete equation of
motion [Eq. (34)] were made using constant 8. In
all cases, (B—A4)/C was given the derived value of
2X10~* (Jeffreys 1961) while the tidal torque was set
to —T/C=2X1075 sign y, for reasons of economy pre-
viously described. In six of the seven trials the moon
was trapped at synchronous rotation, whereas in the
remaining case the faster asymptotic tidal rotation was
achieved. Based on the averaged equations of motion
we are able to compute the probability that syn-
chronous rotation will arise from an initially retrograde
spin. For ¢=0.0549 and (B—A4)/C=2X10"4, P=0.71,
consistent with the meager statistics provided by the
seven computer trials.

2. Darwin’s Torques

As we have seen (Fig. 1) even an axially symmetric
moon would reach synchronous rotation if Darwin’s
torques with (Q=const were acting on it and
€<0.235. In this case, there would also have been a
finite but small probability for capture at higher order
resonances. For example, with e=0.055 the probability
for capture at the p=% and p=2 resonances becomes
0.07 and 0.005, respectively. We should mention that
these probabilities are calculated on the assumption
that the moon’s spin axis is oriented normal to its
orbit plane. The results of an investigation in progress
suggest that the capture probability at the p=2 reso-
nance might be considerably enhanced if the moon’s
spin axis possessed a large inclination to the orbital
plane.

V. VENUS

If the sidereal rotation period of Venus is 243.16
days retrograde, the axis of Venus which points toward
the earth at one inferior conjunction will point toward
the earth at all subsequent inferior conjunctions. This
value for the rotation period of Venus is compatible
with the present range of observed values (Carpenter
1966; Goldstein 1965; Pettengill 1965). By a slight
modification of the techniques developed in Sec. II
we can determine a stability criterion for this synodic
commensurability (Goldreich and Peale 1966b). The
physical principle here is analogous to previously
discussed coupling between a planet’s spin and its
own orbital motion. Here the inferior conjunction of
Venus and the earth corresponds to perihelion passage
for the planet, and the planetary orbit period is replaced
by the Venusian synodic period.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1966AJ.....71..425G&amp;db_key=AST

FT96BAT.- - C 71 TA75G0

434 P. GOLDREICH

Fi1c. 17. Coordinates used
in analysis of resonance of
the second kind.

The orbits of Venus and the earth are approximated
by concentric circles with the spin axis of Venus
perpendicular to its orbit plane. It is also assumed that
the axis about which the moment of inertia is minimal
points approximately toward the earth at inferior
conjunction. Figure 17 illustrates the angles and
distances involved in the analysis. The points S, E, and
V represent respectively the sun, the earth and Venus.
The distances from the sun to Venus and the earth
are denoted by p and b. The distance between the
earth and Venus is 7. The angle between the long axis
(axis of minimal moment of inertia) and the inertial
line SI is represented by 6, & is the angle between the
earth-Venus center line and the long axis of Venus,
is the angle between the sun-Venus line and the long
axis, e is the angle between the sun and Venus as seen
from the earth and « is the difference in the heliocentric
longitudes of the two planets. In the absence of solar
tides, the equation of motion is (Danby 1962)

GMg,
73

Ci+3(B—4) sin26

GM
+3(B—4)

—sin28=0, (35)
P

where M@ is the earth’s mass, and p is the sun—Venus
separation.

In addition to exerting a torque on Venus about its
center of mass, the earth also disturbs the orbit of
Venus away from its assumed circular shape. Variations
in the third term of Eq. (35) which arise from earth-
produced perturbations of Venus’s orbit are comparable
to the earth’s torque on the Venusian figure and hence
must be included. We express the instantaneous
position of Venus by

p=a+tAa, (36)

where ¢ is the longitude of Venus in its orbit measured
from inertial line SI, and A¢ and Ag represent the
periodic terms in ¢ and p due to the perturbation of
Venus by the earth.

The condition for a commensurability of the type
discussed here is that the average value of 8, which we
denote by (8), be a half-integral multiple of the average
value of & Hence, we have the following angular
relationships:

B=0—o¢,
(B)=1p(a),
(O)y=n+play= ¢otpla),

e=opotAp,

@37

AND S. PEALE
where p is a half-integer and » is the mean orbital
angular velocity of Venus. A retrograde rotation with a
sidereal period of 243.16 days corresponds to p=—5.
As we wish to investigate the stability of small changes
in 6 about its mean value (§), we introduce the angular
velocity o
7=06—0), (38)

as in Sec. IL If conjunction occurs along the inertial
line ST at time {=0 (see Fig. 17), then from (37) and
(38)

B=7+pla)—Ag,

d=7+(p+1){a)t+e

Substituting Egs. (36), (38), and (39) into (35) and

keeping only first-order terms in Aa and Ag, we have
GMg p3

Cy+3(B —A)—Z“— = sin2[y+ (p+1)a+e]

(39)

3Aa
sin2 (y+ p(a)) ——— sin2 (y+p(a))

Qo

—2A¢ cos(2y+ 2(0:))] =0. (40)

+4(B—4)

ad

As the periodic part of Ag is symmetric about (a)=0
and that of A antisymmetric, they may be expressed as

Aa=7Y" Aa; cosia,
7=l (4 1 )

0
Ap=73 Ag;sinia,

=1

where any secular or constant terms are absorbed in
redefined values for the sun-Venus distance and the
mean motion of Venus. Substituting Egs. (41) into
Eq. (40) and averaging over a synodic period with v
held constant, we obtain the pendulum equation,

GMg

C‘7+%(B~A)—63—EK1(P)+K2(P)] sin2y=0, (42)
where
1 27T A3
Kl(p)=——f — cos2e cos2(p+1)ade
mwJo f3
1 2 b3
—_ — sin2e sin2(p+1)ada  (43)
2T 0 7
and
Ka(p) b)aM@ —3Aaz,,_|_A )
. P —<a M@( 2a o)
since

e A
o -G}
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K1(p) may be expressed in terms of the Laplace coeffi-
cients (Brouwer and Clemence 1961). However, as
K1(p) was desired for several values of p, it was found
more expedient to evaluate Ki(p) by numerical inte-
gration on an IBM 7094 computer. The coefficients
Aasp and Ay, may be evaluated from the conventional
perturbation equations of celestial mechanics. Neverthe-
less, since we consider coplanar circular orbits, the
series involved are just Fourier series, and it is then
more convenient to evaluate Ags, and Ag,, by directly
Fourier analyzing the equation of motion of Venus,
including perturbations by the earth. The earth’s orbit
is constrained to be a circle throughout the analysis
because perturbations in the earth’s position would
only lead to second-order terms in the restoring torque.
In a straightforward manner we obtain

Kil)= (g) (521—1) K%_%_%)

5 5 3
XL @p+1)—H(Qp+ 1)]+(5+§+§)

3 3
XL 2p—1)+H(2p— 1)]q:ai12p(1+§+§)

R

1 2§
J(x)=— / — cose cosxada,

21ro ?‘2

where

1 ot

H(x)=— / — sine sinzade,
2T 0 7

S=2p(c)/n, and §;* is the Kronecker delta. We evaluate

Ks(p) by numerical integration on an IBM 7094 com-

puter. Values of K1(p), K2(p) and K (p) = K1(p)+K.(p)

are listed in Table II for several values of p.

From Table IT we see that for values of |p| <1.5 the
indirect portion of the restoring torque, which arises
from perturbations of the orbit, dominates the direct
gravitational torque of the earth. However, at the
crucial resonance with p=—35 the direct torque is more
than 100 times larger. The rotation rates which are
commensurate with the Venusian synodic motion are
seen to be stable in the absence of any external torques
other than those due to Venus’s permanent deformation
from axial symmetry. The pth resonance will remain
stable if any additional torque (T') about Venus’s center
of mass satisfies

(T) <3K(p)(B—A)(GMg/P). (45)

A solar tidal torque must be acting on Venus. Using
Eq. (7) we see that if this were the only significant
additional torque, on Venus the criterion for stability
would become

B—4 4X102 1.6X107
> =
C K@)X Q

: (46)

TasLE II. Coefficients of restoring torque (Venus).

i Ki(p) K (p) K (p) =K:1(p)+K1(p)
—8.0 0.734 1.22X1073 .735
—7.5 0.921 1.88X1078 .923
-7.0 1.147 2.90X1078 1.150
—6.5 1.417 4.51X1078 1.424
—6.0 1.735 7.06X107* 1.742
-5.5 2.001 1.11X1072 2.012
-5.0 2.513 1.78X1072 2.531
—4.5 2.958 2.85X1072 2.987
—4.0 3.417 4.59X1072 3.463
-3.5 3.851 7.35X1072 3.924
3.0 4.204 1.13X10°2 4.317
—2.5 4.394 1.42X107 4.536
—-2.0 4.311 —8.10X1072 4.230
—1.5 3.831 —5.314 — 1.483
-1.0 2.857 1.843X10 21.29
—0.5 1.479 —1.240X10 —10.92

0.5 0.585 —2.622X10 —25.64

1.0 0.386 —7.805X10 —77.66

1.5 0.259 5.595X10 56.21

2.0 0.175 8.845 9.020

2.5 0.120 3.064 3.184

3.0 0.082 1.342 1.424

3.5 0.057 6.62X107 L7119

4.0 0.039 3.52X10™ .391

4.5 0.027 1.97 X107 214

5.0 0.019 1.14X10 1 133

for p=—35. Estimates between 10 and 20 for the
earth’s tidal effective Q are derived from observation
of the secular acceleration of the moon (MacDonald
1964). These low values may be primarily due to
dissipation in shallow seas (Miller 1964), and therefore
may not be applicable to Venus. Estimates of the Q
for the earth’s mantle are on the order of several
hundred (Knopoff 1964). A stable resonance with
a Q of this order for Venus would require a value of
(B—A)/C comparable to that of the moon. It is not
at all certain that Venus could maintain such a de-
formation since the larger surface gravity of Venus
would imply internal stresses about 25 times greater
than those supported by the moon (Kaula 1963).

If Venus had a primordial forward spin, the solar
tides could not account for the present retrograde
rotation. This has led some authors to propose the
existence of other torques on the planet, notably of
atmospheric origin (Gold, private communication 1964;
MacDonald 1964). As the mass of the Venusian
atmosphere is thought to be comparable to that of the
earth’s oceans, such proposals seem quite reasonable.
However, if the atmosphere is capable of pushing Venus
through the otherwise stable synchronous state of
rotation, present control of the rotation of Venus by
the earth would be hard to understand.

Elsewhere in this paper we have shown that there
must be a substantial term in the averaged tidal
torque which is dependent on v in order that there
be a significant probability of capture of a planet into
a spin state which is resonant with its orbital mean
motion. A similar requirement applies to the possible
synodic resonance of Venus’s spin. As yet we see no
physical basis for the existence of such a term.
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Resonances of the Venusian spin with its motion
relative to Jupiter are also possible. However, the
only resonance of this kind which is compatible with
the observed limits on the rotation period has less than
7o the strength of the p= —5 resonance with the earth.

VI. ORBITAL VARIATIONS AND SHORT-PERIOD
FLUCTUATIONS

Up to now, with the exception of some machine
integrations of the complete equation of motion [Eq.
(34)], we have based all our conclusions on the averaged
equations of motion. Thus we have neglected those
short-period variations in the planetary rotation rate
which average to zero over a single orbit period.
Furthermore, we have confined our investigation to
fixed elliptical orbits and have yet to discuss how the
naturally occurring variations in the orbit parameters
affect our conclusions.

We consider the short-period variations first. In
Eq. (2), the term of largest amplitude in the solar
torque which averages to zero is of order (B—A4)n?
Xsin2(p—1)nt (for p>£1). This fluctuating torque gives
rise to short-period variations in y with amplitude
o~n(B—A4)/C. Near the singular state separating the
rotations from the librations y~[ (B—A4)H (p,e)/CJin.
Thus the short-period fluctuations in ¥? are of ap-
proximate magnitude Ay*~[(B—A)/CE[H (p,e)]n?,
whereas the ratio Ay?/y’~[(B—A)H (p,e)/C]t. For
the computer results displayed in Figs. 10 and 11,
(B—A)/C~10"*and H (p,e)~0.7, so that Ay?/y*~10"2.
The small value of Ay?/4% explains the absence of
short-period wiggles in Figs. 10 and 11.

Mutual perturbations between planets produce slow
changes in their orbital parameters. Typical of these
changes are the variations in eccentricity and perihelion
position of Mercury’s orbit which have been reported
by Brouwer and Clemence (1961). The rotation of the
apsidal line and the oscillation of e (predicted to range
from 0.11 to 0.24) take place in about 220000 yr.
Variations of the semimajor axis, node and inclination
must also occur on similar time scales. Do these
perturbations affect the probability of capture into
resonant spin states? We show that in essence they
do not.

For simplicity, we restrict our considerations to the
perturbations in orbital eccentricity. This is sufficient
to illustrate the salient features without unnecessarily
complicating our analysis. Because the large variation
in orbital eccentricity occurs over many libration or
rotation periods of the angle v, the derivation of the
averaged equation of motion (5) proceeds exactly as
before. The only difference that arises is in its interpre-
tation, with H (p,e) now being a slowly varying function
of time which must be evaluated at the appropriate
value of e. The most important consequence arising
from the variation of ¢ in Eq. (5) is that the energy E
is no longer conserved. However, since the variation
in e is slow (compared to a period of motion of v) the

AND S. PEALE

J=Cf'id'y

is adiabatically conserved in the absence of tidal
torques (Landau and Lifshitz 1960). The rate of change
in E due to the varying eccentricity alone (i.e., J = const)
is derived from

action

47y

dJ 3Jde dJ dE
—=——a——] =0 (48)
dt dedt OE dt iy
and
P=4J/9E,
where P is the period of 4’s motion. Thus
dE|  14Jde
— === (49)
dt g P Qe dt

On the other hand, the rate of change in energy due to
the tidal torque alone (i.e., at constant ¢) is given by

dE/dt| ;= (T)y. (50)

Previously, this was the only means by which the energy
could change, and the critical energy which separates
the rotations from the librations was constant. Now
the critical energy varies as a function of eccentric-
ity, which complicates the calculation of capture
probabilities.

In general, in order to follow the tidal history of a
despinning planet in an orbit of varying eccentricity
we must calculate the behavior of the energy as it is
changed by both tidal forces and the variation of
eccentricity. At each stage the energy must be compared
with the instantaneous value of the critical energy
(see Sec. IT). When the energy approaches the critical
value, we must calculate the probability that either
libration or reversed rotation (y changing sign) will
ensue. This probability may be calculated by the
method outlined in Sec. III, except now changes in
272 brought about by varying eccentricity must also be
included. It is now possible for many temporary
captures and escapes from libration to occur before
the planet ultimately escapes or is captured.

Monte Carlo calculations of this general sort could
be carried out on a large computer. However, because
of the impossibility of accurately calculating the past
variations of Mercury’s orbit, these calculations would
not appear to be very meaningful. Instead, in order to
assess more simply the effects of varying eccentricity
on capture probabilities, we consider two limiting cases.

In the first, the rate of change of eccentricity is
assumed to be so slow that near resonance [dE/d¢|.]
>[dE/dt|;], where the square brackets refer to
averages over a period of motion of 4. In this case, the
calculations of capture probability are just as before
with de/di=0. Furthermore, the critical value of
energy is reached only once, with the subsequent
capture or escape being permanent. In this limit, since
we cannot know the value of eccentricity at which the
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critical energy will be reached, the over-all capture
probability is the time average of the capture proba-
bility considered as a function of eccentricity.

In the second case, we assume de/d¢ sufficiently large
so that [dE/dt| ;T>[dE/dt|,]. Then the eccentricity
could go through many oscillations while v is near zero.
However, we must emphasize again that the eccen-
tricity will vary slowly compared to the variation in +.
In this limit, the planet may be temporarily captured
into libration and subsequently released many times
(at either faster or slower spins than the resonant one)
before permanent capture or escape is determined. In
order to avoid dealing with the rapid variations of
energy due to the oscillating eccentricity it is expedient
to work in terms of the adiabatic action invariant J.
Unlike the energy the action is altered only by tidal
friction. This variation is evaluated from

dJ dJ| dE dJ| de
—=—| ——| —=P(I)y,

— (1)
dt 9El, dt delpdt

where we have made use of the adiabatic invariance
of J together with Eq. (50) for dE/dt| ;. The critical
value of J separating the rotations from the librations
obtained from Eqgs. (17) and (47) is

Jerie=4C{3[(B—A)/CH (p,e)}'n. (52)

Let the extreme values of Ja corresponding to the
extreme values of e be denoted by Jnax and Jmin. Soon
after the tidal torque brings J to a value less than
Jmaxy Jerit Will swing up to its maximum value and
temporarily exceed J. During this time v will librate.
As Jeris then decreases it will again drop below J, at
which time vy will again become an angle of rotation.
In the limit of rapid variation of e it is equally likely
that this rotation will be either faster or slower than
the resonant value. If ¥>0, J will decrease, whereas
if ¥<0, it will increase. If the latter occurs, J may
increase above Jmax before Jeris can exceed J, allowing
the planet to permanently escape to a spin below the
resonant value. Otherwise, Ji will again rise above J,
and the planet’s spin will librate about the resonant
value again. This pattern of capture and escape will
continue until the planet has either permanently
escaped the resonance (J>Jmax and y<<0) or until it
has become permanently trapped (J <Jmin). What now
determines the probability of capture?

Suppose (T) is constant. From Eq. (51) we then
observe that the average value of dJ/dt over a libration
period will vanish. Furthermore, when v is an angle
of rotation, the sign but not the magnitude of dJ/d¢
will depend on the sign of y. Thus, from the time J
first drops below Jmex it will undergo a random walk
with steps of approximately equal size in both directions
(from a given value of J). One step is the variation of
J during a complete oscillation of ¢ (and hence of
Jerit). If J nears Juin, the fraction of the oscillation
period of e over which J> Jeit, and hence over which y
is an angle of rotation, will approach zero. Hence, J
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cannot reach Ji, since the step size vanishes for J
approaching Jyi,. Thus, the planet must eventually
escape to a slower than resonant spin, a return to
J>Jmax (however, now with y<0) being the certain
outcome of this random walk. This result generalizes
our previous one that for (T") constant, capture into
a resonant spin state is impossible (see Sec. III). The
arguments given here are easily extended to include
all possible ratios of [dE/dt|.] to [dE/dt| 5]

If (T) is not constant, but instead is of the form
given by Eq. (12), J will decrease when v is an angle of
libration. Furthermore, the step size no longer ap-
proaches zero if J nears Jumin, since J near J i, implies
that v is almost always an angle of libration, and J
decreases during libration. In fact, it is clear that for
J sufficiently close to Jmin, all steps are towards lower
J. Therefore, a term in (7) dependent on y may lead
to capture.

In order to assess the effect of varying orbital
parameters on capture probabilities, we have performed
several thousand Monte Carlo trials on a large com-
puter. These were all performed in this limit of fast
variation of orbital parameters by the method outlined
in the previous paragraphs. As a result, we are able to
state with some confidence that the over-all capture
probability in an orbit of varying eccentricity is inter-
mediate between the largest and smallest values of the
capture probability (calculated for fixed orbits) over
the range of eccentricity.

As previously mentioned, the value of eccentricity of
Mercury’s orbit has been calculated to oscillate between
0.11 and 0.24 with a period of 220,000 yr. Taking this
variation in e and averaging Egs. (49) and (50) over a
period of v’s motion near the p=$ resonance, we

arrive at
[dE } / [dE
dti, dt

In deriving inequality (53) we have neglected
reversals in (T'), thus obtaining an upper bound on the
ratio. If the asymptotic tidal state is near the resonance,
the averaged tidal torque (7') is reduced by a factor of
order [(B—A)/CJi This reduces the right-hand side
of inequality (49) to about 15/Q, or to about 0.1 to 1.0
for the Q values believed appropriate to Mercury. Thus
for Mercury, the value of de/dt lies between the two
limiting cases discussed in this section.

53)

15
T B
71 QLB—4)/C]

VII. CONCLUDING REMARKS

We find that there are many possible stable spin
states in the solar torque which require only a small
permanent deformation of the planetary figure. If
MacDonald-type torques are applicable, larger defor-
mations are needed to make capture likely. For Mer-
cury, capture into the § resonance has a significant
probability only if (B—A4)/CZ1075. On the other hand,
if Darwin-type torques with constant Q are applicable
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the capture probability at the % resonance is greater
than 0.5, independent of Mercury’s (B—A4)/C. These
conclusions appear to be substantially unaltered by
variations of the planetary orbit as long as these varia-
tions are slow compared with the libration period about
the resonant spin.

A value of (B—A4)/CZ 10~ appears to be the mini-
mum required to stabilize the possible synodic resonance
of Venus’s spin. In addition to implying unusually large
stress differences in the planet’s interior, capture into
this resonance appears to be difficult.

ACKNOWLEDGMENTS

We would like to thank David Ross for extensive
help in programming the numerical computations. Use
of the UCLA Computing Facility and the Western
Data Processing Center at UCLA is gratefully
acknowledged.

REFERENCES

Brouwer, D., and Clemence, C. M. 1961a, Methods of Celestial
Mechanics (Academic Press Inc., New York), p. 495.

AND S. PEALE

——. 1961b, The Solar System, edited by Kuiper, G. P., and
Miéi{ilehurst, B. M. (University of Chicago Press, Chicago),
p. 31.

Carpenter, R. L. 1966, Asiron. J. T1, 142.

Cayley, A. 1859, Mem. Roy. Astron. Soc. 29, 191.

Colombo, G. 1965, Nature 208, 575.

Colombo, G., and Shapiro, I. I. 1965, Smithsonian Astrophys.
Obs. Spec. Rept. No. 188R.

Danby, J. M. A. 1962, Fundamentals of Celestial Mechanics
(The Macmillan Company, New York).

Darwin, G. 1908, “Tidal Friction and Cosmogony,” Scientific
Papers (Cambridge University Press, New York), Vol. 2.

Goldreich, P. 1965, Nature 208, 375.

—, 1966, Astron. J., 71, 1.

Goldreich, P., and Peale, S. J. 1966a, Nature, 209, 1078.

——, 1966b, zbid. 209, 1117.

Goldreich, P., and Soter, S. 1966, Icarus (to be published).

Goldstein, R. M. 1965, Radio Sci. 69D, 1623.

Jefireys, H. 1961, Monthly Notices Roy. Asiron. Soc. 122, 421.

Kaula, W. M. 1963, Advan. Space Sci. Technol. 5, 210.

——, 1964, Rev. Geophys. 2, 661.

Knopoff, L. 1964, ibid. 2, 625.

Landau, L. D., and Lifshitz, E. M. 1960, Mechanics (Pergamon
Press, London).

Liu, H., and O’Keefe, J. A. 1965, Science 150, 1717.

MacDonald, G. J. F. 1964, Rev. Geophys. 2, 467.

Miller, G. 1964, Ph.D. dissertation, University of California at
San Diego.

Peale, S. J., and Gold, T. 1965, Nature 206, 1241.

Pettengill, G. H., and Dyce, R. B. 1965, bd. 206, 1240.

Pettengill, G. H. 1965, Radio Sci. 69D 1617.

Widorn, T. 1950, Sitz. Oster. Akad. Wiss., Wien, Ser. IIa, 159.

THE ASTRONOMICAL JOURNAL

VOLUME 71, NUMBER 6

AUGUST 1966

Lunar Disturbing Function

D. BARTON
St. Johw's College, Cambridge, England
(Received 1 April 1966)

This paper describes how, using a new computing technique, it has been possible to expand the lunar
disturbing function in terms of the elliptic elements and the mean anomalies to the tenth order of small
quantities. The result is identical with Delaunay’s development to the eighth order. The ninth- and tenth-

order terms are new.

HE problem of a completely literal solution to the
“main problem of the lunar theory’ has received
little attention since Delaunay’s development to the
eighth order of small quantities in 1860 (Delaunay
1860). It is evident that to improve this development
in a reasonably short time it will be necessary to enlist
the aid of a computer to perform the detailed manipu-
lation of the multiple Fourier series that arise during
the course of the work. The author has written a set
of programs for the Titan computer in Cambridge to
carry out the literal algebraical and trigonometrical
manipulation required by this problem, and these
programs have been applied to the derivation of the
disturbing function and to performing the contact
transformations of the type used by Delaunay and of
the type with determining function as described by
Brouwer and Clemence (1961). In this paper we discuss
the derivation of the disturbing function.

Let us define S to be the ring of elements s, where s
is a multiple Fourier series in up to six variables (called
harmonic variables) with coefficients drawn from the
ring of polynomials in eight variables (called polynomial
variables) over the rational field. Let us define addition
in .S in the usual manner, and multiplication to be the
normal product reduced to its linear form in the trigono-
metrical functions. We refer to this linear form as the
standard form. A study of Delaunay’s work shows that
the manipulations required for the lunar theory may
be carried out upon a computer provided that the
computer has facilities to perform the following opera-
tions upon members of S.

1. Addition

2. Subtraction

3. Negation

4. Multiplication by a rational number

5. Selection of particular terms from a member of .S
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