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1 Getting started

1.1 About the program

NonLinearKit is an experimental non-linear inversion program used to deduce stellar
structure from a set of observed frequencies. Given its experimental nature, this program
is expected to evolve into more sophisticated versions in the future. Currently, the pro-
gram only adjusts the density profile of the star while keeping the Γ1 profile fixed as it
has been found that modifying the Γ1 profile can quickly lead to nonphysical solutions.
A similar approach has been taken by I. Roxburgh and S. Vorontsov in their completely
different inversion techniques.

1.2 Running the program

NonLinearKit runs under Java 5.0 or later versions. If Java is not installed on your
computer, or is not sufficiently up-to-date, it can be downloaded from:

http://www.java.com/en/

JRE (Java Runtime Environment) allows you to run Java programs but not to compile
your own. JDK (Java Development Kit) allows you to run and compile Java programs.

To run the program download the file NonLinearKit.jar from the following website:

http://bison.ph.bham.ac.uk/~dreese/NonLinearKit/index.html

then type the following command in a command window, in the directory that contains
NonLinearKit.jar:

java -jar NonLinearKit.jar

If you are planning to do calculations involving large data and kernels sets, you may
need to allocate a larger amount of memory to run the program. To allocate, for example,
500 MB of memory, use the following command:

java -Xmx500m -jar NonLinearKit.jar

Note: the option -Xmx is nonstandard and may change according to the release in-
stalled on your computer.

1.3 Using the program

Once NonLinearKit is running, there are several tabs which follow a logical progression:

• Stellar model tab: this allows the user to load an initial model

• Frequencies tab: this allows the user to load observed frequencies (without spec-
ifying their radial orders)

• Echelle diagram tab: this can be used to visually compare the frequencies from
the current model with the observed frequencies
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• Structural Inversion tab: this is where the user can carry out non-linear struc-
tural inversions

• Output log tab: this is a log of the different operations carried out (primarily
related to the non-linear inversion)

The next few pages show a set of screen captures along with a brief description of
the various buttons and options which appear in the different tabs. The actual appear-
ance of these tabs and windows may vary from one platform to another depending on
the Java installation. This section can therefore be viewed as a quick and easy guide
for NonLinearKit. For more detailed information on the file formats and the different
equations which intervene, we refer the reader to the following sections.

1.4 Preliminary remark

The non-linear inversion process can take time. Accordingly, when the program is calcu-
lating, it is best just to wait and let it finish what it is doing. Furthermore, in the current
version, the program is unable to refresh its appearance while calculating. Hence, the
only way to have an idea of whether progress is being made is to look at the messages
printed in the terminal window (note that these messages will also appear in the output
log once the calculations are finished).
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2 File formats

NonLinearKit deals primarily with two types of files: files with observed frequencies, and
files with stellar models. These are described in the following sections.

2.1 File with observed frequencies

The file with the observed frequencies obeys the following rules:

• On a given line, anything following a “#” is treated like a comment and ignored.

• Lines should contain at least three entries, or they will be ignored and will provoke
a warning message. The three entries should be:

– an integer entry with the harmonic degree (or order) `. Lines with a negative
value for ` are ignored and cause a warning message.

– the observed frequency, νobs (in µHz)

– the error bar on the observed frequency, σνobs (in µHz)

– anything after the third entry is ignored

• for the floating point entries, non-numerical entries can be used instead, such as
“null”, to indicate an unknown value (this will appear as a “NaN”, i.e. “Not a
Number”, entry in the table)

2.2 Stellar models

NonLinearKit accepts the following file formats for stellar models:

1. AMDL: FORTRAN binary files generated by ASTEC

2. FAMDL: text (or ascii) version of the AMDL files generated by ASTEC

3. FGONG: exchange format under the GONG model comparison scheme, and official
output format from ASTEC

4. CESAM: .osc text files generated by CESAM

5. MOD (binary): FORTRAN binary file from CLES

6. MOD (ascii): text file from CLES

7. CLES: another text file format from CLES

8. LOSC: a text file from LOSC but in which the model is embedded

NonLinearKit is also able to write files in the AMDL, FAMDL, MOD (binary), and
MOD (ascii) formats in the Stellar model tab. In the Structural Inversion tab, it is
possible to save models in an additional ascii format which is specific to NonLinearKit.
The choice of the format (for reading or saving a model) is given by a menu in the
Stellar model tab (see previous section). NonLinearKit will attempt to distinguish
between models generated by CESAM2k and earlier versions of CESAM by searching for
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“CESAM2k” in the header. If need be, MODCONV can be used to convert models from one
format to another. This tool is available at:

http://www.astro.up.pt/corot/ntools/modconv/

A description of the first four file formats can be found at:

http://www.astro.up.pt/corot/ntools/docs/CoRoT_ESTA_Files.pdf

and within the instructions to the ADIPLS pulsation code:

http://www.phys.au.dk/~jcd/adipack.n/notes/adiab_prog.ps.gz

The last four file formats will be briefly described in the following sections. This will then
be followed by a table which summarises the different structural variables available in
the various formats, some useful formulas which relate these variables, and finally a brief
description of the format of the file with a list of models for the HR diagram.

2.2.1 MOD (binary/ascii)

These contain a 5 line header (made up of 80 characters in the binary version), followed
by a line which contains either 3 or 4 parameters. These are:

• the number of grid points

• the stellar radius (in cm)

• the stellar mass (in g)

• if present, the gravitational constant (in cgs)

This is then followed by a section with 6 or 7 columns (in the ascii version) or a list of
entries with 5 or 6 values (in the FORTRAN binary version) which contain the following
quantities:

• index of grid point (only in the ascii version)

• the radial coordinate (in cm)

• the cumulative mass (in g)

• the pressure (in cgs)

• the density (in g/cm3)

• the Γ1 profile

• if present, an unidentified quantity (NonLinearKit does not make use of this col-
umn)
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2.2.2 CLES format

These contain a header which ends with the expression “%%beginoscdata”. This is fol-
lowed by a line which contains the following parameters:

• the stellar radius (in cm)

• the stellar mass (in g)

• the gravitational constant (in cgs)

This is followed by a line with the number of domains (in case there are double points),
ndomains, as well as a section made up of ndomains lines which gives information on these
domains. The following line contains the number of grid points. This is then followed by
a section with 6 columns which contain the following quantities:

• the radial coordinate (in cm)

• the quantity m/r3 (in g/cm3)

• the pressure (in cgs)

• the density (in g/cm3)

• the Γ1 profile

• the quantity − A
r2

(see Table 1)

2.2.3 LOSC format

These contain a 5 line header which is skipped. This is followed by a line with the following
parameters:

• the number of grid points

• the stellar radius (in cm)

• the stellar mass (in g)

• the gravitational constant (in g)

The next three lines contain a header with column names and a list of various quantities
related to the pulsation mode contained with the file. This is followed by a section with
many columns. The first six columns are:

• the radial coordinate normalised by the radius

• the quantity η = R3m
Mr3

• the quantity R
GM

P
ρ

• a normalised density, 4πR3

M
ρ

• the Γ1 profile

• the quantity − A
r2

(see Table 1)

13



2.2.4 Output text format from the Structural Inversion tab

This format, which is specific to NonLinearKit, is a more extensive output format for
inverted models used for testing and plotting purposes. It cannot, for instance, be read by
NonLinearKit. Files can only be written to this format. It is described by the following
formatting rules:

• the first part is an seven line header with the following information:

– filename (line 1)

– number of grid points (line 2)

– radius in cm (line 3)

– mass in g (line 4)

– reference pressure in dyn.cm−2 (line 5)

– reference density in g.cm−3 (line 6)

– reference cyclic frequency in µHz (line 7)

• the next line is a header with column names

• this is followed by a table with the following dimensionless quantities (reference
values may be deduced from the header):

– radial coordinate

– density

– radial derivative of the density

– cumulative mass

– pressure

– gravity

– radial derivative of the gravity

– Γ1

– square of the sound velocity

– square of the Brunt-Väisälä

The comments and headers in the file help to make it self-explanatory.

2.2.5 Comparison of different model formats

Table 1 gives the different variables from the different models and allows an easy compar-
ison between them.
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Table 1: Table which lists variables from different model formats. The first column gives
the variables which are stored in NonLinearKit.

Variable (F)AMDL FGONG CESAM MOD LOSC CLES
x = r

R
r
R

r r r r
R

r
Γ1 Γ1 Γ1 Γ1 Γ1 Γ1 Γ1
R3

M
ρ – ρ ρ ρ 4πR3

M
ρ ρ

R4

M
dρ
dr

– – – – – –
R4

GM2P – P P P R
GM

P
ρ

P
R
GM

c2 – – – – – –
R3

GM
N2 – – – – – –
m
M

– ln
(
m
M

)
ln
(
m
M

)
m – –

R2

GM
g – – – – – –

R2

GM
dg
dr

– – – – – –
R2

r2

(
1− ρ

〈ρ〉

)
– – – – – –

U = 4πρr3

m
U – – – – –

A = 1
Γ1

d lnP
d ln r
− d ln ρ

d ln r
= rN2

g
A A A – − A

r2
− A
r2

Vg = − 1
Γ1

d lnP
d ln r

= Gmρ
Γ1pr

Vg – – – – –

η = R3

M
m
r3

= R3

GM
g
r

η – – – η m
r3

2.2.6 Useful formulas

The following formulas can be useful for finding one structural variable from other vari-
ables:

c2 =
Γ1P

ρ
(1)

g =
Gm

r2
(2)

dg

dr
= 4πGρ− 2Gm

r3
(3)

R3

M
ρ =

ηU

4π
(4)

R4

GM
P =

x2η2U

4πVgΓ1

(5)

A = −r
(
g

c2
+

1

ρ

dρ

dr

)
(6)

R3

GM
N2 =

R3

GM

g

r
A = ηA (7)

〈ρ〉 =
m

4
3
πr3

(8)

2.3 GZIP compression

NonLinearKit can read “gzipped” text files. In order to determine whether or not a file
is gzipped, NonLinearKit looks at the filename to see if it ends with “.gz”. The same rule
also applies when saving a model from the HELAS website http://www.astro.up.pt/helas/
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onto the hard disk – choosing a filename which ends with “.gz” causes NonLinearKit to
save a compressed file, whereas any other ending produces an uncompressed file.

3 Treatment of pulsation calculations

NonLinearKit calculates pulsation modes in much the same way as InversionKit. The
main difference is that the current version of NonLinearKit does not handle models with
discontinuities, as opposed to the latest version of InversionKit.

3.1 Pulsation calculations

In order to calculate theoretical modes, the pulsation equations are discretised into matrix
form, using the finite-difference scheme described in Reese (2013, A&A 555, A148), and
solved using jlapack and jarpack, a java translation of lapack and arpack. NonLinearKit
uses the observed frequencies as target values for the pulsation calculations, thereby en-
suring that the nearest theoretical frequencies are obtained.

There are three options for the set of equations. The first option is based on the
system of equations used in ADIPLS (Christensen-Dalsgaard, 2008, ApSS 316, 113). The
second option uses the Lagrangian pressure perturbation. The third one makes use of
the Eulerian pressure and density perturbations. In all cases, a reduced set of equations
is used for radial modes. The associated sets of equations are described in the following
sections.

3.2 JCD’s equations

3.2.1 Non-radial modes

System of equations The following system of equations is derived from the one used
in the ADIPLS code. The variables have been scaled by the appropriate power of r so as
to have an O(1) behaviour at the centre. Furthermore, the differential system has been
expressed in terms of r2 to ensure that the solutions are a power series in r2 rather than
r:

2r2 dy1

dr2
= (Vg − `− 1)y1 +

(
1− ω2Vg

`(`+ 1)η

)
y2 − Vgy3 (9)

2r2ω2 dy2

dr2
= `(`+ 1)

(
ω2 − ηA

)
y1 + ω2(A− `)y2 + `(`+ 1)ηAy3 (10)

2r2 dy3

dr2
= (2− `)y3 + y4 (11)

2r2 dy4

dr2
= −AUy1 −

ω2UVg
`(`+ 1)η

y2 + [`(`+ 1) + U(A− 2)] y3 + (3− `− 2U)y4 (12)
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where

y1 =
ξr
r`−1

(13)

y2 = `(`+ 1)
ξh
r`−1

=
`(`+ 1)

ω2r`

(
P

ρ0

+ ψ

)
(14)

y3 = − ψ

r`−1g0

(15)

y4 = −r3−` d

dr

(
ψ

rg0

)
= r3−`dr

`−2y3

dr
(16)

ξr = the Lagrangian vertical displacement (17)

ξh = the Lagrangian horizontal displacement (18)

ψ = the Eulerian perturbation to the gravitational potential (19)

Vg = − 1

Γ1

d lnP0

d ln r
=

m0ρ0

Γ1P0r
=
m0

rc2
0

(20)

A =
1

Γ1

d lnP0

d ln r
− d ln ρ0

d ln r
(21)

U =
4πρ0r

3

m0

(22)

η =
m0

r3
, (23)

the above variables being non-dimensionalised with respect to R, M/R2, and GM2/R4 as
units of length, density and pressure, respectively. NOTE : in JCD’s notes for ADIPLS,
the convention ∆ψ = −4πGρ is used, thereby explaining the sign differences with the
following sets of equations.

Boundary conditions In the centre, the boundary conditions are:

y2 = (`+ 1)y1 (24)

y4 = (`− 2)y3 (25)

At the surface, the boundary conditions are:

ω2y2 = `(`+ 1)η(y1 − y3) (26)

y4 = −(`+ U)y3 + Uy1 (27)

3.2.2 Radial modes

System of equations In the radial case, the above equations are not appropriate, given
the 1/[`(`+1)] factor which appears in some of the terms. Furthermore, one can eliminate
the perturbations to the gravitational potential by integrating Poisson’s equation (see,
e.g., Aerts et al. 2010, Asteroseismology, p. 195):

dψ

dr
= −Λρ0ξr (28)

Hence, the following reduced system is used instead:

2r2 dỹ1

dr2
= (Vg − 3) ỹ1 −

ω2

c2
0

ỹ2, (29)

2ω2 dỹ2

dr2
=

[
ω2 − η(A− U)

]
ỹ1 + ω2A

r2
ỹ2 (30)
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where

ỹ1 =
ξr
r

(31)

ỹ2 =
P

ω2ρ0

(32)

Boundary conditions In the centre, the boundary condition is:

0 = 3ỹ1 +
ω2

c2
0

ỹ2 (33)

At the surface, the boundary condition is:

0 = r2ηỹ1 − ω2ỹ2 (34)

3.3 Lagrangian pressure perturbations

The main advantage of using the Lagrangian pressure perturbation is that the Brunt-
Väisälä drops out from the equations. Nonetheless, this set of equations is not a good
choice when dealing with red giants given that the Lagrangian pressure perturbation is
dominated by the ~ξ · ~∇P0 term.

3.3.1 Non-radial modes

System of equations As was done above, the variables have been scaled by the ap-
propriate power of r so as to have an O(1) behaviour at the centre, and the differential

system has been expressed in terms of r2 (the entity
(

d̃ψ
dr

)
is treated as a variable in its

own right, so is not derived with respect to r2):

0 =
r2

Γ1

δP̃

P0

+ 2r2 dξ̃r
dr2

+ (`+ 1)ξ̃r − `(`+ 1)ξ̃h (35)

ω2ξ̃r =
2r2P0

ρ0

d

dr2

(
δP̃

P0

)
+

[
`P0

ρ0

+

(
1

Γ1

− 1

)
g0r

]
δP̃

P0

+

(
d̃ψ

dr

)
+ 2rg0

dξ̃r
dr2

+

(
(`− 1)g0

r
+

dg0

dr

)
ξ̃r (36)

ω2ξ̃h =
P0

ρ0

δP̃

P0

+ ψ̃ +
g0

r
ξ̃r (37)

0 = 2r2 d

dr2

(
ψ̃
)

+ `ψ̃ −

(
d̃ψ

dr

)
(38)

0 = 2r2 d

dr2

(
d̃ψ

dr

)
+ (`+ 1)

(
d̃ψ

dr

)
− `(`+ 1)ψ̃ − Λ

(
r2ρ0

Γ1

δP̃

P0

− rdρ0

dr
ξ̃r

)
(39)
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where

δP̃ = r−`δP

ξ̃r = r1−`ξr

ξ̃h = r1−`ξh

ψ̃ = r−`ψ(
d̃ψ

dr

)
= r1−`dψ

dr

The above equations are solved in non-dimensional form, where R, M/R3 and GM2/R4

are units of length, density and pressure, respectively. This leads to Λ = 4π (as opposed
to 4πG in dimensional form). Once the above system is solved, the original non-scaled
variables are obtained by multiplying the scaled variables by the appropriate power of r.

Boundary conditions The boundary conditions are as follows. In the centre, the

continuity equation and the equation relating ψ̃ and
(

d̃ψ
dr

)
become:

0 = ξ̃r − `ξ̃h (40)

0 = `ψ̃ −

(
d̃ψ

dr

)
(41)

At the surface, the boundary conditions are:

0 =
δP̃

P0

(42)

0 =

(
d̃ψ

dr

)
+ (`+ 1)ψ̃ + Λρ0ξ̃r (43)

3.3.2 Radial modes

System of equations In the radial case, the above system can be reduced by elimi-
nating the perturbations to the gravitational potential (see Eq. 28) and the variable ξh,
which is undefined The final system is, after some manipulations:

0 =
1

Γ1

δP

P0

+ 2r2 dξ̂r
dr2

+ 3ξ̂r (44)

ω2ξ̂r =
2P0

ρ0

d

dr2

(
δP

P0

)
− g0

r

δP

P0

− 4
g0

r
ξ̂r (45)

where ξr = rξ̂r.

Boundary conditions The boundary conditions are:

0 =
1

Γ1

δP

P0

+ 3ξ̂r at r = 0 (46)

0 =
δP

P
at r = R (47)
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3.4 Eulerian pressure and density perturbations

This is a straightforward, but somewhat naive version of the pulsation equations with
the Eulerian pressure and density perturbations, P and ρ. As was the case for JCD’s
equations, the Brunt-Väisälä appears explicitly. However, unlike in JCD’s equations, the
variable P appears on its own rather than implicitly through the horizontal displacement.
Accordingly, this set of equations fails to produce good results in red giants, and is also
more expensive since it involves 6 rather than 4 unknowns. It is kept primarily for the
purposes of carrying out tests and comparisons.

3.4.1 Non-radial modes

System of equations Once more, the variables have been scaled by the appropriate
power of r so as to have an O(1) behaviour at the centre, and the differential system has
been expressed in terms of r2:

0 = r2ρ̃+ 2r2ρ0
dξ̃r
dr2

+

[
(`+ 1)ρ0 + r

dρ0

dr

]
ξ̃r − `(`+ 1)ρ0ξ̃h (48)

ω2ρ0ξ̃r = 2r2 dP̃

dr2
+ `P̃ + rg0ρ̃+ ρ0

(
d̃ψ

dr

)
(49)

ω2ρ0ξ̃h = P̃ + ρ0ψ̃ (50)

0 = P̃ − c2
0ρ̃+

ρ0N
2
0 c

2
0

rg0

ξ̃r (51)

0 = 2r2 d

dr2

(
ψ̃
)

+ `ψ̃ −

(
d̃ψ

dr

)
(52)

0 = 2r2 d

dr2

(
d̃ψ

dr

)
+ (`+ 1)

(
d̃ψ

dr

)
− `(`+ 1)ψ̃ − Λr2ρ̃ (53)

where

P = r`P̃ = the Eulerian pressure perturbation

ρ = r`ρ̃ = the Eulerian pressure perturbation

The above equations are solved in non-dimensional form, where R, M/R3 and GM2/R4

are units of length, density and pressure, respectively. This leads to Λ = 4π (as opposed
to 4πG in dimensional form). Once the above system is solved, the original non-scaled
variables are obtained by multiplying the scaled variables by the appropriate power of r.

Boundary conditions In the centre, the boundary conditions are:

0 = ξ̃r − `ξ̃h (54)

0 = `ψ̃ −

(
d̃ψ

dr

)
(55)

At the surface, the boundary conditions are:

0 = rP̃ − ρ0g0ξ̃r (56)

0 =

(
d̃ψ

dr

)
+ (`+ 1)ψ̃ + Λρ0ξ̃r (57)
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3.4.2 Radial modes

System of equations As previously, the perturbations to the gravitational potential
are eliminated analytically, thanks to Eq. (28). After some manipulations, the final system
is:

0 =
1

Γ1P0

P + 2r2 dξ̂r
dr2

+

(
3− rg0

c2
0

)
ξ̂r (58)

ω2ρ0ξ̂r = 2
dP

dr2
+

g0

rc2
0

P −
(

Λρ2
0 +

ρ0g
2
0

c2
0

+ g0
dρ0

dr

)
ξ̂r (59)

where ξr = rξ̂r.

Boundary conditions The boundary conditions are:

0 =
1

Γ1P0

P + 3ξ̂r at r = 0 (60)

0 = P − rρ0g0ξ̂r at r = R (61)

3.5 Reconstructing missing variables

Evidently, the above systems of equations do not use the same variables. When construct-
ing kernels, however, it is helpful to have the same set of variables for all of the pulsation
modes. A simple solution consists in having a maximal set of variables which include all
of the above variables. This, therefore, involves reconstructing missing variables in the
different cases.

We used the following formulas to reconstruct variables when working with the La-
grangian pressure perturbations:

P = P0
δP

P0

+ ρ0g0ξr (62)

ρ =
ρ0

Γ1

δP

P0

− dρ0

dr
ξr (63)

When working with Eulerian pressure and density perturbations, we applied the following
formula:

δP

P0

=
P − ρ0g0ξr

P0

(64)

When working with JCD’s formulas, the following equations were applied:

ψ = −r`−1g0y3 (65)

dψ

dr
= −r`−1

[
g0y4

r
+

(
g0

r
+

dg0

dr

)
y3

]
(66)

P = ρ0(ω2rξh − ψ) (67)

ρ =
P

c2
0

+
Aρ0

r
ξr (68)

δP

P0

=
P − ρ0g0ξr

P0

(69)
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When dealing with radial modes, the above formulas were used as needed. The deriva-
tive of the gravitational potential perturbations, ψ was obtained thanks to Eq. (28), and
ψ was obtained via the following formula which takes into account the boundary condition
on ψ and dψ

dr
:

ψ =

∫ r

R

dψ

dr
dr (70)

4 Inversions

4.1 General description

NonLinearKit applies an RLS method in order to carry out a structural inversion of the
star. This approach relies on an iterative Levenberg-Marquardt algorithm to minimise
the following non-linear cost function:

J =
L∑
l=1

(νobs
l − νref

l −
∑N−1

n=0

anψn(νobsl )

El
)2

σ2
l

+ Λ

∫ rcut

0

(
d2 ln(ρ)

dr2

)2

dr (71)

where

L = the number of observed frequencies

l = a generic index to represent individual modes

νobs
l = an observed frequency

νref
l = a theoretical frequency

ψn = a Legendre polynomial to represent a surface effect

El = the mode inertia (an expression is given below)

σl = the error bar on an observed frequency

Λ = a regularisation parameter

rcut = a cutoff radius

ρ = the density profile

At this point, a few comments should be made concerning the cost function. First
of all, the cost function is non-linear because it depends on theoretical frequencies which
depend in a non-linear way on the density profile, which is what NonLinearKit is trying
to invert. Secondly, the regularisation term is based on the second derivative of ln(ρ)
rather than ρ. This is because ρ changes by many orders of magnitude within a star.
Such a regularisation term tends to favour profiles which behave in an exponential way.
It was, however, found that ln(ρ) tends to decrease sharply near the surface, which could
be quite penalising. To avoid this problem, a cutoff radius, rcut, which can be adjusted
using a text field in the Structural Inversion tab, was introduced. Thirdly, the surface
term has been expressed in terms of the observed frequencies rather than the theoretical
frequencies. This leads to simpler expressions when applying the Levenberg-Marquardt
algorithm.

4.2 Comparison with other methods

NonLinearKit applies a similar approach to the one used in Antia (1996, A&A 307, 609-
623). Indeed, both approaches rely on an RLS approach to iteratively correct the reference
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model, and both use the variational principle, and more specifically the (ρ,Γ1) structural
kernels, to relate frequency differences to structural differences, and both.

However, there are some notable differences. In NonLinearKit, the same cost function
is used throughout the minimisation. In contrast, the cost function in Antia (1996)
includes a regularisation term based on the correction to the structural profiles leading,
in effect, to a cost function which changes at each iteration. Furthermore, the present
approach uses a Levenberg-Marquardt algorithm in the iterations whereas Antia (1996)
applies a linear RLS at each iteration. This leads to different convergence criteria. Finally,
the present approach only adjusts the ρ profile and does not modify the Γ1 profile. The
reason for this is because, NonLinearKit is designed to work with stars other than the
sun, and hence with a much smaller set of pulsation frequencies. The method in Antia
(1996) corrects both the ρ and Γ1 profiles and was applied to the solar frequencies.

Another non-linear approach to inverting the structure of a star is the differential
response technique, developed by Roxburgh and Vorontsov (see, e.g., Vorontsov, 1998,
IAUS 181, 135, Roxburgh & Vorontsov, 2002, Proc. 1st Eddington Workshop, 349). This
method relies on internal phases of the eigenfunctions and is accordingly quite different
than the approach taken here. The main similarity is that the Γ1 profile is kept fixed and
not adjusted, thereby leading to the adjustment of only one structural profile (typically
the density).

4.3 Levenberg-Marquardt algorithm

In the Levenberg-Marquardt algorithm, one calculates both the gradient of the cost func-
tion J as well as an approximation of its Jacobian matrix, in which second order derivatives
are neglected. In order to obtain these, it is necessary to express the density profile in a
discretised form which can be adjusted by the inversion. We choose the following form:

ρ(r) = exp

[
M∑
m=1

cmφm(r)

]
ρref(r) (72)

where ρref is the density profile from the previous iteration. This form prevent the density
profile from taking on negative values, and leads to simpler expressions in the gradient
and approximate Jacobian of J .

The partial derivatives of J with respect to the cm and the an are:

∂J

∂cm
= 2

L∑
l=1

∂νref
l

∂cm

νref
l +

∑N−1
n=0

anψn(νobsl )

El

σ2
l

+ 2Λ

∫ rcut

0

d2 ln ρ

dr2

∂

∂cm

(
d2 ln ρ

dr2

)
dr (73)

∂J

∂an
= 2

L∑
l=1

ψ(νobs
l )

El

νref
l +

∑N−1
n=0

anψn(νobsl )

El

σ2
l

 (74)

where

1

νref
l

∂νref
l

∂cm
=

∫ R

0

K l
ρ,Γ1

(r)
1

ρ

∂ρ

∂cm
dr

K l
ρ,Γ1

= the (ρ,Γ1) kernel associated with mode l (expressions are given below)

1

ρ

∂ρ

∂cm
=

∂ ln ρ

∂cm
= φm

∂

∂cm

(
d2 ln ρ

dr2

)
=

d2

dr2

(
∂ ln ρ

∂cm

)
=

d2φm
dr2
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Finally, the gradient is defined as:

~∇J =



∂J
∂c1
...
∂J
∂cM
∂J
∂a0
...
∂J

∂aN−1


(75)

The following terms intervene in the approximate Jacobian, J :

∂2J

∂cm∂c′m
' 2

L∑
l=1

1

σ2
l

∂νref
l

∂cm

∂νref
l

∂c′m
+ 2Λ

∫ rcut

0

∂

∂cm

(
d2 ln ρ

dr2

)
∂

∂c′m

(
d2 ln ρ

dr2

)
dr (76)

∂2J

∂cm∂an
' 2

L∑
l=1

1

σ2
l

∂νref
l

∂cm

ψn(νobs
l )

El
(77)

∂2J

∂an∂a′n
' 2

L∑
l=1

1

σ2
l

ψn(νobs
l )

El

ψ′n(νobs
l )

El
dr (78)

The Levenberg-Marquardt algorithm then consists in iteratively applying corrections
in the form of −J̃ −1~∇J to the density profile. J̃ is a modified version of J , the ap-
proximate Jacobian, in which the diagonal elements have been multiplied by a damping
parameter, λ. This parameter is large at the beginning, meaning the algorithm behaves
as a gradient-descent algorithm, and progressively becomes smaller with successful itera-
tions, thereby leading to a behaviour closer to the Gauss-Newton algorithm.

4.4 Various useful formulas

This section recalls various formulas which intervene in the calculations. In what follows,
we will drop the l index and assume we’re dealing with a particular mode.

4.4.1 Mode inertia

The mode inertia is given by the following expression

E =

∫ R
0

[ξ2 + `(`+ 1)η2] ρr2dr

M [ξ(Rphot.)2 + `(`+ 1)η(Rphot.)2]
(79)

where

ξ = the Lagrangian vertical displacement

η = the Lagrangian horizontal displacement

` = the harmonic degree

Rphot. = the photospheric radius
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4.4.2 c2, ρ kernels

The expressions for structural kernels are obtained by perturbing the variational expres-
sion for the frequency, then using the the variational principle to remove terms related to
the variation of the eigenfunctions. The following expressions are from Gough & Thomp-
son (1991, in Solar interior and atmosphere, p. 519-561).

The relative frequency variations are given by

δν

ν
=

∫ R

r=0

[
Kc2,ρ(r)

δc2
0(r)

c2
0(r)

+Kρ,c2(r)
δρ0(r)

ρ0(r)

]
dr (80)

in which the kernels take on the following expressions:

Kc2,ρ =
ρ0c

2
0χ

2r2

2Iω2
(81)

Kρ,c2 =
ρ0r

2

2Iω2

{
c2

0χ
2 − ω2

(
ξ2 + `(`+ 1)η2

)
− 2g0ξχ− 4πG

∫ R

s=r

(
2ρ0ξχ+

dρ0

ds
ξ2

)
ds

+2g0ξ
dξ

dr
+ 4πGρ0ξ

2 + 2

(
ξ

dψ

dr
+
`(`+ 1)ηψ

r

)}
(82)

where

ω = 2πν

χ =
~∇ · ~ξ
Y `
m

=
dξ

dr
+

2ξ

r
− `(`+ 1)η

r

ρ = −dρ0

dr
ξ − ρ0χ

ψ = − 4πG

2`+ 1

[∫ r

s=0

ρ(s)
s`+2

r`+1
ds+

∫ R

s=r

ρ(s)
r`

s`−1
ds

]
dψ

dr
= − 4πG

2`+ 1

[
−(`+ 1)

∫ r

s=0

ρ(s)
s`+2

r`+2
ds+ `

∫ R

s=r

ρ(s)
r`−1

s`−1
ds

]
m0 = 4π

∫ r

s=0

ρ0(s)s2ds

g0 =
Gm0

r2

and quantities with the subscript “0” refer to the equilibrium model.

4.4.3 Γ1, ρ kernels

The relative frequency variations are given by

δν

ν
=

∫ R

0

[
KΓ1,ρ(r)

δΓ1(r)

Γ1(r)
+Kρ,Γ1(r)

δρ0(r)

ρ0(r)

]
dr (83)

Expressions for these kernels can be deduced from the previous set of kernels:

KΓ1,ρ = Kc2,ρ =
ρ0c

2
0χ

2r2

2Iω2
(84)

Kρ,Γ1 = Kρ,c2 −Kc2,ρ +
Gmρ0

r2

∫ r

s=0

Kc2,ρ(s)

p0(s)
ds+ ρ0r

2

∫ R

s=r

4πGρ0

s2

(∫ s

t=0

Kc2,ρ(t)

p0(t)
dt

)
ds

= Kρ,c2 −Kc2,ρ +
Gmρ0

r2

∫ r

s=0

Γ1χ
2s2

2Iω2
ds+ ρ0r

2

∫ R

s=r

4πGρ0

s2

(∫ s

t=0

Γ1χ
2t2

2Iω2
dt

)
ds (85)
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5 Known bugs

Here is a list of known bugs. If you find any other, please let us know by sending us an
email (daniel.reese@obspm.fr).

• excessive zooming on plots can produce irregular behaviour

• the pulsation calculations becomes unreliable beyond ` = 20 due to the fact that
NonLinearKit uses scaled variables in the pulsation equations.

6 Copyright notices

Below is the copyright notice that goes with NonLinearKit.

Copyright (c) Daniel Reese, 2016

This file is part of NonLinearKit.

NonLinearKit is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

NonLinearKit is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with NonLinearKit. If not, see <http://www.gnu.org/licenses/>.

6.1 Source code for reading fortran binary files

The source code for reading fortran binary files comes from the following web-pages:
http://docjar.com/docs/api/org/fudaa/dodico/fortran/NativeBinaryInputStream.html

http://docjar.com/docs/api/org/fudaa/dodico/fortran/NativeBinaryOutputStream.html

http://docjar.com/docs/api/org/fudaa/dodico/fortran/FortranBinaryInputStream.html

http://docjar.com/docs/api/org/fudaa/dodico/fortran/FortranBinaryOutputStream.html

and are covered by the GNU GPL2 License. They have been corrected and modified so
as to meet the needs of NonLinearKit.

6.2 Supplementary notices

Some of the code comes from other sources. The corresponding copyright notices are
reproduced below:
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Notice number 1

@(#)OptionPaneDemo.java 1.9 04/07/26

Copyright (c) 2004 Sun Microsystems, Inc. All Rights Reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

-Redistribution of source code must retain the above copyright notice, this

list of conditions and the following disclaimer.

-Redistribution in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation

and/or other materials provided with the distribution.

Neither the name of Sun Microsystems, Inc. or the names of contributors may

be used to endorse or promote products derived from this software without

specific prior written permission.

This software is provided "AS IS," without a warranty of any kind. ALL

EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING

ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE

OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN MIDROSYSTEMS, INC. ("SUN")

AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE

AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS

DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST

REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL,

INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY

OF LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE,

EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You acknowledge that this software is not designed, licensed or intended

for use in the design, construction, operation or maintenance of any

nuclear facility.

Notice number 2

Copyright (c) Ian F. Darwin, http://www.darwinsys.com/, 1996-2002.

All rights reserved. Software written by Ian F. Darwin and others.

$Id: LICENSE,v 1.8 2004/02/09 03:33:38 ian Exp $

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.
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2. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

Java, the Duke mascot, and all variants of Sun’s Java "steaming coffee

cup" logo are trademarks of Sun Microsystems. Sun’s, and James Gosling’s,

pioneering role in inventing and promulgating (and standardizing) the Java

language and environment is gratefully acknowledged.

The pioneering role of Dennis Ritchie and Bjarne Stroustrup, of AT&T, for

inventing predecessor languages C and C++ is also gratefully acknowledged.
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