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1 Getting started

1.1 Running the program

InversionKit runs under Java 6.0 or later versions. If Java is not installed on your
computer, or is not sufficiently up-to-date, it can be downloaded from:

http://www.java.com/en/

JRE (Java Runtime Environment) allows you to run Java programs but not to compile
your own. JDK (Java Development Kit) allows you to run and compile Java programs.
To run the program download the file InversionKit. jar from the following website:

http://bison.ph.bham.ac.uk/~dreese/InversionKit/index.html

then type the following command in a command window, in the directory that contains
InversionKit. jar:

java —-jar InversionKit.jar

If you are planning to do calculations involving large data and kernels sets, you may
need to allocate a larger amount of memory to run the program. To allocate, for example,
500 MB of memory, use the following command:

java -Xmx500m -jar InversionKit.jar

Note: the option -Xmx is nonstandard and may change according to the release in-
stalled on your computer.

1.2 Using the program

Once InversionKit is running, the user has several options:
e read/write a stellar model and do basic manipulations on it
e read/calculate eigenmodes for a given model
e produce echelle diagrams with observed and theoretical frequencies

e invert observed frequencies or rotational splittings to find structural or rotational
profiles

e calculate “observed frequencies” or rotational splittings from target profiles
e estimate the stellar mean density through SOLA inversions and through scaling laws
e combine the above options

The above operations are done in different tabs within the program. These tabs are:

e Rotational inversion: this tab inverts for the rotation profile and also allows the
user to load a target rotation profile


http://www.java.com/en/
http://bison.ph.bham.ac.uk/~dreese/InversionKit/index.html

e Structural inversion: this tab does structural inversions on pairs of structural
profiles and allows the user to load target structural profiles.

e p inversion: this tab allows the user to estimate the mean density of the star using
a SOLA type structural inversion and two different scaling laws

e Stellar model: this tab allows the user to load or generate a stellar model

e Kernels: this tab allows the user to calculate eigenfunctions, and associated rota-
tional and structural kernels

e Frequency data: this tab allows the user to load/generate/edit observed frequen-
cies and rotational splittings

e Echelle diagram: this tab produces an echelle diagram of of the observed and
theoretical frequencies

e Physical constants: this tab allow the user to modify and save the internal values
of the gravitational constant, the solar mass, and the solar radius

The next few pages show a set of screen captures along with a brief description of
the various buttons and options which appear in the different tabs. The Structural
Inversion tab is similar to the Rotational Inversion tab; therefore only extra fea-
tures are described. Also included are some screen captures of pop-up windows which
appear, for instance, when plotting the eigenfunctions and kernels. The actual appear-
ance of these tabs and windows may vary from one platform to another depending on
the Java installation. This section can therefore be viewed as a quick and easy guide
for InversionKit. For more detailed information on the file formats and the different
equations which intervene, we refer the reader to the following sections.

1.3 Preliminary remarks

Some of the operations can take some time. For example, calculating 50 eigenmodes and
associated kernels can take typically 5s (for 2000 grid points). Doing a rotational inversion
with 800 kernels takes typically 7.5s. When the program is calculating, it is best just to
wait and let it finish what it is doing.

Also, unlike previous versions of InversionKit, most of the the check boxes, sliders
and text fields in the Rotation inversion, Structural inversion and p inversion
tabs will only partially update the inversion, i.e. if the model, the kernels, frequency shift
data or rotational splittings have been modified, this will not be taken into account. To
take these modifications into account, please use the Update Inversion buttons. Besides
the Update Inversion buttons, the other buttons which cause the inversion to be fully
updated are: the Number of grid points text field, the Integration method combo
box (see Sect. [4.4)), and the Kernel type combo box.

Finally, some features have been slightly updated since this documentation was writ-
ten. In particular, the file format for reading/writing a model is decided within the
open/save file dialog. The same applies for reading eigenfunctions from a file. Finally,
most of the plots of structural profiles in a model now react to a right click of the mouse,
which enables the user to select a particular grid point.
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2 File formats

2.1 Stellar models

InversionKit accepts the following file formats for stellar models:
1. AMDL: FORTRAN binary files generated by ASTEC
2. FAMDL: text (or ascii) version of the AMDL files generated by ASTEC

3. FGONG: exchange format under the GONG model comparison scheme, and official
output format from ASTEC

4. CESAM: .osc text files generated by CESAM

5. MOD (binary): FORTRAN binary file from CLES

6. MOD (ascii): text file from CLES

7. CLES: another text file format from CLES

8. LOSC: a text file from LOSC but in which the model is embedded

InversionKit is also able to write files in the AMDL, FAMDL, MOD (binary) and MOD
(ascii) formats. The choice of the format (for reading or saving a model) is given by
a menu in the Model Page tab (see previous section). InversionKit will attempt to
distinguish between models generated by CESAM2k and earlier versions of CESAM by
searching for “CESAM2k” in the header. If need be, MODCONV can be used to convert
models from one format to another. This tool is available at:

http://www.astro.up.pt/corot/ntools/modconv/
A description of the first four file formats can be found at:
http://www.astro.up.pt/corot/ntools/docs/CoRoT_ESTA_Files.pdf
and within the instructions to the ADIPLS pulsation code:
http://www.phys.au.dk/~jcd/adipack.n/notes/adiab_prog.ps.gz
The last four file formats will be briefly described in the following sections. This will then
be followed by a table which summarises the different structural variables available in

the various formats, some useful formulas which relate these variables, and finally a brief
description of the format of the file with a list of models for the HR diagram.

2.1.1 MOD (binary/ascii)

These contain a 5 line header (made up of 80 characters in the binary version), followed
by a line which contains either 3 or 4 parameters. These are:

e the number of grid points

e the stellar radius (in cm)
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the stellar mass (in g)

if present, the gravitational constant (in cgs)

This is then followed by a section with 6 or 7 columns (in the ascii version) or a list of
entries with 5 or 6 values (in the FORTRAN binary version) which contain the following
quantities:

index of grid point (only in the ascii version)
the radial coordinate (in cm)

the cumulative mass (in g)

the pressure (in cgs)

the density (in g/cm?)

the I'; profile

if present, an unidentified quantity (InversionKit does not make use of this col-
umn)

2.1.2 CLES format

These contain a header which ends with the expression “}%beginoscdata”. This is fol-
lowed by a line which contains the following parameters:

the stellar radius (in cm)
the stellar mass (in g)

the gravitational constant (in cgs)

This is followed by a line with the number of domains (in case there are double points),
Ndomains, as well as a section made up of Ngomains lines which gives information on these
domains. The following line contains the number of grid points. This is then followed by
a section with 6 columns which contain the following quantities:

the radial coordinate (in cm)
the quantity m/r® (in g/cm?)
the pressure (in cgs)

the density (in g/cm?)

the I'y profile

the quantity —% (see Table
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2.1.3 LOSC format

These contain a 5 line header which is skipped. This is followed by a line with the following

parameters:

e the number of grid points

e the stellar radius (in cm)

e the stellar mass (in g)

e the gravitational constant (in g)

The next three lines contain a header with column names and a list of various quantities
related to the pulsation mode contained with the file. This is followed by a section with
many columns. The first six columns are:

e the radial coordinate normalised by the radius

R3m

e the quantity n = 775

P

e the quantity %F

e a normalised density,

e the I'; profile

4T R3
P

e the quantity —7% (see Table

2.1.4 Comparison of different model formats

Table [1] gives the different variables from the different models and allows an easy compar-

ison between them.

2.1.5 Useful formulas

The following formulas can be useful for finding one structural variable from other vari-

ables:
2 P
P
Gm
g = 2
dg 2Gm
7 _ Y _
dr Gp 73
r U
Vi Ar
R* P x’n*U
GM™  4xVIy
g 1ldp
A= —r|Z4+-=—
(&40
R? R g
N? = ZA=nA
GM Mo T
m
<p> - 471'7“3
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Table 1: Table which lists variables from different model formats. The first column gives
the variables which are stored in InversionKit.

Variable (F)AMDL FGONG CESAM MOD LOSC CLES
r=x = r r r = r
Iy Iy Iy Iy Iy Iy Iy
3 P 3
TP - p p p EEp  p
#ldp B 3 i i ! i
o R P
GMQP — P P P G P
R 2 B B B B i B
GM
B A2 — — — - -
GMm m m
i - In(§;) In(§f) m - -
w . § § S
g B B B B B B
M dr
R? 6 _ _&) _ _ _ _ _ _
r? (p)
U — 47rpr3 U - - B B -
dln "d1n rN? A A
A=y — e =" A A A - = n
— _1dnP _ Gmp Vv o B B -
g I;)l dlnr 3 Typr g
= A = Gy U - - S N

2.1.6 File format for the list of models for the HR diagram

The file which contains a list models for the HR diagram must contain the following three
columns:

e path to the file with the model
e effective temperature of the model
e luminosity of the model

Furthermore, on a given line, anything following the “#” symbol is treated as a comment
and ignored.

The HR diagram is useful because if the user clicks with the mouse’s right button next
to a symbol which represents one of the models, InversionKit will propose to read that
particular model, using the format specified on the right-hand side menu.

2.2 Eigenmodes

As of version 2.1, InversionKit is able to calculate its own eigenmodes as will be de-
scribed in the following section. However, it can also read eigenfunctions from external
files. InversionKit accepts eigenmodes in one of the following formats:

e AMDE: FORTRAN binary files produced by ADIPLS
e “FAMDE?”: text version of the AMDE format
e FILOU: text files produced by FILOU
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2.2.1 The AMDE format

The AMDE format is a FORTRAN binary output file from ADIPLS. InversionKit
accepts AMDE files produced with the options nfmode=1, nfmode=2 or nfmode=3. For
more details on this format, please consult the instructions to the ADIPLS code:

http://www.phys.au.dk/~jcd/adipack.n/notes/adiab_prog.ps.gz

2.2.2 The FAMDE format

The FAMDE format is a text version of the AMDE format produced by ADIPLS (for all
values of nfmode) plus an additional header as described in the 1996 inversion workbench
description. At the end of the header is a succession of 3 {CTRL+L, CTRL+J} in a row,
which separates it from the rest of the file. InversionKit skips the header and reads
data which comes after. The format obeys the following rules:

e Files are divided into different sections. These are given by the following lists, as
indicated by the semi-colons:
— nfmode = 1: gp array; nr; x and y arrays; gp array; nr; x and y arrays; etc.
— nfmode = 2: nr; x array; gp array; y array; gp array; y array; etc.

— nfmode = 3: nr; x array; gp array; y array; gp array; y array; etc.
e where:

— nr = radial resolution

— x = radial grid (size: nr)

— gp = global parameters for a given mode (size: 50)

— y = array with eigenfunctions (size: 6 xnr for nfmode=1, and 2xnr for nfmode=2

or 3)

e Each section starts on a new line. The number of entries per line does not matter,
but each entry needs to be separated by at least one space, comma or tab.

e Blank lines are not allowed, except in the header.

2.2.3 The FILOU format

The FILOU format can be described as a series of individual eigenmodes which are defined
by a header and a table. The header contains a number of key parameters, preceded by
descriptive character strings. The relevant parameters are:

the harmonic degree ¢ (preceded by “DEGRE DU MODE L :”)

the number of grid points (preceded by “Nombre de points du reseau du modele :”)

the normalised squared frequency (preceded by “Frequence carree normalisee =)

the radial order (preceded by “noeuds =")

the frequency in pHz (preceded by “Frequence en micro Hz =")
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Three supplementary lines appear between the frequency in pHz and the start of the
table. The table contains 5 columns, each of which are 15 characters wide. The first
column is the normalised radial position and the remaining 4 give the variables yg; ..
Yo4 which are defined in Sudrez and Goupil, 2008 (Astrophys. Space Sci. 316, 155-161).
We note that InversionKit has not been thoroughly tested with eigenfunctions in this
format. Although the FILOU oscillation code is able to take into account the effects
of rotation using perturbation theory, InversionKit is only set up to calculate and do
inversions using eigenmodes and eigenfrequencies from non-rotating models.

2.3 Target profiles
The files which contain the target profile(s) need to obey the following rules:

e On a given line, anything following a “#" is treated like a comment and ignored.

e There are 2 columns for the target rotation profile and 3 columns for the target
structural profiles.

e The first column corresponds to the underlying grid. This grid needs to be in strictly
ascending order. If the span covered by the grid is smaller than the span covered by
the model grid, then the target profile(s) will be extrapolated to fit the model grid.

e The next column(s) contain(s) the target profile(s).

e A line with the wrong number of entries (after removal of comments) are discarded
but provoke a warning message (except if there are no entries).

e the underlying grid for the target profiles needs to be non-dimensionalised (i.e. the
grid corresponds to z = /R, where R is the radius of the model)

e the same target profiles are used both for structural inversions and for mean density
estimates.

2.4 Observed frequencies and rotational splittings

As of version 2.1, InversionKit no longer reads frequency shifts. Instead, it reads directly
the observed frequencies from which it calculates the frequency shifts. Furthermore, the
observed frequencies need to be combined with the rotational splittings in a single file.
This file should obey the following formatting rules:

e On a given line, anything following a “#” is treated like a comment and ignored.
e Lines with fewer than 3 entries are discarded and provoke a warning message.
e Lines with 3 or 4 entries should contain:

— an integer entry with the harmonic degree (or order) ¢
— the observed frequency, vops (in pHz)
— the error bar on the observed frequency, ovgps (in pHz)

— If a fourth parameter or entry is present, it is discarded
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e Lines with at least 5 entries should contain:

— 1, Uops, and oy as the first three entries

— the rotational splitting and its error bar as the next two entries (the choice of
units is at the discretion of the user — the same units will also apply to the
results from the rotation inversion)

— further entries are discarded

e for the floating point entries, non-numerical entries can be used instead, such as
“null”, to indicate an unknown value (this will appear as a blank entry in the table)

2.5 GZIP compression

InversionKit can read “gzipped” text files. In order to determine whether or not a file

is gzipped, InversionKit looks at the filename to see if it ends with “.gz”. The same rule
also applies when saving a model from the HELAS website http://www.astro.up.pt/helas/
onto the hard disk — choosing a filename which ends with “.gz” causes InversionKit to
save a compressed file, whereas any other ending produces an uncompressed file.

3 Treatment of pulsation modes

3.1 Matching observed and theoretical modes

In InversionKit 2.1, the pulsation modes can either be loaded from a file or calculated
directly within the program. Furthermore, the observed frequencies are loaded rather
than the frequency shifts. Hence, the two need to be matched. Such a matching can
be obtained (or updated) through the “Find match” button on either the Kernels or
Frequency data tabs. InversionKit sets up matching with the following constraints:

e the observed and theoretical modes must have the same ¢ value
e the observed and theoretical modes must have the closest frequencies possible
e at most one observed frequency corresponds to a calculated mode

e at most one calculated mode corresponds to an observed frequency (if there are
multiple copies of a given theoretical mode, then it is possible to have cases where
one of them is matched to a given observed frequency and another copy to another
observed frequency. Such a situation will then be flagged as a duplicate mode in
the “Dupl.” column in the table on the Frequency data tab.)

Such a mapping is achieved by going through the list of observed frequencies and finding
the closest theoretical mode. If this mode is already matched up with another observed
frequency then it will replace the matching only if the current observed frequency is
closer than the previous one. In most cases, such an approach is perfectly adequate but
in some more complex cases, some potential matches may be missed. Of course, such
complex situations only occur if there is a significant mismatch between the observed and
theoretical frequency spectra, in which case the reference model is likely to be a rather
poor choice.
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3.2 Pulsation calculations

In order to calculate theoretical modes, the pulsation equations are discretised into matrix
form, using the finite-difference scheme described in Reese (2013, A&A 555, A148), and
solved using jlapack and jarpack, a java translation of lapack and arpack. InversionKit
uses unmatched observed frequencies as target values for the pulsation calculations and
automatically matches the resultant theoretical modes to these observed frequencies. Such
a procedure ensures that the nearest theoretical frequencies are obtained.

There are three options for the set of equations. The first option is based on the
system of equations used in ADIPLS (Christensen-Dalsgaard, 2008, ApSS 316, 113). The
second option uses the Lagrangian pressure perturbation. The third one makes use of
the Eulerian pressure and density perturbations. In all cases, a reduced set of equations
is used for radial modes. The associated sets of equations are described in the following
sections.

3.3 JCD’s equations
3.3.1 Non-radial modes

System of equations The following system of equations is derived from the one used
in the ADIPLS code. The variables have been scaled by the appropriate power of r so as
to have an O(1) behaviour at the centre. Furthermore, the differential system has been
expressed in terms of r? to ensure that the solutions are a power series in 72 rather than
T

dy w2V,
2290 /R _ "9 _
2r a2 (Vg =€ =1Ly + (1 €(€+1)77) Y2 — Vyys (9)
d
22 = U0+ 1) (= nA) g+ WA = Ogo + (0 + DAyy (10)
d
2?8 = 2= Oy +u (11)
dya WUV,
L = AUy — — 1 A—2 — (-2 12
e U W+1)nyz+[f(€+ )+ U( Nys+ (B3 —C—2U)ys (12)
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where

&
Y1 = -1 (13)
& L(l+1) (P
= 1 = — 14
Y2 E(f + )Tg,1 (JJ27’£ 0o + ,¢ ( )
v
_ 15
Ys g, (15)
od (Y L drt Py
3—¢ 3—¢
- _ — (=)= 16
R (g) el (16)
&, = the Lagrangian vertical displacement (17)
&, = the Lagrangian horizontal displacement (18)
¥ = the Eulerian perturbation to the gravitational potential (19)
1 dln P() mMopPo mo
g I't dlnr L Por rcd (20)
1dinFy dlnpg
A = — — 21
I'h dlnr dnr (21)
4 3
g oo (22)
mo
mo
= (23)

the above variables being non-dimensionalised with respect to R, M/R? and GM?/R* as
units of length, density and pressure, respectively. NOTE: in JCD’s notes for ADIPLS,
the convention Ay = —4nGp is used, thereby explaining the sign differences with the
following sets of equations.

Boundary conditions In the centre, the boundary conditions are:

yr = ({—=2)ys (25)

At the surface, the boundary conditions are:
Wy = L+ 1)y — ys) (26)
yo = —(l+U)ys+Un (27)

Interface conditions When working with a model with a discontinuityﬂ, say on the
density profile, it is necessary to introduce conditions which relate the variables below to
the variables above the discontinuity. These are known as interface conditions. In the
present case, the interface conditions are:

yo= (28)

277— w? —+
£(€+1)y5+nU‘ (vs —wr) = £(€+1)yz~++nU+ (v —ui) (29)
Y5 = Ui (30)
yr U (y5 —w) = wi +U" (v — o) (31)

'In InversionKit, discontinuities correspond to places with double points, i.e. where two mesh
points have the exact same numerical value. If three or more mesh points have the exact same value,
InversionKit will remove the intermediate points so that only a double point is left.
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w_»

where the and “+” superscripts denote the variable right below and right above the
discontinuity. These interface conditions ensure the continuity of the radial Lagrangian
displacement, the Lagrangian pressure perturbations, and the Lagrangian perturbations
to the gravitational potential and its gradient.

3.3.2 Radial modes

System of equations In the radial case, the above equations are not appropriate, given
the 1/[¢(¢41)] factor which appears in some of the terms. Furthermore, one can eliminate
the perturbations to the gravitational potential by integrating Poisson’s equation (see,
e.g., Aerts et al. 2010, Asteroseismology, p. 195):

dvy B
E = —Apo&, (32)

Hence, the following reduced system is used instead:

dyy - w?
2
2r a2 = (V:q —3) 7 — C—%?/Q, (33)
dy N A _
2 = WA= D))+’ (34)
r T
where
_ &
nB = ? (35)
P
Uy = 36
Y2 w2p0 ( )

Boundary conditions In the centre, the boundary condition is:

At the surface, the boundary condition is:
0 =r’nj — w’f (38)

Interface conditions The interface conditions are:

o= U (39)
WU~y —r*nU~ gy = wUtygy —r*nUtgf (40)

3.4 Lagrangian pressure perturbations

The main advantage of using the Lagrangian pressure perturbation is that the Brunt-
Viisala drops out from the equations. Nonetheless, this set of equations is not a good
choice when dealing with red giants given that the Lagrangian pressure perturbation is
dominated by the E - VP, term.
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3.4.1 Non-radial modes

System of equations As was done above, the variables have been scaled by the ap-
propriate power of r so as to have an O(1) behaviour at the centre, and the differential
system has been expressed in terms of 2 (the entity (%) is treated as a variable in its

own right, so is not derived with respect to r?):

r2 6P L dé&, ~ .
0 = F—1?0+27’ dr2+(£+1)&«—£(€+1)§h (41)
- 22P d [P (P, 1 oP
2 0 0
WS = — |5 ]+t|—+|=-1 r| —
¢ 0 d7°2<P0> {Po (Fl )QO}PO
dy dé, | ((0—1)go , dgo ;
- 2 AL 49
+<d7’>+ 7dgoerjL( r * dr & (42)
- Py 6P - -
2 0 9o
= ——0 = 4
w?&y, popo+w+7,£r (43)
d dy
_ 2 - _ | ==
0 = 2" (¢)+w (dr> (44)
d (dy 4 r2p0 6P dpg -
2 JE— JE— J— J— —_— e — P
0 = P (d )+(£+1)(dr) 00+ 1) A( T G 45)
where
P = r7%P
57" - rl_ggr
g@ = 77,
v o=

dr N dr

The above equations are solved in non-dimensional form, where R, M/R3? and GM?/R*
are units of length, density and pressure, respectively. This leads to A = 47 (as opposed
to 4G in dimensional form). Once the above system is solved, the original non-scaled
variables are obtained by multiplying the scaled variables by the appropriate power of 7.

Boundary conditions The boundary conditions are as follows. In the centre, the

. . . . ¥ dep )
continuity equation and the equation relating ¢ and (5) become:

0 = gr_fgh (46)
0 = ()— (%) (47)

At the surface, the boundary conditions are:

5P
0 = a (48)
0 = (%>+(€+1)¢+Ap0é (49)
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Interface conditions The interface conditions are:

& =& (50)
oP~ SP*
J N o (51)
o = ¢f (52)
dep~ - dep+ -
(%) +ApE = (di) +ApiES (53)

As above, these interface conditions ensure the continuity of the radial Lagrangian dis-
placement, the Lagrangian pressure perturbations, and the Lagrangian perturbations to
the gravitational potential and its gradient.

3.4.2 Radial modes

System of equations In the radial case, the above system can be reduced by elimi-
nating the perturbations to the gravitational potential (see Eq. and the variable &,
which is undefined The final system is, after some manipulations:

1 6P d¢ .
S P . L 4
0 T Po—i— rdr2+3§T (54)
. 2P, d [P opP .
2 0 9o 9o
s o= 0 () - R 4 55
W& po dr? (Po) r P 7”5 (55)

where &, = rér.

Boundary conditions The boundary conditions are:

1 0P A
= _—— r t e
0 = 5 p +3 a r=0 (56)
oP

Interface conditions The interface conditions are:

& = & (58)
5P~ P
2 = 2 (59)

3.5 Eulerian pressure and density perturbations

This is a straightforward, but somewhat naive version of the pulsation equations with
the Eulerian pressure and density perturbations, P and p. As was the case for JCD’s
equations, the Brunt-Vaisala appears explicitly. However, unlike in JCD’s equations, the
variable P appears on its own rather than implicitly through the horizontal displacement.
Accordingly, this set of equations fails to produce good results in red giants, and is also
more expensive since it involves 6 rather than 4 unknowns. It is kept primarily for the
purposes of carrying out tests and comparisons.
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3.5.1 Non-radial modes

System of equations Once more, the variables have been scaled by the appropriate
power of r so as to have an O(1) behaviour at the centre, and the differential system has
been expressed in terms of r%:

_ dé, dpo] - X
0 = PpratmiE e DR & - s D (60)
. P - dy
2 2 -
wipe&r = 2r @-FEP‘H’QOP*'PO (5) (61)
wpoln = P+ pot) (62)
. N2¢2 -
0 = P—cp+ 0% (63)
Tgo
d /- - [dy
_ 2_ - S
0 = 2° 5 (9) + e ( dr) (64)
d [dy dy " N
= P — | == C+1) | == | =0+ 1) — Ar?
0 rdﬂ(m)+<+>(w) (+1)0 — A% (65)
where
P = 7r'P = the Eulerian pressure perturbation
p = r'p = the Eulerian pressure perturbation

The above equations are solved in non-dimensional form, where R, M/R3? and GM?/R*
are units of length, density and pressure, respectively. This leads to A = 47 (as opposed
to 4G in dimensional form). Once the above system is solved, the original non-scaled
variables are obtained by multiplying the scaled variables by the appropriate power of 7.

Boundary conditions In the centre, the boundary conditions are:

0 = &— & (66)
- d}ﬁ
- (2) "
At the surface, the boundary conditions are:
0 = 7P — pogols (68)
dv - .
0 = &§>+w+nw+mmr (69)
Interface conditions The interface conditions are:
o= & (70)
rPT = pygos, = TP — pigolt (71)
o o= (72)
qu* o S diﬁ + &+
(?) +Apy &, = (W) + Apg &, (73)
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As before, these interface conditions ensure the continuity of the radial Lagrangian dis-
placement, the Lagrangian pressure perturbations, and the Lagrangian perturbations to
the gravitational potential and its gradient.

3.5.2 Radial modes

System of equations As previously, the perturbations to the gravitational potential
are eliminated analytically, thanks to Eq. (32). After some manipulations, the final system
is:

~

1 dgr rgo n
0 = P+or?>t 3— 2 )¢, 74
't Py e dr? * ( c? ¢ (74)
. dP  go PoYs dpo\ »
2006, = 2— + P — [ A2+ 220 ¢, 75

where &, = ré,..

Boundary conditions The boundary conditions are:

1 .
—= P r t —
0 T, + 3¢ a r=20 (76)

0 = P—rpogols at r=R (77)

Interface conditions The interface conditions are:

& = & A (78)
P~ —rpy g0, = PT—rpigo&’ (79)

3.6 Reconstructing missing variables

Evidently, the above systems of equations do not use the same variables. When construct-
ing kernels, however, it is helpful to have the same set of variables for all of the pulsation
modes. A simple solution consists in having a maximal set of variables which include all
of the above variables. This, therefore, involves reconstructing missing variables in the
different cases.

We used the following formulas to reconstruct variables when working with the La-
grangian pressure perturbations:

oP
P = POF"‘ﬂOQOfr (80)
0
po 0P dpo
_ mOP _dp, 81
P = TP ar (81)

When working with Eulerian pressure and density perturbations, we applied the following
formula:

5_P: P — pogo&,

82
2 2 (82)

32



When working with JCD’s formulas, the following equations were applied:

v o= —r"goys (83)
Yoo e ()] (54
P = po(w?ré, — ) (85)
p = C—Ig + @fr (86)
%)’ _r —]gsgo& (87)

When dealing with radial modes, the above formulas were used as needed. The deriva-
tive of the gravitational potential perturbations, ¢ was obtained thanks to Eq. , and
1) was obtained via the following formula which takes into account the boundary condition
on ¢ and i—f:

_ [TdY
w—/Rdrdr (88)

4 Inversions

4.1 Rotation inversions
4.1.1 Description of the problem

A stellar rotation profile which only depends on depth, Q(r), shifts the frequencies by an
amount that is proportional to m, the azimuthal order:

B R
Ry = —Vnzmm Ut _ / KSE(T)Q(T)CZT’ (89)
0

where n is the radial order, ¢ the harmonic degree and K@&‘ the rotational kernel. The
quantity R, is the rotational splitting and is deduced from observations for a set of (n, £)
pairs. The associated rotational kernels can be calculated from the corresponding pulsa-
tion modes in a non-rotating reference model (see Section for an explicit expression).
The goal of an inversion procedure is then to deduce the unknown rotation profile, Q(r)
from R,, and K&¢. Two methods for doing this are implemented in InversionKit: Reg-
ularised Least Squares (RLS) and Subtractive Optimally Localised Averages (SOLA).
These are described in Sections [4.1.3 and [4.1.4] respectively.

4.1.2 Expression for the rotational kernel

The rotational kernel can be expressed as follows:

né_p0_7"2 2 2 2
K = P (@ 4 e+ 1f - 260 — ) (90)
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where

oY 1 oyt
— Yﬁ—» m = m =
=4 me’“”(ae 0T Sne oy e“’)

= the Lagrangian displacement resulting from the pulsation

R

I = / po(r) (€ + £(0+ 1)n?) rdr
r=0

po = the equilibrium density

It is important to note that the eigenfunctions ¢ and 7 only depend on (n, ) and not m
in a non-rotating reference model.

4.1.3 RLS — Regularised Least Squares

Both RLS and SOLA inversions involve minimising “cost” functions which will be repre-
sented by the letter J in what follows. In an RLS inversion, J is defined as:

() = EL: {Rl — fOR;j(r)f(r)drF +A<%> /OR {%}er o

=1

where R; is the rotational splittings, o; the corresponding errors, K}, the corresponding
rotational kernels, and < $> = % (Zle 0_12> The index [ is used to represent the pairs
!

(n,?), and L the number of such pairs. A is a trade-off parameter between conforming to
data and regularising the solution, and can be regulated in the Rotational inversion
tab. The function f that minimises J is the inversion result and corresponds to the
profile which best reproduces the rotational splittings while satisfying the regularisation
constraint.

4.1.4 SOLA — Subtractive Optimally Localised Averages

The SOLA inversion procedure is one of several inversion methods which focuses on con-
structing “nice” averaging kernels Ky, (see Section for an explanation on averaging
kernels). It was first introduced by Pijpers & Thompson (1992, A&A 262, 1.33) and has
the advantage of being less computationally expensive than MOLA inversions. In what
follows, a description of the SOLA method is given.

For a given grid point, 7o, a target function T'(rg,7) is chosen. The cost function, J,
is then set up so as to minimise the difference between the averaging kernel and T'(rg, )
while reducing the effects of the observational errors o;.

J(c(ro)) = /0 {T(ro,r) — Kavg.(ro,7)}* dr + tanezigfl(m)gﬂ

4 A{l—/ORKan_(ro,r)dr} (92)
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where

c(rg) = coefficients from the inversion
1 L
2 2
(%) = g2
=1
6 = a trade-off parameter between optimising K,, and reducing the error,
and which can be adjusted by the user
T(rg,r) = a target function
L

Kavg. (10,7) = Z c(ro) K4 (r) = the averaging kernel

=1

R
A = Lagrangian multiplier used to ensure / Kayg (1o, 7)dr =1
0

In InversionKit, the following form has been chosen for the target function:

T(ro,r)—Arexp{—{ i +A'c(ro>r} (93)

A - ¢(rp) 2

where A is a normalisation factor such that fOR T(rg,r)dr = 1. This type of target function
was taken from Rabello-Soares et al. (1999, MNRAS 309, 35), has a maximum at rg, and
behaves like a Gaussian, except that it goes to zero at r = 0. The width is A-¢(rg), where
¢(rp) is the sound velocity at r (and shouldn’t be confused with the inversion coefficients
¢(rg)) and A a free parameter which can be adjusted by the user. This form for the
width reflects the resolving power of the kernels (Thompson 1993, ASPCS 42, 141). The
solution €, is then constructed as follows:

Qiny.(10) = ZCZ(TO)RZ (94)

=1

for a set of grid points ry.

4.1.5 MOLA — Multiplicative Optimally Localised Averages

The MOLA inversion procedure is another inversion method which focuses on constructing
“nice” averaging kernels Ky, (see Section for an explanation on averaging kernels).
It was first introduced by Backus & Gilbert (1968, Geophys. J. 16, 169). It is more
computationally expensive than SOLA since there is a matrix resolution for each grid
point where the inversion is carried out, but involves one less free parameter than a
SOLA inversion. In what follows, a description of the MOLA method is given.

For a given grid point, ry, the following cost function, J, is minimised:

R an L (e(ro)or)?
J(a(rg)) = /0 12(7‘—7“0)2K§Vg_(7"0,7’)d7”+ ¢ 02l<;2(> (ro))

+ A {1 — /OR Kavg,(ro,r)dr} (95)
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where

c(rg) = coefficients from the inversion
1 L
2\ _ 2
(%) = g2
=1
6 = a trade-off parameter between optimising K,, and reducing the error,

and which can be adjusted by the user
L

Kavg. (r0,7) = Z ¢i(ro) K5 (r) = the averaging kernel
=1

R
A = Lagrangian multiplier used to ensure / Koyg (ro,r)dr =1
0

Minimising the above cost function ensures that the averaging kernel, K, is well
localised around ry since it increasingly penalises departures from 0 when r is getting
further from ry. This is somewhat different than a SOLA inversion where the penalisation
does not change as a function of distance from 7.

4.1.6 Error bars and averaging kernels

In linear inversion procedures, including RLS and SOLA, the inverted rotation profile is
a linear combination of the rotational splittings:

Qiny.(10) = ZCZ(TO)RZ (96)

=1

where ¢(rg) represents the inversion coefficients. Applying this linear combination to
Eq. yields the following relation:

Qinv'(m)_/o ch(ro)Kéz(r)Q(r)dr—/o Kayg. (1)Q(r)dr (97)

From this, we see that ()i, (ro) is actually an average of the true rotation profile Q(r), in
which K, plays the role of a weight function, hence the name “averaging kernel”. Such
functions are useful for assessing the quality of the inversion (see Christensen-Dalsgaard
et al., 1990, MNRAS 242, 353). InversionKit allows the user to plot the averaging
kernel from both types of inversion methods for the different grid points, 7y, used in the
inversion.

Additionally, K,y is used to calculate the horizontal error bars in SOLA inversions:
the left end of the error bar corresponds to the first quartile point, the right end is the
third quartile point and the point ry is redefined to be the second quartile point. These
quartile points are calculated through integration starting from the centre of the star.

From the inversion coefficients, ¢;(ry), and the 1-sigma measurement errors, oy, it is
possible to define a 1-sigma error on the inversion result at each point, 7¢:

E(ro) = | Y_ (alro)ar)’ (98)
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E(ro) is then used to draw the vertical error bars on both RLS and SOLA inversions.
For RLS inversions, this is represented by dotted red lines below and above the inverted
profile, whereas for SOLA inversions, vertical error bars are plotted.

Note: For limited sets of modes, the averaging kernels can be highly oscillatory,
meaning that multiple values could qualify as first, second and third quartile points. This
makes the above definition for the horizontal error bars essentially meaningless. In such
a situation, InversionKit arbitrarily uses the innermost quartile points, which of course
introduces a bias towards the centre of the star. It is therefore important to look at the
averaging kernels, rather than simply trusting the horizontal error bars.

4.2 Structural inversions
4.2.1 Description of the problem

A structural inversion problem typically takes the following form:

5Vn[ R ¢ oa R ¢ ob Fsurf (an)
S = 20t [ gt (999 Kt (r) 2 gy 4 2ot \nt) 99
=2 / () dr + / i) Sdr + 2 (99)

where S, is the relative frequency difference (or shift) between the observed and calculated
frequencies (obtained for m = 0), a and b structural profiles (such as ¢, pg, I'; etc.), da
and 0b the differences between the true structural profiles and the ones from the reference
model, Fy,. a slowly varying function which represents unknown surface effects, and F,,
the mode inertia:

fOR (€2 4+ 0(0 + 1)n?] pridr
M [g(Rphot.)2 + 40+ 1)77(Rphot.>2]

By = (100)

R and Ryt are the surface and photospheric radii of the model. The goal of a structural
inversion procedure is to find the unknown functions da/a and §b/b from a set of relative
frequency shifts, S,,s, and from the associated structural kernels, K (% and K ,?f; (which are
calculated from the pulsation modes of the model). Although similar to the rotational in-
version problem described in Section [4.1.1], there are some noteworthy differences. Firstly,
the inversion procedure needs to find two unknown functions — this raises the possibility of
cross-talk between the two solutions. Secondly, there is an additional surface term which
needs to be suppressed.

In what follows, explicit expressions are given for structural kernels associated with
the structural pairs (c2, pg) and (T'y, pg). These expressions are obtained by perturbing
the variational expression for the frequency, then using the the variational principle to
remove terms related to the variation of the eigenfunctions. The following expressions are
from Gough & Thompson (1991, in Solar interior and atmosphere, p. 519-561).

4.2.2 %, p kernels

The relative frequency variations are given by

v [ e 08 o]
Y [ R )" (101)

37



in which the kernels take on the following expressions:

2.,2,.2
PoCo X' T
KCZW == # (102)

P07“2

R d,O
Koo = 513 {céf —w? (€ 4 UL+ 1)0%) = 2906x — 4G / <2po£x + d—;@) d

d d 00+ 1
+2gog—5 + 47 Gpe€? + 2 g—¢ + (et Vg (103)
dr dr r
where
w = 2mv
(= TE_d kW
Ye dr r
_
P dr PoX
vie r stt2 R rt
Y = ~ 1 [/Szop( >T€+1d8 + /S:rp(s)ﬁds}
dap v e r st+2 R rtt
- = _ 1 I A
I 2€+1{ (¢ + )/Szop() er2als—|—£/s:7np(s)se1ds
my = 47r/ po(s)sds
s=0
. Gmo
Jo = 2
and quantities with the subscript “0” refer to the equilibrium model.
4.2.3 T'1, p kernels
The relative frequency variations are given by
ov R ol (r) dpo(r)
— = K ——+ K d 104
Gy G (104)
Expressions for these kernels can be deduced from the previous set of kernels:
2.2,.2
PoCo X T
Kr,, = Kg2,= # (105)

e K., 4rG Ko,
KPTl = KPaCQ o ‘32 mpo/ : d8—|-P07" / . po (/ 2 )dt> s
s=0 Po s=r t=0 pO
= K

Gmpo [ T1x’s 2/ 47TGPO / I
2 — K. d dt |ds (106
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4.2.4 RLS

The cost function, J, is defined as:

g1

J(f, 9, an) XL: { L= KL () fr)dr — [T KL (r)g(r)dr — SN et }2

=1

R 2 2 2 2
+ <%>A/g {%} +{%} dr (107)
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where S; is the frequency shifts to due changes in the stellar structure, o; the corre-

sponding error, K ,, K, the corresponding structural kernels, (J5) = 1 (Zf,l (%), and
’ g - i

ZT]:] o M"l("l) an ad-hoc way of modelling surface effects (where (¢n),,c(o y_y) is @ set of

polynomials). The functions f and g and coefficients a,, that minimise J correspond to
the inversion result. A is a trade-off parameter between conforming to data and regular-
ising the functions f and g, and can be regulated in the Structural inversion tab. N
is the number of polynomials used to model surface effects and can also be modified in
the Structural inversion tab. An additional Lagrangian constraint can be added to
maintain a constant mass for the star when one of the two structural profiles (a or b) is
the density profile.

4.2.5 SOLA

There are two separate minimisations, one for each structural profile:
i 2 i 2
J(e(ro)) = / {T(ro,r) — Kayg.(ro,7)} " dr + ﬁ/ {Keross(To, 7))} w(r)dr
o S (alr)on)” {1 - / Kavg (ro, 7 }

{o?)

L TO wn Vl
+ ) a, Z (108)

=1

J/<CE(T0>> = B/ { cross T077‘)}2w(7”)d7‘+/ {T,(T()?T)_Kavg To, ™ } dr

L tanf’ Zl< ;2(;1(7“0)01 {1_ / K., (ro,r }

3

S N o) ()
where
L L
K (o) = > elro) KLy () Keasor0,7) = 3 1(ro) Kb (1),
z? zzl
Kl (ror) = Y d(ro)k;,(r), Ko (r0,7) = Y ci(rg )

=1 1
wr) = (1+7)*

= weight function used to suppress near-surface structure in K.og and K.

1

The target functions T'(ro,r) and T"(ro,r) are defined according to Eq. (93), each with
their own separate width parameters, A and A’. The parameters S and [’ regulate the
balance between optimising the averaging kernels and reducing the cross-term kernels.
The parameters # and 6’ regulate the balance between optimising the averaging kernel
and reducing the 1-sigma error. The parameters 3, 6, A and ', ', A’ can be adjusted in-
dependently in the Structural inversion tab — the choice of structural function (given
by the structural functions check boxes) determines which set of 3 parameters can be ad-
justed. The coefficients a,, and a, are Lagrangian multipliers used to cancel the unknown
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surface contributions. The solutions are then constructed as follows:

f(ro) = ZCZ(TO)SJ (110)

o) = 3 di(ro)s) (111)

Keeping the stellar mass constant can be used as an extra constraint provided one of the
two structural profiles (a or b) is the the density profile.

4.2.6 Various error bars and kernels

As was done for the rotational inversions, it is possible to define averaging kernels, and
vertical /horizontal error bars. However, since the inversion involves two unknown func-
tions, another kernel called the cross-term kernel also intervenes. To see this, one can
start by expressing the first inverted structural function as follows:

datiny.(70) _ ZCZ(T’O)Sl (112)

If inserted into Eq. , this yields:
Otiny. (o) / 6 / g LGP
a(ro) Z"l ok 2 elro) o) g dr

- [ / 0

where we have neglected surface contributions. From this, one can see that K. gives
an idea of the amount of cross-talk coming from the second, unknown structural function
0b/b. An analogous cross-term kernel can also be defined when inverting for the second
structural kernel.

4.3 Mean density estimates

The mean density estimates are done in the p inversion tab using 3 different methods:
a SOLA inversion, a scaling law based on the average large frequency separation (Av),
and a scaling law based on the surface correcting procedure described in Kjeldsen et al.
(2008, ApJ 683, L.175). These three methods can be put in the following form:

Einv - —refS2 (113)
where
M 3M
= — = 114
L= V7~ R (114)
1 s b ST 5Pim
s = §;Clv{ef =1+ = ch , (115)

This form represents a non-linear extension to a linear inversion or a linearised scaling
law, the ¢; being the corresponding linear coefficients. The quantity s is the scale factor
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by which the reference model needs to be scaled so that linear inversion theory yields no
further correction to the mean density. Using this approach has the advantage of fully
retrieving the scaling laws (with a slight modification to Kjeldsen et al’s approach) while
allowing the use of linear inversion coefficients which can then be used to construct aver-
aging and cross-term kernels for the 3 methods (see Reese et al. 2011, A&A, submitted).
In what follows, we describe how the ¢; coefficients are obtained for each of the 3 methods.

4.3.1 SOLA

The ¢; coefficients are obtained by minimising the following cost function:

tan @ Zlel (clal)z
(%)

1 L N-1 L Clw (Vl)
+ A 1—§ch +> any gl (116)
n=0 =1

=1

Je) = / (o) — T(2)}2da + B / {Kenoal) Y +

where x = /R and where K,y,, Keoss and T are defined in Eqs. ((124))-(126]). Here, the

constraint 1 = %Zle ¢, imposed using the Lagrangian multiplier A, ensures that the
inversion result is exact for a homologous modification of the model.

4.3.2 (Av) scaling law

The ¢; coefficients are deduced from the following relation:

0y SO(AY) Ny
) ) _lel " o
where:
2 (N =1 {Av(0))
(Av)y = SN, -1 (118)

<AI/(€)> . Zzzel [Vz(gjgfl_ <V(€)>] [nz<€) _2 <7’L(£)>]7 (119>
iy [ni(€) = (n(0))]

WO) = 5w, (120

(n(0)) = —Zni(ﬁ). (121)

The above definition uses a weighted average of the least-square estimates of the mean
large frequency separation from Kjeldsen et al. (2008, ApJ 683, L175) for each ¢ value.
Using a least-squares estimate has the advantage of not requiring consecutive radial orders
to estimate the large frequency separation.

4.3.3 Kjeldsen et al’s approach

The ¢; coefficients are deduced from the following relation:

I~

L

5o bM _ dAv 5
BIHV —9 (V) (Av) _ Clﬂ (122)
P b—1 v

L =1
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where

2o (Ne = 1) {v(0))
Yoo Ne—1 ’

and where Egs. (118])-(121)) continue to apply. Equation (123)) is an average of the fre-
quency, such that the weighting corresponds to what is used in Eq. (118)).

(v) = (123)

4.3.4 Various error bars and kernels

As was done for the structural inversions, we define averaging and cross-term kernels, and
a target function, T, as follows:

Kug () = Y ak,,(z) (124)
Kcross(x) = chKlly7p(x) (125)
T(e) = TP (126)

These then enter the following expression for the error, which takes into account the
fact that the reference model is scaled by s:

1
. - obs re 0 S bre
Bmv Dobs :/ (F(avg(l') —T(l‘)) Pob 3 P fd _|_/ F»rcrOSS bs — S fd (127)
0

$%p $° Pret %ot

where we have neglected surface terms, errors on the frequency shifts and other sources of
error such as non-linear effects not accounted for in Eq. . The value of the exponent k
depends on which structural profile is represented by b. If b = I'y, then k = 0, whereas if
b = c?, then k = 2 (the second case is based on the assumption that the reference model
has the same radius as the observed star). An upper bound on the error (neglecting
surface terms and other sources of error) can be obtained through the Cauchy-Schwartz
inequality:

Pinv — Poy,

S ’Oref

2 k
Pobs — S” Pref bobs — S bref
2

< s = T, | 2255

+ HKcrOSSHQ
2

(128)

sk bref 2

where |[|f]l2 = 1/ fol f%2. The 1-0 error bar around the inverted density, based on the

measurement errors on the relative frequency shifts, is given by the following formula,
which takes into account the non-linear extension:

(129)

4.3.5 Displayed quantities

Various quantities which appear in Eqs. (127) and (128)) are displayed in the p inversion
tab. Here are some explanations:
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® . density of reference model from which the inversion and scaling relations are
applied.

e p.,.: density of the observed “star”. This is deduced from target structural profiles
if they have been loaded. These are assumed to represent the true difference between
the reference model and the observed star.

o p =s°p & density estimate from inversion.

e 0,, as based on Eq. (129).

® ip/p= (Binv — Bref) / P = s? —1: Relative variation on the mean density, deduced

from inversion.

o [AKuglls = 1/, (Kuvg(e) — T()* do.

° ||Kcross||2 = \/f()l Kgross(x)dx'

o [AK,dp/p= fol (Kayg(z) — T(2)) %ﬁg‘mdz. True error from mismatch on
averaging kernel. This formula takes into account the fact that the reference model
is scaled by s.

o [ Keoss0b/b= fol Kcross(a:)de. True error from cross-talk. This formula

skbres ()
takes into account the fact that the reference model is scaled by s.

o Surf[i] = Y1, %&"l) This is the i surface terms. The number of terms dis-
played in the window can be adjusted by modifying the parameter n_surf disp in

MeanDensityEstimate. java and recompiling InversionKit.

These quantities as well as the inversion parameters can be saved in a text file using the
Save results button.

4.4 Integration method

InversionKit also gives a choice of the integration method which is used in the different
inversions. These choices have different effects depending on whether an RLS or a SOLA
inversion is applied. The two options are “Sliding window” and “Chebyshev”. Their
effects are as follows:

e RLS

— Sliding window: The kernels are kept on the original grid and the output
inverted function(s) expressed on a smaller output grid where the points are
distributed according to the inverse of the sound velocity (i.e., there are more
grid points where the sound velocity is smaller). Accordingly, integrations are
carried out on the original (large) grid, using weights which are based on an
interpolation within a sliding window of the function to be integrated (this is
somewhat analogous to what is done when using finite differences to calculate
derivatives). The inverted function is expressed on a b-spline basis deduced
from the output grid and the regularisation matrix is based on the analytical
derivatives of the b-splines. The RLS procedure then searches for optimal
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coefficients over the b-spline basis before calculating the values of the inverted
function(s) on the output grid.

— Chebyshev: The kernels and the output inverted function(s) are expressed
on the Gauss collocation grid associated with Chebyshev polynomials. The
integrals and the regularisation matrix are all based on this grid, the coefficients
being deduced from a spectral approach. The RLS procedure searches directly
for the optimal function values on this (output) grid.

e SOLA

— Sliding window: The kernels are kept on the original grid and the output in-
verted function(s) expressed on a smaller output grid where the points are
distributed according to the inverse of the sound velocity. Accordingly, inte-
grations are carried out on the original grid, using weights which are based on
an interpolation within a sliding window of the function to be integrated.

— Chebyshev: The kernels and the output inverted function(s) are expressed
on the Gauss collocation grid associated with Chebyshev polynomials. The
integrals are carried out on this grid using coefficients based on a spectral
approach.

Remark: The “Sliding window” approach is slower than the “Chebyshev” approach but
yields results which are more accurate and which do not depend on the number of grid
points used in the output grid (since the integration grid does not depend on the output
grid, as opposed to the “Chebyshev” approach).

5 Known bugs

Here is a list of known bugs. If you find any other, please let us know by sending us an
email (dreese@bison.ph.bham.ac.uk).

e cxcessive zooming on plots can produce irregular behaviour

e the pulsation calculations becomes unreliable beyond ¢ = 20 due to the fact that
InversionKit uses scaled variables in the pulsation equations.

6 Copyright notices

Below is the copyright notice that goes with InversionKit.

Copyright (c) Daniel Reese, Sergei Zharkov, 2008, 2009, 2011

This file is part of InversionKit.

InversionKit is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
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InversionKit is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with InversionKit. If not, see <http://www.gnu.org/licenses/>.

6.1 Source code for reading fortran binary files

The source code for reading fortran binary files comes from the following web-pages:
http://docjar.com/docs/api/org/fudaa/dodico/fortran/NativeBinaryInputStream.html
http://docjar.com/docs/api/org/fudaa/dodico/fortran/NativeBinaryOutputStream.html
http://docjar.com/docs/api/org/fudaa/dodico/fortran/FortranBinaryInputStream.html
http://docjar.com/docs/api/org/fudaa/dodico/fortran/FortranBinaryOutputStream.html
and are covered by the GNU GPL2 License. They have been corrected and modified so

as to meet the needs of InversionKit.

6.2 Supplementary notices

Some of the code comes from other sources. The corresponding copyright notices are
reproduced below:

Notice number 1

@(#)0ptionPaneDemo. java 1.9 04/07/26
Copyright (c) 2004 Sun Microsystems, Inc. All Rights Reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

-Redistribution of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

-Redistribution in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

Neither the name of Sun Microsystems, Inc. or the names of contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

This software is provided "AS IS," without a warranty of any kind. ALL
EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING
ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN MIDROSYSTEMS, INC. ("SUN")
AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE
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http://docjar.com/docs/api/org/fudaa/dodico/fortran/FortranBinaryInputStream.html
http://docjar.com/docs/api/org/fudaa/dodico/fortran/FortranBinaryOutputStream.html

AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS
DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST
REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY
OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE,
EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You acknowledge that this software is not designed, licensed or intended
for use in the design, construction, operation or maintenance of any
nuclear facility.

Notice number 2

Copyright (c) Ian F. Darwin, http://www.darwinsys.com/, 1996-2002.
All rights reserved. Software written by Ian F. Darwin and others.
$Id: LICENSE,v 1.8 2004/02/09 03:33:38 ian Exp $

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Java, the Duke mascot, and all variants of Sun’s Java "steaming coffee
cup" logo are trademarks of Sun Microsystems. Sun’s, and James Gosling’s,
pioneering role in inventing and promulgating (and standardizing) the Java
language and environment is gratefully acknowledged.

The pioneering role of Dennis Ritchie and Bjarne Stroustrup, of AT&T, for
inventing predecessor languages C and C++ is also gratefully acknowledged.
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