
AIMS Documentation
Release 1.2.0

Daniel R. Reese

June 20, 2016

CONTENTS

1 Contents 1
1.1 Project Summary . 1
1.2 Acknowledgements . 2
1.3 Requirements . 2
1.4 Download AIMS . 3
1.5 Installation . 3
1.6 Usage . 3
1.7 File formats . 5
1.8 The AIMS program . 8
1.9 The model module . 22
1.10 The constants module . 35
1.11 The utilities module . 36
1.12 The plot_interpolation_test tool . 37

2 Indices and tables 41

Python Module Index 43

Index 45

i

ii

CHAPTER

ONE

CONTENTS

1.1 Project Summary

1.1.1 Description

Name: “Asteroseismic Inference on a Massive Scale” (AIMS)

Goals:

• estimate stellar parameters and credible intervals/error bars

• chose a representative set or sample of reference models

• be computationally efficient

Inputs:

• classic constraints and error bars (Teff, L, ...)

• seismic constraints and error bars (individual frequencies)

Requirements:

• a precalculated grid of models including:

– the models themselves

– parameters for the model (M, R, Teff, age, ...)

– theoretical frequency spectra for the models

Methodology:

• applies an MCMC algorithm based on the python package emcee. Relevant articles include:

– Bazot et al. (2012, MNRAS 427, 1847)

– Gruberbauer et al. (2012, ApJ 749, 109)

• interpolates within the grid of models using Delaunay tessellation (from the scipy.spatial package which
is based on the Qhull library)

• modular approach: facilitates including contributions from different people

1.1.2 Contributors

Author:

• Daniel R. Reese

1

http://dan.iel.fm/emcee/current/
http://ukads.nottingham.ac.uk/abs/2012MNRAS.427.1847B
http://ukads.nottingham.ac.uk/abs/2012ApJ...749..109G
http://docs.scipy.org/doc/scipy/reference/spatial.html
http://www.qhull.org/

AIMS Documentation, Release 1.2.0

Comments, corrections, suggestions, and contributions:

• Diego Bossini

• Tiago L. Campante

• William J. Chaplin

• Hugo R. Coelho

• Guy R. Davies

• Benoît D. C. P. Herbert

• James S. Kuszlewicz

• Martin W. Long

• Mikkel N. Lund

• Andrea Miglio

1.1.3 Supplementary material

• a more technical overview of AIMS

• a PDF version of this documentation may be downloaded here

1.1.4 Copyright information

• the AIMS project is distributed under the terms of the GNU General Public License, version 3

• a copy of of this license may be downloaded here and should also be included in AIMS.tgz

1.2 Acknowledgements

The “Asteroseismic Inference on a Massive Scale” (AIMS) project was developed at the University of Birmingham
by Daniel R. Reese as one of the deliverables for the SPACEINN network. The SPACEINN network is funded by the
European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 312844.

1.2.1 Publications

If AIMS is used in any publication, the SPACEINN network kindly asks you to acknowledge the use of this software
using a phrase such as the following:

“This article made use of AIMS, a software for fitting stellar pulsation data, developed in the context of
the SPACEINN network, funded by the European Commission’s Seventh Framework Programme.”

1.3 Requirements

The following python packages are needed for AIMS:

• dill

• emcee

2 Chapter 1. Contents

http://www.gnu.org/licenses/gpl-3.0.en.html
http://www.spaceinn.eu
https://pypi.python.org/pypi/dill/
http://dan.iel.fm/emcee/current/

AIMS Documentation, Release 1.2.0

• corner

– note: this used to be called triangle in previous releases

• numpy

• matplotlib

• multiprocessing

• f2py

1.4 Download AIMS

• Click here to download AIMS.

• The contents of this file may then be extracted via the command:

tar -zxvf AIMS.tgz

• This will lead to the creation of a folder called AIMS and a subfolder called AIMS/doc.

– the AIMS folder contains the AIMS program; it is from this folder that AIMS is launched.

– the AIMS\doc folder is where the documentation is generated. Typing make html within this folder
will generate this web page in AIMS/doc/_build/html/. Typing make latexpdf will generate a
pdf version of this documentation in AIMS/doc/_build/latex/AIMS.pdf.

1.5 Installation

As of version 1.2, a few strategic parts of the code have been rewritten in FORTRAN thus leading to a considerable
speed up. These FORTRAN subroutines are then integrated into the AIMS code thanks to the f2py project. Accord-
ingly, these FORTRAN subroutines need to be compiled before running AIMS. A Makefile has been provided for
convenience. Hence, one simply needs to type the command:

make

The user may change the choice of FORTRAN compiler as well as the compilation options by editing the Makefile.

1.6 Usage

There are three different ways of using AIMS:

1. generating a binary file with the grid of models (including names, global parameters, and pulsation frequencies).

Note: This step must be carried out before the following two steps as these require the above binary file to
function correctly.

2. carrying out tests to evaluate the accuracy of the interpolation for a given grid of models.

3. finding the properties of an observed star thanks to its classic and seismic parameters.

The way AIMS is used is decided by the values given in the AIMS_configure.py file, which also contains a
number of other control parameters. Extensive comments are included in this file to help the user know how to set the
various parameters.

1.4. Download AIMS 3

https://github.com/dfm/corner.py
http://www.numpy.org/
http://matplotlib.org/
https://docs.python.org/2/library/multiprocessing.html
https://github.com/pearu/f2py/wiki
https://github.com/pearu/f2py/wiki

AIMS Documentation, Release 1.2.0

1.6.1 Generating a binary grid

Requirements:

• a grid of models, including the pulsation frequencies; the format for the files with the pulsation
frequencies is described in model.Model.read_file().

• a list with the paths and a set of global parameters for each model in the grid; the format this
file is described in model.Model_grid.read_model_list().

Relevant parameters in AIMS_configure.py:

• write_data: set this to True so that AIMS will write binary grid.

• list_grid: set this to the filename of the file with the list of paths and global parameters.

• binary_grid: set this to the filename of the file which will contain the binary data.

• grid_params: specify the parameters relevant to the grid (excluding age,
which is dealt with separately). Different options can be found in the source to
model.Model.string_to_param().

• npositive: set this to True to only save modes with 𝑛 ≥ 0 in the binary file.

To run AIMS in this configuration, just type the following in a terminal window:

./AIMS.py

1.6.2 Testing the accuracy of the interpolation

Requirements:

• a binary grid of models as produced by AIMS

Relevant parameters in AIMS_configure.py:

• write_data: set this to False otherwise a binary grid will be produced, the interpolations
tests will not be carried out.

• test_interpolation: set this to True so that AIMS will carry out the interpolation tests.

• interpolation_file: specify the name of the file in which to write the re-
sults from the interpolation test in binary format. These results can be plotted using
plot_interpolation_test.py.

To run AIMS in this configuration, just type the following in a terminal window:

./AIMS.py

1.6.3 Characterising an observed star

Requirements:

• a binary grid of models as produced by AIMS

• a file with the observational data; the format for this file is similar to the format used for the
Asteroseismic Modeling Portal (AMP) with some simplifications and is described below. It will
be read by AIMS.Likelihood.read_constraints()

Relevant parameters in AIMS_configure.py:

• write_data: set this to False

4 Chapter 1. Contents

https://amp.phys.au.dk/

AIMS Documentation, Release 1.2.0

• test_interpolation: set this to False

• most of the parameters in this file - see comments for details

To run AIMS in this configuration, just type the following in a terminal window:

./AIMS.py file_with_constraints

where file_with_constraints is the file with the observational constraints.

1.7 File formats

1.7.1 Format of a file with a list of models and properties:

Description:

• The first line is a header. It contains the root folder (including the final slash) with the grid of
models and optionally, a suffix for the names of the files with the theoretical pulsation frequen-
cies. For example:

/home/dreese/models_inversions/Grid_mesa_MS/ .freq

• Each of the following lines correspond to one model in the grid. They are composed of 8 or
more columns with the following information:

1. The second part of the path for the given model. When concatenated with the prefix on the
first line, this should give the full path to the model. If, furthermore, the suffix from the first
line is appended to it, it gives the name of the file with the frequencies.

2. The stellar mass in g

3. The stellar radius in cm

4. The stellar luminosity in g.cm2.s−3

5. The metallicity

6. The hydrogen content

7. The stellar age in Myrs

8. The effective temperature in K

9. (user-defined) This and the following columns correspond to the parameters specified in
the user_params variable given in AIMS_configure.py.

• Except for the first line, the order of the lines does not matter. AIMS will construct evo-
lutionary tracks based on the parameters selected in the grid_params variable given in
AIMS_configure.py, and sort them according to age.

Example: Here’s an example of a file read by AIMS (via the
model.Model_grid.read_model_list() method):

/home/dreese/models_inversions/Grid_mesa_MS/ .freq
M0.80/LOGS_M0.80/M0.80Z0.0028Y0.2536/m0.80Y0.2536Z0.0028a1.8ovh0.2ovhe0_n1.profile.FGONG 1.59136E+33 5.02248266E+10 2.3309799E+33 0.0028 0.7436 1.0000000E-04 6000.94326 7.432106E-01
M0.80/LOGS_M0.80/M0.80Z0.0028Y0.2536/m0.80Y0.2536Z0.0028a1.8ovh0.2ovhe0_n10.profile.FGONG 1.59136E+33 5.02990358E+10 2.1724140E+33 0.0028 0.7436 2.0974688E+03 5891.82623 6.146083E-01
M0.80/LOGS_M0.80/M0.80Z0.0028Y0.2536/m0.80Y0.2536Z0.0028a1.8ovh0.2ovhe0_n11.profile.FGONG 1.59136E+33 5.04940406E+10 2.2011824E+33 0.0028 0.7436 2.3237113E+03 5899.81040 6.001537E-01

It contains three models. The structure of the first model can be found in the following file:

1.7. File formats 5

AIMS Documentation, Release 1.2.0

/home/dreese/models_inversions/Grid_mesa_MS/M0.80/LOGS_M0.80/M0.80Z0.0028Y0.2536/m0.80Y0.2536Z0.0028a1.8ovh0.2ovhe0_n1.profile.FGONG

and its frequencies in this file:

/home/dreese/models_inversions/Grid_mesa_MS/M0.80/LOGS_M0.80/M0.80Z0.0028Y0.2536/m0.80Y0.2536Z0.0028a1.8ovh0.2ovhe0_n1.profile.FGONG.freq

The ninth column corresponds to the central hydrogen content, as specified by the contents of the
user_params variable from AIMS_configure.py:

user_params = (("Xc", r'Central hydrogen, $%sX_c%s$'),)

1.7.2 Format of a file with theoretical frequencies:

As of version 1.2, AIMS is able to read two different formats when reading the theoretical frequencies
from a file. The first is a text file described below. The second is the grand summary file from ADIPLS.
This is a FORTRAN binary format described on pages 32 and 33 of the ADIPLS documentation. The
following describes files in the text format:

Description:

• the first line is a header (and is skipped)

• the following lines contain five columns which correspond to l, n, frequency, a_value, inertia

– the a_value column is ignored, so it could contain anything. InversionKit will typi-
cally put the difference between the numerical and variational frequencies in that column.

Example: Here’s an example of a file with theoretical pulsation frequencies which can be read by AIMS
(via the model.Model.read_file() method):

#l n nu_theo (muHz) nu_var-nu_theo (muHz) Inertia
0 15 3.225852209451052e+03 1.312960435370769e-03 3.233628965187502e-09
0 16 3.421699035498995e+03 -2.482639610207116e-03 2.229252226305757e-09
0 17 3.615805033992529e+03 3.993051574070705e-03 1.618154348529283e-09
0 18 3.809740380503104e+03 9.650666734160040e-04 1.250359548964621e-09
0 19 4.003716857281849e+03 -7.991676880010345e-03 1.033914933206195e-09
0 20 4.198691419457581e+03 1.742711681799847e-03 8.866985261874711e-10
1 15 3.316007619955153e+03 5.056100344972947e-03 2.715966891128009e-09
1 16 3.511258977705781e+03 1.855844971032639e-04 1.902147334986236e-09
1 17 3.705576731149742e+03 -2.505276897409203e-03 1.424266453221534e-09
1 18 3.899485457373566e+03 5.212276555539575e-03 1.134594720287415e-09
1 19 4.094401244305849e+03 6.020260397235688e-03 9.579611596023003e-10
1 20 4.289716814475406e+03 -1.019475706561934e-02 8.344804874142957e-10
2 15 3.399280335063532e+03 -8.466318249702454e-04 2.315947651745295e-09
2 16 3.594141943503532e+03 4.712417365681176e-03 1.665322627996223e-09
2 17 3.788792185755381e+03 -1.167229517704982e-03 1.277569745555387e-09
2 18 3.983271067684743e+03 -6.187409578615188e-03 1.048757367028520e-09
2 19 4.178866833517976e+03 6.893199766636826e-03 8.963691946280509e-10
2 20 4.374959711016754e+03 3.274638356742798e-03 7.911508926344487e-10
3 15 3.476224140192640e+03 -2.524210208321165e-03 2.009476926536794e-09
3 16 3.671438520072859e+03 2.351724720028869e-04 1.485336526791650e-09
3 17 3.866350877376991e+03 5.643782460992952e-03 1.167619144668003e-09
3 18 4.061929209725198e+03 -1.552865011490212e-03 9.789648655155361e-10
3 19 4.258077196700047e+03 -8.629839649984206e-03 8.472972126693386e-10
3 20 4.455063887754256e+03 1.484804296796938e-02 7.528069568152023e-10

6 Chapter 1. Contents

http://astro.phys.au.dk/~jcd/adipack.n/
http://astro.phys.au.dk/~jcd/adipack.n/notes/adiab_prog.ps.gz

AIMS Documentation, Release 1.2.0

1.7.3 Format of a file with observational constraints:

Description:

• a collection of lines with frequency data with either (l, freq, error_bar) or (l, n, freq, error_bar)
(depending on the value of read_n in the AIMS_configure.py file). For example:

0 1503.5 0.16

or the following if specifying the radial order:

0 15 1503.5 0.16

• a collection of lines with classical constraints. These start with the name of the relevant parame-
ter (see possible options in model.Model.string_to_param()) followed by a descrip-
tion of its probability distribution function. This probability distribution function is specified in
two possible ways:

– it is implicitly assumed to be Gaussian. In this situation it is only necessary to specify the
mean value and the one sigma error bar. For example:

Teff 6100 80

– it is explicitly specified (different options are given in AIMS.Distribution):

Teff Uniform 6000 6200

• anything following a # is a comment

• the order of the lines does not matter

Examples:

• example of a file where n is not specified:

0 1582.20 0.13 # this is a (useless) comment
0 1684.02 0.16
0 1785.57 0.15
1 1526.55 0.29
1 1628.90 0.30
1 1730.45 0.17
2 1575.49 0.82
2 1676.25 0.51
2 1777.62 0.27
Teff 6060.00 84.00
Fe_H -0.20 0.09

• example of a file where n is specified:

0 15 1582.20 0.13
0 16 1684.02 0.16
Teff 6060.00 84.00 # AIMS doesn't worry about the order of the lines
0 17 1785.57 0.15
1 14 1526.55 0.29
1 15 1628.90 0.30
1 16 1730.45 0.17
2 14 1575.49 0.82
2 15 1676.25 0.51

1.7. File formats 7

AIMS Documentation, Release 1.2.0

2 16 1777.62 0.27
Fe_H -0.20 0.09

Differences with AMP:

• the number of frequencies does not need to be specified (if this line contains supplementary
parameters, than AIMS.py may confuse it with frequency data)

• there are no flags (one should adjust the parameters in AIMS_configure.py instead)

• the order of the lines is not important (one can mix the classic and seismic observables)

• it is possible to specify radial orders (depending on the value of read_n in the
AIMS_configure.py file)

• the treatment of non-seismic constraints is more flexible

– a larger variety of non-seismic constraints can be included (see possible options in
model.Model.string_to_param())

– full parameter names are allowed (and preferred); for compatibility with AMP, the same
one letter abbreviations are also allowed

– it is possible to specify the probability distribution function

1.8 The AIMS program

A module which contains the main program for AIMS as well as various classes which intervene when calculating the
priors and likelihood function:

• Distribution: a class which represents a probability distribution

• Prior_list: a class with a list of priors

• Mode: a class used to represent observed modes

• Combination: a class used to represent frequency combinations

• Likelihood: a class used to represent the likelihood function

• Probability: a class which groups the priors and likelihood function together

This module relies on the emcee package to apply an MCMC algorithm which will return a representative sample of
models for a given set of seismic an classic constraints.

Warning: In various places in this module, for instance in the Prior_list and Likelihood classes, various
methods return what is described as a 𝜒2 value. Technically, these are not 𝜒2 values, but rather −𝜒2/2, i.e. the
argument of the exponential function which intervenes in the Gaussian probability distribution.

class AIMS.Combination
A class which contains indices and coefficients which intervene in:

•linear combinations of frequencies

•frequency ratios

add_den(j, coeff)
Append the given index and coefficient to the list of denominator indices and coefficients.

Parameters

•j (int) – index of the mode

8 Chapter 1. Contents

https://amp.phys.au.dk/
https://amp.phys.au.dk/
http://dan.iel.fm/emcee/current/

AIMS Documentation, Release 1.2.0

•coeff (float) – coefficient used in the frequency combination

add_num(j, coeff)
Append the given index and coefficient to the list of numerator indices and coefficients.

Parameters

•j (int) – index of the mode

•coeff (float) – coefficient used in the frequency combination

den = None
Value of the denomenator in a frequency ratio.

den_coeff = None
Coefficients in the denominator of a frequency ratio, otherwise empty.

den_index = None
Indices in the denominator of a frequency ratio, otherwise empty.

num = None
Value of the frequency combination or numerator in a frequency ratio.

num_coeff = None
Coefficients in a linear combination or numerator of a frequency ratio.

num_index = None
Indices in a linear combination or numerator of a frequency ratio.

print_me()
Print frequency combination.

value = None
Value of the frequency combination or ratio.

class AIMS.Distribution(_type, _values)
A class which represents a probability distribution, and can yield its value for a given input parameter, or provide
a random realisation.

Note: Derived from a class originally written by G. Davies.

Parameters

•_type (string) – type of probability function (current options include “Gaussian”, “Trun-
cated_gaussian”, “Uniform”)

•_values (list of floats) – list of parameters relevant to the probability function

error_bar
Returns an error bar based on the distribution. This does not necessarily correspond to the one-sigma value
but rather to what is the most convenient value.

Returnsthe error bar

Return typefloat

mean
Returns the mean value of the probability distribution.

Returnsthe mean value of the probability distribution

Return typefloat

1.8. The AIMS program 9

AIMS Documentation, Release 1.2.0

nparams
Return the number of relevant parameters for a given distribution.

Returnsthe number of relevant parameters

Return typeint

print_me()
Print type and parameters of probability distribution.

re_centre(value)
Re-centre the probability distribution around the input value.

Parametersvalue (float) – new value around which to centre the distribution

re_normalise(value)
Re-normalise the probability distribution so that its characteristic width corresponds to the input value.

Parametersvalue (float) – new value around for the chacteristic width

realisation(size=None)
Return random values which statistically follow the probability distribution.

Parameterssize (int or tuple of ints) – shape of random variates

Returnsa set of random realisations

Return typefloat

to_string()
Produce nice string representation of the distribution.

Returnsnice string representation of the distribution

Return typestring

type = None
Type of probability function (“Gaussian”, “Uniform”, or “Truncated_gaussian”)

values = None
List of parameters relevant to probability function

class AIMS.Likelihood
A class which described the likelihood function and allows users to evaluate it.

add_combinations(num_list, den_list=[], target_ell=None)
This finds the indices of modes which intervene in a frequency combination or ratio, as specified by the
mandatory and optional arguments. These indices, the relevant coefficients, the numerator, the denomina-
tor, and the resultant value of the combination are stored in the combinations variable.

Parameters

•num_list (list of (int,int,float)) – list of relative mode identifications and coefficients
used to define a frequency combination or the numerator of a frequency ratio. This list
contains tuples of the form (delta n, delta l, coeff).

•den_list (list of (int,int,float)) – list of relative mode identifications and coefficients
used to define the denominator of a frequency ratio. If absent, then, it is assumed that a
linear combination of frequencies is represented. The form is the same as for num_list.

•target_ell (int) – this is used to impose a specific l value on the first selected mode.

add_constraint((name, distribution))
Add a supplementary constraint to the list of constraints.

Parametersconstraint ((string, Distribution)) – supplementary constraint

10 Chapter 1. Contents

AIMS Documentation, Release 1.2.0

add_dnu_constraint(l_targets=[0])
Add the large frequency separation as a contraint. The coefficients are obtained via a least-squares ap-
proach. The approach taken here has two advantages:

1.Correlations between the large frequency separation and other seismic constraints will be taken into
account.

2.The same modes will be used in the same way, both for the observations and the models.

Parametersl_targets (list of int) – specifies for which l values the large frequency separation
is to be calculated. If None is supplied, all modes will be used.

Note: This uses an analytical approach and is therefore the prefered method.

add_dnu_constraint_matrix(l_targets=[0])
Add the large frequency separation as a contraint. The coefficients are obtained via a least-squares ap-
proach. The approach taken here has two advantages:

1.Correlations between the large frequency separation and other seismic constraints will be taken into
account.

2.The same modes will be used in the same way, both for the observations and the models.

Parametersl_targets (list of int) – specifies for which l values the large frequency separation
is to be calculated. If None is supplied, all modes will be used.

Note: This uses a matrix approach and is therefore not the prefered method.

add_nu_min_constraint(target_ell=0, min_n=False)
Add the minimun frequency/mode of a specific ell value as a seismic constraint. Typically, such constraints
are used as an “anchor” when combined with constraints based on frequency ratios.

Parameters

•target_ell (int) – ell value of the minimum frequency/mode

•min_n (boolean) – if False, look for minimum observational frequency. If True, look
for minimum radial order.

add_seismic_constraint(string)
Add seismic contraints based on the keyword given in string.

Parametersstring (string) – keyword which specifies the type of constraint to be added. Cur-
rent options include:

•nu: individual frequencies

•nu0: individual frequencies (radial modes only)

•nu_min0: radial mode with minimum frequency

•r02: 𝑟02 frequency ratios

•r01: 𝑟01 frequency ratios

•r10: 𝑟10 frequency ratios

•dnu: individual large frequency separations (using all modes)

•dnu0: individual large frequency separations (using radial modes only)

•avg_dnu: average large frequency separation (using all modes)

1.8. The AIMS program 11

AIMS Documentation, Release 1.2.0

•avg_dnu0: average large frequency separation (using radial modes only)

apply_constraints(my_model)
Calculate a 𝜒2 value for the set of constraints (excluding seismic constraints based on mode frequencies).

Parametersmy_model (model.Model) – model for which the 𝜒2 value is being calculated

Returnsthe 𝜒2 value deduced from classic constraints

Return typefloat

assign_n(my_model)
Assign the radial orders based on proximity to theoretical frequencies from an input model.

Parametersmy_model (model.Model) – input model

classic_weight = None
Absolute weight to be applied to classic constraints (incl. nu_max constraint).

clear_seismic_constraints()
This clears the seismic constraints. Specifically, the list of seismic combinations, and associated covariance
matrix and its inverse are reinitialised.

coeff = None
3D float array with the coefficients for each frequency combination. The indices are:

1.The index of the term

2.The type of term (0 = num, 1 = den)

3.The index of the frequency combination

combinations = None
This contains indices and coefficients to frequency combinations and frequency ratios.

compare_frequency_combinations(my_model, mode_map, a=[])
This finds a 𝜒2 value based on a comparison of frequencies combinations, as defined in the
combinations variable.

Parameters

•my_model (model.Model) – model for which the 𝜒2 value is being calculated

•mode_map (list of int) – a mapping which relates observed modes to theoretical ones

•a (array-like) – parameters of surface correction terms

Returnsthe 𝜒2 value for the seismic constraints

Return typefloat

Note: I’m assuming none of the modes are missing (i.e. that mode_map doesn’t contain the value -1)

constraints = None
List of constraints which intervene in the likelihood function.

cov = None
Covariance matrix which intervenes when calculating frequency combinations.

create_combination_arrays()
Create array form of frequency combinations to be used with a fortran based routine for calculating the
seismic chi^2 value.

create_mode_arrays()
Create arrays with mode parameters (n, l, freq), which can be interfaced with fortran methods more easily.

12 Chapter 1. Contents

AIMS Documentation, Release 1.2.0

dfvalues = None
Array with the error bars on the observed frequencies

evaluate(my_model)
Calculate ln of likelihood function (i.e. a 𝜒2 value) for a given model.

Parametersmy_model (model.Model) – model for which the 𝜒2 value is being calculated

Returnsthe 𝜒2 value, and optionally the optimal surface amplitudes (depending on the value of
AIMS_configure.surface_option)

Return typefloat, np.array (optional)

Note: This avoids model interpolation and can be used to gain time.

find_covariance()
This prepares the covariance matrix and its inverse based on the frequency combinations in
combinations.

Warning: This method should be called after all of the methods which add to the list of frequency
combinations.

find_l_list(l_targets)
Find a list of l values with the following properties:

•each l value only occurs once

•each l value given in the parameter l_targets is in the result l list, except if there is 1 or less modes
with this l value

•if the parameter l_targets is None, look for all l values with 2 or more modes associated with
them

Parametersl_targets (list of int) – input list of l values

Returnsnew list of l values with the above properties

Return typelist of int

find_map(my_model, use_n)
This finds a map which indicates the correspondance between observed modes and theoretical modes from
my_model.

Parameters

•my_model – model for which the 𝜒2 value is being calculated

•use_n (boolean) – specify whether to use the radial order when finding the map from
observed modes to theoretical modes. If False, the map is based on frequency proximity.

Returnsthe correspondance between observed and theoretical modes from the above model, and
the number of observed modes which weren’t mapped onto theoretical modes

Return typelist of int, int

Note:
•a value of -1 is used to indicate that no theoretical mode corresponds to a particular observed mode.

•only zero or one observed mode is allowed to correspond to a theoretical mode

1.8. The AIMS program 13

AIMS Documentation, Release 1.2.0

find_vec(a_combination)
This finds a set of coefficients which intervene when constructing the coviance matrix for frequency com-
binations.

Parametersa_combination (Combination) – variable which specifies the frequency com-
bination.

Returnsthe above set of coefficients

Return typenp.array

find_weights()
Find absolute weights for seismic and classic constraints based on options in AIMS_configure.py.

fvalues = None
Array with the observed frequencies

get_optimal_surface_amplitudes(my_model, mode_map)
Find optimal surface correction amplitude, for the surface correction specified by surface_option.

Parameters

•my_model (model.Model) – the model for which we’re finding the surface correction
amplitude

•mode_map (list of int) – a mapping which relates observed modes to theoretical ones

Returnsoptimal surface correction amplitudes

Return typenp.array

guess_dnu(with_n=False)
Guess the large frequency separation based on the radial modes.

Parameterswith_n (boolean) – specifies whether to use the n values already stored with each
mode, when calculating the large frequency separation.

Returnsthe large frequency separation

Return typefloat

guess_n()
Guess the radial order of the observed pulsations modes.

This method uses the large frequency separation, as calculated with guess_dnu(), to estimate the radial
orders. These orders are subsequently adjusted to avoid multiple modes with the same identification. The
resultant radial orders could be off by a constant offset, but this is not too problematic when computing
frequency combinations or ratios.

indices = None
3D int array with the mode indices for each frequency combination. The indices are:

1.The index of the term

2.The type of term (0 = num, 1 = den)

3.The index of the frequency combination

invcov = None
Inverse of covariance matrix, Likelihood.cov .

is_outside(params)
Test to see if the given set of parameters lies outside the grid of models. This is done by evaluate the
probability and seeing if the result indicates this.

Parametersparams (array-like) – input set of parameters

14 Chapter 1. Contents

AIMS Documentation, Release 1.2.0

ReturnsTrue if the set of parameters corresponds to a point outside the grid.

Return typeboolean

lvalues = None
Array with the l values of the observed modes

modes = None
List of pulsation modes (of type Mode).

ncoeff = None
2D int array with the number of terms for each frequency combination. The indices are:

1.The type of term (0 = num, 1 = den)

2.The index of the frequency combination

nvalues = None
Array with the n values of the observed modes

read_constraints(filename, factor=1.0)
Read a file with pulsation data and constraints.

Parameters

•filename (string) – name of file with pulsation data.

•factor (float) – multiplicative factor for pulsation frequencies. Can be used for conver-
sions.

seismic_weight = None
Absolute weight to be applied to seismic constraints

sort_modes()
Sort the modes. The ordering will depend on the value of use_n from the AIMS_configure.py file.

values = None
1D float array with the value for each frequency combination

class AIMS.Mode(_n, _l, _freq, _dfreq)
A class which describes an observed pulsation mode.

Parameters

•_n (int) – radial order of observed mode

•_l (int) – harmonic degree of observed mode.

•_freq (float) – pulsation frequency (in 𝜇Hz).

•_dfreq (float) – error bar on pulsation frequency (in 𝜇Hz).

Warning: Negative values are not accepted for _l, _freq, or _dfreq.

dfreq = None
Error bar on pulsation frequency (in 𝜇Hz).

freq = None
Pulsation frequency (in 𝜇Hz).

l = None
Harmonic degree of observed mode.

match(a_mode)
Check to see if input mode has the same (n,l) values as the current mode.

1.8. The AIMS program 15

AIMS Documentation, Release 1.2.0

Parametersa_mode (Mode) – input mode which is being compared with current mode.

ReturnsTrue if the input mode has the same (n,l) values as the current mode.

Return typeboolean

n = None
Radial order of observed mode.

class AIMS.Prior_list
A class which contains a list of priors as well as convenient methods for adding priors and for evaluating them.

add_prior(aPrior)
Add a prior to the list.

ParametersaPrior (Distribution) – prior which is to be added to the list.

priors = None
A list of probability distributions which correspond to priors.

realisation(size=None)
Return an array with realisations for each prior. The last dimension will correspond to the different priors.

Parameterssize (int or tuple of ints) – shape of random variates (for each prior)

Returnsa set of realisations

Return typenumpy float array

class AIMS.Probability(_priors, _likelihood)
A class which combines the priors and likelihood function, and allows the the user to evalute ln of the product
of these.

Parameters

•_priors (Prior_list) – input set of priors

•_likelihood (Likelihood) – input likelihood function

evaluate(my_model)
Evalulate the ln of the product of the priors and likelihood function, i.e. the probability, for a given model,
to within an additive constant.

Parametersmy_model (model.Model) – input model

Returnsthe ln of the probability

Return typefloat

Note: This avoids model interpolation and can be used to gain time.

likelihood = None
The likelihood function.

priors = None
The set of priors.

AIMS.append_osm_parameter(config_osm, name, value, step, rate, bounds)
Add a parameter in xlm format in the file with the classic constraints for OSM.

Parameters

•config_osm (lxml.etree._Element) – XLM etree element to which to add the parameter

•name (string) – name of the parameter

16 Chapter 1. Contents

AIMS Documentation, Release 1.2.0

•value (float) – value of the parameter

•step (float) – parameter step (this intervenes when numerically calculating derivatives with
respect to this parameter)

•rate (float) – parameter rate (this corresponds to a tolerance on this parameter)

•bounds (float tuple) – bounds on the parameter

AIMS.append_osm_surface_effects(modes_osm, name, numax, values)
Add a method with which to calculate surface effects to the OSM contraint file.

Parameters

•modes_osm (lxml.etree._Element) – XML element to which to add the surface effects
method

•name (string) – name of the method

•numax (float) – value of numax

•values (float tuple) – values which intervene in the method

AIMS.best_MCMC_model = None
best model from the MCMC run

AIMS.best_MCMC_params = None
parameters for the model best_MCMC_model

AIMS.best_MCMC_result = -1e+300
ln(probability) result for the model best_MCMC_model

AIMS.best_grid_model = None
best model from a scan of the entire grid

AIMS.best_grid_params = None
parameters for the model best_grid_model

AIMS.best_grid_result = -1e+300
ln(probability) result for the model best_grid_model

AIMS.check_configuration()
Test the values of the variables in check_configuration to make sure they’re acceptable. If an unacceptable value
is found, then this will stop AIMS and explain what variable has an erroneous value.

AIMS.echelle_diagram(my_model, my_params, model_name)
Write text file with caracteristics of input model.

Parameters

•my_model (model.Model) – model for which we’re writing a text file

•my_params (array-like) – parameters of the model

•model_name (string) – name used to describe this model. This is also used when naming
the text file.

AIMS.find_a_blob(params)
Find a blob (i.e. supplementary output parameters) for a given set of parameters (for one model). The blob also
includes the log(P) value as a first entry.

Parametersparams (array-like) – input set of parameters

Returnslist of supplementary output parameters

Return typelist of floats

1.8. The AIMS program 17

AIMS Documentation, Release 1.2.0

AIMS.find_best_model()
Scan through grid of models to find “best” model for a given probability function (i.e. the product of priors and
a likelihood function).

AIMS.find_best_model_in_track(ntrack)
Scan through an evolutionary track to find “best” model for prob, the probability function (i.e. the product of
priors and a likelihood function).

Parametersntrack (int) – number of the evolutionary track

Returnsthe ln(probability) value, and the “best” model

Return type(float, model.Model)

AIMS.find_blobs(samples)
Find blobs (i.e. supplementary output parameters) from a set of samples (i.e. for multiple models).

Parameterssamples (list/array of array-like) – input set of samples

Returnsset of supplementary output parameters

Return typenp.array

AIMS.grid = None
grid of models

AIMS.grid_params_MCMC = ()
parameters used in the MCMC run (excluding surface correction parameters)

AIMS.grid_params_MCMC_with_surf = ()
parameters used in the MCMC run (including surface correction parameters)

AIMS.init_walkers()
Initialise the walkers used in emcee.

Returnsarray of starting parameters

Return typenp.array

AIMS.interpolation_tests(filename)
Carry out various interpolation tests and write results in binary format to file.

Parametersfilename (string) – name of file in which to write test results.

Note: The contents of this file may be plotted using methods from plot_interpolation_test.py.

AIMS.load_binary_data(filename)
Read a binary file with a grid of models.

Parametersfilename (string) – name of file with grid in binary format

Returnsthe grid of models

Return typemodel.Model_grid

AIMS.log0 = -1e+300
a large negative value used to represent ln(0)

AIMS.my_map = None
pointer to the map function (either the parallel or sequential versions)

AIMS.ndims = 0
number of dimensions for MCMC parameters (includes nsurf)

18 Chapter 1. Contents

AIMS Documentation, Release 1.2.0

AIMS.nsurf = 0
number of surface term parameters

AIMS.output_folder = None
folder in which to write the results

AIMS.plot_histograms(samples, names, fancy_names, truths=None)
Plot a histogram based on a set of samples.

Parameters

•samples (np.array) – samples form the emcee run

•names (list of strings) – names of the quantities represented by the samples. This will be
used when naming the file with the histogram

•fancy_names (list of strings) – name of the quantities represented by the samples. This
will be used as the x-axis label in the histogram.

•truths (list of floats) – reference values (typically the true values or some other important
values) to be added to the histograms as a vertical line

AIMS.plot_walkers(samples, labels, filename, nw=3)
Plot individual walkers.

Parameters

•samples (np.array) – samples from the emcee run

•labels (list of strings) – labels for the different dimensions in parameters space

•filename (string) – specify name of file in which to save plots of walkers.

•nw (int) – number of walkers to be plotted

Warning: This method must be applied before the samples are reshaped, and information on individual
walkers lost.

AIMS.pool = None
pool from which to carry out parallel computations

AIMS.prob = None
Probability type object that represents the probability function which includes the likelihood and priors

AIMS.run_emcee()
Run the emcee program.

Returnsthe emcee sampler for the MCMC run

AIMS.statistical_model = None
model corresponding to statistical parameters

AIMS.statistical_params = None
parameters for the model statistical_model

AIMS.statistical_result = -1e+300
ln(probability) result for the model statistical_model

AIMS.string_to_title(string)
Create fancy title from string.

Parametersstring (string) – string from which the title is created.

Returnsthe fancy string title

1.8. The AIMS program 19

AIMS Documentation, Release 1.2.0

Return typestring

AIMS.threshold = -1e+290
threshold for “accepted” models. Needs to be greater than log0

AIMS.write_LEGACY_summary(filename, KIC, labels, samples)
Write a one line summary of the statistical properties based on a sequence of realisations to a file. The format
matches that of the LEGACY project.

The results include:

•average values for each variable (statistical mean)

•error bars for each variable (standard mean deviation)

Parameters

•filename (string) – name of file in which to write the statistical properties

•KIC (string) – KIC number of the star

•labels (list of strings) – names of relevant variables

•samples (np.array) – samples for which statistical properties are calculated

AIMS.write_binary_data(infile, outfile)
Read an ascii file with a grid of models, and write corresponding binary file.

Parameters

•infile (string) – input ascii file name

•outfile (string) – output binary file name

AIMS.write_combinations(filename, samples)
Produce a list of linear combinations of grid models (based on interpolation) corresponding to the provided
model parameters.

Parameters

•filename (string) – name of the file to which to write the model combinations

•samples (np.array) – set of model parameters for which we would like to obtain the grid
models and interpolation coefficients

AIMS.write_list_file(filename)
Write list file from which to generate binary grid. Various filters can be included to reduce the number of models.

Note: This code is intended for developpers not first time users.

AIMS.write_model(my_model, my_params, my_result, model_name)
Write text file with caracteristics of input model.

Parameters

•my_model (model.Model) – model for which we’re writing a text file

•my_params (array-like) – parameters of the model

•my_result (float) – ln(P) value obtained for the model

•model_name (string) – name used to describe this model. This is also used when naming
the text file.

20 Chapter 1. Contents

AIMS Documentation, Release 1.2.0

AIMS.write_osm_don(filename, my_model)
Write file with choice of physical ingredients to be used by CESAM or CESTAM and OSM.

Parameters

•filename (string) – name of file which will contain the physical ingredients

•my_model (model.Model) – model from which which is derived various physical con-
straints/settings

Note: Written by B. Herbert.

AIMS.write_osm_frequencies(filename, my_model)
Write file with frequencies for Optimal Stellar Model (OSM), written by R. Samadi.

Parameters

•filename (string) – name of file which will contain the frequencies

•my_model (model.Model) – model from which are derived the radial orders

Note: Written by B. Herbert.

AIMS.write_osm_xml(filename, my_params, my_model)
Write file with classic constraints for OSM

Parameters

•filename (string) – name of file with classic constraints

•my_model (model.Model) – model used in deriving some of the constraints

Note: Originally written by B. Herbert. Includes some modifications.

AIMS.write_readme(filename, elapsed_time)
Write parameters relevant to this MCMC run.

Parametersfilename (string) – name of file in which to write the statistical properties

AIMS.write_samples(filename, labels, samples)
Write raw samples to a file.

Parameters

•filename (string) – name of file in which to write the samples

•labels (list of strings) – names of relevant variables (used to write a header)

•samples (array-like) – samples for which statistical properties are calculated

AIMS.write_statistics(filename, labels, samples)
Write statistical properties based on a sequence of realisations to a file. The results include:

•average values for each variable (statistical mean)

•error bars for each variable (standard mean deviation)

•correlation matrix between the different variables

Parameters

•filename (string) – name of file in which to write the statistical properties

•labels (list of strings) – names of relevant variables

1.8. The AIMS program 21

AIMS Documentation, Release 1.2.0

•samples (np.array) – samples for which statistical properties are calculated

1.9 The model module

A module which contains various classes relevant to the grid of models:

• Model: a model

• Track: an evolutionary track

• Model_grid: a grid of models

These different classes allow the program to store a grid of models and perform a number of operations, such as:

• retrieving model properties

• interpolate within the grid models

• sort the models within a given evolutionary track

• ...

class model.Model(_glb, _name=None, _modes=None)
A class which contains a stellar model, including classical and seismic information.

Parameters

•_glb (np.array) – 1D array of global parameters for this model. Its dimension should be
greater or equal to nglb

•_name (string) – name of the model (typically the second part of its path)

•_modes (list of (int, int, float, float)) – list of modes in the form of tuples (n,l,freq,inertia)
which will be appended to the set of modes in the model.

FeH
Find [Fe/H] value for model.

The conversion from (Xs,Zs) to [Fe/H] is performed using the following formula:

[Fe/H] = [M/H]
AFeH

= 1
AFeH

log10

(︁
z/x

z⊙/x⊙

)︁
Returnsthe [Fe/H] value

Return typefloat

Note: The relevant values are given in constants

MH
Find [M/H] value for model.

The conversion from (Xs,Zs) to [M/H] is performed using the following formula:

[M/H] = log10

(︁
z/x

z⊙/x⊙

)︁
Returnsthe [M/H] value

Return typefloat

22 Chapter 1. Contents

AIMS Documentation, Release 1.2.0

Note: The relevant values are given in constants

append_modes(modes)
Append a list of modes to the model.

Parametersmodes (list of (int, int, float, float)) – list of modes which are in the form of tuples:
(n,l,freq,inertia).

b_Kjeldsen2008
Return the exponent for the Kjeldsen et al. (2008) surface correction recipe, as calculated based on the
Sonoi et al. (2015) scaling relation.

Returnsthe Kjeldsen et al. exponent

Return typefloat

beta_Sonoi2015
Return the exponent for the Sonoi et al. (2015) surface correction recipe, as calculated based on the Sonoi
et al. (2015) scaling relation.

Returnsthe Kjeldsen et al. exponent

Return typefloat

cutoff
Find 𝜈cut−off for model.

The 𝜈cut−off value is obtained from the following scaling relation:

𝜈cut−off

𝜈cut−off,⊙
=

(︁
𝑀
𝑀⊙

)︁(︁
𝑅
𝑅⊙

)︁2 (︁
𝑇eff

𝑇eff,⊙

)︁−1/2

Returnsthe 𝜈cut−off value

Return typefloat

Note: The relevant values are given in constants

find_epsilon(ltarget)
Find epsilon, the constant offset in a simplified version of Tassoul’s asymptotic formula:

𝜈𝑛 = ∆𝜈(𝑛 + 𝜀)

Parametersltarget (int) – target l value. Only modes with this l value will be used in obtain-
ing epsilon.

Returnsthe constant offset

Return typefloat

find_large_separation()
Find large frequency separation using only radial modes.

Returnsthe large frequency separation

Return typefloat

find_mode(ntarget, ltarget)
Find a mode with specific n and l values.

Parameters

•ntarget (int) – target n value

1.9. The model module 23

AIMS Documentation, Release 1.2.0

•ltarget (int) – target l value

Returnsthe frequency of the mode

Return typefloat

find_mode_range()
Find n and l ranges of the modes in the model.

Returnsthe n and l ranges of the modes

Return typeint, int, int, int

freq_sorted()
Check to see if the frequencies are in ascending order for each l value.

ReturnsTrue if the frequencies are in ascending order.

Return typeboolean

get_age()
Return age of stellar model.

This is useful for sorting purposes.

Returnsthe age of the model

Return typefloat

get_freq(surface_option=None, a=[])
Obtain model frequencies, with optional frequency corrections.

Parameters

•surface_option (string) – specifies the type of surface correction. Options include:

–None: no corrections are applied

–"Kjeldsen2008": apply a correction based on Kjeldsen et al. (2008)

–"Kjeldsen2008_scaling": apply a correction based on Kjeldsen et al. (2008).
The exponent is based on a scaling relation from Sonoi et al. (2015).

–"Kjeldsen2008_2": apply a correction based on Kjeldsen et al. (2008).The ex-
ponent is a free parameter.

–"Ball2014": apply a one-term correction based on Ball and Gizon (2014)

–"Ball2014_2": apply a two-term correction based on Ball and Gizon (2014)

–"Sonoi2015": apply a correction based on Sonoi et al. (2015)

–"Sonoi2015_scaling": apply a correction based on Sonoi et al. (2015)The ex-
ponent is based on a scaling relation from Sonoi et al. (2015).

–"Sonoi2015_2": apply a correction based on Sonoi et al. (2015)The exponent is
a free parameter.

•a (array-like) – amplitude parameters which intervene in the surface correction

Returnsmodels frequencies (including surface corrections)

Return typenp.array

Note: If surface_option==None or a==[], the original frequencies are returned (hence modifying them
modifies the Model object).

24 Chapter 1. Contents

AIMS Documentation, Release 1.2.0

get_surface_correction(surface_option, a)
Obtain corrections on model frequencies (these corrections should be added to the theorectical frequen-
cies).

Parameters

•surface_option (string) – specifies the type of surface correction. Options include:

–None: no corrections are applied

–"Kjeldsen2008": apply a correction based on Kjeldsen et al. (2008)

–"Kjeldsen2008_scaling": apply a correction based on Kjeldsen et al. (2008).
The exponent is based on a scaling relation from Sonoi et al. (2015).

–"Kjeldsen2008_2": apply a correction based on Kjeldsen et al. (2008).The ex-
ponent is a free parameter.

–"Ball2014": apply a one-term correction based on Ball and Gizon (2014)

–"Ball2014_2": apply a two-term correction based on Ball and Gizon (2014)

–"Sonoi2015": apply a correction based on Sonoi et al. (2015)

–"Sonoi2015_scaling": apply a correction based on Sonoi et al. (2015)The ex-
ponent is based on a scaling relation from Sonoi et al. (2015).

–"Sonoi2015_2": apply a correction based on Sonoi et al. (2015)The exponent is
a free parameter.

•a (array-like) – parameters which intervene in the surface correction. According to the
correction they take on the following meanings:

–"Kjeldsen2008": a[0]*freq**b_Kjeldsen2008

–"Kjeldsen2008_scaling": a[0]*freq**b_scaling

–"Kjeldsen2008_2": a[0]*freq**a[1]

–"Ball2014": a[0]*freq**3/I

–"Ball2014_2": a[0]*freq**3/I + a[1]/(freq*I)

–"Sonoi2015": a[0]*[1 - 1/(1 + (nu/numax)**beta_Sonoi2015)]

–"Sonoi2015_scaling": a[0]*[1 - 1/(1 + (nu/numax)**beta_scaling)]

–"Sonoi2015_2": a[0]*[1 - 1/(1 + (nu/numax)**a[1])]

Returnssurface corrections on the model frequencies

Return typenp.array

Note: The array operations lead to the creation of a new array with the result, which avoids modifications
of the original frequencies and inertias.

glb = None
Array which will contain various global quantities

modes = None
array containing the modes (n, l, freq, inertia)

multiply_modes(constant)
Multiply the frequencies by constant.

Parametersconstant (float) – constant by which the mode frequencies are multiplied

1.9. The model module 25

AIMS Documentation, Release 1.2.0

name = None
Name of the model, typically the second part of its path

numax
Find 𝜈max for model.

The 𝜈max value is obtained from the following scaling relation:

𝜈max

𝜈max,⊙
=

(︁
𝑀
𝑀⊙

)︁(︁
𝑅
𝑅⊙

)︁2 (︁
𝑇eff

𝑇eff,⊙

)︁−1/2

Returnsthe 𝜈max value

Return typefloat

Note: The relevant values are given in constants

print_me()
Print classical and seismic characteristics of the model to standard output.

read_file(filename)
Read in a set of modes from a file. This method will either call read_file_simple()
or read_file_agsm() according to the value of the mode_format variable in
AIMS_configure.py.

Parametersfilename (string) – name of the file with the modes. The format of this file is
decided by the mode_format variable in AIMS_configure.py.

ReturnsTrue if at least one frequency has been discarded (see note below).

Return typeboolean

Note: At this stage the frequencies should be expressed in 𝜇Hz. They will be non-dimensionalised in
read_model_list().

read_file_agsm(filename)
Read in a set of modes from a file. This uses the “agsm” format as specified in the mode_format variable
in AIMS_configure.py.

Parametersfilename (string) – name of the file with the modes. This file is a binary fortran
“agsm” file produced by the ADIPLS code. See instructions to the ADIPLS code for a
description of this format.

ReturnsTrue if at least one frequency has been discarded (see note below).

Return typeboolean

read_file_simple(filename)
Read in a set of modes from a file. This uses the “simple” format as specified in the mode_format
variable in AIMS_configure.py.

Parametersfilename (string) – name of the file with the modes. The file should contain a
one-line header followed by five columns which correspond to l, n, frequency, dfreq_var,
inertia.

ReturnsTrue if at least one frequency has been discarded (see note below).

Return typeboolean

Note:
•The dfreq_var column is discarded.

26 Chapter 1. Contents

AIMS Documentation, Release 1.2.0

•Frequencies above 1.1𝜈cut−off are discarded.

remove_duplicate_modes()
Remove duplicate modes.

Modes are considered to be duplicate if they have the same l and n values (regardless of frequency).

ReturnsTrue if at least one mode has been removed.

Return typeboolean

Warning: This method assumes the modes are sorted.

sort_modes()
Sort the modes by l, then n, then freq.

string_to_param(string)
Return a parameter for an input string.

Parametersstring (string) – string that indicates which parameter we’re seeking

Returnsthe value of the parameter

Return typefloat

write_file_simple(filename)
Write a set of modes into a file using the “simple” format as described in read_file_simple().

Parametersfilename (string) – name of the file where the modes should be written.

Note:
•Frequencies are non-dimensional and should expressed in muHz

zsx_0
Find the Z0/X0 value

Returnsthe Z0/X0 value

Return typefloat

zsx_s
Find the Zs/Xs value

Returnsthe Zs/Xs value

Return typefloat

class model.Model_grid
A grid of models.

find_epsilons(ltarget)
Find epsilon values in models from the grid

Parametersltarget (int) – target l value for which epsilons are being obtained

Returnsthe epsilon values

Return typelist of floats

find_partition()
Find a partition of the grid for use with Model_grid.test_interpolation()

1.9. The model module 27

AIMS Documentation, Release 1.2.0

Returnsa random partition of [0 ... n-1] into two equal halves, where n is the number of tracks
in the grid

Return typetwo lists of int

grid = None
Array containing the grid parameters for each evolutionary track (excluding age).

grid_params = None
Set of parameters (excluding age) used to construct the grid and do interpolations.

Note: For best interpolation results, these parameters should be comparable.

ndim = None
Number of dimensions for the grid (excluding age), as based on the Model_grid.grid_params vari-
able

ndx = None
List containing track indices

plot_tessellation()
Plot the grid tessellation.

Warning: This only works for two-dimensional tessellations.

postfix = None
Last part of the filenames which contain the model frequencies (default = ”.freq”).

prefix = None
Root folder with grid of models (including final slash).

read_model_list(filename)
Read list of models from a file and construct a grid.

Parametersfilename (string) – name of the file with the list. The first line of this file should
contain a prefix which is typically the root folder of the grid of models. This followed by a
file with multiple columns. The first 8 contain the following information for each model:

1.the second part of the path. When concatenated with the prefix on the first line, this should
give the full path to the model.

2.The stellar mass in g

3.The stellar radius in cm

4.The stellar luminosity in g.cm2.s−3

5.The metallicity

6.The hydrogen content

7.The stellar age in Myrs

8.The effective temperature in K

The following columns contain the parameters specified in the
AIMS_configure.user_params variable.

tessellate()
Apply Delauny triangulation to obtain the grid tessellation.

tessellation = None
Object containing the tessellation of the grid used for interpolation.

28 Chapter 1. Contents

AIMS Documentation, Release 1.2.0

test_freq()
Test to see if frequencies in all of the models of the grid are in ascending order for each l value.

Returns

The following items are returned

•the effective temperatures of the models with frequencies out of order

•the luminosities of the models with frequencies out of order

•the effective temperatures of the models with sorted frequencies

•the luminosities of the models with sorted frequencies

Return typefour lists of floats

test_interpolation()
Test interpolation between different evolutionary tracks in a given grid.

Returns

The following four items are returned:

•the interpolation errors

•the first half of the partition (where the interpolation is tested)

•the second half of the partition (used to carry out the interpolation)

•the tessellation associated with the second half of the partition

Return typenp.array, list, list, tessellation object

tracks = None
List of evolutionary tracks contained in the grid.

user_params = None
The set of user parameters involved in the grid. This is to avoid having a different set of user parameters
in AIMS_configure.py

class model.Track(aModel, grid_params)
An evolutionary track.

Parameters

•aModel (Model) – first model to be added to evolutionary track (it does not need to be
the youngest model in an evolutionary sequence). This Model is used to obtain the relevant
parameters for the evolutionary track (as given by the grid_params variable).

•grid_params (list of strings) – list of strings which are the names of the parameters which
describe the evolutionary track.

append(aModel)
Append a model to the evolutionary track.

ParametersaModel (Model) – model which is being appended to the track

duplicate_ages()
Check to see if you track contains models with duplicate ages.

ReturnsTrue if there are duplicate age(s)

Return typeboolean

Warning: This method should only be applied after the track has been sorted.

1.9. The model module 29

AIMS Documentation, Release 1.2.0

find_combination(age, coef)
Return a model combination at a given age which is obtained using linear interpolation.

Parameters

•age (float) – age of desired model in Myrs

•coef (float) – coefficient which multiplies this combination

Returnspairs composed of an interpolation coefficient and a model name

Return typetuple of (float, string)

Warning: This method assumes the track is sorted, since it applies a binary search algorithm for
increased efficiency.

find_mode_range()
Find n and l ranges of modes in models

Returnsthe n and l ranges

Return typeint, int, int, int

find_modes(ntarget, ltarget)
Return two lists, one with the ages of the models and the other with the mode frequencies corresponding
to target n and l values.

This function is useful for seeing how the frequency of a particular mode changes with stellar age.

Parameters

•ntarget (int) – target n value

•ltarget (int) – target l value

Returnslists of ages and frequencies

Return typelist, list

grid_params = None
Names of the parameters used to construct the grid

interpolate_model(age)
Return a model at a given age which is obtained using linear interpolation.

Parametersage (float) – age of desired model in Myrs

Returnsthe interpolated model

Return typeModel

Warning: This method assumes the track is sorted, since it applies a binary search algorithm for
increased efficiency.

is_sorted()
Check to see of models are in ascending order according to age.

ReturnsTrue if the models ar in order of increasing age

Return typeboolean

matches(aModel)
Check to see if a model matches the evolutionary track and can therefore be included in the track.

ParametersaModel (Model) – input model being tested

30 Chapter 1. Contents

AIMS Documentation, Release 1.2.0

ReturnsTrue only if the model given as an argument has parameters which match those of the
evolutionary track.

Return typeboolean

models = None
List of models in this evolutionary track

nmodes = None
Total number pulsation modes from all of the models in this evolutionary track

params = None
Parameters which characterise this evolutionary track

sort()
Sort models within evolutionary track according to age.

test_interpolation(nincr)
Test accuracy of interpolation along evolutionary track.

This method removes every other model and retrieves its frequencies by interpolation from neighbouring
models. The accuracy of the interpolated frequencies and global parameters are tested by carrying out
comparisons with the original models.

Parametersnincr (int) – increment with which to carry out the interpolation. By comparing
results for different values of nincr, one can evaluate how the interpolation error depends
on the size of the interval over which the interpolation is carried out.

Returnsthe interpolation errors

Return typenp.array

model.combine_models(model1, coef1, model2, coef2)
Do linear combination of this model with another.

This method returns a new model which is the weighted sum of two models for the purposes of model interpo-
lation. The classical parameters are combined in a self-consistent way as are the frequencies.

Parameters

•model1 (Model) – first model

•coef1 (float) – weighting coefficient applied to first model

•model2 (Model) – second model

•coef2 (float) – weighting coefficient applied to second model

Returnsthe combined model

Return typeModel

Warning: One should avoid negative or zero coefficients as these could lead to undefined results.

model.compare_models(model1, model2)
Compare two models and find the largest frequency different for radial and non-radial modes.

Parameters

•model1 (Model) – first model

•model2 (Model) – second model

1.9. The model module 31

AIMS Documentation, Release 1.2.0

Returns

a 1D array to be used in plot_test_interpolation.py with the following measure-
ments of the differences between the two models:

•result[0] = maximum error on the radial modes

•result[1] = RMS error on the radial modes

•result[2] = RMS error on the radial modes near 𝜈max

•result[3] = maximum error on the non radial modes

•result[4] = RMS error on the non radial modes

•result[5] = RMS error on the non radial modes near 𝜈max

•result[6+[0:nglb]] = errors on the global parameters

Return typenp.array

model.eps = 1e-06
relative tolerance on parameters used for setting up evolutionary tracks

model.find_ages(coefs, tracks, age)
Find ages to which each track needs to be interpolated for a specified age. The global variable scale_age
decides between the following two options:

1.scale_age = False: each track is simply interpolated to age.

2.scale_age = True: the age of each model along each evolutionary track, including the interpolated
track, is linearly mapped onto the interval [0,1]. A dimensionless parameter eta is obtained by interpo-
lating age onto the interval [0,1], using the linear transformation associated with the interpolated track.
Using the parameter eta, a corresponding age is obtained along each track.

Fig. 1.1: This diagram illustrates both types of age interpolation and shows the advantages of selecting scale_age
= True.

Parameters

•coefs (list of floats) – interpolation coefficients used to weight each track.

•tracks (list of Track) – evolutionary tracks involved in the interpolation.

•age (float) – target age for the output interpolated model.

32 Chapter 1. Contents

AIMS Documentation, Release 1.2.0

Returnsthe relevant age for each track

Return typelist of floats

Note:
•the interpolation coefficients should add up to 1.0

•there should be as many tracks as interpolation coefficients.

model.find_combination(grid, pt)
Find linear combination of models which corresponds to interpolating the model based on the provided param-
eters.

The interpolation is carried out using the same procedure as in interpolate_model().

Parameters

•grid (Model_grid) – grid of models in which we’re carrying out the interpolation

•pt (array-like) – set of parameters used for the interpolation. The first part contains the
grid parameters, whereas the last element is the age. If the provided set of parameters lies
outside the grid, then None is returned instead of an interpolated model.

Returnspairs of coefficients and model names

Return typetuple of (float,string)

model.find_interpolation_coefficients(grid, pt, tessellation, ndx)
Find interpolation weights from the corresponding simplex.

Linear interpolation weights are obtained with the simplex by finding the barycentric coordinates of the point
given by pt.

Parameters

•grid (Model_grid) – grid of models in which we’re carrying out the interpolation

•pt (array-like) – set of parameters used for finding the interpolation weights. The first part
contains the grid parameters (relevant to this interpolation), whereas the last element is the
age (not used here). If the provided set of parameters lies outside the grid, then None is
returned instead of an interpolated model.

•tessellation – tessellation with which to carry out the interpolation.

•ndx (list of int) – indices of the grid points associated with the tessellation

Returnslists of interpolation coefficients and tracks

Return typelist of floats, list of Track

model.ftype
type used for the frequencies

alias of float64

model.get_surface_parameter_names(surface_option)
Return the relevant parameter names for a given surface correction option.

Parameterssurface_option (string) – specifies the type of surface correction.

Returnsnames for the surface parameters

Return typetuple of strings

1.9. The model module 33

AIMS Documentation, Release 1.2.0

model.gtype
type used for grid data

alias of float64

model.iage = 0
index of the parameter corresponding to age in the Model.glb array

model.ifreq_ref = 10
index of the parameter corresponding to the reference frequency (used to non-dimensionalise the pulsation
frequencies of the model) in the Model.glb array

model.iluminosity = 12
index of the parameter corresponding to luminosity in the Model.glb array

model.imass = 1
index of the parameter corresponding to mass in the Model.glb array

model.init_user_param_dict()
Initialise the dictionaries which are related to user-defined parameters. For a given parameter, these dictionaries
provide the appropriate index for for the Model.glb array as well as the appropriate latex name.

model.interpolate_model(grid, pt, tessellation, ndx)
Interpolate model in grid using provided parameters.

The interpolation is carried out in two steps. First, linear interpolation according to age is carried out
on each node of the simplex containing the set of parameters. This interpolation is done using the
Track.interpolate_model method. Then, linear interpolation is carried out within the simplex. This
achieved by finding the barycentric coordinates of the model (i.e. the weights), before combining the age-
interpolated models form the nodes using the combine_models method. In this manner, the weights are only
calculated once, thereby increasing computational efficiency.

Parameters

•grid (Model_grid) – grid of models in which we’re carrying out the interpolation

•pt (array-like) – set of parameters used for the interpolation. The first part contains the
grid parameters, whereas the last element is the age. If the provided set of parameters lies
outside the grid, then None is returned instead of an interpolated model.

•tessellation – tessellation with which to carry out the interpolation.

•ndx (list of int) – indices of the grid points associated with the tessellation

Returnsthe interpolated model

Return typeModel

model.iradius = 11
index of the parameter corresponding to radius in the Model.glb array

model.itemperature = 2
index of the parameter corresponding to temperature in the Model.glb array

model.ix0 = 4
index of the parameter corresponding to the initial hydrogen content in the Model.glb array

model.iz0 = 3
index of the parameter corresponding to the initial metallicity the Model.glb array

model.ltype
type used for the l values

alias of int8

34 Chapter 1. Contents

AIMS Documentation, Release 1.2.0

model.modetype = [(‘n’, <type ‘numpy.int16’>), (‘l’, <type ‘numpy.int8’>), (‘freq’, <type ‘numpy.float64’>), (‘inertia’, <type ‘numpy.float64’>)]
structure for modes

model.nglb = 13
total number of global quantities in a model (see Model.glb).

model.nlin = 10
total number of global quantities which are interpolated in a linear way (see combine_models()). These
quantities are numbered 0:nlin-1

model.ntype
type used for the n values

alias of int16

model.string_to_latex(string, prefix=’‘, postfix=’‘)
Return a fancy latex name for an input string.

Parameters

•string (string) – string that indicates for which parameter we’re seeking a latex name

•prefix (string) – optional prefix to add to the string

•postfix (string) – optional postfix to add to the string

Returnsa fancy latex name

Return typestring

Note: This also works for the names of the amplitude parameters for surface corrections.

model.tol = 1e-10
tolerance level for slightly negative interpolation coefficients

model.user_params_index = {}
dictionary which will supply the appropriate index for the user-defined parameters

model.user_params_latex = {}
dictionary which will supply the appropriate latex name for the user-defined parameters

1.10 The constants module

A module which contains the following physical constants:

Name of variable Quantity it describes Units
solar_radius the solar radius cm
solar_mass the solar mass g
solar_luminosity the solar luminosity g.cm2.s−3

solar_temperature the solar effective temperature K
solar_dnu the solar large frequency separation 𝜇Hz
solar_numax the solar frequency at maximum power 𝜇Hz
solar_cutoff the solar cutoff frequency 𝜇Hz
G the gravitational constant cm3.g−1.s−2

solar_x the solar hydrogen content dimensionless
solar_z the solar metallicity content dimensionless
A_FeH multiplicative constant in [M/H] = AFeH[Fe/H] dimensionless

Note: These values can be edited according to the latest discoveries. As good practise, it is helpful to include the

1.10. The constants module 35

AIMS Documentation, Release 1.2.0

relevant reference.

constants.A_FeH = 1.0
multiplicative constant which intervenes in the conversion from metal content to iron content

constants.G = 6.67168e-08
the gravitational constant in cm3.g−1.s−2

constants.solar_cutoff = 5100.0
the solar cut-off frequency separation in 𝜇Hz

constants.solar_dnu = 138.8
the solar large frequency separation in 𝜇Hz

constants.solar_luminosity = 3.846e+33
the solar luminosity in g.cm2.s−3

constants.solar_mass = 1.98919e+33
the solar mass in g

constants.solar_numax = 3104.0
the solar frequency at maximum power in 𝜇Hz

constants.solar_radius = 69599000000.0
the solar radius in cm

constants.solar_temperature = 5777.0
the solar temperature in K

constants.solar_x = 0.7355
the solar hydrogen content

constants.solar_z = 0.0131
the solar metallicity content

1.11 The utilities module

A module which contains various utility methods for handling strings and floats.

utilities.is_number(s)
Test a string to see if it is a number.

Parameterss (string) – string which is being tested

ReturnsTrue if s is a number, and False otherwise

Return typeboolean

Note: This method allows “d” and “D” as an exponent (i.e. for Fortran style numbers).

utilities.to_float(s)
Convert a string to a float.

Parameterss (string) – string which will be converted to a float

Returnsthe corresponding float

Return typefloat

Note: This method allows “d” and “D” as an exponent (i.e. for Fortran style numbers).

36 Chapter 1. Contents

AIMS Documentation, Release 1.2.0

utilities.trim(s)
Return a string with comments (starting with “#”) removed.

Parameterss (string) – the string for which we would like to remove comments.

Returnsthe string without comments

Return typestring

1.12 The plot_interpolation_test tool

An interactive utility which plots various forms of interpolation error, stored in a binary file produced by
AIMS.test_interpolation(). It specifically tests the errors from two types of interpolation:

• age interpolation: this is interpolation along a given evolutionary track

• track interpolation: this is interpolation between different evolutionary tracks

This utility allows various types of plots:

• 3D plots of interpolation errors as a function of grid structural parameters

• 2D slices which show interpolation errors as a function of age for a given evolutionary track

• interactive plots which allow you to select 2D slices

Note: Interpolation errors for models in a given evolutionary track are typically stored in arrays as follows:

• result[model_number,ndim+0] = maximum error on the radial modes

• result[model_number,ndim+1] = RMS error on the radial modes

• result[model_number,ndim+2] = RMS error on the radial modes near 𝜈max

• result[model_number,ndim+3] = maximum error on the non radial modes

• result[model_number,ndim+4] = RMS error on the non radial modes

• result[model_number,ndim+5] = RMS error on the non radial modes near 𝜈max

• result[model_number,ndim+6+[0:nglb]] = errors on the global parameters

where:

• result = the array which containts the interpolation errors

• model_numer = an index which represents the model (not necessarily the number of the model along the
evolutionary track

• ndim = the number of dimensions in the grid (including age)

• nglb = the number of global parameters for stellar models in the grid

Warning: This plot utility only works with 3 dimensional grids (incl. the age dimension).

plot_interpolation_test.all_nan(array)
Test to see if all of the elements of an array are nan’s.

Parametersarray (np.array) – array in which we’re checking to see if all elements are nan’s.

ReturnsTrue if all the elements of array are nan’s, and False otherwise.

Return typeboolean

1.12. The plot_interpolation_test tool 37

AIMS Documentation, Release 1.2.0

plot_interpolation_test.ndim = 0
number of dimension in grid (including age)

plot_interpolation_test.nglb = 0
number of global parameters

plot_interpolation_test.onpick_age(event)
Event catcher for the grid plot (which shows the positions of the evolutionary tracks as a function of the grid
parameters, excluding age).

Parameters:

Parametersevent – event caught by the grid plot.

plot_interpolation_test.onpick_track(event)
Event catcher for the partition tessellation plot (associated with tests of track interpolation).

Parametersevent – event caught by the partition tessellation plot.

plot_interpolation_test.plot3D(results, error_ndx, tpe=’max’, title=None, truncate=0)
Create 3D plot showing the error as a function of the two first grid parameters.

Parameters

•results (list of np.arrays) – list of 2D arrays which contain various types of errors as a
function of the model number along a given evolutionary track.

•error_ndx (int) – value which specifies the type of error to be plotted.

•tpe (string) – specifies how to combine errors along the evolutionary track. Options in-
clude:

–“max”: corresponds to taking the maximum value.

–“avg”: takes the root mean-square value.

•title (string) – the title of the plot

•truncate (int) – (default = 0): specifies how many models should be omitted on both
ends of the track. This is useful for comparing results from tests involing different sizes of
increments.

Note: See above introductory description for a more detailled description of the indices which intervene in the
2D arrays contained in results and of the relevant values for error_ndx.

plot_interpolation_test.plot_grid(grid)
Make an interactive plot of the grid. Clicking on the blue dots will produce a 2D slice showing age interpolation
errors for the associated evolutionary track.

Parametersgrid (np.array) – array containing basic grid parameters (excluding age)

Warning: This only works for two-dimensional grids (excluding the age dimension).

plot_interpolation_test.plot_partition_tessellation(grid, ndx1, ndx2, tessellation)
Make an interactive tessellation plot based on the supplied partition on the grid. Clicking on the blue dots will
produce a 2D slice showing track interpolation errors for the associated evolutionary track.

Parameters

•grid (np.array) – array containing basic grid parameters (excluding age)

•ndx1 (list of int) – list with the indices of the first part of the partition.

38 Chapter 1. Contents

AIMS Documentation, Release 1.2.0

•ndx2 (list of int) – list with the indices of the second part of the partition.

•tessellation – grid tessellation associated with ndx2

Warning: This only works for two-dimensional tessellations.

plot_interpolation_test.plot_slice_age(pos)
Plot age interpolation error as a function of age for a given track.

Parameterspos (int) – index of the relevant track.

Note: This pos index applies to results_age, i.e., it is based on the original track indices.

plot_interpolation_test.plot_slice_track(pos)
Plot track interpolation error as a function of age for a given track.

Parameterspos (int) – index of the relevant track.

Note: This pos index applies to results_track, i.e., it is based on the indices deduced from the grid partition.

plot_interpolation_test.results_age = None
list which contains the arrays with the errors from age interpolation

plot_interpolation_test.results_track = None
list which contains the arrays with the errors from track interpolation

plot_interpolation_test.titles = None
the grid quantities, which will serve as axis labels

1.12. The plot_interpolation_test tool 39

AIMS Documentation, Release 1.2.0

40 Chapter 1. Contents

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

41

AIMS Documentation, Release 1.2.0

42 Chapter 2. Indices and tables

PYTHON MODULE INDEX

a
AIMS, 8

c
constants, 35

m
model, 22

p
plot_interpolation_test, 37

u
utilities, 36

43

AIMS Documentation, Release 1.2.0

44 Python Module Index

INDEX

A
A_FeH (in module constants), 36
add_combinations() (AIMS.Likelihood method), 10
add_constraint() (AIMS.Likelihood method), 10
add_den() (AIMS.Combination method), 8
add_dnu_constraint() (AIMS.Likelihood method), 10
add_dnu_constraint_matrix() (AIMS.Likelihood

method), 11
add_nu_min_constraint() (AIMS.Likelihood method), 11
add_num() (AIMS.Combination method), 9
add_prior() (AIMS.Prior_list method), 16
add_seismic_constraint() (AIMS.Likelihood method), 11
AIMS (module), 8
all_nan() (in module plot_interpolation_test), 37
append() (model.Track method), 29
append_modes() (model.Model method), 23
append_osm_parameter() (in module AIMS), 16
append_osm_surface_effects() (in module AIMS), 17
apply_constraints() (AIMS.Likelihood method), 12
assign_n() (AIMS.Likelihood method), 12

B
b_Kjeldsen2008 (model.Model attribute), 23
best_grid_model (in module AIMS), 17
best_grid_params (in module AIMS), 17
best_grid_result (in module AIMS), 17
best_MCMC_model (in module AIMS), 17
best_MCMC_params (in module AIMS), 17
best_MCMC_result (in module AIMS), 17
beta_Sonoi2015 (model.Model attribute), 23

C
check_configuration() (in module AIMS), 17
classic_weight (AIMS.Likelihood attribute), 12
clear_seismic_constraints() (AIMS.Likelihood method),

12
coeff (AIMS.Likelihood attribute), 12
Combination (class in AIMS), 8
combinations (AIMS.Likelihood attribute), 12
combine_models() (in module model), 31
compare_frequency_combinations() (AIMS.Likelihood

method), 12

compare_models() (in module model), 31
constants (module), 35
constraints (AIMS.Likelihood attribute), 12
cov (AIMS.Likelihood attribute), 12
create_combination_arrays() (AIMS.Likelihood method),

12
create_mode_arrays() (AIMS.Likelihood method), 12
cutoff (model.Model attribute), 23

D
den (AIMS.Combination attribute), 9
den_coeff (AIMS.Combination attribute), 9
den_index (AIMS.Combination attribute), 9
dfreq (AIMS.Mode attribute), 15
dfvalues (AIMS.Likelihood attribute), 12
Distribution (class in AIMS), 9
duplicate_ages() (model.Track method), 29

E
echelle_diagram() (in module AIMS), 17
eps (in module model), 32
error_bar (AIMS.Distribution attribute), 9
evaluate() (AIMS.Likelihood method), 13
evaluate() (AIMS.Probability method), 16

F
FeH (model.Model attribute), 22
find_a_blob() (in module AIMS), 17
find_ages() (in module model), 32
find_best_model() (in module AIMS), 17
find_best_model_in_track() (in module AIMS), 18
find_blobs() (in module AIMS), 18
find_combination() (in module model), 33
find_combination() (model.Track method), 29
find_covariance() (AIMS.Likelihood method), 13
find_epsilon() (model.Model method), 23
find_epsilons() (model.Model_grid method), 27
find_interpolation_coefficients() (in module model), 33
find_l_list() (AIMS.Likelihood method), 13
find_large_separation() (model.Model method), 23
find_map() (AIMS.Likelihood method), 13
find_mode() (model.Model method), 23

45

AIMS Documentation, Release 1.2.0

find_mode_range() (model.Model method), 24
find_mode_range() (model.Track method), 30
find_modes() (model.Track method), 30
find_partition() (model.Model_grid method), 27
find_vec() (AIMS.Likelihood method), 13
find_weights() (AIMS.Likelihood method), 14
freq (AIMS.Mode attribute), 15
freq_sorted() (model.Model method), 24
ftype (in module model), 33
fvalues (AIMS.Likelihood attribute), 14

G
G (in module constants), 36
get_age() (model.Model method), 24
get_freq() (model.Model method), 24
get_optimal_surface_amplitudes() (AIMS.Likelihood

method), 14
get_surface_correction() (model.Model method), 24
get_surface_parameter_names() (in module model), 33
glb (model.Model attribute), 25
grid (in module AIMS), 18
grid (model.Model_grid attribute), 28
grid_params (model.Model_grid attribute), 28
grid_params (model.Track attribute), 30
grid_params_MCMC (in module AIMS), 18
grid_params_MCMC_with_surf (in module AIMS), 18
gtype (in module model), 33
guess_dnu() (AIMS.Likelihood method), 14
guess_n() (AIMS.Likelihood method), 14

I
iage (in module model), 34
ifreq_ref (in module model), 34
iluminosity (in module model), 34
imass (in module model), 34
indices (AIMS.Likelihood attribute), 14
init_user_param_dict() (in module model), 34
init_walkers() (in module AIMS), 18
interpolate_model() (in module model), 34
interpolate_model() (model.Track method), 30
interpolation_tests() (in module AIMS), 18
invcov (AIMS.Likelihood attribute), 14
iradius (in module model), 34
is_number() (in module utilities), 36
is_outside() (AIMS.Likelihood method), 14
is_sorted() (model.Track method), 30
itemperature (in module model), 34
ix0 (in module model), 34
iz0 (in module model), 34

L
l (AIMS.Mode attribute), 15
likelihood (AIMS.Probability attribute), 16
Likelihood (class in AIMS), 10

load_binary_data() (in module AIMS), 18
log0 (in module AIMS), 18
ltype (in module model), 34
lvalues (AIMS.Likelihood attribute), 15

M
match() (AIMS.Mode method), 15
matches() (model.Track method), 30
mean (AIMS.Distribution attribute), 9
MH (model.Model attribute), 22
Mode (class in AIMS), 15
Model (class in model), 22
model (module), 22
Model_grid (class in model), 27
models (model.Track attribute), 31
modes (AIMS.Likelihood attribute), 15
modes (model.Model attribute), 25
modetype (in module model), 34
multiply_modes() (model.Model method), 25
my_map (in module AIMS), 18

N
n (AIMS.Mode attribute), 16
name (model.Model attribute), 25
ncoeff (AIMS.Likelihood attribute), 15
ndim (in module plot_interpolation_test), 37
ndim (model.Model_grid attribute), 28
ndims (in module AIMS), 18
ndx (model.Model_grid attribute), 28
nglb (in module model), 35
nglb (in module plot_interpolation_test), 38
nlin (in module model), 35
nmodes (model.Track attribute), 31
nparams (AIMS.Distribution attribute), 9
nsurf (in module AIMS), 18
ntype (in module model), 35
num (AIMS.Combination attribute), 9
num_coeff (AIMS.Combination attribute), 9
num_index (AIMS.Combination attribute), 9
numax (model.Model attribute), 26
nvalues (AIMS.Likelihood attribute), 15

O
onpick_age() (in module plot_interpolation_test), 38
onpick_track() (in module plot_interpolation_test), 38
output_folder (in module AIMS), 19

P
params (model.Track attribute), 31
plot3D() (in module plot_interpolation_test), 38
plot_grid() (in module plot_interpolation_test), 38
plot_histograms() (in module AIMS), 19
plot_interpolation_test (module), 37

46 Index

AIMS Documentation, Release 1.2.0

plot_partition_tessellation() (in module
plot_interpolation_test), 38

plot_slice_age() (in module plot_interpolation_test), 39
plot_slice_track() (in module plot_interpolation_test), 39
plot_tessellation() (model.Model_grid method), 28
plot_walkers() (in module AIMS), 19
pool (in module AIMS), 19
postfix (model.Model_grid attribute), 28
prefix (model.Model_grid attribute), 28
print_me() (AIMS.Combination method), 9
print_me() (AIMS.Distribution method), 10
print_me() (model.Model method), 26
Prior_list (class in AIMS), 16
priors (AIMS.Prior_list attribute), 16
priors (AIMS.Probability attribute), 16
prob (in module AIMS), 19
Probability (class in AIMS), 16

R
re_centre() (AIMS.Distribution method), 10
re_normalise() (AIMS.Distribution method), 10
read_constraints() (AIMS.Likelihood method), 15
read_file() (model.Model method), 26
read_file_agsm() (model.Model method), 26
read_file_simple() (model.Model method), 26
read_model_list() (model.Model_grid method), 28
realisation() (AIMS.Distribution method), 10
realisation() (AIMS.Prior_list method), 16
remove_duplicate_modes() (model.Model method), 27
results_age (in module plot_interpolation_test), 39
results_track (in module plot_interpolation_test), 39
run_emcee() (in module AIMS), 19

S
seismic_weight (AIMS.Likelihood attribute), 15
solar_cutoff (in module constants), 36
solar_dnu (in module constants), 36
solar_luminosity (in module constants), 36
solar_mass (in module constants), 36
solar_numax (in module constants), 36
solar_radius (in module constants), 36
solar_temperature (in module constants), 36
solar_x (in module constants), 36
solar_z (in module constants), 36
sort() (model.Track method), 31
sort_modes() (AIMS.Likelihood method), 15
sort_modes() (model.Model method), 27
statistical_model (in module AIMS), 19
statistical_params (in module AIMS), 19
statistical_result (in module AIMS), 19
string_to_latex() (in module model), 35
string_to_param() (model.Model method), 27
string_to_title() (in module AIMS), 19

T
tessellate() (model.Model_grid method), 28
tessellation (model.Model_grid attribute), 28
test_freq() (model.Model_grid method), 28
test_interpolation() (model.Model_grid method), 29
test_interpolation() (model.Track method), 31
threshold (in module AIMS), 20
titles (in module plot_interpolation_test), 39
to_float() (in module utilities), 36
to_string() (AIMS.Distribution method), 10
tol (in module model), 35
Track (class in model), 29
tracks (model.Model_grid attribute), 29
trim() (in module utilities), 36
type (AIMS.Distribution attribute), 10

U
user_params (model.Model_grid attribute), 29
user_params_index (in module model), 35
user_params_latex (in module model), 35
utilities (module), 36

V
value (AIMS.Combination attribute), 9
values (AIMS.Distribution attribute), 10
values (AIMS.Likelihood attribute), 15

W
write_binary_data() (in module AIMS), 20
write_combinations() (in module AIMS), 20
write_file_simple() (model.Model method), 27
write_LEGACY_summary() (in module AIMS), 20
write_list_file() (in module AIMS), 20
write_model() (in module AIMS), 20
write_osm_don() (in module AIMS), 20
write_osm_frequencies() (in module AIMS), 21
write_osm_xml() (in module AIMS), 21
write_readme() (in module AIMS), 21
write_samples() (in module AIMS), 21
write_statistics() (in module AIMS), 21

Z
zsx_0 (model.Model attribute), 27
zsx_s (model.Model attribute), 27

Index 47

	Contents
	Project Summary
	Acknowledgements
	Requirements
	Download AIMS
	Installation
	Usage
	File formats
	The AIMS program
	The model module
	The constants module
	The utilities module
	The plot_interpolation_test tool

	Indices and tables
	Python Module Index
	Index

