
InversionKit

Version 1.3

Daniel Reese
and

Sergei Zharkov

July 2009

1

Contents

1 Getting started 3

1.1 Running the program . 3
1.2 Using the program . 3
1.3 Preliminary remarks . 4

2 File formats 11

2.1 Stellar models . 11
2.2 Eigenmodes . 11

2.2.1 The FAMDE format . 11
2.2.2 The FILOU format . 12

2.3 Target profiles . 12
2.4 Frequency shifts or rotational splittings . 12
2.5 GZIP compression . 13

3 Formulas 13

3.1 RLS – rotational inversion . 13
3.2 RLS – structural inversion . 13
3.3 SOLA – rotational inversion . 14
3.4 SOLA – structural inversion . 15
3.5 Integration method . 15

4 Known bugs 16

5 Copyright notices 16

5.1 Supplementary notices . 17

Acknowledgements

This program was written by Daniel Reese and Sergei Zharkov,whose work is supported
by the European Helio- and Asteroseismology Network (HELAS), a major international
collaboration funded by the European Commission’s Sixth Framework Programme.

2

1 Getting started

1.1 Running the program

InversionKit runs under Java 5.0. If Java is not installed on your computer, or is not
sufficiently up-to-date, it can be downloaded from:

http://www.java.com/en/

JRE (Java Runtime Environment) allows you to run Java programs but not to compile
your own. JDK (Java Development Kit) allows you to run and compile Java programs.

To run the program download the file InversionKit.jar from the HELAS website:

http://helas.group.shef.ac.uk/science/inversions/InversionKit/index.html

then type the following command in a command window, in the directory that contains
InversionKit.jar:

java -jar InversionKit.jar

If you are planning to do calculations involving large data and kernels sets, you may
need to allocate a larger amount of memory to run the program. To allocate, for example,
500 MB of memory (rather than the default 64 MB), use the following command:

java -Xmx500m -jar InversionKit.jar

Note: the option -Xmx is nonstandard and may change according to the release in-
stalled on your computer.

1.2 Using the program

Once the InversionKit is running, the user has several options:

• calculating theoretical frequency shifts or rotational splittings from target profiles

• invert frequency shifts or rotation splittings to find structural or rotational profiles

• combine the two options above

In order to do the above, the user must first of all:

1. load a stellar model

2. load a set of eigenmodes, which enables the program to calculate a set of kernels

The above operations are done in different tabs within the program. These tabs are:

• Rotational Inversion: this tab does rotational inversions and also allows the user
to load a target rotation profile

• Structural Inversion: this tab does structural inversions on pairs of structural
profiles and allows the user to load target structural profiles.

3

http://www.java.com/en/
http://helas.group.shef.ac.uk/science/inversions/InversionKit/index.html

• Stellar model: this tab allows the user to load or generate a stellar model

• Kernels: this tab allows the user to load eigenfunctions and calculate the corre-
sponding rotational and structural kernels

• Rotational splittings: this tab allows the user to load/generate/edit rotational
splittings data

• Frequency shifts: this tab allows the user to load/generate/edit frequency shifts
data

The next few pages gives a brief description of the different buttons and options which
appear in these tabs. The Structural Inversion tab is similar to the Rotational

Inversion tab; therefore only extra features are described. The Rotational Splittings

tab is omitted altogether because it is quite similar to the Frequency Shifts tab. More-
over, the actual appearance of these tabs may vary from one platform to another depend-
ing on the Java installation.

1.3 Preliminary remarks

Some of the operations can take some time. For example, uploading 800 eigenmodes and
calculating the corresponding kernels can take typically 40s. Doing a rotational inversion
with 800 kernels takes typically 7.5s. When the program is calculating, it is best just to
wait and let it finish what it is doing.

Also, a number of the check boxes, sliders and text fields in the Rotation Inversion

and Structural Inversion tabs will automatically update the inversion if it is not up
to date, whereas the Update Inversion button will recalculate the inversion even if it is
up to date.

4

this says how many kernels

are being used in the current

inversion

this updates/refreshes the

inversion

these determine which

functions are shown

this determines whether or

not to show the error bars

in both types of inversion

when selected, the program

tries to calculate the inversion

at each intermediate positions

on the sliders below

when selected, artificial noise

is added to the data before

the inversion

text field which determines

the amplitude of the noise

slider which determines the

amplitude of the noise

this generates a new

realisation of noise

5

text field and slider which

determine the amount of

regularisation in an RLS

inversion (see Formula section)

text field and slider which

determine the amount of

regularisation in a SOLA

inversion (see Formula section)

text field and slider which

determine the widths of the

averaging kernels in a SOLA

inversion (see Formula section)

text field and slider which

determine the target grid point

for which to show the averaging

kernels in either type of inversion

text field which determines the

number of grid points to be used

in the inversions

this gives the choice of the

numerical method

this load a target rotation

function (see File format section)

this clears the current target function

this calculates theoretical rotational

splittings from the target function

6

combo box which gives the

choice between different types

of structural kernels

this determines which of two

structural functions will be

shown

text field and slider which

determine the ratio between

producing “nice” averaging

kernels and reducing cross-term

kernels (see Formula section)

these sliders and text fields

can be adjusted independently

for the two different structural

inversions

text field which determines the

number of legendre polynomials

used in ad-hoc modeling of

surface effects (the polynomial

degrees go from 0 to this value

minus 1)

7

this loads a stellar model in

OSC (CESAM), OSC.gz,

FAMDL (ASTEC) or FAMDL.gz

format (see File Formats section)

this loads a model in the same

formats as above, but from

a URL

this loads a model from the

HELAS website

this generates a polytropic model

this removes the currently

loaded model

this gives some information on

the model currently loaded

8

this loads eigenfunctions in a

FAMDE(.gz) or FILOU(.gz)

format (see File Format

section) and calculates all of

the kernels from these

this gives information on

the different eigenmodes/

kernels

this produces a file with IDL

instructions to reproduce

the plot

this produces a txt file with

the data from the plot

this is the auto-scale button

this duplicates the plot into

a new window

click and drag on the plot

area to zoom in

these are navigation buttons

so as to look at the different

kernels that are loaded

9

this adds a blank row

at the end of the list

this removes the selected rows

this clears all of the data

this sorts the data according to (l,n)

this opens a file and replaces the

current data with the file's data

(see File Format section)

this opens a file and appends its

data to the end of the current data

this writes a file with the

current data

this calculates theoretical

frequency shifts from the target

structural functions loaded

in the structural inversion page

this gives the number of

frequency shift data currently

loaded

the entries in this table can be

edited

10

2 File formats

2.1 Stellar models

InversionKit accepts the following file formats for stellar models:

1. OSC files generated by CESAM.

2. FAMDL files generated by ASTEC.

A description of these file formats can be found at:

http://www.astro.up.pt/corot/ntools/docs/CoRoT_ESTA_Files.pdf

InversionKit determines automatically which format is being used in the following way:
if the word “CESAM” appears on the second line of the file, then the file is in OSC format.
Otherwise, it is assumed to be in FAMDL format. If need be, MODCONV can convert models
from one format to another. This tool is available at:

http://www.astro.up.pt/corot/ntools/modconv/

2.2 Eigenmodes

InversionKit accepts eigenmodes in one of two formats:

• the “FAMDE” format

• the FILOU format

2.2.1 The FAMDE format

FAMDE format is an ASCII version of the AMDE format produced by ADIPLS (with
nfmode=3) plus an additional header as described in the 1996 inversion workbench de-
scription. At the end of the header is a succession of 3 {CTRL+L, CTRL+J} in a row, which
separates it from the rest of the file. InversionKit skips the header and reads data which
comes after. The data needs to obey the following rules:

• The first section is made up of one entry: the number of grid points.

• The next section contains the grid.

• The next section contains the eigenmodes. For each eigenmode there are two sub-
sections. The first contains 50 global parameters and the second contains the nor-
malised horizontal and vertical displacements.

• Each section and subsection starts on a new line. The number of entries per line
does not matter, but each entry needs to be separated by at least one space.

• Blank lines are not allowed, except in the header.

An auxiliary Fortran tool amde2famde.f available with this distribution converts AMDE
files to FAMDE files.

11

http://www.astro.up.pt/corot/ntools/docs/CoRoT_ESTA_Files.pdf
http://www.astro.up.pt/corot/ntools/modconv/

2.2.2 The FILOU format

The FILOU format can be described as a series of individual eigenmodes which are defined
by a header and a table. The header contains the keyword “FILOU” which is used to
distinguish the file from an FAMDE file, and a number of key parameters, preceded by
descriptive character strings. The relevant parameters are:

• the harmonic degree ` (preceded by “DEGRE DU MODE L :”)

• the number of grid points (preceded by “Nombre de points du reseau du modele :”)

• the normalised frequency (preceded by “Frequence carree normalisee =”)

• the radial order (preceded by “noeuds =”)

• the frequency in µHz (preceded by “Frequence en micro Hz =”)

Three supplementary lines appear between the frequency in µHz and the start of the
table. The table contains 5 columns, each of which are 15 characters wide. The first
column is the normalised radial position and the remaining 4 give the variables y01 .. y04

which are defined in Suárez and Goupil, 2008 (Astrophys. Space Sci. 316, 155-161). The
two first functions y01 and y02 are used to calculated normalised displacements which can
then be used to find the different kernels. Although the FILOU oscillation code is able
to take into account the effects of rotation using perturbation theory, InversionKit is
only set up to calculate and do inversions using eigenmodes and eigenfrequencies from
non-rotating models.

2.3 Target profiles

The files which contain the target profile(s) need to obey the following rules:

• On a given line, anything following a “#” is treated like a comment and ignored.

• There are 2 columns for the target rotation profile and 3 columns for the target
structural profiles.

• The first column corresponds to the underlying grid. This grid needs to be in strictly
ascending order. Also, when using the target profile(s) to calculate theoretical
frequency shifts or rotational splittings, the span covered by the grid needs to be at
least as large as the span covered by the eigenmode/kernel grid.

• The next column(s) contain the target profile(s).

• A line with the wrong number of entries (after removal of comments) are discarded
but provoke a warning message (except if there are no entries).

2.4 Frequency shifts or rotational splittings

The files which contain frequency shifts or rotational splittings need to obey the following
rules:

• On a given line, anything following a “#” is treated like a comment and ignored.

• There are 4 columns. These are:

12

1. Integer entry which corresponds to the radial order n.

2. Integer entry which corresponds to the harmonic degree (or order) `.

3. Floating number which corresponds to either the frequency shift (∆f) or the
rotational splitting (R.S.)

4. Floating number which corresponds to the error on either the frequency shift
or the rotational splitting.

• A line with the wrong number of entries (after removal of comments) are discarded
but provoke a warning message (except if there are no entries).

2.5 GZIP compression

InversionKit can read either “gzipped” files or uncompressed files. In order to determine
whether or not a file is gzipped, InversionKit looks at the filename to see if it ends
with “.gz”. The same rule also applies when saving a model from the HELAS website
http://www.astro.up.pt/helas/ onto the hard disk – choosing a filename which ends
with “.gz” causes InversionKit to save a compressed file, whereas any other ending
produces an uncompressed file.

3 Formulas

RLS and SOLA inversions both involve minimising “cost” functions which will be repre-
sented by the letter J in what follows.

3.1 RLS – rotational inversion

J is defined as:

J(f) =

L
∑

l=1

{

Cl −
∫ R

0
Kl(r)f(r)dr

σl

}2

+ Λ

〈

1

σ2

〉
∫ R

0

{

d2f

dr2

}2

dr (1)

where Cl is the rotational splitting, σl the corresponding error, Kl the corresponding ro-

tational kernel, and
〈

1
σ2

〉

= 1
L

(

∑L

l=1
1
σ2

l

)

. The function f that minimises J corresponds

to the inversion result. Λ is a trade-off parameter between conforming to data and regu-
larising the function f , and can be regulated in the Rotational Inversion tab.

3.2 RLS – structural inversion

J is defined as:

J(f, g, an) =
L
∑

l=1

{

(∆ω)l −
∫ R

0
K1,l(r)f(r)dr−

∫ R

0
K2,l(r)g(r)dr−

∑N−1
n=0

anψn(ωl)
El

σl

}2

+

〈

1

σ2

〉

Λ

∫ R

0

{

d2f

dr2

}2

+

{

d2g

dr2

}2

dr (2)

13

where (∆ω)l is the frequency shifts due changes in the stellar structure, σl is the cor-

responding error, K1,l, K2,l the corresponding structural kernels,
〈

1
σ2

〉

= 1
L

(

∑L

l=1
1
σ2

l

)

,

and
∑N−1

n=0
anψn(ωl)

El

an ad-hoc way of modelling surface effects (where ψn is a set of poly-

nomials). The functions f and g and coefficients an that minimise J correspond to the
inversion result. Λ is a trade-off parameter between conforming to data and regularising
the function f , and can be regulated in the Structural Inversion tab. N is the number
of polynomials used to model surface effects and can also be modified in the Structural
Inversion tab. An additional Lagrangian constraint is added in some cases to maintain a
constant mass for the star.

3.3 SOLA – rotational inversion

The idea in a SOLA inversion is to construct “nice” averaging kernels K(r0, r) at each
grid point r0. This is done by constructing a target function T (r0, r) for each r0 and
trying to make K(r0, r) resemble this function.

For a given point r0, J is defined as:

J(cl(r0)) =

∫ R

0

{T (r0, r) −K(r0, r)}
2
dr + µ tan θ

∑

l,k

El,kcl(r0)ck(r0)

+ λ

{

1 −

∫ R

0

K(r0, r)dr

}

(3)

where

T (r0, r) = a target function,

El,k = σ2
l δl,k = the variance-covariance matrix on the measurements of Cl

µ =
L

Tr(E)
,

θ = a trade off parameter between conforming to data and regularising the solutions,

K(r0, r) =
L
∑

l=1

cl(r0)Kl(r) = the averaging kernel

λ = Lagrangian multiplier used to insure that

∫ R

0

K(r0, r)dr = 1

The function T (r0, r) is defined as follows:

T (r0, r) =
1

F
exp

(

−

(

r − r0

c(r0) · ∆

)2
)

(4)

where F is a normalisation factor such that
∫ R

0
T (r0, r)dr = 1 and ∆ is a parameter which

controls the width of the function. The solution f is then reconstructed as follows:

f(r) =

L
∑

l=1

cl(r)Cl (5)

The parameters θ and ∆ can both be adjusted in the Rotational Inversion tab.

14

3.4 SOLA – structural inversion

There are two separate minimisations, one for each structural profile:

J1(cl(r0)) =

∫ R

0

{T1(r0, r) −K1(r0, r)}
2
dr + β1

∫ R

0

{K2(r0, r)}
2
dr

+ µ tan θ1

∑

l,k

El,kcl(r0)ck(r0) + λ

{

1 −

∫ R

0

K1(r0, r)dr

}

(6)

J2(c
′

l(r0)) = β2

∫ R

0

{K ′

1(r0, r)}
2
dr +

∫ R

0

{T2(r0, r) −K ′

2(r0, r)}
2
dr

+ µ tan θ2

∑

l,k

El,kcl(r0)ck(r0) + λ′
{

1 −

∫ R

0

K ′

2(r0, r)dr

}

(7)

The functions T1(r0, r) and T2(r0, r) have there own separate width parameters, ∆1 and
∆2, respectively. The solutions are reconstructed as follows:

f(r) =

L
∑

l=1

cl(r)(∆ω)l (8)

g(r) =
L
∑

l=1

c′l(r)(∆ω)l (9)

In some cases, keeping the stellar mass constant provides an extra constraint. The param-
eters β1, θ1, ∆1 and β2, θ2, ∆2 can be adjusted independently in the Structural Inversion
tab. The choice of structural function (given by the structural functions check boxes)
determines which set of 3 parameters is being/can be adjusted.

3.5 Integration method

InversionKit also gives a choice of the integration method which is used in the different
inversions. These choices have different effects depending on whether an RLS or a SOLA
inversion is applied. The two options are “Chebyshev” and “Sliding window”. Their
effects are as follows:

• RLS

– Chebyshev : The kernels and the output inverted function(s) are expressed on
the Gauss-Lobatto grid associated with Chebyshev polynomials. The integrals
and the regularisation matrix are all based on this grid, the coefficients being
deduced from a spectral approach. The RLS procedure searches directly for
the optimal function values on this (output) grid.

– Sliding window : The kernels are kept on the original grid and the output
inverted function(s) expressed on a smaller output grid where the points are
distributed according to the inverse of the sound velocity (i.e., there are more
grid points where the sound velocity is smaller). Accordingly, integrations are
carried out on the original (large) grid, using weights which are based on an
interpolation within a sliding window of the function to be integrated (this is

15

somewhat analogous to what is done when using finite differences to calculate
derivatives). The inverted function is expressed on a b-spline basis deduced
from the output grid and the regularisation matrix is based on the analytical
derivatives of the b-splines. The RLS procedure then searches for optimal
coefficients over the b-spline basis before calculating the values of the inverted
function(s) on the output grid.

• SOLA

– Chebyshev : The kernels and the output inverted function(s) are expressed on
the Gauss-Lobatto grid associated with Chebyshev polynomials. The integrals
are carried out on this grid using coefficients based on a spectral approach.

– Sliding window : The kernels are kept on the original grid and the output in-
verted function(s) expressed on a smaller output grid where the points are
distributed according to the inverse of the sound velocity. Accordingly, inte-
grations are carried out on the original grid, using weights which are based on
an interpolation within a sliding window of the function to be integrated.

Remark : The “Sliding window” approach is slower than the “Chebyshev” approach but
yields results which are more accurate and which do not depend on the number of grid
points used in the output grid (since the integration grid does not depend on the output
grid, as opposed to the “Chebyshev” approach).

4 Known bugs

Here are a list of known bugs. If you find any other, please let us know by sending us an
email (D.Reese@sheffield.ac.uk).

• excessive zooming on plots can produce irregular behaviour

• some of the structural kernels are not calculated correctly for high ` values

5 Copyright notices

Below is the copyright notice that goes with InversionKit.

Copyright (c) Daniel Reese, Sergei Zharkov, 2008, 2009

This file is part of InversionKit.

InversionKit is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

InversionKit is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

16

mailto:D.Reese@sheffield.ac.uk

You should have received a copy of the GNU General Public License

along with InversionKit. If not, see <http://www.gnu.org/licenses/>.

5.1 Supplementary notices

Some of the code comes from other sources. The corresponding copyright notices are
reproduced below:

Notice number 1

@(#)OptionPaneDemo.java 1.9 04/07/26

Copyright (c) 2004 Sun Microsystems, Inc. All Rights Reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

-Redistribution of source code must retain the above copyright notice, this

list of conditions and the following disclaimer.

-Redistribution in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation

and/or other materials provided with the distribution.

Neither the name of Sun Microsystems, Inc. or the names of contributors may

be used to endorse or promote products derived from this software without

specific prior written permission.

This software is provided "AS IS," without a warranty of any kind. ALL

EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING

ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE

OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN MIDROSYSTEMS, INC. ("SUN")

AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE

AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS

DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST

REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL,

INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY

OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE,

EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You acknowledge that this software is not designed, licensed or intended

for use in the design, construction, operation or maintenance of any

nuclear facility.

Notice number 2

17

Copyright (c) Ian F. Darwin, http://www.darwinsys.com/, 1996-2002.

All rights reserved. Software written by Ian F. Darwin and others.

$Id: LICENSE,v 1.8 2004/02/09 03:33:38 ian Exp $

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

Java, the Duke mascot, and all variants of Sun’s Java "steaming coffee

cup" logo are trademarks of Sun Microsystems. Sun’s, and James Gosling’s,

pioneering role in inventing and promulgating (and standardizing) the Java

language and environment is gratefully acknowledged.

The pioneering role of Dennis Ritchie and Bjarne Stroustrup, of AT&T, for

inventing predecessor languages C and C++ is also gratefully acknowledged.

18

	Getting started
	Running the program
	Using the program
	Preliminary remarks

	File formats
	Stellar models
	Eigenmodes
	The FAMDE format
	The FILOU format

	Target profiles
	Frequency shifts or rotational splittings
	GZIP compression

	Formulas
	RLS -- rotational inversion
	RLS -- structural inversion
	SOLA -- rotational inversion
	SOLA -- structural inversion
	Integration method

	Known bugs
	Copyright notices
	Supplementary notices

