
seen in many terrestrial systems, in which the
greatest diversity of consumers occurs in
association with the greatest diversity of
primary producers. The lack of connection
between phytoplankton and zooplankton
diversity might result because the unicellular
nature of the phytoplankton eliminates a
major source of diversity for consumers.
Unlike the spatial and structural complexity
produced by, say, a canopy of tropical trees,
the phytoplankton contribute little structure
to their environment. Theory predicts that
the morphological complexity of large terres-
trial plants provides niches for the smaller
organisms that exploit them, and the diver-
sity of these organisms increases fractally as
their own size declines10. By increasing the
uncertainty of species associations in time
and space, small size and hydrodynamic
complexity might also reduce the frequency
of co-evolved feeding relations that foster the
correlated diversity of terrestrial plants and
arthropods (herbivorous insects, pollinators
and so on). In this sense, differences in the
relative sizes of primary producers and their
consumers in aquatic and terrestrial envi-
ronments might contribute to fundamental
differences in the ways in which these 
communities are organized11.

What, then, determines zooplankton
diversity? Irigoien et al.3 suggest that, as with
phytoplankton, it stems from a shifting 
balance between competition for food and
resistance to predators. But there are other
possible explanations. Ecological theory has
yet to thoroughly consider the mechanisms
that might couple or decouple predator and
prey diversity along productivity gradients,
and this remains a promising area for
research. As this paper3 shows, broad, cross-
system comparisons, interpreted in the light
of general theories, can reveal surprising
commonalities in the diversity of life. ■
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Planetary science

How Mercury got its spin
Stanley F. Dermott

The orbital period of Mercury and its period of rotation are known to be
in a 3/2 ratio, but the chances of the planet reaching this state seemed
so small as to be unfeasible — until now.

Figure 1 Mercury’s 3/2 spin–orbit resonance. a, The rotational period of the planet Mercury is 
exactly two-thirds of its orbital period. Hence, on every second passage of the planet through the
pericentre (the point in the elliptical orbit closest to the Sun), Mercury presents the same face to 
the Sun. b, The dynamical stability of this unusual resonant lock, or spin–orbit coupling, can be
understood by plotting, at equal intervals of time, the position of the Sun in a reference frame 
that is centred on Mercury and rotates with the solid body of the planet. The angle described by 
the long axis of the planet and the direction of pericentre oscillates like a pendulum and follows 
the damped-pendulum equation4.

L ike most of the large satellites in the
Solar System, the Moon’s orbital period
and its period of rotation are the

same: the Moon completes both an orbit of
the Earth and a rotation about its own axis
in 27.3 days, and hence always keeps the
same face towards the Earth. But, in 1965,
observations1 of Mercury turned up a great
surprise: the rotational period of that planet
is only two-thirds of its orbital period (59
days compared with 88 days). Quite how
Mercury entered this ‘3/2 spin–orbit reso-
nance’ has been a puzzle — although now
Correia and Laskar2 (on page 848 of this
issue) propose a solution.

The initial spin rate of our own satellite
might have been as short as 10 hours, but it
has been braked over time by the action of the
tides raised on the Moon by Earth. Because
the orbit of the Moon is eccentric, its rota-
tional period should have ended up about 3%
lower than the orbital period — with the
result that, over a period of about three years,
we would be permitted to see both sides of
our satellite3,4. But the synchronous state of
matching spin and orbital rates — a 1/1
spin–orbit resonance — has been reached
because the Moon has a small, permanent
deformation. The gravitational interaction
between the Earth and the quadrupole mo-
ment of the Moon accounts for the stability 
of the 1/1 spin–orbit resonance5.

That other spin–orbit resonances were
possible was not realized before the 1965
radar observations of Mercury, made at the
Arecibo Observatory in Puerto Rico. But the
stability of these spin–orbit resonances was
quickly explained6–8. The dynamical stability
of Mercury’s spin state is best understood by
plotting the path of the Sun in a reference
frame centred on,and rotating with,the solid
body of the planet (Fig. 1). Because the ratio
of the rotational and orbital periods is the
ratio of two integers, the path in the rotating
frame is closed.Analysis shows that the oscil-
lation of the angle between the long axis of
the planet and the direction of pericentre
(the point in the orbit at which the Sun is
closest; Fig. 1b), follows the same equation 
as describes the damped oscillations of a
pendulum4.

So how did Mercury enter this resonance?
There are two terms in the equation of
motion for the planet. One term describes
the strength of the resonance (the depth of
the potential well), which in this case
depends on the eccentricity of Mercury’s
orbit and the resonant integers — basically,
the shape of the looped path in Fig. 1b. The
second term depends on the tidal torque
exerted by the Sun that drives the spin
towards the resonant encounter. The prob-
lem is that if these two terms remain con-
stant, the pendulum equation is reversible
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and the system passes through the resonance
without capture8. Previous attempts to
understand Mercury’s capture into its spin–
orbit resonance invoked changes in the tidal
torque that broke the symmetry of the 
system; capture was possible, but the proba-
bility of its happening was on the low side8,
at only 7%.

Correia and Laskar2 have achieved new
insight into the problem of the capture of
Mercury through their investigation of the
long-term dynamical evolution of the 
planet’s orbital eccentricity (that is, how
much it deviates from a perfect circle).
Periodic oscillations of planetary orbital
eccentricities and of their inclinations to the
plane of Earth’s orbit around the Sun were
first analysed by Joseph Louis Lagrange, in
terms of coupled linear oscillators9. More
recent analyses of these regular oscillations
suggest that the orbital eccentricity of
Mercury should vary between 0.11 and 0.25
(eccentricity is zero for a circle). If that varia-
tion is included in the capture model, the
probability of capture decreases — making
the problem of resonant capture even worse4.

However, Laskar has shown in earlier
work10 that the variations in the orbital
eccentricities and inclinations of the inner,
terrestrial planets cannot be completely
described by a sum of the normal modes 
of coupled oscillators. In fact, the motions 
of these orbital elements are chaotic on
timescales of millions of years; Mercury’s
eccentricity shows the greatest chaotic varia-
tion, from near zero to as high as 0.45 or
more10.When this larger variation is factored
into the capture, as Correia and Laskar have
now done2, it at last becomes clear how Mer-
cury could have arrived in its 3/2 spin–orbit
resonant state. Because the eccentricity can
decrease to near zero, the strength of the 
resonant coupling can similarly drop to near
zero (the looped path in Fig. 1b would be 
a uniform circle); all resonances except the
1/1 resonance could become unstable,
allowing the planet to escape from reso-
nance. In contrast, the excursions of the
eccentricity to high values is tracked by 
corresponding changes in Mercury’s spin
rate, driven by the tidal torque. The result is
that some resonant states — including the
3/2 spin–orbit resonance — are passed
through many times and the probability of
eventual capture is greatly increased.

Correia and Laskar’s calculations2 sug-
gest that, over a four-billion-year period, the
most likely state for Mercury to be captured
in is, in fact, the 3/2 spin–orbit resonance.
The chaotic variation of the planet’s eccen-
tricity means that this was no improbable
accident after all. ■
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Condensed-matter physics

Plasmas put in order 
Thomas C. Killian

Plasmas are usually a hot soup of dissociated electrons and ions.
There are, however, techniques for cooling plasmas, and simulations
show that an ultracold plasma could be made to crystallize.

In a typical plasma, energetic collisions tear
neutral atoms apart to produce ions and
electrons, which then attract or repel each

other through the Coulomb force. Plasmas
must be hot — as in a flame, or on the surface
of the Sun — for this process to occur.At such
high temperatures, the random thermal
motion of the particles dominates; the 
positions of individual particles show no 
correlation or order, despite their Coulomb
interactions. In Physical Review Letters, Pohl
et al.1 show, through computer simulations,
how this situation might be reversed:by laser-
cooling a neutral plasma, a system could be
created in which the Coulomb interactions
dominate and the particles arrange them-
selves into ordered shells or lattices.

Plasmas in which the Coulomb inter-
action is larger than the thermal energy are
described as being strongly coupled. In
nature, such plasmas are expected to exist in
exotic environments, such as the crusts of
neutron stars and the interiors of gas-giant
planets. A few examples of strongly coupled
plasmas have been created in the laboratory,
such as laser-cooled ions, in Penning traps2

or storage rings3, that freeze at millikelvin
temperatures to form lattices called Wigner
crystals. Dusty plasmas4 of highly charged,
micrometre-size spheres suspended in a 
discharge plasma show similar ordering.

Laser cooling has not been used on a 
neutral plasma because the high energies
involved would overwhelm the cooling force,
or the plasma would expand into the sur-
rounding vacuum before the lasers could do
their job. Recent experiments, however, have
created ultracold neutral plasmas5 that are
cold enough to make laser cooling of the plas-
ma feasible. To create an ultracold neutral
plasma, atoms are first laser-cooled to about 
1 mK and then excited by a laser pulse to an
energy just above the ionization potential.
The temperature of the electrons freed by
ionization is roughly equal to the difference
between the ionizing photon’s energy and the
ionization potential, and can easily be tuned
from 1 to 1,000 K.The initial kinetic energy of
the ions,because of their large mass,is close to
that of the original neutral atoms, although

equilibration in the first few hundred
nanoseconds following ionization raises the
ion temperature to about 1 K. Subsequent
laser cooling of the ions should push the plas-
ma deep into the strongly coupled regime6,7.

To model ultracold neutral plasmas, Pohl
et al.1 used a molecular-dynamics calcula-
tion to track the positions and velocities of
the constituent particles as they expand into
the surrounding vacuum. This would be an
undergraduate physics problem if the system
consisted of only one electron and one ion.
But the number of interactions that must be
calculated during each time-step of the sim-
ulation scales as the square of the number of
particles involved. This makes it a herculean
task to track the 100,000 particles necessary
to capture the dynamics of an ultracold neu-
tral plasma. Fortunately, some simplifica-
tions are possible. If the electrons are hot
enough (at about 30 K), they move quickly
and follow the potential-energy surface cre-
ated by the positive ions. The electrons can
then be treated as a background fluid whose
equilibrium properties are easily calculated

Figure 1 Crystallization in a laser-cooled neutral
plasma. Simulations by Pohl et al.1 indicate that
the ions in a neutral plasma could take on ordered
structures when subjected to laser cooling. This
image shows the typical arrangement of ions in
one of several concentric ion shells.
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