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Preprint online version: March 5, 2012

ABSTRACT

Context. The study of the magnetic topology of magnetic fields aims at determining the key sites for the development
of magnetic reconnection. Quasi-separatrix layers (QSLs), regions of strong connectivity gradients, are topological
structures where intense-electric currents preferentially build-up, and where, later on, magnetic reconnection occurs.
Aims. QSLs are volumes of intense squashing degree, Q; the field-line invariant quantifying the deformation of elementary
flux tubes. QSL are complex and thin three-dimensional (3D) structures difficult to visualize directly. Therefore Q maps,
i.e. 2D cuts of the 3D magnetic domain, are a more and more common features used to study QSLs.
Methods. We analyze several methods to derive 2D Q maps and discuss their analytical and numerical properties. These
methods can also be used to compute Q within the 3D domain.
Results. We demonstrate that while analytically equivalent, the numerical implementation of these methods can be
significantly different. We derive the analytical formula and the best numerical methodology that should be used to
compute Q inside the 3D domain. We illustrate this method with two twisted magnetic configurations: a theoretical
case and a non-linear force free configuration derived from observations.
Conclusions. The representation of QSL through 2D planar cuts is an efficient procedure to derive the geometry of these
structures and to relate them with other quantities, e.g. electric currents and plasma flows. It will enforce a more direct
comparison of the role of QSL in magnetic reconnection.
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1. Introduction

Magnetic reconnection in line-tied low-plasma-β environ-
ment such as the solar corona is linked to the formation of
intense field-aligned current sheets. These currents develop
preferentially in specific location of the magnetic field, in
particular regions where the connectivity of the magnetic
field is discontinuous. Magnetic topology studies aims at de-
termining such regions (see review of Démoulin 2005). Null
points, separatrices and separators are classical region of
magnetic field discontinuity (see review by Longcope 2005).
Through the identification of such regions, magnetic topol-
ogy studies have been able to explain the location and shape
of flares ribbons (e.g Gorbachev & Somov 1989; Mandrini
et al. 1995; Démoulin et al. 1997; Gaizauskas et al. 1998;
Bagalá et al. 2000; Mandrini et al. 2006).

However all flares cannot be directly associated with
such magnetic field discontinuity. A generalized topological
structure, the Quasi-Separatrix Layers (QSLs) have been
introduced by Démoulin et al. (1996b) (see also review of
Démoulin 2006). QSLs have been defined as regions where
the mapping of the field lines has strong gradient. It in-
cludes possible discontinuous mapping, hence the presence
of separatrices, as a particular case. They were localized by
the estimation of the norm, N of the Jacobian matrix of
the mapping of the field line connectivity (see Section 2).
Titov et al. (2002) improved the concept by defining the
squashing degree, Q, which, unlike N , is invariant along a
field line. QSLs are thus 3D magnetic volumes of high Q,
in which the magnetic connectivity varies strongly.

Similarly to separatrices, flare ribbons could be associ-
ated with QSLs in a large number of events (e.g. Mandrini
et al. 1997, 2006; Masson et al. 2009; Chandra et al. 2011).
Indeed, QSLs are also preferential sites for electric current
build-up (Milano et al. 1999; Galsgaard et al. 2003; Aulanier
et al. 2005; Buechner 2006; Pariat et al. 2006; Masson
et al. 2009; Wilmot-Smith et al. 2009, 2010). Magnetic
reconnection develops within QSLs, with the particularity
that field line continuously reconnect with their neighboring
field lines, leading to an apparent slipping of the field lines
(Aulanier et al. 2006, 2007; Török et al. 2009; Masson et al.
2009, 2011), while classical reconnection at a separatrice is
realized in one step.

QSLs have thus received an increased attention from the
community. As the spatial extension of a QSL is typically
a very thin 3D volume with a complex shape, the repre-
sentation of QSLs is typically not straightforward. The 3D
representation by an iso-surface of Q can be used (Titov
et al. 2002, 2003; Titov 2007). A complementary way to
represent complex QSLs can be done by studying the dis-
tribution of Q on 2D sections of the studied 3D domain. As
the computation of Q is relative to the choice of boundary
for the field line mapping, QSLs are usually represented at
these boundaries (e.g. Démoulin et al. 1997; Buechner 2006;
Masson et al. 2011; Titov et al. 2011). However, it may be
necessary to represent QSLs in particular sections of the 3D
domain (as in Aulanier et al. 2006; Antiochos et al. 2011;
Savcheva et al. 2012). The aim of this paper is to analyze
several possible methods to estimate Q inside the 3D do-
main and to provide a formulation for the most suitable
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Fig. 1. Left panel: Photospheric distribution (grayscale) of the
vertical component of the magnetic field, Bz, for the TD model.
The continuous (resp. dotted) isolevels of Bz corresponds to
intensities of ±[1, 2, 3, 4]. Right panel: Photospheric distribution
(color scale) of Log10 Q. A color version is available online.

method. We focus on computing Q on 2D cuts because it
has important applications and allows us to focus on the
core of the methods.

For illustration, each method will be applied to the ex-
ample of the magnetic configuration of Titov & Démoulin
(1999, TD hereafter). It is formed by a twisted flux rope
(part of a torus) in equilibrium in an active-region like mag-
netic field. The normalized parameters are chosen such as:
R = 2, a = 0.45, d = 1, |L| = 1, and |q| = 1, I0 = 2, where
R and a are the large and small radius of the torus, d and q
are the depth below the photospheric plane (z = 0) and the
magnitude of the magnetic sources, L is half the horizontal
distance between the sources, and I0 is the current intensity
of the line current, respectively (see Figure 2 and Section 2.1
in Titov & Démoulin 1999). With these parameters the flux
rope has a twist of Nt = 2 above z = 0. The photospheric
distributions of Bz and Log10Q are given in Figure 1. The
TD model has been chosen because its topology has been
thoroughly studied (Titov & Démoulin 1999; Titov 2007)
and because it defines a structure commonly used as an ini-
tial configuration in numerical simulation of eruptions (e.g.
Roussev et al. 2003; Török et al. 2004, 2011a,b; Valori et al.
2010; Cohen et al. 2011; Lugaz et al. 2011).

We also apply the methods to a more complex magnetic
field derived from observations (Savcheva et al. 2012). This
magnetic field is based on a non-linear force-free field con-
strained by both the photospheric magnetogram and the
observed coronal loops. This magnetic field is associated to
a long-standing coronal sigmoid (observed during 6 days)
within an active region. The aim of studying such a field
is to test the performance of the methods on a more struc-
tured magnetic field as typically observed on the Sun.

The paper is organized as follow: after recalling the
method to compute Q at the boundary of the domain in
Section 2, we will present in Section 3 several methods to
derive Q maps within the domain and investigate how pre-
cise they are. Each method is illustrated by its application
to the TD model. Then, we compare the best two meth-
ods using an observed magnetic configuration (Section 4).
Finally, we conclude in Section 5.

2. Squashing degree estimation at the planar
boundary of a 3D domain

The practical definition of QSLs in the solar context is in-
herently relative to the mapping of magnetic field lines from
one footpoint to the other. The concept is justified by the

fact that field lines are typically line tied in the dense pho-
tosphere, while a more general definition of QSLs is possi-
ble by analyzing the divergence of neighbor field lines (see
Section 2.3 in Démoulin et al. 1996b). The computation of
QSLs is therefore relative to the choice of the boundaries of
the studied domain V . The norm N of the mapping and the
squashing degree, Q are defined for given boundaries of the
studied domain (Démoulin et al. 1996b; Titov et al. 2002;
Titov 2007). By construction the squashing degree is con-
stant for a given field line (Titov et al. 2002), hence, once
the boundaries of the domain of study is fixed, Q can be
given for the whole domain, each field line having a single
value of Q.

The quantities N and Q, are usually derived from the
Jacobian matrix of the field-line mapping from the bound-
ary of one footpoint to the other. In the following we will
consider that the boundaries associated with each footpoint
are planar and thus can be represented by two independent
cartesian referentials. For generality we will consider that
these planes are arbitrarily oriented regarding to each oth-
ers. More commonly these plans could be two sides of a
cubic 3D domain of a numerical simulation. In the particu-
lar case of closed magnetic fields such as in an active region
field (and as in the TD model used here) these two planes
are the same one: one compute the mapping between the
positive footpoint to the negative one of a photospheric-like
boundary.

Let us consider a field lines which links the footpoint,
r1, of coordinate (x1, y1) of the plane P1 to the footpoint
r2, of coordinate (X2, Y2) of the plane P2 (see Figure 2).
The plane P1 will for example correspond to footpoint with
a positive magnetic flux while P2 will correspond to a neg-
ative flux. Two mapping exist which associate a footpoint
on one plane to the other: the mapping Π12 from P1 to P2:
r1(x1, y1) 7→ r2(X2, Y2); and the inverse mapping Π21 from
P2 to P1: r2(X2, Y2) 7→ r1(x1, y1).

The Jacobian matrix, D12 & D21 associated to each
mapping are:

D12 =
(
∂X2/∂x1 ∂X2/∂y1
∂Y2/∂x1 ∂Y2/∂y1

)
(1)

D21 =
(
∂x1/∂X2 ∂x1/∂Y2

∂y1/∂X2 ∂y1/∂Y2

)
(2)

As Π12 and Π21 are inverse functions (Π12 ◦Π21 = Π21 ◦
Π12 = Id), D21 is related to D12 by:

D21 = D−1
12 =

1
∆12

(
∂Y2/∂y1 −∂X2/∂y1
−∂Y1/∂x1 ∂X2/∂x1

)
(3)

with ∆12 the determinant of D12.
Evaluating D21 is analytically equivalent using

Equation (2) or Equation (3), however numerically it is
generally not the case. In order to compute the Jacobian
matrix, one needs to compute in two orthogonal directions
a set of field lines sufficiently close to resolve the gradient
of connectivities. This is achieved by computing progres-
sively field lines closer to the selected point (c.f. Section 3
of Aulanier et al. 2005). It is better numerically to realize
such convergence where the value of Q is needed both be-
cause of finite difference precision (selection of the finite dif-
ference scale) and of large connectivity dependence within
QSLs. Such fine treatment is needed to compute Q because
of the very severe distortion of the mapping as illustrated
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in Figure 2 of Longcope & Strauss (1994), even for broad
QSLs.

In presence of QSLs, the Jacobian matrix components
are typically very large or very small. As they are evaluated
by finite difference of the position of the footpoints of the
field lines, it is numerically more accurate to have a fixed
denominator for all components.

For example, when evaluating the squashing degree Q
at r1, it is better to integrate field lines from fixed points
distant of δx1 = δy1 = δ and centered on r1. The field
lines, separated on P1 along the x1 direction by δx1(= δ),
have a footpoint separation on P2 which component along
the X2 and Y2 directions are respectively equal to dX2x1

and dY 2x1. In a QSL, dX2x1 and dY 2x1 will typically be
very large or very small relatively to δ. Because of numer-
ical errors, the quantities such as ∂X2/∂x1 ' dX2x1/δ will
be evaluated more consistently than the quantities such as
∂x1/∂X2. The same is valid for field lines separated by
δy1 on P1. We conclude that, when numerically evaluating
Q and the mapping properties at r1, Equation (1) should
be used to compute D12, and D21 should be derived from
Equation (3) instead of Equation (2).

Titov et al. (2002) demonstrated that the determinant
of the Jacobian matrix, ∆12 & ∆21 can be related to the ra-
tio of Bz,1(x1, y1) and BZ,2(X2, Y2), which are respectively
the normal component to P1 and P2 of the magnetic field
evaluated in r1 and r2:

|∆12| = |∆21|−1 =
|Bz,1(x1, y1)|
|BZ,2(X2, Y2)|

(4)

Let us note that this expression should be used numerically
because it is much more precise than the computation of the
determinant of the Jacobian matrix which involves partial
derivatives.

The norms N12 & N21 of the two Jacobian matrix are:

N12 =

√(
∂X2

∂x1

)2

+
(
∂X2

∂y1

)2

+
(
∂Y2

∂x1

)2

+
(
∂Y2

∂y1

)2

(5)

N21 =

√(
∂x1

∂X2

)2

+
(
∂x1

∂Y2

)2

+
(
∂y1
∂X2

)2

+
(
∂y1
∂Y2

)2

(6)

=
N12

|∆12|
(7)

The Squashing degree, Q, for this field line is given by:

Q ≡Q12 =
N2

12

|Bz,1(x1, y1)/BZ,2(X2, Y2)|
(8)

≡Q21 =
N2

21

|BZ,2(X2, Y2)/Bz,1(x1, y1)|
(9)

While in theory Q12 is equal to Q21 it may not be the
case numerically. In addition of the errors related to the
computation of the Jacobian matrix at each footpoint ex-
plained previously, field line integration errors will also in-
troduce variations. Indeed for a magnetic field represented
in a discrete mesh, integration errors of the field lines would
lead to finite errors on the location of the footpoints of the
field lines. Since QSLs are both associated to large Q values
and large Q gradients, except just in the thin central part
(as in Figure 1, right panel), a small spatial shift in the
integration of a field line can shift significantly the value of

P2 

r1 r2 

rc 

dX2 
dx1 

dy1 dY2 

x1 y1 

xc 
yc X2 

Y2 

Fig. 2. Cartoon illustrating the first possible method, but in-
correct, to compute Q at rc.

Q. Therefore, it is more precise to numerically evaluate Q
at the location where it is needed rather than transferring
Q along field lines.

3. Squashing degree estimation within a 3D
domain

Let us now focus on the way to compute Q in the volume
of the studied domain V . The boundaries P1 and P2 stays
fixed and the aim is to determine the value of Q associ-
ated to an arbitrary point rc of V . We define a plane Pc

represented by a cartesian referential such as rc has the co-
ordinates (xc, yc). The plane Pc can be defined in the neigh-
borhood of rc, Pc(rc), implying than its orientation could
depend on rc (for example by taking P ′c(rc) perpendicular
to the local magnetic field, see the end of Section 3.4). In
this case, the local plane Pc(rc) can be different for differ-
ent rc positions. However, for many applications, it may be
more suited to consider an unique plane Pc, e.g. the large
scale 2D cut on which Q is to be represented. We follow this
latter assumption in the present paper as it simplifies the
description and permits to focus more on the key-points of
Q computations.

In order to determine the value ofQ at rc, one first needs
to determine the location of the two footpoints of the field
line passing by rc. The field integration is assumed to retain
the direction of the magnetic field and thus the footpoints
are supposed to be properly computed (to the numerical
precision) to their respective plane, e.g. positive on P1 and
negative on P2. As Q is constant for all the points of a given
field line, it should be possible to compute Q at any point
of the field line. If Q is know analytically at a given point
and the connectivity can be computed, it is easy to derive
Q at rc. This is what is used in Wilmot-Smith et al. (2009).
However for non analytical fields the computation is not as
straightforward and several methods can be possibly used
to derive Q(rc).

3.1. Pseudo-method 1

For didactic purpose, we first analyze an example of a
method, which could appear intuitive, but which is incor-
rectly computing the partial derivatives of the connectivity
matrices. This illustrates how tricky can be the computa-
tion of Q, and the cautions that must be taken.
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When one compute a Q map in a 2D cut of V , as field
lines are computed at every mesh point of this map, it
is tempting to directly use the position of the computed
field lines on the already defined grid and directly use
Equation (1) & Equation (2) to derive D12 or D21 from
the position of the footpoints on P1 and P2 only. This intu-
itive methodology implies to first compute field lines from
two directions on Pc around the point of interest rc as il-
lustrated in Figure 2. Four field lines are plotted from Pc

distant from a fixed position δ centered on rc (δ being the
distance between field lines position on each side of rc). One
obtain the difference of position of the footpoints of these
field lines, dx1, dy1, dX2 and dY 2 on P1 and P2. These dis-
tances provides and information on how the flux tube is
squashed. If one focus on the footpoint r1, Q12 can eventu-
ally be approximated with:

Qm1 =

(
dX2
dx1

)2

+
(

dX2
dy1

)2

+
(

dY 2
dx1

)2

+
(

dY 2
dy1

)2

|Bz,1(x1, y1)/BZ,2(X2, Y2)|
(10)

At first sight, this estimation can look coherent since it
converges to the typical formula to compute Q when Pc

converges to P1 (dx1 and dy1 being computed in orthogonal
directions). An equivalent relation can be obtained from
the footpoint r2. The results are illustrated in the upper
left panel of Figure 5. One observes values of Q which are
smaller than 2 while Q is theoretically greater than 2 (Titov
et al. 2002).

However, since one does not control the direction and
distance of the location on P1 (field lines are computed from
Pc), the Jacobian matrix D12 is not properly estimated.
Starting the field line integration from two orthogonal di-
rections on Pc, does not generally implies that the corre-
sponding footpoints on P1 and P2 will form an orthogonal
system. Indeed, in a QSL, a square on Pc is deformed to
possibly very elongated non-orthogonal quadrangles on P1

and P2. At best, only one of the quadrangle diagonals can
be oriented along one of the axes of a local system of coor-
dinates, while the other diagonal will always be tilted with
respect to the second coordinate axis. The non-orthogonal
diagonals of the quadrangle, or their projection to the ap-
propriate axis, are not proper jacobian elements, because
each differential of independent variables (e.g. dx1 or dy1)
of partial derivatives must be taken at a constant value of
the other variable (y1 or x1, respectively). As the mapping
of the field line integration grid is strongly distorted in a
QSL, this leads to important errors on the computation of
Q.

Finally if one compute field lines closer and closer from
rc, using smaller and smaller values of δ, we do not nec-
essarily converge on a more precise value of Q. Indeed the
ratios, such as dX2/dx1, are not necessarily more precisely
estimated and the above problem, of non orthogonal deriva-
tive directions, remains. The estimation of the Jacobian
does not converge with a smaller mesh size on Pc under the
approximation done.

The overall issues related to this method are related to
the fact that one tries to compute D12 (and D21) using
Equation (1) (resp. Equation (2)) from a grid defined on
Pc while Equation (1) is meant to be properly evaluated
from a neighborhood of r1 (resp. r2)).

P2 

X2 

Y2 x1 y1 

xc 
yc 

r1 
r2 

rc 

dY2x1 

dY2y1 

dX2x1 

dX2y1 

δ 

Fig. 3. Cartoon illustrating the second method to compute Q
at rc.

3.2. Method 2

A more suitable method consists in first integrate the field
line passing through Pc, then choose one of its footpoint,
and compute Q using Equation (8) or (9) from a set of field
lines originating from a neighborhood of this footpoint. The
derived value of Q is then attributed to rc as Q is invariant
along a field line. Figure 3 illustrates this method using the
footpoint on P1. The Jacobian matrix D12 is evaluated from
a set of field lines integrated from a distance δ along two or-
thogonal directions, in the plane P1. The components of the
field lines footpoint distance on P2, as shown in Figure 3,
dX2x1, dY 2x1, dX2y1 and dY 2y1, are used to derive Q in
Equation (8) approximated such as:

Qm2 =
(dX2x1)2 + (dX2y1)2 + (dY 2x1)2 + (dY 2y1)2

δ2 |Bz,1(x1, y1)/BZ,2(X2, Y2)|
(11)

In this method, as Q is not directly computed in rc, field
line integration errors may lead to some miss-location of the
actual values of Q. This will tend to broaden the width of
the QSL in region where QSL are particularly thin, i.e. Q is
especially large. This is illustrated in Figure 5, lower panels
where Q is estimated from each footpoint in the two panels.
Compared to the correct value of Q (upper right panel, cf.
following section), Q presents a broader structure at the
highest values of Q.

One also note some differences between the computation
done from each footpoint. This asymmetry also results from
field integration differences between footpoints. Our field
integration is based on the D02CJF routine of the NAG li-
brary for which we have used a value of TOL equal to 10−8.
It means that the location of the footpoints are known to
better than the 8th decimal when computing field line from
one footpoint to the other (this can be checked by comput-
ing the field line back to the initial footpoint). Our field
line computation is therefore particularly robust. However,
as in the core of the QSL field lines diverge particularly
strongly, even small integration errors leads to differences
when computing Q from one footpoint or the other.

Another issue with this method is that the precision
depends on δ evaluated on P1 (or P2) and not on Pc. It
is not directly possible to converge on rc, to use a more
precise grid over Pc.
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P2 

r1 r2 

rc 

dX2xc 

dY2xc 

dx1xc 

dy1yc 
δ 

dx1yc 

dy1xc 

dX2yc 
dY2yc 

x1 y1 

xc 
yc X2 

Y2 

Fig. 4. Cartoon illustrating the third and most proper method
to compute Q at rc.

3.3. Method 3

In order to properly compute Q at rc, we will use field
lines computed from Pc in a local neighborhood of rc. But
instead of directly trying to evaluate Equations (8,9), we
will derive the expression of Q using the Jacobian matrices
derived from the mapping of the field from Pc to P1 and
P2. We can now consider the mappings from rc to the cor-
responding footpoint of the field line : Πc1 rc 7→ r1; Πc2

rc 7→ r2 and the inverse mapping Π1c & Π2c from P1 & P2

to Pc: Π1c r1 7→ rc ; Π2c r2 7→ rc (see Figure 4).
By composition of the function we have: Π12 = Πc2◦Π1c,

hence the Jacobian matrix D12 can be expressed relatively
to the Jacobian matrix D1c and D2c:

D12 = Dc2 D1c (12)

The jacobian matrix D1c is equal to:

D1c =
(
∂xc/∂x1 ∂xc/∂y1
∂yc/∂x1 ∂yc/∂y1

)
(13)

with (xc, yc) the cartesian coordinates of rc in Pc. As one
start computing field lines from the plane Pc this quantity
can be difficult to evaluate. It is more precise to use the
Jacobian matrix Dc1. As Π1c = (Πc1)−1 on have:

D1c = D−1
c1 =

1
∆c1

(
∂y1/∂yc −∂x1/∂yc

−∂y1/∂xc ∂x1/∂xc

)
(14)

with ∆c1 the determinant of the matrix Dc1, which is such
as

|∆c1| =
|Bn,c(xc, yc)|
|Bz,1(x1, y1)|

(15)

with Bn,c(xc, yc) the value of the magnetic field component
normal to Pc at rc.

Hence, on can derive a form for the Jacobian matrix D12

which only depends on derivative taken along the plane Pc:

D12 = D∗/∆c1 (16)

with

D∗ =


(

∂X2
∂xc

∂y1
∂yc
− ∂X2

∂yc

∂y1
∂xc

) (
∂X2
∂yc

∂x1
∂xc
− ∂X2

∂xc

∂x1
∂yc

)
(

∂Y2
∂xc

∂y1
∂yc
− ∂Y2

∂yc

∂y1
∂xc

) (
∂Y2
∂yc

∂x1
∂xc
− ∂Y2

∂xc

∂x1
∂yc

)

(17)

Fig. 5. Distribution of Log10 Q in the plane y = 0 for the TD
model using the different methods computed with 5122 points:
Upper left: pseudo-method 1. Upper right: method 3 (proper
method), Lower left: method 2 computed from the first foot-
points. Lower left: method 2 computed from the second foot-
points. A color version is available online.

The norm N12 is thus given by:

N12 =
1
|∆c1|

√∑
ij

(
D∗ij
)2 (18)

with D∗ij the elements of D∗. The squashing degree is thus:

Q =
N2

12

|∆12|
=

∑
ij

(
D∗ij
)2

|∆2
c1||∆12|

(19)

=
|Bz,1(x1, y1)BZ,2(X2, Y2)|

|Bn,c(xc, yc)|2
∑
ij

(
D∗ij
)2 (20)

One verify that if one consider that the plane Pc is
equal to the plane P1 (resp. P2) then Equation (16) con-
sistently gives Equation (1) (resp. D12 = D−1

21 computed
by Equation (2)) and the classical values of N and Q are
found. Titov (2007) has derived a covariant form of Q for
any shapes of boundaries and/or coordinate systems. The
present equations can similarly be generalized following the
concepts presented in that paper.

Practically, to estimate Q from Equation (19) one needs
to compute the footpoints on P1 and P2 from a set of field
lines integrated from a distance δ along two orthogonal di-
rections in Pc around rc. The components of the field lines
footpoint distance on P1 (resp. P2) are as shown in Figure 4:
dX1xc

, dY 1xc
, dX1yc

and dY 1yc
(resp. dX2xc

, dY 2xc
, dX2yc

and dY 2yc
). They are used to derive the norm of the ja-

cobian N12 in Equation (18), then Q in Equation (20) is
approximated such as:
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Qm3 = ( (dX2xc
dy1yc

− dX2yc
dy1xc

)2 +

(dX2ycdx1xc − dX2xcdx1yc)2 + (21)

(dY 2xc
dy1yc

− dY 2yc
dy1xc

)2 +

(dY 2yc
dx1xc

− dY 2xc
dx1yc

)2 ) f

with

f =
|Bz,1(x1, y1)BZ,2(X2, Y2)|

|Bn,c(xc, yc)|2 δ4
(22)

For the TD model the result of the estimation of
Equation (21) is displayed in the upper right panel of
Figure 5. Method 3 corrects the problems encountered pre-
viously with method 2 (broadening and asymmetry of the
Q distribution). The hyperbolic flux tube (HFT, region of
highest Q values Titov et al. 2002) is clearly identified (es-
pecially with the color version of the figure where the dy-
namic of the plot is larger). Figure 6 presents two other
examples of 2D Q maps obtained in 2 distinct plane of the
3D studied domain. The location and shape of the HFT is
also clearly shown in these 2D cuts.

It is also straightforward to obtain a precise computa-
tion of Q over Pc by using smaller and smaller values of
δ. This iteration with smaller δ values is very important
since the numerical grid used to compute Q needs to re-
solve its sharp variations and δ should be adapted to the
local mapping gradient. This implies that the final δ used
is a sharp function of the position: δ should be smaller
where Q is larger (e.g. the QSL thickness was found to
scale approximately as 1/N in various magnetic configu-
rations, Démoulin et al. 1996a,b). Equation (21) and the
corresponding methodology as been used in previously pub-
lished papers (Aulanier et al. 2005, 2006; Pariat et al. 2006;
Masson et al. 2011) but with only a very short summary of
the procedure and no comparison with other methods.

3.4. Comparison of method 3 with a previous procedure

Recently, Savcheva et al. (2012) presented a original
method to derive Q in cross-section of the 3D domain which
presents similarities to method 3. Instead of determining
D∗, as performed here, they directly compute Dc2 and Dc1

(using the formulation introduced in this study). They first
consider six points at a distance δ around rc, two along
each cartesian direction, and they compute their footpoints
on P1 and P2. The position differences of the points are
projected on a plane, here called P ′c(rc), taken locally per-
pendicular to the field line passing by rc (this orthogonal
condition was implicitly used in Savcheva et al. (2012) while
not described, Savcheva, private communication). The use
of 6 points ensures that at least 4 of the projected points
are significantly different. The distances of the six projected
points are then related to the relative positions of the six
footpoints on the plane P1 (and P2). A least square fit of
these relationships with a matrix having constant coeffi-
cients provides Dc1 (resp. Dc2). D1c is then inverted as in
Equation (14). The squashing degree is then determined
with Equations (5, 8). The use of 6 points, while overde-
termining the system to be solved, allow to estimate the
precision of the matrix coefficients.

However, let us note that the field lines passing by the
six original points (outside P ′c) are not exactly the same
as the field lines passing by the projections of these points

Fig. 6. Distribution of Log10 Q in the planes x = 0 (top panel)
z = 0.229 (bottom panel) and for the TD model, with the pho-
tospheric plane z = 0 being the reference boundary for the com-
putation. A color version is available online.

on P ′c. Therefore the matrices which are computed are not
strictly the ones which correspond to the Jacobian matrices
of the mapping from P ′c to P1 and P2. As P ′c is locally or-
thogonal to the field in rc, the difference is relatively small.
It can nonetheless be significant in region of high Q, i.e.
where the connectivity change significantly. A possible way
to improve this would be to recompute the location of the
field line footpoints for the points projected on Pc. Since in
Savcheva et al. (2012) no convergence is performed around
rc, their method is in any case limited in its ability to com-
pute high value of Q. They indeed limit the value of the
computed Q to 100. The above effect of projection is thus
likely to be insignificant in their study.

Our previous derivation of Section 3.3 does not ap-
ply for the particular points where the field lines are tan-
gent to the plane Pc. Indeed when a field line is strictly
tangent to the plane of cut, the mapping cannot be de-
termined. Practically, on discrete mesh, this is an ex-
tremely seldom situation. However, there are still some
cases where the magnetic field is nearly parallel to Pc.
In such cases, the computation of Q can be less accurate.
Savcheva et al. (2012) solved this problem by computing Q
on the plane P ′c(rc) locally perpendicular to the magnetic
field (Savcheva, private communication).

Method 3 can be modified by using a similar local plane,
P ′c(rc). This suppress the problem of field lines tangent to
Pc. The neighboring points being defined after P ′c, this al-
lows to avoid the need to introduce points outside P ′c, and
the effect of projection on P ′c (as in Savcheva et al. 2012).
This procedure break down only in the close vicinity of a
magnetic null point where the computation of Q is already
not possible (since it diverges to infinity). Thus, the use
of a local plane P ′c to compute Q at any point rc, per-
mits to have 2D cuts (not limited to a plane) as well as
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Fig. 7. Distribution of Log10 Q in a vertical cut in the center of a
NLFFF reconstruction of a sigmoid region observed on February
12th 2007 at 06:41 UT. Left: method 2 computed from the pos-
itive footpoints. Right: method 3 (proper method). A color ver-
sion is available online.

3D computations of Q within the volume V . Still, in many
applications, it will be sufficient, and indeed recommended,
to select first the plane Pc crossing the QSL in order to bet-
ter compare the Q distribution to plasma parameters (e.g.
electric currents, plasma density).

4. Application to an observed configuration

The TD model is an ideal magnetic configuration with a
smooth magnetic field and only one QSL. In solar applica-
tions, the number of photospheric magnetic and electric
current polarities implies a much more complex coronal
magnetic field even in force-free extrapolations. Such com-
plexity can also be present in MHD simulations. We present
below an example of such complex field which enhance the
differences between method 2 and 3.

We have performed a QSL computation on a non-
linear force-free (NLFFF) reconstruction of an observed
sigmoid (see McKenzie & Canfield 2008; Savcheva & van
Ballegooijen 2009; Savcheva et al. 2012, for more detailed
information about the observational properties of this re-
gion). A flux rope insertion method (van Ballegooijen 2004)
has been used to obtain the 3D magnetic structure of this
region (this is explained in details in Savcheva et al. 2012).
The time of the model, 06:41 UT on February 12th 2007,
precedes a solar eruption by about one hour. Unlike the
TD configuration, the NLFFF model presents a high de-
gree of complexity. The NLFFF model is indeed based on
an observed magnetogram in which the field has various
structures in a broad range of spatial scales (cf. Figures 1
& 2 of Savcheva et al. 2012). Numerous very thin QSLs
are therefore present in the domain (Savcheva et al. 2012,
Section 5).

Figure 7 displays a vertical 2D cut in the middle of the
inserted flux rope, roughly perpendicular to its axis. While
in the case of the TD model differences between method 2
and 3 were relatively small (Figure 5), and mostly located at
the HFT, we remark here multiple differences. The method
2 is strongly affected by the complexity of the magnetic field
and it tends to broaden significantly the QSLs. These errors
will significantly affect the precise comparison between the
location and width of the QSLs with other quantities (e.g.
current densities).

Moreover, with the method 2, we also note a spotted
distribution of Q while the distribution is smooth with the
method 3 (Figure 7). This is present at many locations

within QSLs, and it is better seen in the upper left part of
the Q distribution (around xc = v ≈ −20, yc = z ≈ 40,
and better seen on a zoom of the color representation of
Q). This is another effect of the errors due to the transport
of Q values along field lines. This effect is stronger as the
magnetic field is spatially more complex.

One also observed relatively important differences in the
highest values of Q obtained in the QSLs between method
2 and 3 (Figure 7). As noted in Figure 8 of Savcheva et al.
(2012), an HFT is present in the domain. This region should
have the highest value of Q. However similarly to the TD
case, the method 2 also failed at attributing the correct
values at the HFT. This is because the convergence steps
needed to properly resolve the connectivity gradients is not
consistently done with the method 2. With the method 3,
the HFT is directly identified and Q reaches value of the
order of 1022 there.

Finally, let us note that the cut presented here was done
in the vicinity of the cut presented in Figure 7 of Savcheva
et al. (2012). In the latter, the absence of convergence, the
relatively low resolution and the maximum thresholding
value of 100 for Q do not allow an in-depth and quantitative
study of the QSLs, even though similar structures are glob-
ally recognizable. A more detailed study of the magnetic
topology of Savcheva et al. (2012), in comparison with the
TD model and the evolution of an MHD numerical simula-
tion (Aulanier et al. 2010), using the method 3 presented
here, will be presented in a forthcoming paper (Savcheva
et al. submitted).

5. Conclusion

In the present study we have analyzed some issues related
to the computation of the squashing degree Q inside a 3D
domain. We have analyzed three methods.

The first one is only a pseudo-method explicitly shown
as an example of the possible tricks encountered when com-
puting Q. Indeed, because such computation involves a
combination of field line mapping, partial derivatives, and
a broad range of spatial scales (with much smaller scales
than for the magnetic field), the computation of Q is not
straightforward. This is especially true for QSLs (i.e. where
Q is large) since a tiny mesh size is required there to resolve
the huge spatial gradients of the field line mapping.

The second method is an application of the original Q
computation at the domain boundaries with a transport
of Q along field lines within the domain. At a given posi-
tion, it provides two values of Q: one transported from each
magnetic polarity of the boundary.

The third method is designed to avoid the limits of the
second method, in particular to avoid the errors associated
to the mapping of the boundary Q distribution within the
domain. For any point inside the domain, located at rc,
the mapping is computed towards the boundaries in both
directions along field lines. We have derived an analytical
expression for Q, Equation (19), which needs to be substi-
tuted to the initial definition of Equation (8). Numerically,
the partial derivatives of both mappings are computed by
finite differences with four points located in a plane in the
close vicinity of rc. Since the spatial scales involved in the
mapping gradients can change by many orders of magni-
tude depending on the position of rc, a local convergence is
needed to find a grid finely adapted to resolve the gradients.
Method 3 is indeed designed to more efficiently incorporate
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this convergence than method 2. Thus, with method 3, it
becomes straightforward to represent the distribution of Q
in a 3D domain and in particular on planar cuts through
the domain.

We have illustrated our approach with two examples.
The first one is a Titov & Démoulin (TD 1999) configura-
tion which has a flux rope in equilibrium within an active-
region like magnetic field. It has a smooth magnetic field
with a main QSL. Figures 5,6 presents examples of 2D Q
maps obtained in distinct planes of the 3D studied domain.
The location and shape of the HFT is clearly shown in
this particular configuration. The second example is de-
rived for the modeled magnetic configuration of an observed
sigmoidal region (Savcheva et al. 2012). Since the observed
magnetogram has many polarities of various sizes, the com-
puted coronal field has much more structures than in the
TD configuration. Accordingly, the QSL pattern is com-
plex (Figure 7). It also contains an HFT, similarly to the
TD configuration.

The method 2 permits a relatively precise computation
of Q, when a convergence to small scales is implemented,
and allows to determine large Q values (e.g. compare our
Figure 7 to Figure 8 of Savcheva et al. 2012). Differences are
nonetheless present even in a smooth analytical model: ar-
tificial broadenings of the QSL; unequal results depending
on the footpoint used to compute Q (Figure 5). Method 3
corrects the defaults detected in method 2 by computing Q
where it is needed, both avoiding errors in the Q transport
along field lines and permitting a proper convergence to
small scales. The improvements are already visible for the
TD model (Figure 5), and more evidently for a complex
solar magnetic field (Figure 7). We conclude that method
3 provides a useful practical tool to compute and represent
QSLs in numerical domains issued from analytical, numer-
ical or observation data set. The results presented above,
with Q computed on 2D planar cuts of a 3D domain, will
be useful to precisely compare Q distribution to the dis-
tributions of other quantities (e.g. electric current density,
plasma flows) and to investigate the role of QSLs in solar
physics.
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Fig. 1. Left panel: Photospheric distribution (grayscale) of the
vertical component of the magnetic field, Bz, for the TD model.
The continuous (resp. dotted) isolevels of Bz corresponds to
intensities of ±[1, 2, 3, 4]. Right panel: Photospheric distribution
(color scale) of Log10 Q.

Fig. 5. Distribution of Log10 Q in the plane y = 0 for the TD
model using the different methods computed with 5122 points:
Upper left: pseudo-method 1. Upper right: method 3 (proper
method), Lower left: method 2 computed from the first foot-
points. Lower left: method 2 computed from the second foot-
points.

Fig. 6. Distribution of Log10 Q in the planes x = 0 (top panel)
z = 0.229 (bottom panel) and for the TD model, with the pho-
tospheric plane z = 0 being the reference boundary for the com-
putation.

Fig. 7. Distribution of Log10 Q in a vertical cut in the center of a
NLFFF reconstruction of a sigmoid region observed on February
12th 2007 at 06:41 UT. Left: method 2 computed from the pos-
itive footpoints. Right: method 3 (proper method).
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