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Préface

Je résume dans cet ouvrage quelques uns des sujets de recherche sur lesquels j'ai
travaillé au cours de la dernière douzaine d'années. La présentation est volontaire-
ment peu détaillée et peu technique, dans la mesure où il m'aurait été di�cile d'aller
au fond des choses pour chacun des sujets traités dans ce mémoire. Les références
bibliographiques, les notes de bas de page et les articles en annexe pourront cepen-
dant guider le lecteur curieux vers les articles pointus de la littérature spécialisée.
Les choix thématiques au sein de chaque chapitre sont plus dictés par leur relation
avec mon propre travail que par leur importance absolue dans le domaine de la
science traité au sein du chapitre. Certains travaux, notamment d'écriture de codes,
qui m'ont souvent pris des mois de travail mais qui n'ont pas donné les résultats
escomptés ne sont pas présentés ici.
Même si le centre de gravité de mes activités de recherche se situe dans le domaine
de la physique des plasmas spatiaux, il m'est di�cile de classer sous une dénomina-
tion commune les sujets traités dans ce mémoire. Il est cependant possible de relier
les di�érentes activités de recherche qui m'ont occupé depuis mon doctorat, par un
lien logique que l'on devrait pouvoir classer dans la catégorie des liens dits "de �l
en aiguille". Au début du �l il y a des travaux sur la simulation de chocs dans les
plasmas non collisionnels (chapitre 2). Suivent des travaux sur l'instabilité miroir
(chapitre 3) qui est une instabilité des plasmas non collisionnels, souvent observée
dans les plasmas spatiaux et quelques fois en association avec des chocs. Après ces
débuts dans le domaine des plasmas non collisionnels lesquels, il est vrai, trouvent
un champ d'application formidablement riche dans le contexte de l'exploration du
vent solaire et des environnements planétaires, je me suis intéressé aux plasmas col-
lisionnels que l'on trouve aussi bien en astrophysique qu'au laboratoire. Au départ
de cette nouvelle phase dans ma vie de chercheur, il y a eu un petit code en fortran,
à destination des étudiants en maitrise de physique à l'Université Paris Diderot dans
laquelle j'ai enseigné la mécanique des �uides par l'intermédiaire de la simulation nu-
mérique pendant une dizaine d'années. Le code, léger et facile d'utilisation, permet
de simuler en une seule dimension1 et sans hypothèses arbitraires, l'établissement
de l'équilibre hydrostatique d'un gaz dans un champ gravitationnel constant donné

1L'unidimensionalité du domaine de simulation est la principale raison de l'e�cacité du code en
raison du petit nombre de molécules (de l'ordre de 50) nécessaires pour modéliser une atmosphère
statique sur une distance de plusieurs fois l'échelle de hauteur.
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Préface

par la formule barométrique établie pour la première fois, en 1686, par l'astronome
anglais E. Halley (cf annexe 5). Le code était initialement conçu pour la simulation
d'un gaz dans lequel les molécules subissent des collisions élastiques de type boules
de billard. Très rapidement, l'envie d'adapter le code à la simulation de plasmas col-
lisionnels s'est fait sentir. Malgré les di�cultés techniques innombrables, inhérentes
à toute conception et mise en oeuvre d'un nouveau code numérique, l'adaptation au
cas plasma a �nalement pu se faire, en grande partie, pendant le doctorat de Simone
Landi. Coté applications, dans un premier temps à deux, Simone et moi, nous nous
sommes intéressés au problème de la conduction de la chaleur dans des plasmas peu
collisionnels, tels la couronne solaire (chapitre 5) et le vent solaire (chapitre 6). Voici
que, inspiré et fasciné par l'étrangeté du comportement des systèmes granulaires
dans lesquels les collisions entre particules (par exemple des grains de sable) sont in-
élastiques, j'ai une fois de plus, adapté le code pour étudier l'évolution d'un système
de particules interagissant de façon inélastique entre elles (cf chapitre 7), avec l'idée
de l'appliquer par la suite à l'étude de situations astrophysiques. A côté de cette
recherche sur les systèmes granulaires, a priori fort éloignée de la physique des plas-
mas spatiaux, mais néanmoins très riche en enseignements, j'ai eu l'idée d'adapter
un code de type N-corps (normalement utilisé pour simuler les mouvements d'étoiles
dans une galaxie) pour la simulation d'un plasma collisionnel. Avec Arnaud Beck,
actuellement doctorant dans notre équipe, je me suis ainsi aventuré dans le domaine,
très peu exploré, de la simulation numérique des plasma modérément couplés et peu
collisionnels (cf 8). Cette dernière partie est un peu plus détaillée que les autres ;
non qu'elle soit plus importante, ou que je lui ai consacré plus de temps, mais parce
qu'elle fait appel à des notions de physique des plasmas qui sont peu familières au
sein de la communauté des physiciens des plasmas spatiaux.
Aucun des sujet n'est traité dans le détail. Je me suis simplement e�orcé, dans
chacun des chapitres, de présenter les ingrédients physiques et/ou techniques de base
pouvant permettre la compréhension des articles en annexe, même lorsque le lecteur
n'est pas un spécialiste de la discipline. L'enchaînement général des sujets peut se
résumer de façon expressionniste : plasmas non collisionnels → gaz collisionnels →
plasmas collisionnels peu couplés→ systèmes granulaires (collisions inélastiques)→
plasmas collisionnels modérément couplés.
Je voudrais remercier, tout particulièrement, Pierluigi Veltri de l'Université de Ca-
labre à Arcavacate di Rende et Gérard Belmont du Centre d'Etudes des Environne-
ments Terrestre et Planétaires à Velizy, pour avoir accepter d'écrire un rapport sur
mon travail, ainsi que Marcello Fulchignoni, professeur à l'université Paris Diderot
qui a bien voulu écrire le troisième rapport et présider le jury d'habilitation. Merci
également à Jean-Claude Adam de l'École Polytechnique à Palaiseau, à Jacques
Léorat de l'Observatoire de Paris et à Jan-Claude Vial de l'Institut d'Astrophysique
Spatiale à Orsay pour avoir bien voulu faire partie du jury.
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Chapitre 1

La préhistoire

Le présent ouvrage est un résumé, non exhaustif, de mes travaux de recherche au
cours d'un peu plus d'une décennie. Les sujets que j'ai eu le plaisir d'aborder au
cours de cette période, avec collègues et étudiants, se distinguent de ceux que j'ai eu
à traiter au cours de ma thèse à l'Observatoire de Paris et, encore avant, à l'école po-
lytechnique de Zurich où j'ai été formé à la physique. J'ai en e�et commencé ma vie
de scienti�que et physicien (accessoirement d'astrophysicien) avec un stage de maî-
trise dans le groupe d'astronomie du Polytechnique de Zurich en 1986. A l'époque,
sous la direction de J. Sten�o et S. Solanki, je me suis intéressé à l'étude des tubes
de �ux photosphériques du Soleil en utilisant des observations en lumière polarisée
obtenues au télescope McMath à Kitt Peak en Arizona. Dans une première publi-
cation Solanki et al. (1987), nous avions établi une liste de lignes photosphériques
particulièrement bien adaptées, en raison de leur grande sensibilité à l'e�et Zeeman,
pour l'étude des mouvements et des propriétés thermodynamiques à l'intérieur des
tubes de �ux magnétique qui, en ce temps, échappaient à l'observation directe. Une
analyse statistique détaillée du pro�l de température et des vitesses �uides à l'inté-
rieur de ces tubes a été publiée dans un travail ultérieur Pantellini et al. (1988) dans
lequel nous avions montré que la température dans les tubes dépend de la densité
des tubes par unité de surface (le "�lling factor") et que les mouvements à l'inté-
rieur de ceux-ci sont aussi bien verticaux qu'horizontaux. Ce premier contact avec
la recherche en astrophysique m'a donné envie de chercher un sujet de thèse dans
un laboratoire européen. Les places de doctorant étant très peu nombreuses dans le
petit groupe de physique solaire zurichois, je me suis inscrit en DEA à l'Observatoire
de Paris, histoire de me perfectionner en astrophysique mais aussi pour améliorer
mon français hésitant. Au cours de la foire aux stages du DEA je me suis trouvé face
à André Mangeney qui m'a proposé un sujet sur l'instabilité de Kelvin-Helmholtz
dans les plasmas non collisionnels, avec l'idée que cette instabilité, responsable de
la formation des vagues sur l'eau par jour de vent, puisse être active dans la ma-
gnétosphère terrestre, là où des forts gradients de vitesse ont été mesurés par de
nombreuses sondes spatiales. Après des mois de travail de dépouillement statistique
de raies photosphériques, je me suis dit que je tenais là la possibilité de faire de la
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Chapitre 1

physique, et pourquoi pas de la physique des plasmas. Le stage s'étant bien passé,
André Mangeney m'a proposé un sujet de thèse axé principalement sur la simula-
tion numérique des chocs sans collisions1 avec un code écrit par J.C. Adam et A.
Heron de l'école polytechnique de Palaiseau. Bien sûr, j'ai accepté, avec le grand
enthousiasme qui envahit, je suppose, l'explorateur qui lève l'ancre pour partir à
la recherche du mythique passage du Nord-Ouest. Commençait alors ma deuxième
expérience dans le monde de la recherche scienti�que, sur une thématique plutôt éloi-
gnée de la première. Même si mon travail en physique solaire n'avait pas été de tout
repos, étant "condamné" à un travail d'extraction d'informations dans un ensemble
de données (des raies spectrales) dont on ne pouvait pas savoir à l'avance si elles
contenaient l'information recherchée, j'ai pu constater, au cours de cette deuxième
expérience de la di�culté de la mise en oeuvre et de l'exploitation d'un code nu-
mérique destiné à la modélisation d'un phénomène physique, en l'occurrence des
chocs sans collisions. Les di�cultés étaient, bien sûr, d'ordre informatique (algorith-
mique, vectorisation, etc.) mais également, et surtout, d'ordre conceptuel. Se posait
en e�et, la question du comment transformer un code périodique2 pour simuler des
chocs dont la structure spatiale de base n'est absolument pas périodique puisque,
par dé�nition, un choc sépare spatialement un plasma en mouvement supersonique
(le plasma amont) d'un plasma en mouvement subsonique. Il est bien évidemment
possible de simuler des structures spatialement non périodiques, en choisissant une
périodicité spatiale du domaine de simulation très grande par rapport aux échelles
spatiales caractéristiques des chocs. Ainsi, par exemple, dans le vent solaire, l'échelle
caractéristique de variation de la structure d'un choc est déterminée principalement
par le rayon de giration des ions majoritaires (protons et particules alpha) dans le
champ magnétique interplanétaire, c.à.d. de l'ordre de la centaine de kilomètres. On
pourrait alors décider de simuler un choc interplanétaire avec un code périodique en
choisissant une période spatiale de l'ordre de plusieurs dizaines de fois le rayon de
giration des ions, a�n de cantonner le choc dans une zone restreinte du domaine de
simulation comme illustré dans le panneau du haut de la �gure 1.1. Les limites en
mémoire et en vitesse de calcul des machines de l'époque m'ont bien sûr conduit à
choisir de simuler des chocs en les enfermant dans des domaines de simulation non
périodiques, comme illustré dans le panneau du bas de la �gure 1.1. Malgré les très
gros problèmes de contamination de l'intérieur du domaine de simulation par les
bords que pose ce type de simulation3, nous avons pu montrer dans Pantellini et al.

1Il faudrait plutôt parler de chocs dans les plasmas sans collisions mais l'usage en a décidé
autrement.

2Dans un code dit périodique l'univers à simuler est d'extension in�nie, mais en ajoutant une
condition de périodicité spatiale, cela revient à considérer un système (souvent appelé familière-
ment "boîte de simulation") de dimension égale à la longueur de la périodicité dans chacune des
dimensions spatiales (de 1 à 3) retenues pour le calcul. Le grand avantage des boîtes de simula-
tion périodiques est qu'elles ne comportent aucun bord réel, le système simulé étant de dimension
in�nie.

3Notons que dans les simulations périodiques la contamination existe également, non pas à
cause des bords qui sont un lieu particulier dans les simulations non périodique, mais à cause de la
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La préhistoire

Fig. 1.1 � On peut simuler un choc (ici en rouge, schématiquement, le pro�l de densité
observé par les instruments d'une sonde spatiale) en utilisant un code périodique (�gure du
haut). Dans ce cas le domaine de simulation doit être plus grand que l'extension spatiale
caractéristique L du choc a�n que la densité, et tous les autres champs tels la température,
la vitesse du �uide, l'intensité du champ magnétique, etc. ne soient pas discontinus entre
les bords du domaine, même si la zone qui intéresse le simulateur se limite à la zone grise.
Dans un code non périodique (�gure du bas) on peut limiter la zone de simulation à la
zone intéressante (la zone grise), les bords du domaine de simulation n'étant pas reliés par
la condition de périodicité. Le domaine simulé est dans ce cas plus petit que dans le cas de
la simulation périodique, mais se pose alors le problème du choix des conditions du plasma
au voisinage des limites du domaine de simulation.
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Chapitre 1

Fig. 1.2 � Si les conditions sont favorables, un train d'ondes stationnaires (dans le repère
du choc) peuvent exister en amont d'un choc. Dans un plasma non collisionnel ce train
d'ondes �whistler� est parfois associé à un comportement non stationnaire du choc (cf
Pantellini et al. (1992)).

(1992) que dans certains cas les chocs en propagation quasi-parallèle par rapport au
champ magnétique ambiant (cf �gure 2.1) sont instables et subissent des destruc-
tions cycliques, en raison d'ondes dites "whistler" émises vers l'amont du choc (cf
�gure 1.2). J'ai continué à travailler dans le domaine de la simulation des chocs non
collisionnels après ma thèse, au cours de mon postdoc au Queen Mary College de
Londres avec principalement David Burgess et Steve Schwartz. C'est le sujet du pro-
chain chapitre, dans lequel je détaille la question des ondes dites "whistler" (si�eurs
en français) dans les chocs.

condition de périodicité elle même qui permet, par exemple, à une �uctuation de densité sortant à
droite de revenir par la gauche.
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Chapitre 2

Sur les chocs non collisionnels

2.1 Généralités sur les chocs non collisionnels, spatiaux en

particulier

Depuis plusieurs décennies, les chocs sans collisions constituent un champ d'explo-
ration particulièrement riche pour tous les simulateurs de plasmas sans collisions.
La raison principale, mais non unique, est qu'un choc non collisionnel est un objet
d'une complexité stupé�ante. Il su�t, pour s'en convaincre, de parcourir la littéra-
ture spécialisée sur les observations de chocs non collisionnels dans l'héliosphère pour
constater qu'il n'y en a jamais deux qui se ressemblent (voir les exemples dans l'ar-
ticle de revue sur les observations des sondes ISEE1 et ISEE2 Russell et Greenstadt,
1979). Comment peut-on, dans ces conditions, arriver à résumer succinctement le
"fonctionnement" d'un choc sans collisions ? Bien évidemment, la structure du choc
dépend des paramètres du plasma dans lequel il se propage. Citons, parmi les para-
mètres importants, le "beta" du plasma β ≡ pg/pm, i.e. le rapport entre la pression
gazeuse pg (due à l'agitation thermique des ions et des électrons du plasma) et la
pression magnétique pm = B2/2, mais également, puisque le plasma est non colli-
sionnel et donc potentiellement hors équilibre thermodynamique, le rapport entre
la température des ions Ti et la température des électrons Te. Mais ce n'est pas
tout, car en plus des paramètres du plasma, interviennent les paramètres du choc
lui même, lesquels, dans le cas le plus simple d'un choc plan et unidimensionnel, sont
au minimum deux : 1) le nombre de Mach M , c.à.d., le rapport entre la vitesse de
propagation du choc V le long de la normale au choc ~n et une vitesse caractéristique
du milieu (par exemple la vitesse du son) et 2) l'angle θBn entre la normale au front
du choc et la direction du champ magnétique ~B, comme illustré dans la �gure 2.1.
En outre, les chocs naturels ne sont jamais plans. Ainsi, les ondes de choc formées
par l'interaction des magnétosphères planétaires avec le vent solaire dont le rayon
de courbure est typiquement de l'ordre de un ou deux fois le rayon de la planète
(c'est le cas de Mercure) voire une dizaine ou plus de fois le rayon de la planète
(c'est la cas de la Terre ou des planètes géantes du système solaire). Les rayons
de courbure des chocs se propageant dans le milieu interplanétaire où des ondes de
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Chapitre 2

Fig. 2.1 � Sans compter les paramètres qui spéci�ent le plasma, la structure d'un choc
stationnaire, plan et in�ni, dépend uniquement de l'angle θBn entre le champ magnétique
~B et la normale au choc ~n et de sa vitesse de propagation V le long de ~n.

choc engendrées dans le milieu interstellaire par l'explosion d'étoiles (les chocs de
supernovae) sont évidemment encore bien plus grands pouvant atteindre, dans ce
dernier cas, des courbures de l'ordre de plusieurs parsecs. La complication inhérente
aux chocs non collisionnels et non plans est que certaines zones du choc peuvent être
"contaminées" par d'autres zones du choc, l'absence de collision permettant, dans
certains cas, la remontée de particules de l'aval vers l'amont en suivant les lignes de
champ magnétique. C'est un moyen e�cace, trouvé par les chocs non collisionnels
à grand nombre de Mach1 pour transformer l'énergie cinétique du plasma incident
en énergie thermique, ce qui au fond est le "job" d'un choc. La �gure 2.2 montre
la magnétosphère terrestre et le choc formé par son interaction avec le vent solaire
avec, en couleurs, les zones en amont du choc "contaminées" par les électrons et les
protons ré�échis. En jaune la zone dominée par des électrons ré�échis (précurseur
électronique), en rouge la zone où on retrouve aussi bien des ions que des électrons
ré�échis (précurseur ionique). De toute évidence, les électrons et les protons ne sont
pas ré�échis de la même manière. La di�érence est bien évidemment la conséquence

1On nomme ces chocs supercritiques, par opposition aux chocs sous critiques qui ne ré�échissent
aucune particule vers l'amont du choc, les instabilités cinétiques à petite échelle localisées dans la
rampe du choc étant su�samment e�caces pour transformer l'énergie cinétique dirigée en énergie
thermique. Dans le vent solaire, le nombre de Mach alfvénique d'un choc supercritique doit satisfaire
à MA & 2, mais cette limite dépend de l'angle de propagation θBn.
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Sur les chocs non collisionnels

Fig. 2.2 � En jaune la zone en amont du choc de la Terre peuplée par des électrons
ré�échis (précurseur électronique), en rouge la zone peuplée par des ions et des électrons
ré�échis (précurseur ionique). Les courbes grises représentent les lignes de force du champ
magnétique interplanétaire. Les courbes marron représentent les lignes de force du champ
magnétique terrestre. Adapté de Sagdeev et Kennel (1991).

de la di�érence de masse entre les deux espèces de particules. En e�et, dans un
plasma à température T la vitesse caractéristique des particules de masse m est de
l'ordre de

√
kB/m. Il s'en suit que, si les températures des espèces sont du même

ordre, les électrons sont environ 40 fois plus rapides que les protons, et peuvent
donc remonter beaucoup plus facilement le long d'une ligne de champ magnétique
advectée par le vent solaire2. Même lorsque l'angle θBn est proche de 90◦ les électrons
(largement plus rapides que le choc) sont en mesure de remonter vers l'amont, alors
que pour les ions, cela n'est en général possible que pour des angles θBn . 50◦. C'est
la raison de la ségrégation spatiale entre électrons et ions ré�échis en amont du choc
de la Terre. Par ailleurs, la �gure 2.2 illustre le fait que lorsque l'amont du choc est
fortement perturbé par des ions ré�échis, c.à.d. dans la région en amont du choc pa-
rallèle ou oblique, la structure magnétique du choc est très irrégulière avec de fortes

2La très bonne conductivité électrique du milieu interplanétaire a pour conséquence que le
champ magnétique est advecté par la matière. Cette propriété des �uides in�niment conducteurs
est un théorème de la MHD idéale connu sous le nom de "théorème du gel".

7



Chapitre 2

�uctuations en amplitude, en nette contraste avec la transition monotone et lisse
observée coté choc perpendiculaire. La Figure 2.2 illustre et résume donc de façon
impressionniste la complexité d'une onde de choc dans un plasma non collisionnel.

2.2 Résultats d'une simulation PIC en deux dimensions spa-

tiales

Dans l'article Krauss-Varban et al. (1995) de l'annexe 1, nous utilisons le code
PIC 3 en deux dimensions spatiales a�n de simuler un choc en propagation quasi-
perpendiculaire, i.e. θBn = 60◦. Les simulations sont basées sur le code PIC que
j'avais précédemment utilisé pendant mon doctorat, mais avec un rapport de masse
entre proton et électron mp/me = 400, ce qui était une valeur très élevée pour
l'époque où l'on se limitait le plus souvent à des valeurs inférieures à 100. Comme le
montre la relation de dispersion des ondes whistler de la �gure 1 de l'article, calculée
pour des conditions typiques du choc de la Terre, un rapport de masse trop faible
(par exemple mp/me = 100), change le sens de propagation des ondes whistler dans
le repère du choc. En d'autres termes, si mp/me = 100 la vitesse de phase des whist-
lers se propageant à 30◦ par rapport au champ magnétique est dirigée vers l'aval,
alors que pour mp/me & 400, la vitesse de phase de ces mêmes whistlers est dirigée
vers l'amont, ce qui évidemment change considérablement la structure du choc. Dans
cet article nous montrons que les ondes whistler se propagent vers l'amont du choc
dans une direction intermédiaire entre la normale au choc ~n et le champ magné-
tique ~B. Ces ondes sont engendrées par les ions ré�échis, elles sont donc excitées par
un mécanisme cinétique ne pouvant pas se produire dans un code �uide (magnéto-
hydrodynamique en l'occurrence). Les caractéristiques des ondes (longueur d'onde,
fréquence, compressibilité, etc) sont parfaitement compatibles avec les ondes dites
"one-Herz" en raison de leur fréquence caractéristique, observées en amont de chocs
non collisionnels. Contrairement aux ions qui subissent un chau�age irréversible et
violent lors du passage du choc, les électrons ont un comportement essentiellement
adiabatique. Une des nombreuses spéci�cités qui di�érencie les chocs non collision-
nels des chocs collisionnels est que dans les premiers, le chau�age que le choc produit
lors de son passage n'est pas nécessairement le même pour chacune des espèces qui
constituent le plasma. En particulier les protons, mais c'est souvent le cas pour les
ions en général, sont plus fortement chau�és que les électrons. Mais il y a "pire" : le
chau�age est souvent extrêmement anisotrope par rapport à la direction du champ
magnétique. Ainsi, par exemple, dans le cas d'un choc quasi-perpendiculaire se pro-
pageant dans le vent solaire, le chau�age est quasiment toujours plus e�cace dans le

3PIC pour "Particles In Cell". Les particules (électrons et protons) se déplaçant sous l'action de
champs électriques et magnétiques dé�nis sur les coins d'une grille spatiale en une, deux, ou trois
dimensions. Les détails de la méthode dite "méthode directe" sont à chercher dans l'article fonda-
teur de Hewett et Langdon (1987). La version périodique du code avait été écrite par Anne Héron
et Jean-Claude Adam de l'École Polytechnique à Palaiseau. La version non-périodique utilisée dans
l'article est de moi.
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Sur les chocs non collisionnels

plan perpendiculaire au champ magnétique. Le résultat de ce chau�age anisotrope
est la formation d'un gaz de protons dont la température perpendiculaire est plus
forte que dans la direction parallèle. C'est une situation potentiellement instable qui
peut, sous certaines conditions, provoquer le déclenchement de l'instabilité miroir
dont il est question dans le chapitre 3.
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Chapitre 3

Sur l'instabilité miroir protonique

3.1 Généralités

Comme nous venons de le souligner à la �n du chapitre 2, dans un plasma non colli-
sionnel, l'agitation thermique des particules (température) n'est pas nécessairement
identique parallèlement et perpendiculairement au champ magnétique, le mouve-
ment d'une charge le long du champ étant a priori découplé du mouvement perpen-
diculaire au champ. Lorsque la température perpendiculaire T⊥ est plus grande que
la température parallèle T‖ le plasma est potentiellement instable. Une des instabili-
tés possibles est l'instabilité miroir. Si nous considérons le cas d'un plasma homogène
et uniforme constitué uniquement de protons et d'électrons, et que nous supposons,
dans un premier temps, que les électrons sont complètement froids Te = 0, nous pou-
vons imaginer que la distribution en vitesse des protons (de masse mp) est donnée
par la distribution dite bi-maxwellienne

f(v‖, v⊥) = n0
π−3/2

v2
T⊥vT‖

exp

[
− v2

‖
v2

T‖
− v2

⊥
v2

T⊥

]
(3.1)

où n0 est la densité de protons, v2
T‖ ≡ 2kBT‖/mp la vitesse thermique parallèle, v2

T⊥ ≡
2kBT⊥/mp la vitesse thermique perpendiculaire, et kB la constante de Boltzmann.
Un iso-contour de la distribution (3.1) dans le plan (v‖, v⊥) est montré dans la �gure
3.1. On devine que cette con�guration est potentiellement instable dans la mesure où
une partie de l'excès d'énergie cinétique dans la direction perpendiculaire au champ
magnétique (voir �gure 3.1) peut être utilisée pour alimenter la croissance d'ondes
magnétohydrodynamiques. Sans trop rentrer dans le détail, il est intuitivement clair
qu'une augmentation du champ magnétique tend à relever le niveau de anisotropie
nécessaire pour déclencher l'instabilité. Le calcul rigoureux, à partir de l'équation de
Vlasov pour un plasma constitué d'électrons froids et de protons, dont la distribution
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v‖0

v⊥

T⊥/T‖ = 1

T⊥/T‖ > 1

Fig. 3.1 � Isocontour de la fonction de distribution (3.1) dans le cas potentiellement
instable T⊥/T‖ = 2 (courbe en trait plein). Le cas stable avec T⊥/T‖ = 1 est donné comme
référence.

à l'équilibre est donnée par (3.1), conduit à la condition d'instabilité 1

T⊥
T‖

> 1 +
1

β⊥
(3.2)

où β⊥ ≡ 8πp⊥/B2 est le rapport entre la pression gazeuse des protons p⊥ et la
pression magnétique B2/8π. Même s'ils n'ont pas été les premiers à s'intéresser
à l'instabilité, connue depuis les années 1960, Southwood et Kivelson (1993) ont
donné une description détaillée du mécanisme physique de l'instabilité en mettant
en avant son caractère fondamentalement cinétique2. L'instabilité miroir a été re-
connue comme étant à l'oeuvre dans quasiment tous les plasmas spatiaux visités
par des sondes, aussi bien dans le vent solaire libre que dans les magnétosphères
planétaires. Elle se caractérise principalement, aussi bien dans la phase linéaire que
dans la phase saturée, par le fait que les �uctuations du champ magnétique δB et
les �uctuations de densité δn sont anticorrélées3, (cf �gure 3.2) mais aussi par le fait
que la vitesse de propagation de ces �uctuations est nulle dans le repère du plasma.
Si on trace, spatialement et en 2 dimensions, les lignes de champ magnétique après

1Lorsque la distribution d'équilibre des protons n'est pas bi-maxwellienne, la condition d'insta-
bilité (3.2) peut di�érer quelque peu de (3.2) (voir Rose (1965)). D'autre auteurs ont plus récem-
ment généralisé la condition d'instabilité (3.2) au cas d'un plasma comportant plusieurs espèces
(Pokhotelov et al., 2002; Hellinger, 2007).

2Un comportement cinétique est un comportement qui ne se laisse pas décrire par les équations
�uides classiques de la MHD. Cela est souvent lié au fait qu'un petit nombre de particules du
plasma se comporte di�éremment de toutes les autres, par exemple à cause de résonances avec des
ondes électromagnétiques.

3Notons que les �uctuations de densité et de champ magnétique sont anticorrélées a�n d'assurer
une pression spatialement constante. De ce fait, les �uctuations de la pression totale (thermique
+ magnétique) sont nulles. Dans le cas d'instabilités à faible croissance on a δp + B0δB/4π = 0
(e.g. Pantellini et Schwartz, 1995). Le plasma n'est alors soumis à aucune force, ce qui se manifeste
également par une absence de propagation.
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Sur l'instabilité miroir protonique

Fig. 3.2 � Variation spatiale des �uctuations de densité et des �uctuations de champ
magnétique dans un mode miroir.

croissance de l'instabilité à partir d'une situation initialement uniforme, on obtient
des déformations des lignes de champ formant des structures en bouteille comme
dans la �gure 3.3, avec des zones de concentration et des zones de raréfaction du
champ. La �uctuation magnétique dans la �gure 3.2 s'obtient, par exemple, en me-
surant le champ le long de l'axe de la bouteille (ligne pointillée dans la �gure 3.3).
Ce type de con�guration magnétique permet le piégeage de particules dans la zone
de champ magnétique faible, i.e. dans la zone centrale de la bouteille. Le piégeage est
une conséquence directe du fait que lorsque le champ magnétique ne varie pas trop
lors d'un tour de la particule de masse m autour du champ magnétique local, il y a
conservation du moment magnétique µ ≡ mv2

⊥/2B (premier invariant adiabatique)
et de l'énergie cinétique mv2/2. Ces deux invariants impliquent, dans la limite de
�uctuations faibles δB/B � 1, que les particules pour lesquelles les composantes
de vitesse ⊥ et ‖ au voisinage du minimum magnétique (le long de leur trajectoire)
satisfaisant à la condition (v0‖/v0⊥)2 ≤ 2δB/B sont piégées dans la bouteille magné-
tique. La force responsable du piégeage dépend donc de la variation de l'intensité
du champ magnétique le long des lignes de champ. La force qu'on appelle pour des
raisons évidentes force miroir, dépend donc du moment magnétique de la particule
µ et de la variation de l'intensité du champ dans la direction parallèle. Elle s'écrit
fm = −µ∇B‖. Dans l'article de l'annexe 2 (Pantellini et al. (1995)) nous montrons,
avec des arguments théoriques et avec des simulations à l'appui, que les particules
piégées jouent un rôle important dans la phase non linéaire de l'instabilité miroir
et que la théorie quasi-linéaire proposée par Shapiro et Shevchenko (1964) ne peut
être valable en général puisque le piégeage de particules n'y est pas prévu. Émerge
donc l'idée que le piégeage des protons est un ingrédient fondamental de l'évolution
non linéaire de l'instabilité miroir.

3.2 Instabilité miroir et trous magnétiques

Dans l'article de l'annexe 4 (Pantellini (1998) je vais plus loin en proposant un mo-
dèle purement théorique de la phase non linéaire et de la saturation de l'instabilité
miroir toujours avec le piégeage des protons comme ingrédient fondamental. Une des
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Fig. 3.3 � Lignes de champ magnétique résultant de l'instabilité miroir avec trajectoire
caractéristique d'une particule piégée rebondissant entre deux points miroir à l'intérieur
de la bouteille magnétique.

raisons qui m'avaient poussé à continuer à travailler sur le sujet était qu'une forte
majorité des structures magnétiques statiques, observées dans les plasmas spatiaux
et qui pouvaient avoir été engendrées par l'instabilité miroir, était de type �trou
magnétique� et non de type bosse magnétique (voir �gure 3.4) comme semblaient
l'indiquer les simulations numériques parmi lesquelles la simulation de l'annexe 2. Il

Fig. 3.4 � Les structures magnétiques statiques, observées dans les plasmas spatiaux sont
le plus souvent de type �trou� plutôt que de type �bosse� (e.g. Winterhalter et al., 1994).

s'agissait, en �n de compte, d'établir si l'instabilité miroir pouvait être responsable
de la formation des trous magnétiques, ce dont peu de connaisseurs du sujet dou-
taient à l'époque. Le modèle, simple, mais complètement analytique conduit à deux
prédictions importantes pour l'instabilité miroir dans des conditions voisines de la
stabilité :
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Sur l'instabilité miroir protonique

1. le mode miroir tend à saturer dans une con�guration de type trou magnétique
(sauf, peut-être lorsque β‖ est très grand & 20),

2. l'intensité maximale du champ saturé est Bmax = B0{1−R+[β‖R(1−R)]1/3},
où R ≡ T⊥/T‖ et B0 l'intensité moyenne.

Des simulations PIC avec un très grand nombre de particules ou des simulations
Vlasov pourront peut-être con�rmer ou in�rmer la validité du modèle au cours des
années à venir4.

3.3 Sur le rôle des électrons dans l'instabilité miroir

Dans l'article de l'annexe 3, antérieur à celui sur l'évolution non linéaire, il est ques-
tion du rôle des électrons dans l'instabilité miroir. Comme souvent, par esprit de
simplicité, j'ai adopté l'hypothèse d'une température des électrons nulle Te = 0.
Dans cette limite, les électrons, beaucoup plus légers et mobiles que les protons, se
comportent comme un �uide neutralisant sans pression. Lorsque Te 6= 0, les varia-
tions spatiales de la densité électronique ne (et donc de la pression électronique pe)
engendrent un champ électrique non nul E‖ = −∇pe/ene, dirigé le long des lignes de
champ magnétique. Dans la limite isotherme, Te = const, les �uctuations linéaires
de la densité, du champ magnétique et du champ électrique sont illustrés dans la
�gure 3.5. La �gure illustre le fait que la force électrostatique due aux électrons
chauds s'oppose à la force miroir, moteur de l'instabilité. En e�et, nous montrons
dans l'annexe 3 que les électrons chauds augmentent légèrement l'anisotropie de
température T⊥/T‖ nécessaire au déclenchement de l'instabilité (Figure 5 dans Pan-
tellini et Schwartz (1995)) et réduisent sensiblement le taux de croissance du mode le
plus instable (Figure 5 dans Pantellini et Schwartz (1995)). Des travaux postérieurs
Pokhotelov et al. (2000) ont par ailleurs con�rmé cette conclusion.

4Petr Hellinger (Institute of Atmospheric Physics à Prague) me dit qu'il est actuellement en
train d'étudier la question de la saturation du mode miroir à l'aide de simulations PIC lourdes, ce
qui devrait permettre de trancher la question dans un futur proche.
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Fig. 3.5 � Pro�ls en fonction de la position le long d'une ligne de champ magnétique de
�uctuations de densité, de champ magnétique et de champ électrique associés au mode
miroir lorsque la température des électrons est non nulle. On remarque que la force élec-
trostatique s'oppose à la force miroir suggérant qu'une température électronique non nulle
s'oppose à l'instabilité miroir (extrait de Pantellini et Schwartz (1995)).
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Chapitre 4

Simulations d'un gaz dans un champ

gravitationnel

4.1 Introduction

Pour introduire ce chapitre, j'invite le lecteur intéressé à lire l'excellent article de
Berberan-Santos et al. (1997) qui expose de façon détaillée l'histoire de la découverte
de la pression atmosphérique et de sa variation avec l'altitude. Dans le cas le plus
simple d'une atmosphère isotherme soumise à un champ gravitationnel constant, la
formule barométrique, écrite pour la première fois par E. Halley en 1686, est donnée
par

p(z) = p0 exp(−z/H) (4.1)

où p est la pression et z la hauteur au dessus du niveau de référence z = 0. Inspiré
par l'article de Berberan-Santos et al. (1997) je me suis demandé s'il n'était pas
possible d'écrire un petit code numérique pour simuler l'établissement du pro�l de
pression prédit par la formule barométrique dans un système de billes (ou boules
de billard) semblable au système (a) de la �gure 4.1. L'avantage du système (a)
par rapport au système (b), plus proche de la réalité, est qu'il est sensiblement plus
facile à coder.

4.2 Des simulations basées sur un modèle simple mais e�cace

Quelle ne fut pas ma stupeur lorsque en simulant le système (a) j'obtins un pro�l
p(z) proche de celui prévu par (4.1) mais di�érent tout de même. C'est en constatant
la di�érence, même faible, entre simulation et théorie que je me suis souvenu de mes
cours de thermodynamique dans lesquels j'avais appris que le système (a) n'est pas
ergodique alors que le système (b), comme l'atmosphère terrestre, sont des systèmes
ergodiques 1. En substance, le système (b) est chaotique alors que le système (a) ne
l'est pas, car dans le système (a) à chaque fois que deux sphères se rencontrent, elle ne
font qu'échanger leurs vitesses, et puisque les sphères sont identiques c'est comme

1cf chapitre II.4 dans l'annexe 5
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Fig. 4.1 � Collection de billes identiques dans un tube comme modèle pour simuler un
gaz dans un champ gravitationnel ~g. Dans le système (a) la position de chaque molécule
est fonction d'une seule variable d'espace : la hauteur. Dans le système (b) il faut trois
coordonnées spatiales pour décrire la position d'une molécule. Malgré l'apparente similarité,
seul le système (b) permet de reproduire correctement la formule barométrique (4.1).

si elle se croisaient sans interagir. Dans cette condition, le cas (a) est équivalent
à un système de N sphères se mouvant indépendamment les unes des autres, ce
qui n'a, bien sûr, rien de chaotique. L'état stationnaire du système est dans ce
cas entièrement déterminé par les conditions initiales, alors que dans le cas (b) les
conditions initiales sont oubliées après quelques collisions par sphère seulement.
Dans Pantellini (2000), je propose un modèle qui s'apparente au système (b) dans
la mesure où les particules se déplacent dans un monde spatialement unidimension-
nel (la section du tube étant beaucoup plus petite que sa longueur), mais avec des
vitesses tridimensionnelles. La meilleure image d'un tel système est une suite verti-
cale de plans horizontaux, in�nis et identiques, pouvant glisser horizontalement les
uns par rapport aux autres. Ce système est ergodique, et moyennant les règles de
collision établies dans le chapitre III.C de l'annexe 5, la distribution en vitesse des
particules tend vers une distribution de Maxwell-Boltzmann isotrope

f(v, z) = n(z)
π−3/2

v3
T

exp

[
− v

2

v2
T

]
(4.2)

où n(z) est la densité de particules par unité de longueur, v = |~v|, et vT ≡ (2kBT/m)1/2

la vitesse thermique. La �gure 4.2 montre que le système suit rigoureusement, même
avec seulement 50 particules, la courbe (en pointillée) prévue par la formule baromé-
trique 4.1 pour une température constante et ceci, indépendamment des conditions
initiales.
Le modèle de Pantellini (2000) est très simple à programmer (quelques dizaines de
lignes de fortran si on ne cherche pas l'optimisation) et permet d'aborder la question
des collisions, de l'ergodicité d'un système thermodynamique et, accessoirement, de
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Fig. 4.2 � Pro�l de densité n(z) (trait plein) obtenu avec 50 particules. Le pro�l est le
résultat d'une moyenne pendant l'intervalle de temps couvrant les premières 107 collisions
entre l'ensemble des particules du système. Le pro�l barométrique (en pointillé) est donné
comme référence, ainsi que la position moyenne des 50 particules (traits pleins verticaux).
Le pro�l est le résultat d'une moyenne dans le temps (extrait de Pantellini (2000), cf annexe
5)

.

voir s'installer l'équilibre barométrique. Mais, comme nous le verrons dans les cha-
pitres suivants, il permet également de simuler, à bon coût, des plasmas collisionnels.
Le principal inconvénient de la version originale de l'algorithme est son ine�cacité
numérique car le nombre d'opérations mathématiques nécessaires pour atteindre un
temps physique donné croît comme N2. Au cours du doctorat de Simone Landi,
nous avons établi un algorithme pour lequel le nombre d'opérations croît comme
N3/2, sans perte de précision. Typiquement, dans les di�érentes simulations dont il
sera question dans les chapitres 5-7, le nombre de particules N varie entre 103 et
105. Le gain, en termes de temps de calcul sur un ordinateur donné, est donc d'un
facteur tout à fait considérable de 30 à 300 !
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Chapitre 5

Simulations d'un plasma dilué

soumis à un gradient de température

Vu le succès du modèle numérique du chapitre 4 pour la modélisation d'un gaz dans
un champ gravitationnel, j'ai été tenté de l'adapter au cas d'un plasma dans un
champ gravitationnel, a�n de simuler l'atmosphère solaire dans un premier temps,
et le vent solaire dans un second temps. On remplace les boules de billard par
des électrons et des protons et le tour est plus ou moins joué. Les choses ne sont
évidemment pas si simples que cela. Première di�culté : contrairement aux boules de
billard qui n'interagissent qu'avec leurs voisins immédiats, les charges interagissent
à longue distance par l'intermédiaire du champ électrique. Deuxième di�culté : la
disposition des charges dans le système, même lorsqu'il est en équilibre statique
engendre, dans le cas général, un champ électrique à grande échelle qui n'est pas
connu a priori. A ce propos, Pannekoek (1922) et Rosseland (1924) ont montré qu'un
plasma statique plongé dans un champ gravitationnel est nécessairement associé avec
un champ électrique à grande échelle qui assure la quasi-neutralité en tout point du
plasma.1 On calcule facilement le champ de Pannekoek-Rosseland pour un plasma de
protons et d'électrons dans la limite statique plongé dans un champ gravitationnel
constant g, moyennant une hypothèse de quasi-neutralité ne = np et une hypothèse
d'équipartition de l'énergie Te = Tp, où ni et Ti sont respectivement la densité et
la température de l'espèce i = e, p. Notons pour commencer que lorsque les forces
de friction entre les deux espèces sont nulles ou négligeables (c'est le cas pour une
atmosphère isotherme), l'équilibre hydrostatique pour les deux espèces comporte la

1On comprend intuitivement que les électrons, étant plus légers que les ions, ont tendance à
vouloir se placer au dessus des ions, exactement comme le ferait un �uide peu dense par rapport à
un �uide dense. Le champ électrique à grande échelle empêche la décantation des charges et assure
la quasi-neutralité.

21



Chapitre 5

somme de 3 forces, i.e.

np(mpg + eEPR)− ∂pp

∂z
= 0 (5.1)

ne(meg − eEPR)− ∂pe

∂z
= 0. (5.2)

où pi = nikBTi est la pression de la population i, et où nous avons supposé que le
champ gravitationnel est dirigé le long de l'axe z, i.e. ~g = −gẑ. Les hypothèses de
quasi-neutralité et d'équipartition de l'énergie entre protons et électrons impliquent,
bien évidemment, l'égalité des pressions pp = pe, ce qui permet d'éliminer les termes
de pression dans le système ci-dessus pour aboutir à l'équation pour le champ élec-
trique de Pannekoek-Rosseland EPR :

mpg + eEPR = meg − eEPR. (5.3)

En résolvant l'équation précédente pour le champ électrique, on obtient donc

EPR = − g

2e
(mp −me) ≈ − g

2e
mp (5.4)

Dans le cas du proton, la force électrostatique s'oppose au champ gravitationnel
alors qu'elle accompagne le champ gravitationnel dans le cas de l'électron. Notons
que si une seule des hypothèses utilisées pour obtenir l'équation (5.4) est abandon-
née, le champ électrique à grande échelle n'est pas nécessairement égal au champ
EPR. Ainsi, lorsque le plasma est soumis à un gradient de température, comme par
exemple dans le cas de l'atmosphère solaire, où la température passe de 5600K dans
la photosphère à 106K dans la couronne, un deuxième champ, appelé thermoélec-
trique ET apparaît dans le système. Contrairement au champ Pannekoek-Rosseland,
qui est complètement indépendant de la collisionalité du plasma, le champ ther-
moélectrique ET n'existe que dans les plasmas collisionnels. Les équations �uides
pertinentes, décrivant l'équilibre hydrostatique sont alors :

npeET − ∂pp

∂z
+ Φp = 0 (5.5)

−neeET − ∂pe

∂z
+ Φe = 0. (5.6)

où Φi représente la force de friction exercée sur les particules de la population i
par les collisions avec les particules de toutes les autres espèces dans le système et
où nous avons négligé la gravitation. Conservation de la quantité de mouvement
implique que

∑
i Φi = 0, c.à.d. Φ ≡ Φp = −Φe dans (5.5)-(5.6). Comme pour l'ob-

tention du champ de Pannekoek-Rosseland, l'hypothèse de quasi-neutralité associée
à l'hypothèse d'équipartition de l'énergie conduit à l'expression

ET = − Φ

en
(5.7)
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Simulations d'un plasma dilué soumis à un gradient de température

La détermination de Φ en fonction des variables thermodynamiques n et T n'est pas
simple. Le résultat dépend, en particulier, du choix de l'opérateur de collision. Dans
la limite d'un plasma faiblement couplé (cf chapitre 8.2 et la Table 8.1) soumis à un
faible gradient de température, Spitzer et Härm (1953) trouvent Φ = αn∂T/∂z, et
donc

ET = −α
e

∂

∂z
(kBT ). (5.8)

Le champ thermoélectrique de l'équation (5.8) dépend donc de la variation de la
température T en fonction de la position z, de la constante de Boltzmann kB et d'une
constante sans dimension α qui vaut α = 0.71 dans un plasma protons-électrons
faiblement couplé.
Le champ électrique n'est donc pas déterminé, contrairement au champ gravitation-
nel, par des facteurs externes au plasma. Il faut le calculer de façon autocohérente,
ce qui complique notablement les simulations par rapport au cas d'un gaz de molé-
cules discuté au chapitre 4. La deuxième complication inhérente au cas plasma est
le traitement des collisions. Dans un gaz, les collisions di�èrent peu du cas de la
collision entre sphères dures avec une section e�cace pratiquement indépendante de
la vitesse relative entre les particules qui font la collision. Dans ce cas, le modèle du
chapitre 4 est parfaitement valable. Dans le cas d'un plasma, les collisions sont de
type Coulombien, avec une section e�cace qui varie comme l'inverse de la vitesse
relative entre les particules à la puissance quatre (cf chapitre 2.3 de l'annexe 7).
Lorsqu'on simule numériquement un plasma plongé dans un champ gravitationnel,
on est forcé de limiter l'étendu du domaine de simulation. Dans le cas d'une accé-
lération gravitationnelle constante, on doit limiter l'étendue verticale du domaine
de simulation a�n que l'approximation d'accélération gravitationnelle constante soit
acceptable. Par exemple, dans le cas d'une simulation de l'atmosphère du Soleil, la
condition de gravitation constante implique que l'étendue verticale de la simulation
L (cf �gure 5.1) soit petite devant le rayon du Soleil r0, i.e. L/r0 � 1 2.

5.1 Caractéristiques du modèle utilisé pour les simulations

Un schéma qui résume les caractéristiques générales des simulations d'un plasma
soumis à un gradient de température, présentées dans les annexes 6 (sans gravitation)
et 7 (avec gravitation), est montré dans la �gure 5.1. Le gradient de température est
imposé par les conditions sur les vitesses des particules atteignant un des deux bords
du domaine de simulation en z = 0 et z = L. A chaque fois qu'une particule atteint
un des deux bords, elle est réinjectée dans le système au même endroit (ce qui assure
un �ux de masse nul) avec une vitesse qui dépend du choix du programmeur tout

2Le Soleil concentre pratiquement toute sa masse en dessous de la photosphère. De ce fait, au
dessus de la photosphère, l'accélération gravitationnelle g décroit alors comme l'inverse du carré
de la distance au centre du Soleil, i.e. g(r) ∝ 1/r2. A une distance L au dessus de la photosphère,
le champ gravitationnel est alors approximativement donné par g(r0 + L) = g(r0)(1 − L2/r20) et
donc, pour L/r0 � 1, g(r0 + L) ' g(r0).
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Chapitre 5

Fig. 5.1 � Schéma général illustrant les ingrédients pour la simulation d'un plasma soumis
à un gradient de température et (le cas échéant) un champ gravitationnel constant. Les gra-
dients sont imposés par le choix de la fonction de distribution des vitesses fj(~v, vz entrant)
(zones grises) pour chaque espèce j (électrons ou protons).

puissant qui décide de la forme de la distribution en vitesse des particules entrantes
(zones grises dans la �gure 5.1). La trajectoire des particules est calculée en intégrant
l'équation du mouvement suivant z :

d2z

dt2
= −g + E(z) (5.9)

où le champ électrique E(z) est déterminé de manière autocohérente, par ajustements
successifs, jusqu'à ce que le plasma soit quasi-neutre partout dans le système.

5.2 Résultats concernant la couronne solaire

Dans l'article Pantellini et Landi (2001) (cf annexe 6) nous simulons un plasma
soumis à un gradient de température relativement faible, tel que le libre parcours
moyen d'un électron thermique λee est petit devant l'échelle de variation caractéris-
tique de la température LT ≡ T/∂T/∂z, ce qui implique que le nombre de Knudsen
KT ≡ λee/LT = 0.02 � 1. Le but premier de cet article était de montrer que

24
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le champ thermoélectrique obtenu dans nos simulations était bien celui prévu par
l'équation (5.8) avec α de l'ordre de 0.71.
A l'origine de l'article Landi et Pantellini (2001) sur le transport de la chaleur dans
la couronne solaire (cf annexe 7), il y a l'article de Dorelli et Scudder (1999) dans
lequel les auteurs soutiennent qu'un excès d'électrons suprathermiques3 dans la cou-
ronne (particules que nous pouvons introduire dans nos simulations en agissant sur
les parties grises de la fonction de distribution des électrons en z = 0, L dans la �gure
5.1), la chaleur est transportée de la zone froide vers la zone chaude. En clair, et
contrairement à l'idée généralement admise, le �ux de chaleur serait alors dirigé de
la photosphère vers la couronne et non l'inverse, à condition qu'un nombre su�sant
d'électrons suprathermiques soit présents à la base de la couronne4. Ces électrons
suprathermiques pourraient être engendrés par des chocs se propageant dans la chro-
mosphère où des mouvements supersoniques sont souvent observés. La conséquence
remarquable d'un tel scénario est qu'il explique, sans la nécessité d'invoquer un
hypothétique mécanisme de transport de l'énergie entre la chromosphère et la cou-
ronne, le pourquoi de l'existence d'une couronne solaire chaude. Et même si l'excès
d'électrons suprathermiques est insu�sant pour "chau�er" la couronne, il peut être
su�sant pour modi�er sensiblement le �ux d'énergie de l'ordre de 5 102W/m2 gé-
néralement admis comme nécessaire pour maintenir la couronne à une température
de l'ordre du MK.
En réalité, le modèle proposé par Dorelli et Scudder (1999) est une version avec
collisions (et dans la couronne il y en a) du modèle non collisionel de "�ltrage des
vitesses" que Scudder (1992) a proposé comme explication de la couronne chaude.
L'essence du modèle de Scudder est illustré dans le �gure 5.2. L'idée étant que
lorsqu'une population (mettons les électrons) présente un excès de particules supra-
thermiques à une hauteur de référence z = 0 et une température T0 = m〈v2

z〉/kB,
cet excès se traduit par une population globalement plus chaude T (z = h) > T0 du
fait que les particules avec v2

z < 2gh ne peuvent ni monter vers le niveau z = h ni en
provenir. Seules les particules avec v2

z > 2gh peuvent se retrouver au niveau z = h.
Ces dernières étant caractérisées par un spectre en énergie globalement plus dur
(pente plus faible) que les particules avec v2

z < 2gh qui dominent le niveau z = 0,
la température doit être une fonction croissante de z. Notons que dans le cas d'une
distribution de Maxwell-Boltzmann, la température ne varie pas avec la hauteur z
et que dans le cas d'une distribution dé�ciente en particules suprathermiques (ce cas
n'est pas illustré dans la �gure 5.2), la température décroît avec la hauteur z. Notons
également que les distributions de la �gure 5.2 sont parfaitement symétriques, ce qui
implique un �ux de chaleur nul ( !) même lorsque la température varie en fonction
de z.

3L'excès est dé�ni par rapport à la distribution de Maxwell-Boltzmann (4.2). L'adjectif supra-
thermique dénote les particules dont la vitesse v excède la vitesse thermique (2kBT/m)1/2.

4Le point faible du modèle est qu'il est basé sur la présence d'un excès d'électrons suprather-
miques à la base de la couronne. Les observations ne permettent malheureusement pas de con�rmer
ou invalider la présence d'un excès d'électrons suprathermiques à la base de la couronne.
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Fig. 5.2 � Variation avec la hauteur z de la fonction de distribution des vitesses f(vz)
dans le cas Maxwellien (gauche) et dans le cas d'une distribution comportant un excès de
particules suprathermiques (droite). En raison du champ gravitationnel g, et en l'absence
de collisions, seules les particules des zones rouges peuvent transiter entre le niveau z =
0 et z = h. En conséquence, l'énergie moyenne par particule ne varie pas dans le cas
Maxwellien alors qu'elle augmente avec z pour une distribution avec un excès de particules
suprathermiques.

Dorelli et Scudder (1999) suggèrent que le mécanisme de �ltrage non collisionnel des
vitesses de Scudder (1992) reste valable dans la couronne, même en tenant compte
des collisions. Les collisions ne sont donc pas, selon eux, su�samment e�caces pour
invalider le modèle non collisionel de Scudder (1992). Les calculs de Dorelli et Scud-
der (1999) ont l'inconvénient de s'appuyer sur une forme particulière de la fonction
de distribution des vitesses des électrons, basée sur un développement en polynômes
de Legendre tronqué après le premier ordre seulement. Nos simulations (dans Landi
et Pantellini (2001)) ont montré que l'excès d'électrons suprathermiques nécessaires
pour inverser le �ux de chaleur est beaucoup plus important que prévu par Dorelli
et Scudder (1999)5, mais également que le pro�l de température dans la couronne ne
peut être soutenu sans un apport d'énergie sous la forme d'ondes électromagnétiques
et ce, même en supposant un nombre extravagant de particules suprathermiques à la
base de la couronne. En résumé, nous trouvons que la couronne ne peut se mainte-

5Dans un modèle postérieur, plus élaboré, Dorelli et Scudder (2003) trouvent e�ectivement des
résultats plus proches des nôtres.
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nir à 1MK sans apport d'énergie sous forme d'ondes, même en supposant l'existence
d'une très forte composante d'électrons suprathermiques à la base de la couronne.
Nos résultats contredisent ceux de Dorelli et Scudder (1999, 2003) qui sont une
extension, aux plasmas non collisionnels, de la théorie non collisionnel du "�ltrage
gravitationnel" de Scudder (1992). La raison est à chercher dans le traitement sim-
pli�é des collisions par Dorelli et Scudder ce qui se traduit par une sous estimation
de leur e�cacité à détruire les distributions suprathermiques supposées exister à la
base de la couronne.
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Chapitre 6

Le rôle des collisions entre charges

dans l'accélération du vent solaire

6.1 Considérations géométriques pour la simulation d'un vent

stellaire

Dans le chapitre précédent, il a été question de simulations spatialement unidi-
mensionnelles d'un plasma en géométrie cartésienne. La géométrie cartésienne est
compatible avec une gravitation constante, ce qui est parfaitement acceptable pour
des simulations de tranches �nes de l'atmosphère solaire. La géométrie cartésienne
ne peut cependant pas permettre la simulation de l'atmosphère étendue du Soleil,
laquelle, même lorsqu'on se limite à la couronne, monte à plus d'un rayon solaire de
la surface (la photosphère). Même si on suppose que l'accélération gravitationnelle
décroît comme 1/z2 dans la �gure 5.1, cela ne su�t pas pour rendre compte de la
symétrie sphérique de l'atmosphère étendue du Soleil. Dans le modèle numérique du
chapitre 5, il y a une seule coordonnée spatiale : z (la hauteur) dans le cas cartésien
et r (la distance radiale mesurée à partir d'un point) dans le cas sphérique. Nous
pouvons facilement nous rendre compte que la coordonnée z du problème carté-
sien ne peut pas remplacer la coordonnée r du problème sphérique en étudiant le
mouvement rectiligne et uniforme, à la vitesse v, d'une particule de masse m.
Supposons que la particule se déplace horizontalement à l'instant t = 0, c.à.d. ~v = vx̂
dans le cas cartésien et ~v = vθ̂ dans le cas sphérique (cf �gure 6.1). Les équations
du mouvement sont extrêmement simples dans le cas cartésien :

vx = v = const
vy = 0 = const

}
=⇒ d2x

dt2
=
d2y

dt2
= 0.

Dans le cas sphérique c'est un peu plus compliqué puisque ni vr ni vθ ne sont
constants. Par contre, en observant que vr = v sin θ et vθ = v cos θ on obtient
que

r2v2
θ = r2v2 cos2 θ = r2

0v
2
θ = const (6.1)
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Fig. 6.1 � Particule en mouvement rectiligne et uniforme dans un système de coordonnées
cartésiennes et dans un système de coordonnées sphériques.

L'équation (6.1) n'est rien d'autre que l'équation de conservation du moment angu-
laire ~L = m~r × ~v car L = rv sin(π/2− θ) = rvθ. Notant que l'angle θ augmente en
fonction du temps suivant sin θ = vt/r, nous pouvons écrire l'équation du mouve-
ment radial de la particule :

dvr
dt

= v
d

dt
sin θ = v

(
v

r
− vt

r2

dr

dt

)
=

v2

r

(
1− sin θ

vr
v

)
=

r2v2
θ

r3
=

L2

m2r3
(6.2)

Donc, contrairement au cas cartésien où toutes les composantes de la vitesse sont
constantes, dans le cas sphérique, la particule subit une force apparente le long de
la direction radiale. Si la particule se trouve dans le champ gravitationnel central
du Soleil, qu'on choisira logiquement de placer au centre du système de coordonnées
sphériques, on ajoutera l'accélération gravitationnelle GM/r2 (cf Newton (1687)),
où M est la masse du Soleil, à la force apparente de l'équation (6.2) ainsi que la
contribution du champ électrique neutralisant qE(r)/m. On obtient ainsi l'équation
générale du mouvement radial d'une particule dans un monde à symétrie sphérique
(cf équation (1) dans l'annexe 8) :

d2r

dt2
= −GM

r2
+

L2

m2r3
+

q

m
E(r). (6.3)

Cette équation est le pendant en sphérique de l'équation (5.9) en cartésien. Alors
que l'équation du mouvement est très di�érente en cartésien et en sphérique, le trai-
tement des collisions est pratiquement identique dans les deux cas. Seule di�érence :
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dans le cas cartésien, la probabilité de collision entre deux particules ne dépend pas
de z, alors que dans le cas sphérique celle-ci décroît comme 1/r2. 1

6.2 Résultats des simulations

Dans l'annexe 8 nous appliquons le modèle sphérique à la simulation du vent solaire
de la couronne jusqu'à des distances héliosphériques de l'ordre de 50r0, où r0 =
6.69 108m est le rayon moyen du Soleil. Ce qui est absolument remarquable c'est
que N = 6400 particules su�sent pour simuler un domaine aussi étendu couvrant
à la fois la zone d'accélération et la zone de croisière du vent2. La courbe du haut

Fig. 6.2 � Pro�l du nombre de Mach du vent solaire (courbe du haut) et pro�l de la
variation du potentiel total (gravitationnel et électrostatique) en fonction de la distance
au soleil. (adapté de Landi et Pantellini (2003), cf annexe 8)

dans la �gure 6.2 montre la variation du nombre de Mach avec la distance au Soleil
obtenu dans une simulation avec un rapport de masse proton/électron mp/me =
400. Des simulations plus récentes, non publiées, avec un rapport mp/me = 1836

1Ceci pour tenir compte du fait que la contribution d'une particule à la densité dans une coquille
sphérique d'épaisseur dr dépend de la distance, i.e. n1(r) = 1/(4πr2dr). En somme, une particule
à la distance r couvre un angle solide 4 fois plus grand qu'à la distance 2r.

2La zone de croisière correspond très vaguement à r & 10r0, distance au delà de laquelle le
vent est largement supersonique et sa vitesse approximativement constante, signe que son énergie
cinétique %v2

r/2 est désormais largement supérieure à l'énergie gravitationnelle %GM/r.
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montrent peu de di�érences avec les résultats de Landi et Pantellini (2003). Notons
que l'augmentation du nombre de Mach M = vr/vpT‖ avec la distance r est due, un
peu, à la croissance de vr avec r, mais surtout à la décroissance de la température
avec r. Le pro�l du nombre de Mach di�ère fort peu des courbes obtenues par
"l'inventeur" du vent solaire. Parker (1958) avec un modèle hydrodynamique. La
principale di�érence est que le pro�l de la �gure 6.2 a été obtenu avec un plus petit
nombre d'hypothèses. Premièrement, Parker se donne un pro�l de température, alors
que celle-ci est libre dans le cas de notre modèle. Ensuite, Parker suppose que la
température est la même dans la direction radiale et dans la direction transverse, ce
qui n'est pas justi�able a priori, en raison de la faible collisionnalité du vent solaire3.
Les principaux apports des simulations de Landi et Pantellini (2003) (annexe 8) sont
au nombre de trois. Premièrement, nous montrons que l'accélération du vent à des
vitesses supersoniques peut se faire sans la contribution d'ondes électromagnétiques,
le �ux de chaleur porté par les électrons su�t à cet e�et. Deuxièmement, nous
montrons que le �ux de chaleur électronique qe ne se laisse pas décrire par la formule
classique qe ∝ T 5/2∂T/∂r obtenue par Spitzer et Härm (1953) dans le contexte des
plasmas collisionnels. Nous trouvons que le �ux de Spitzer et Härm est une piètre
estimation du �ux même dans la zone d'accélération du vent, là où les taux de
collisions sont les plus élevés de tout le domaine simulé (cf 6.2). Le �ux que nous
observons dans nos simulations est généralement bien plus intense que le �ux de
Spitzer et Härm. Son intensité se trouve être bien mieux décrite par l'expression non
collisionnelle qNC ∝ nvkBT , où v est la vitesse du vent et n la densité électronique,
proposée par Hollweg (1974). Troisièmement, nous montrons, pour la première fois
dans une simulation autocohérente, que le potentiel protonique possède un maximum
au voisinage du point sonique (courbe du bas dans la �gure 6.2)4.

3Les observations in situ dans le vent solaire, à des distances supérieures à 50r0, montrent
cependant que la température du plasma est généralement du même ordre dans la direction radiale
et transverse, alors que les simulations cinétiques, comme les nôtres, suggèrent une forte anisotropie
en faveur de la direction radiale. On estime que des instabilités plasmas, en particulier l'instabilité
"�rehose", absentes de nos simulations, empêchent le développement de ces anisotropies (Matteini
et al., 2007, e.g.).

4Notons que Jockers (1970), en se basant sur une démonstration graphique, a été le premier
à préconiser l'existence d'un maximum dans le pro�l du potentiel protonique. Une discussion
approfondie des caractéristiques du maximum en fonction des paramètres du vent, ainsi que sa
relation avec le point sonique du modèle �uide de Parker a été publiée dans Scudder (1996).
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Simulations de systèmes granulaires

7.1 Introduction

Depuis les années 1930, il paraissait clair, en particulier suite aux observations de
Bernard Lyot avec le coronographe de son invention, que la température de la cou-
ronne solaire est bien plus élevée que la température de la surface sous-jacente. Ce
n'est que grâce à l'identi�cation d'ions hautement ionisés par Edlén (1943) que nous
savons avec certitude que la température de la couronne est près de 200 fois plus
élevée que la température de la photosphère. Depuis lors, de nombreuses théories ont
été proposées pour tenter d'expliquer la raison de cette vertigineuse croissance de la
température au dessus de la surface du Soleil. La plupart de ces théories sont basées
sur un mécanisme de chau�age de la couronne par des ondes plasmas engendrées
par les mouvements turbulents dans la photosphère et dissipées, après propagation,
dans la couronne. Une théorie alternative (e.g. Scudder, 1992), dont il a été question
à la �n du chapitre 5, se base sur le fait qu'un plasma peu collisionnel soumis à un
champ de pesanteur constant voit sa température varier avec la hauteur, tant que
la distribution des vitesses des particules n'est pas de type Maxwell-Boltzmann1.
L'extraordinaire augmentation de la température entre la chromosphère et la cou-
ronne semble violer le deuxième principe de la thermodynamique. La source de
chaleur se situant au coeur du Soleil, on ne voit pas, a priori, comment la tempé-
rature pourrait augmenter en s'en éloignant. On dirait qu'un démon de Maxwell,
qu'on pourrait localiser dans la région de transition (cf Figure 7.1), �ltre les parti-
cules en laissant transiter de la chromosphère vers la couronne seulement les plus
énergétiques.
C'est précisément en cherchant sur internet avec les mots clés "démon" et "Max-
well" que je suis tombé sur un article fort intéressant de Eggers (1999) relatant,
avec explication physique à l'appui, l'expérience de la �gure 7.2. J'admets volontiers
que le lien entre l'expérience décrite par Eggers et le problème du chau�age de la

1Une croissance de la température électronique entre la chromosphère et la couronne par e�et
de �ltrage gravitationnel ((Scudder, 1992)) nécessite l'existence d'un excès d'électrons suprather-
miques par rapport à la distribution de Maxwell-Boltzmann (cf chapitre 5).
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Fig. 7.1 � Modèle empirique de la densité et de la température dans l'atmosphère solaire
(extrait de Landi (2001))

couronne n'est pas immédiatement apparent : il sera plus clair par la suite. L'expé-
rience illustrée dans la �gure 7.2 est facilement réalisable chez soi si on est un peu
bricoleur. Elle consiste en un récipient (par exemple un aquarium en plastique) sé-
paré en deux parties égales par une paroi comportant un petit trou près du fond. Le
récipient, rempli avec des petites boules en plastique pouvant passer par le trou, est
agité verticalement avec une fréquence ω. Lorsque la fréquence ω est su�samment
élevée, on observe que les boules �nissent par se repartir uniformément dans les deux
compartiments, indépendemment des conditions initiales (cas A dans la �gure 7.2).
Si maintenant on baisse la fréquence d'oscillation ω en dessous d'un seuil critique, un
phénomène curieux se produit : spontanément un nouvel état stationnaire s'installe
avec un plus grand nombre de particules dans un des deux compartiments, mais
avec des particules plus énergétiques, en moyenne, dans l'autre compartiment. En
somme, on se retrouve avec un compartiment avec du "gaz" froid et dense (compar-
timent de droite dans le cas B de la �gure 7.2) et un compartiment avec du "gaz"
chaud et dilué. L'explication détaillée du phénomène est un peu compliquée, mais
la raison fondamentale de l'apparition de deux états distincts se trouve dans la non
élasticité des collisions entre les petites boules en plastique. Dans le cas élastique
(comme dans un gaz où les collisions entre molécules sont parfaitement élastiques),
la solution d'équilibre est toujours symétrique, alors que dans le cas inélastique, la
solution d'équilibre n'est pas toujours symétrique. Mais ce n'est pas tout, concer-
nant le comportement exotique du système de la �gure 7.2. Une analyse détaillée du
pro�l de température vertical dans le récipient, conduite par Ramírez et Soto (2003),
montre que contrairement à ce qu'on pourrait soupçonner naïvement, la température
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Fig. 7.2 � Expérience du récipient contenant des boules en plastique. Le récipient est
agité verticalement avec une fréquence ω. Adapté de Eggers (1999)

n'est pas une fonction monotone et décroissante de la hauteur z. Comme l'illustre
la �gure 7.3, la température décroît e�ectivement dans la partie dense du système,
mais le gradient �nit par s'inverser et la température augmenter en s'éloignant de
la source d'énergie, exactement comme dans l'atmosphère du Soleil au dessus de la
chromosphère.
L'expérience de la �gure 7.2 illustre de manière exemplaire le comportement par-
fois très exotique des systèmes de particules interagissant de manière inélastique.
Les exemples de matière granulaire2 que l'on rencontre quotidiennement sont très
nombreux. Citons : le café, le sable, la neige, les tas de pomme de terre, etc. Les sys-
tèmes de matière granulaire ne sont pas moins fréquents en astrophysique. Citons :
les anneaux astrophysiques (e.g. les anneaux de Saturne), les nuages protoplané-
taires et la matière interstellaire froide en générale. Le lecteur intéressé trouvera
dans la revue de Jaeger et al. (1996) la description d'expériences de laboratoire met-
tant en évidence les propriétés spéci�ques des systèmes granulaires, et en quoi leur
comportement di�ère de celui des gaz ou liquides ordinaires.
Mais revenons à notre discussion sur l'atmosphère du Soleil. Évidemment, le plasma
de l'atmosphère du Soleil n'est pas un système granulaire. Les particules ne sont
pas des boulettes en plastique mais des charges élémentaires (principalement ions et
électrons) interagissant de façon élastique. Il n'y a donc aucune raison, a priori, pour

2Matière granulaire : conglomérat de particules macroscopiques interagissant par l'intermédiaire
de collisions non élastiques, i.e. avec perte d'énergie.
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Fig. 7.3 � Pro�l de température vertical caractéristique dans une expérience similaire à
celle de la �gure 7.2. Adapté de Ramírez et Soto (2003)

que le pro�l de température augmente avec la hauteur comme dans la �gure 7.3.
Cependant, si on tient compte du fait qu'une (petite) partie de l'énergie cinétique
des charges interagissant entre elles est perdue sous forme de rayonnement, la di�é-
rence entre système granulaire et plasma n'est plus aussi grande qu'il n'y paraît. La
simulation de l'atmosphère solaire, en incluant les collisions inélastiques, constitue
la suite prévisible du travail que je présente dans ce chapitre. Mais avant d'en arriver
à traiter l'atmosphère solaire avec les outils de la physique des systèmes granulaires,
j'ai dû me familiariser avec un sujet complètement étranger à mes préoccupations
antérieures et bien plus complexe et riche que ce que j'imaginais au départ.

7.2 Ségrégation d'espèces dans un système granulaire unidi-

mensionnel

Même le comportement des systèmes granulaires les plus simples, tels le collier de
billes de la �gure 7.4, n'a pas encore été entièrement élucidé à ce jour. C'est la raison
qui m'a poussé à "recycler" le code précédemment utilisé pour simuler un gaz dans
un champs gravitationnel (cf chapitre 4), avec l'idée de traiter, dans un premier
temps, le système de la �gure 7.4, sans bien sûr tenir compte de la courbure du
collier, ni même de la taille des billes que nous supposons ponctuelles.
Le système est proche du système non-ergodique (a) de la �gure 4.1, mais cette
fois les collisions ne sont pas élastiques et l'énergie cinétique totale des billes n'est
pas constante, car à chaque collision une petite fraction de l'énergie cinétique des
particules interagissantes est perdue. Le système a été étudié mathématiquement
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Fig. 7.4 � Le modèle numérique utilisé dans le chapitre 4.1 de l'article Pantellini et
Landi (2008) (cf annexe 9) ressemble schématiquement au problème d'une série de billes
identiques sur un �l périodique. Ce système n'est pas ergodique dans la limite élastique.

par plusieurs auteurs au cours des deux dernières décennies, mais le lecteur intéressé
trouvera l'essentiel, avec références et explications, dans l'excellent article de Bal-
dassarri et al. (2002). Une des caractéristiques marquantes du système de la �gure
7.4, mais qui est également une caractéristique quasi-universelle de tout système
granulaire, est sa tendance à vouloir former des grumeaux, c.à.d. à concentrer les
billes dans des groupes, même lorsque la distribution initiale est uniforme.

Fig. 7.5 � Le modèle numérique utilisé dans le chapitre 4.2 de l'article Pantellini et
Landi (2008) (cf annexe 9) ressemble schématiquement au problème d'une série de billes
non identiques sur un �l périodique. Le comportement de ce système est profondément
di�érent de celui d'un ensemble de particules identiques de la �gure 7.4. Il est ergodique
dans la limite élastique et peut se décrire avec des équations �uides.

Le système 7.4 ayant été décrit de façon détaillée par Baldassarri et al. (2002), nous
avons décidé (cf annexe 9 ou Pantellini et Landi (2008)) d'étudier numériquement
le cas plus compliqué d'un système à deux espèces de billes de masses di�érentes
comme illustré sur la �gure 7.5. Malgré les apparences, les deux systèmes des �gures
7.4 et 7.5 évoluent de façon très di�érente, même avant la formation de grumeaux.
La �gure 7.6 montre l'état de la fonction de distribution d'un système de N = 19600
particules identiques (�gure 7.4) et d'un système de N/2 particules de masse m = 1
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Fig. 7.6 � Évolution de la fonction de distribution des vitesses pendant la phase homogène,
pour un système de N particules identiques (gauche) et un système de N/2 particules de
masse m = 1 et N/2 particules de masse m = 4 (droite).

et N/2 particules de masse m = 4 (�gure 7.5) au cours de la phase dite homogène,
c.à.d. avant la formation d'inhomogénéités dans la distribution spatiale des billes.
Dans les deux cas, le coe�cient de dissipation ε qui représente, en gros, la frac-
tion d'énergie perdue à chaque collision entre deux particules, est ε = 5 10−4 � 1
(cas faiblement inélastique). En outre, dans les deux cas, la vitesse initiale des parti-
cules est distribuée uniformément dans l'intervalle [−0.5, 0.5]/

√
m, a�n que l'énergie

moyenne par particule soit la même pour toutes les espèces. La di�érence entre les
deux distributions de la �gure 7.6 est frappante. Dans le cas de particules identiques
on observe une tendance à la formation d'une distribution à deux pics (surtout vi-
sible après 16 107 collisions) alors que dans le cas à deux espèces, les distributions
sont parfaitement bien décrites par une distribution maxwellienne.3 La di�érence
est bien sûr due au fait que, comme nous l'avions déjà souligné dans le chapitre 4,
un système unidimensionnel de particules identiques, comme celui de la �gure 7.4,
n'est pas ergodique. Remarquons cependant que la distribution des vitesses n'évolue
nullement dans le cas élastique, alors qu'elle évolue considérablement dans le cas
inélastique comme illustré dans le panneau de gauche de la �gure 7.6.
Le fait que les distributions en vitesse sont bien décrites par des distributions max-
welliennes, nous a incité à établir des équations �uides qualitatives4 pour un système
unidimensionnel à deux espèces et un petit coe�cient de dissipation ε (cf chapitre

3Benedetto et al. (1997) ont montré que dans la limite quasi-élastique ε→ 0+ la distribution en
vitesse du système de particules identiques évolue vers une somme de deux distributions de Dirac,
que l'on devine clairement dans la �gure 7.6.

4Nous ne donnons pas dans l'article de l'annexe 9 les expressions exactes des coe�cients de
transport pour le cas 1d qui nous occupe. Les calculs sont excessivement compliqués et de peu
d'intérêt en 1d, entre autre en raison de la non ergodicité des systèmes à une seule espèce. En outre,
une connaissance détaillée des coe�cients de transport n'est pas nécessaire pour la compréhension
de la physique du système. Un calcul détaillé des coe�cients de transport dans un mélange de 2
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2 dans l'annexe 9). Les équations �uides nous ont permis d'appréhender beaucoup
plus facilement le comportement du système à deux espèces. Dans l'annexe A de
Pantellini et Landi (2008) nous linéarisons les équations �uides correspondant au
système unidimensionnel à deux espèces de la �gure 7.5 et montrons que le mode le
plus instable, celui donc qui est responsable de la formation des grumeaux, n'est pas
le mode sonore mais le mode à équilibre de pression, appelé parfois mode entropique.
Nous établissons également que la longueur d'onde du mode le plus instable λmax

est de l'ordre de λmax ∼ 10πL/Nε (L étant la dimension physique du système, c.à.d.
la longueur du �l dans le système de la �gure 7.5).
L'instabilité de "clustering", c'est son nom, génère donc des �uctuations de la den-
sité de particules à l'échelle λmax. Les �uctuations de densité ainsi engendrées par
l'instabilité conduisent généralement le système vers une catastrophe que l'on ap-
pelle e�ondrement inélastique ("inelastic collapse" en anglais). L'e�ondrement in-
élastique se produit à l'endroit où apparaissent des surdensités de particules. Il est
dû au fait que dans les lieux de surdensité, la dissipation est plus forte qu'ailleurs,
ce qui engendre un ralentissement de l'agitation des particules et donc une baisse de
la température, laquelle baisse engendre à son tour une augmentation de la densité
a�n d'assurer l'équilibre spatial de la pression : c'est l'e�ondrement. Très rapidement
le système se remplit de grumeaux formés de particules collées les unes aux autres
pratiquement sans plus aucun mouvement relatif (voir les grumeaux A et B dans la
�gure 7.7)

Fig. 7.7 � Les systèmes 7.4 et 7.5 ont une tendance à former des grumeaux. Lorsqu'on
permet aux particules d'échanger leur position relative au cours des collisions, les grumeaux
(A et B sur la �gure) expulsent les particules légères vers leur périphérie.

La tendance vers la formation de grumeaux de particules est une caractéristique
universelle des systèmes granulaires. Elle se produit aussi bien dans les systèmes
de particules identiques que dans les systèmes multi-espèces. Avec l'estimation de
la λmax ci-dessus, on peut évaluer le nombre de particules Nc dans un grumeaux à
Nc ∼ 5π/ε5.

espèces en 3 dimensions spatiales et en fonction du coe�cient d'inélasticité ε, de la taille et de la
masse des des grains a été publié récemment par Garzó et al. (2006).

5On obtient Nc en prenant le nombre de particules moyennes dans la demie longueur d'onde
λmax/2, correspondant à la portion de surdensité de l'onde.
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Ce que nous avons voulu explorer dans Pantellini et Landi (2008), c'était comment
les particules de masse di�érente se distribuent dans un grumeau lors de son ef-
fondrement. Évidemment, dans un système 1d comme celui des �gures 7.5 et 7.7,
la distribution relative des particules est entièrement déterminée par la distribu-
tion initiale, alors que dans un système à 2 ou 3 dimensions, les particules peuvent
échanger leur position par rapport au centre du grumeau. Pour éviter que la dis-
tribution spatiale des espèces dans notre système unidimensionnel soit �gée par le
choix initial, nous permettons à deux particules qui entrent en collision d'échanger
leur position relative avec une probabilité de 50%. Lorsque la distribution spatiale
initiale est uniforme pour les deux espèces séparément, l'introduction de la possibi-
lité d'échanger les positions n'a�ecte guerre l'évolution du système. Par contre, au
moment de l'e�ondrement, on observe que les particules légères sont expulsées vers
les bords du grumeau comme illustré dans la �gure 7.7. Nous montrons que la force
de friction est responsable de la ségrégation des espèces dans les grumeaux en ef-
fondrement. La force de friction est non nulle en raison du gradient de température,
les particules lourdes subissant une force dirigée vers les zones froides, i.e. le centre
des grumeaux, alors que les particules légères subissent une force qui les écarte du
centre des grumeaux.
Dans Pantellini et Landi (2008) nous montrons également que les mouvements d'en-
semble des grumeaux au moment de l'e�ondrement sont supersoniques si le nombre
de particules N dans le système 1d est supérieur à un seuil de l'ordre de 4π/ε.
Ces résultats ont été établis en analysant numériquement et théoriquement des sys-
tèmes unidimensionnels. L'extrapolation à des systèmes à 2 ou 3 dimensions n'est
pas évidente. Nous prétendons que la ségrégation entre les espèces de masse di�é-
rente à l'intérieur des grumeaux est un phénomène universel dans la mesure où il
est dû à l'action d'une force qui n'est pas l'apanage des systèmes 1d.
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Chapitre 8

Simulations d'un plasma avec un

code N-corps

Ce chapitre est volontairement un peu plus détaillé que les autres. Non que je consi-
dère les sujets traités ici plus importants que ceux des chapitres précédents mais
simplement parce que, d'une part, la technique de simulation numérique dont il sera
question ci-dessous est extrêmement peu répandue, voire inexistante en physique
des plasmas et que, d'autre part, des paramètres fondamentaux, tels le paramètre
de couplage Γ ou le logarithme de Coulomb λ ainsi que le rayon d'interaction forte rs,
sont incontournables pour la caractérisation des plasmas, qu'ils soient naturels ou de
laboratoire. Ces paramètres sont �nalement peu ou mal connus dans la communauté
des plasmas naturels (spatiaux ou astrophysiques). Cela s'explique vraisemblable-
ment par le fait que dans bien des cas il est plus simple, et souvent parfaitement
justi�é, de se contenter soit d'une description �uide, soit d'une description complè-
tement non collisionnelle du plasma. Il est e�ectivement parfaitement raisonnable
d'appliquer les équations �uides de la magnétohydrodynamique (MHD) au plasma
très collisionnel de l'intérieur des étoiles convectives. Il est également parfaitement
raisonnable d'appliquer l'équation de Vlasov, décrivant les plasmas non collisionnels,
aux magnétosphères planétaires dans la mesure où le libre parcours moyen des ions
et électrons qui s'y trouvent sont des centaines de fois plus grands que les dimen-
sions caractéristiques de ces mêmes magnétosphères. De nombreux plasmas peuvent
cependant se trouver entre ces deux extrêmes. Ce sont les plasmas dans lesquels
les échelles spatiales de variation des quantités macroscopiques, tels la densité ou la
température, ne sont pas énormément plus grandes que les libres parcours des par-
ticules, c.à.d. les plasmas caractérisés par un nombre de Knudsen thermique (voir
chapitre 5) KT ≡ λee/LT entre 10−4 et 10−11. De nombreux plasmas astrophysiques
et de laboratoire peuvent se trouver dans ce régime, en particulier lorsqu'ils sont
strati�és par la gravitation (atmosphères planétaires ou stellaires, e.g. chapitre 5)

1Dans cette expression λee est le libre parcours moyen caractéristique d'un électron dû à son in-
teraction avec les autres électrons du plasma et LT ≡ T/∂T/∂z l'échelle de variation caractéristique
de la température T .
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mais également à l'interface plasma-vide, situation fréquente dans les expériences
laser-plasma. Dans ces cas, ni l'approche �uide, ni l'approche non collisionnelle se
justi�ent réellement, mais c'est précisément dans ce type de plasmas que les simu-
lations de type N -corps trouvent leur principal champ d'application. Notons que
même le vent solaire, dans lequel le libre parcours moyen est de l'ordre de l'unité
astronomique ne peut être considéré comme non collisionel à grande échelle, car les
variations de la température avec la distance héliocentrique ne sont signi�catives
qu'à des échelles à peine plus petites que l'unité astronomique.
En 2003, en feuilletant sans rien chercher de précis, un volume du Journal of Compu-
tational Physics je suis tombé, un peu par hasard, sur l'article de W. Dehnen (Deh-
nen, 2002), traitant du problème du calcul de l'interaction gravitationnelle entre un
grand nombre de particules ponctuelles. Ce qui avait surtout retenu mon attention,
c'était le titre de l'article qui annonçait un algorithme de type N -corps (appelé
FalcON par l'auteur) d'une complexité algorithmique d'ordre N . Dit autrement, le
temps d'ordinateur nécessaire pour calculer l'interaction gravitationnelle entre N
particules avec FalcON augmente linéairement avec N . Lorsque le nombre de parti-
cules N est de l'ordre du million, voire du milliard, le gain en temps de calcul par
rapport à l'algorithme en L log(N) de Barnes et Hut (Barnes et Hut, 1986), lar-
gement répandu dans la communauté astrophysique, devient considérable. D'autres
algorithmes a�chaient à l'époque une complexité d'ordre N , mais aucun d'entre eux
n'avait vraiment fait la preuve de son e�cacité (voir les explications dans l'intro-
duction de l'articles de W. Dehnen sur ce point). Je demandais à l'auteur s'il voulait
bien m'envoyer une version de son algorithme. Je reçus donc, immédiatement, une
version en C++, parfaitement bien documentée de FalcON. J'ai un peu joué avec
le code, histoire d'en comprendre le fonctionnement avant de me poser la question
de sa transposition au cas de l'interaction coulombienne entre charges électriques,
l'interaction gravitationnelle entre deux masses ponctuelles et l'interaction électro-
statique entre deux charges ponctuelles obéissant à la même équation. Le fait que
l'interaction gravitationnelle entre masses est toujours attractive, alors que l'inter-
action électrostatique peut être attractive ou répulsive, implique une adaptation de
FalcON pour le rendre e�cace dans les applications électrostatiques. C'est le sujet
du chapitre 8.1.

8.1 Quelques aspects techniques

Des essais avec un petit nombre de charges semblaient montrer que la transposi-
tion du cas gravitationnel vers le cas électrostatique ne comportait aucun problème.
Cependant, les mesures de temps de calcul par A. Beck au cours de son stage de
master ont montré que le temps de calcul était, dans le cas électrostatique, propor-
tionnel à N2 alors qu'il était proportionnel à N dans le cas gravitationnel. Nous
nous sommes rapidement rendus compte que le problème provenait du fait qu'en
première approximation, lorsqu'on veut calculer la force exercée par un groupe de
particules dont les positions yi tombent dans la cellule B sur une particule distante
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en position x (cf Figure 8.1), celle-ci est simplement donnée par
∑

yi∈Bmi/r
2 où

r = |x− z| est la distance de la particule au barycentre z dé�nie par l'ensemble des
particules dans la cellule B, i.e.

z ≡

∑
yi∈B

mixi∑
yi∈B

mi

(8.1)

Donc, si MB ≡
∑

yi∈Bmi dénote la masse totale dans la cellule B, la force exercée

Fig. 8.1 �

par les particules de la cellule B sur la particule en x est simplement M/r2, comme
si toutes les particules étaient concentrées en un seul point z. Il est donc raisonnable,
dans le cas gravitationnel d'utiliser l'équation (8.1) comme dé�nition du centre du
développement pour l'expansion multipolaire de la contribution de la cellule B au
champ gravitationnel ressenti par la particule en x. Dans le cas Coulombien, le
choix de (8.1) comme centre d'expansion est calamiteux. Ainsi, comme le montre
schématiquement l'exemple à deux charges de la �gure 8.2, le barycentre zelec calculé
sur la base de la dé�nition (8.1), en remplaçant les masses par des charges, n'est
même pas localisé entre les deux charges, car avec une charge 2q en z = 0 et une
charge −q en z = d, le barycentre se trouve en z = −d. Plus extrême encore, pour
deux charges q1 et q2 de signes opposés mais de force presque égale |q2/q1| = 1 + ε,
le barycentre calculé sur la base de (8.1) se trouverait à une distance de l'ordre de
d/ε� 1, voire à une distance in�nie dans le cas q2 = −q1. A�n de ramener le centre
du développement dans la zone où sont concentrées les charges, nous utilisons la
dé�nition plus pertinente :

z∗ ≡

∑
yi∈B
|qi|xi∑

yi∈B
|qi| (8.2)
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Fig. 8.2 �

Cette nouvelle dé�nition ramène le centre de développement au milieu des charges
(cf z∗ dans la �gure 8.2) avec la conséquence importante que le moment multipolaire
d'ordre 1 M∗1 =

∑
i qi(yi − z∗) (le moment dipolaire) est non nul. Le moment M∗1

étant nul dans le cas gravitationnel, il n'est pas possible d'utiliser, sans modi�cations,
les expansions multipolaires du potentiel données par Dehnen. Le développement
multipolaire du potentiel produit par les particules dans la cellule B sur la particule
en x, en incluant les contributions du moment M∗1 est présenté dans l'annexe 12.

Solution sale mais bon marché

Il existe une solution "bon marché" pour utiliser de façon e�cace le code FalcON
dans le cas d'un plasma sans nul besoin de modi�er l'algorithme de base.
La solution "bon marché" consiste à calculer dans un premier temps le champ de
force produit par l'ensemble des particules de charge positive et d'y soustraire en-
suite le champ de force produit par l'ensemble des particules de charge négative.
Techniquement cela consiste à attribuer, dans un premier temps, une charge posi-
tive mais quasi-nulle ε à toutes les particules de charge négative. On demande alors à
FalcOn de calculer l'accélération ap(xi), pour chaque particule i à l'emplacement xi.
FalcON n'a aucun problème pour le faire dans la mesure où toutes les charges sont
maintenant positives, comme dans le cas gravitationnel. Dans un deuxième passage,
on attribue une charge ε à toutes les charges positives et la valeur absolue de leur
charge aux charges négatives, et on demande une deuxième fois à FalcOn de calculer
l'accélération ae(xi). La force totale f(xi) exercée par l'ensemble des charges sur la
charge i est alors donnée par f(xi) = qi[ap(xi) − ae(xi)] où qi est la charge réelle
(négative ou positive) de la particule i.
Cette solution "bon marché" présente l'avantage considérable de ne pas nécessiter
de transformation de l'algorithme original de W. Dehnen. Elle a l'inconvénient de
nécessiter deux appels à la routine de calcul des forces. Une solution plus précise
nécessitant un seul appel à la routine de calcul des forces est présenté dans l'annexe
12.
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8.2 Les collisions dans un plasma

Les applications d'un code de type N-corps en physique des plasmas sont nom-
breuses, mais tous les plasmas ne sont pas forcément de bons candidats pour des
simulations N-corps. Par exemple, dans les plasmas dits non collisionnels, dont il a
été question dans les chapitres 2 et 3, le mouvement d'une particule n'est que très
rarement dominé par l'e�et du champ électrique d'une seule particule voisine. Le
plus souvent, le mouvement d'une particule donnée est piloté par le champ cumulé
d'un très grand nombre de particules localisées dans son entourage plus au moins
proche. Dans un tel cas, le plasma est dit "collectif" et se laisse décrire avantageu-
sement par l'intermédiaire d'une fonction de probabilité fi(t, x, v) (une pour chaque
espèce i de particules dans le système) plutôt que par un ensemble N de particules.
L'évolution spatiale et temporelle d'un tel plasma est dans ce cas convenablement
décrit par des équations cinétiques faisant intervenir fi(t, x, v), ses dérivés spatiales
et temporelles, ainsi que ses dérivées, d'ordre plus au moins élevé par rapport à la
vitesse2.

Deux longueurs caractéristiques fondamentales

Lorsque dans un plasma les e�ets quantiques ne jouent aucun rôle, c.à.d. lorsque les
distances caractéristiques entre les charges sont sensiblement plus grandes que les
longueurs de De Broglie qui leur sont associées3, son comportement est conditionné
par deux longueurs caractéristiques : la longueur de Debye et le rayon d'interaction
forte.
Prenons, par simplicité, le cas d'un plasma uniforme, globalement neutre, composé
uniquement de protons et d'électrons (ionisation totale). Lorsque l'interaction entre
particules voisines est faible, et que le plasma est proche de l'équilibre thermody-
namique, il n'est pas surprenant que le plasma soit entièrement caractérisé par des
quantités macroscopiques telles la densité numérique n, la température T , et la
charge élémentaire e. En combinant ces quantités avec les constantes fondamentales
ε0 (la permittivité du vide) et kB (la constante de Boltzmann) on construit une
longueur caractéristique, la longueur de Debye :

λD ≡
(
ε0kBT

n e2

)1/2

(8.3)

2Dans l'équation de Vlasov (e.g. Delcroix et Bers, 1994; Golant et al., 1980) ∂fi/∂t+v∂fi/∂x+
ai∂fi/∂v = 0, qui décrit l'évolution de la fonction de distribution fi sous l'e�et d'une accélération
ai(t, x), apparaissent uniquement les dérivées premières par rapport à la vitesse. Dans l'équation de
Fokker-Planck (e.g. Delcroix et Bers, 1994; Golant et al., 1980) apparaissent également les dérivées
d'ordre deux, ce qui permet de prendre en compte l'e�et des collisions produisant des faibles
déviations de la trajectoire des particules par rapport au cas non collisionnel. Une description
complète de l'évolution de la fonction de distribution implique, en principe, l'intégration d'une
équation cinétique comportant un nombre in�ni de termes comportant les dérivées de fi par rapport
à la vitesse à tous les ordres.

3Pour une particule de masse m se déplaçant à la vitesse v la longueur de De Broglie est dé�nie
par ~/(mv) où ~ est la constante de Planck divisée par 2π.
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On interprète généralement la longueur de Debye comme étant la longueur au delà
de laquelle le champ électrique d'une charge test positive placée dans le plasma
est complètement écrantée par le nuage d'électrons qu'elle concentre autour d'elle.
Par extrapolation, on admet en général que les particules du plasma séparées d'une
distance supérieure à λD ne peuvent interagir directement. La longueur de Debye est
donc souvent considérée comme étant la limite supérieure du paramètre d'impact
pour les collisions dans un plasma. Évidemment, la dé�nition de la longueur de
Debye, faisant intervenir les quantités macroscopiques n et T , n'a de sens que lorsque
le nombre de particules dans un volume λ3

D est grand devant l'unité.
Dans un plasma classique, c.à.d. dans un plasma où les distances entre particules
sont plus grandes que les longueurs de De Broglie de ces mêmes particules, il est
possible de dé�nir une autre longueur caractéristique, indépendante de la densité :

rs ≡ e2

12πε0kBT
(8.4)

appelée rayon d'interaction forte ou rayon de Landau. Dans (8.4) rs représente la
distance entre deux électrons pour laquelle l'énergie électrostatique e2/4πε0rs est
égale à deux fois l'énergie cinétique caractéristique 3

2
kBT qui les anime. On en conclut

que la trajectoire d'un électron sera fortement in�échie lorsque ce dernier croise un
autre électron à une distance de l'ordre de rs. En résumé, rs représente la distance
caractéristique pour les collisions proches, avec forte perturbation de la trajectoire,
et λD la distance caractéristique pour les collisions distantes avec faible perturbation
de la trajectoire.

Le logarithme de Coulomb

En l'absence de champ magnétique, et de forces extérieures, il est possible de décrire
l'état d'un plasma uniforme, complètement ionisé et proche de l'équilibre thermody-
namique avec deux variables thermodynamiques indépendantes seulement. Ces deux
variables sont, par exemple, la température T et la densité électronique n = ne.
La température, à elle seule, permet de dé�nir une échelle de longueur rs ∝ T−1,
une échelle de vitesse (nous choisissons la vitesse du son adiabatique des électrons
ce =

√
3kBT/2me) et donc une échelle de temps τ ≡ rs/ce. Nous pouvons, avec

ces échelles de longueur et de temps, dédimensionner les équations du mouvement
des particules4 et faire disparaître la température du système. Ainsi, par exemple,
l'accélération d'un électron de masse m et charge e due à l'interaction électrosta-
tique avec un autre électron à une distance r donnée par l'expression bien connue
r̈ = e2/(m4πε0r

2) devient ¨̃r = 2/r̃2 dans la version adimensionnée (avec r̃ ≡ r/rs
et t̃ = tce/rs. Dans le système dédimensionné, la température n'apparaît donc plus
de façon explicite, elle n'est donc pas, à elle toute seule, un paramètre fondamental
du système. Reste la deuxième variable thermodynamique : la densité électronique.

4Les équations du mouvement d'un particule sont dx/dt = v et dv/dt = a où a est l'accélération
due à toutes les autres particules dans le système.
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En variables adimensionnées cette dernière s'écrit ñe = nr3
s et relie les deux échelles

caractéristiques rs et λD :
λD

rs
=

1

12πñ
. (8.5)

Dans la grande majorité des plasmas astrophysiques, la longueur de Debye λD est
bien plus grande que rs ce qui, suivant (8.5), signi�e ñ� 0.027. Cependant, l'usage
veut que pour caractériser un plasma, on n'utilise ni ñ ni le rapport λD/rs, mais
bien plus souvent, le logarithme de Coulomb

λ ≡ ln

(
λD

rs

)
. (8.6)

Le logarithme de Coulomb intervient ainsi dans les coe�cients de transport des
expressions pour le �ux de chaleur, le courant courant électrique, etc. que l'on trouve
dans les livres (Braginskii, 1965; Hinton, 1983; Golant et al., 1980, e.g.). Calculons,
par exemple, la force de friction exercée par les protons sur un électron se déplaçant
à la vitesse caractéristique ce = (3kBT/2m)1/2 le long de la direction z, comme
représenté sur la �gure 8.3.

Fig. 8.3 � Electron se mouvant dans un champ de protons à la vitesse ce le long de l'axe
z. Est montré le paramètre d'impact r par rapport à un proton du système. La force de
friction F exercée par les protons sur l'électron est donnée par l'équation (8.9). La force F
est proportionelle au logarithme de Coulomb λ dé�ni par (8.6)

.

La variation de la quantité de mouvement dans la direction z due à la présence
d'un proton avec un paramètre d'impact r se calcule facilement Trubnikov (1965);
Landau et Lifshitz (1960) :

∆pz = −
√

8 cem
r2
s

r2 + r2
s

(8.7)
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où l'on voit immédiatement que la variation est forte lorsque le paramètre d'impact
r est de l'ordre de rs alors qu'elle est faible pour r � rs. La force de friction F
exercée par tous les protons du système s'obtient en intégrant (8.7) pour tous les
paramètres d'impact r possibles, et en multipliant le résultat par le �ux de protons
nce vus par l'électron en mouvement, i.e. :

F = nce

∫ ∞
0

2πrdr ∆pz = 2
√

8πmnc2er
2
s

∫ ∞
0

rdr

r2 + r2
s

(8.8)

Cette intégrale diverge logarithmiquement pour les grandes valeurs du paramètre
d'impact r. Pour obtenir une valeur �nie, il faut la tronquer. Ayant déjà observé
que le potentiel Coulombien d'une charge test dans le plasma est écranté pour des
distances supérieures à la longueur de Debye λD, s'impose le choix de tronquer
l'intégrale dans (8.8) à r = λD. Si λD � rs, comme dans grand nombre de plasmas
astrophysiques, on obtient que la force de friction dépend linéairement du logarithme
de Coulomb

F = 2
√

8πmnc2er
2
s

∫ λD

0

rdr

r2 + r2
s

' 2
√

8πmnc2er
2
s ln

(
λD

rs

)
. (8.9)

D'où l'intérêt de classer les plasmas suivant λ ≡ ln(λD/rs) plutôt que par λD/rs.

Classi�cation des plasmas

On dit d'un plasma qu'il est fortement couplé lorsque λ . 1 et qu'il est faiblement
couplé lorsque λ & 10. L'intensité du couplage des particules du plasma se me-
sure en comparant l'énergie électrostatique entre deux électrons voisins5 et l'énergie
cinétique caractéristique d'une particule 3kBT/2. Ce rapport est un nombre sans
dimensions appelé paramètre de couplage du plasma, généralement désigné par la
lettre Γ dont on montre facilement (en utilisant la dé�nition de Γ de l'annexe 10) qu'il
est lié à λ par la relation λ = ln(

√
3/Γ3/2). Donc, plus le couplage entre particules

voisines est fort moins le logarithme de Coulomb est grand. La table 8.1 montre une
classi�cation possible, plus au moins consensuelle, des plasmas en trois catégories
distinctes suivant les valeurs de λ ou Γ. Les plasmas fortement couplés sont froids
et denses. Leur comportement s'apparentent davantage à celui d'un liquide ou d'un
cristal qu'à celui d'un gaz lorsque Γ & 10. Ils peuvent être produits en laboratoire
par irradiation de solides avec un faisceau laser mais ils existent également dans
les atmosphères d'étoiles dégénérées (par exemple dans les atmosphères de naines
blanches (Koester et Chanmugam, 1990)). Dans les plasmas fortement couplés, la
dynamique des particules est dominée par le champ des particules proches. A l'autre
extrême, les plasmas faiblement couplés sont des plasmas chauds et peu denses au
comportement de type gazeux. Pratiquement tous les plasmas spatiaux (vent solaire,

5Dans un plasma de densité électronique n la distance moyenne d entre électrons voisins est
évidemment de l'ordre de n−1/3
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Tab. 8.1 � Proposition de classi�cation des plasmas en fonction du logarithme de
Coulomb λ et/ou du paramètre de couplage Γ

Log de Coulomb Paramètre de couplage Dénomination

λ . 1 Γ & 0.5 fortement couplé
1 . λ . 10 0.5 & Γ & 2 10−3 modérément couplé

10 . λ 2 10−3 & Γ faiblement couplé

magnétosphères planétaires) et même le milieu interstellaire ainsi que les plasmas
des tokamak sont faiblement couplés. Dans les plasmas faiblement couplés la dyna-
mique des particules est dominée par le champ collectif des particules distantes. Les
collisions binaires peuvent dans ce cas être négligées car relativement peu fréquentes.
On devine aisément que dans les plasmas faiblement couplés, deux particules test6

initialement voisines dans l'espace des phases (~x,~v) vont le rester pendant long-
temps dans la mesure où le champ électrique ressenti par les deux particules ne
di�ère guère. Dans ce cas, des modèles numériques basés sur l'équation de Vla-
sov ou de Fokker-Planck sont parfaitement adaptés. Dans les plasmas modérément
ou fortement couplés, il arrive plus fréquemment que dans les plasmas faiblement
couplés, que des particules se rapprochent à des distances de l'ordre rs. Dans ces
conditions, deux particules test initialement proches dans l'espace des phases (~x,~v)
voient leurs trajectoires diverger en un temps très court7. Ces divergences de tra-
jectoires dans l'espace des phases sont incompatibles avec une description de type
Vlasov ou Fokker-Planck dans lesquels la divergence entre trajectoires voisines est
par dé�nition faible. Dans ces conditions les simulations de type N -corps sont plus
pertinentes car elles ne sont pas basées sur une hypothèse de non divergence de
trajectoires voisines dans l'espace des phases.

8.3 Exemple 1 : la conduction de la chaleur dans un plasma

modérément couplé

Avec Arnaud Beck, nous avons envisagé de simuler le transport de la chaleur dans un
plasma modérément couplé d'électrons et protons avec λ = 3.8 (cf Annexe 10). C'est
une valeur compatible avec les paramètres du plasma dans la partie supérieure de la
zone convective du Soleil, zone dans laquelle les e�ets quantiques sont négligeables.
Pour un tel plasma nous trouvons que le �ux de chaleur transporté par les électrons
est approximativement 26% en dessous de la valeur prévue par l'expression classique

6Particule test : particule qui se déplace dans le champ global dû aux autres particules du
plasma sans in�uencer ces dernières par sa propre présence.

7Pour un électron rencontrant un autre électron le temps d'interaction est bien évidemment de
l'ordre de rs/ce.
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Fig. 8.4 � Dans un plasma faiblement couplé les trajectoires de deux particules test
voisines dans l'espace de phase évoluent de façon quasi-identiques (cas (a)). Dans un plasma
modérément couplé (et davantage dans un plasma fortement couplé) il n'est pas rare qu'une
des particules test se retrouve à une distance de l'ordre de rs d'une autre particule. Dans
ce cas, sa vitesse change brutalement en un temps très court (collision sur la trajectoire
2) se séparant considérablement de la trajectoire 1. Les divergences de trajectoires sont
d'autant plus fréquentes que le plasma est couplé.

.

de Spitzer et Härm (1953) :

qe = 3.2
kBT

me

nτe∇(kBT ) (8.10)

où τe est la fréquence de collision pour les électrons dans la limite de couplage faible
(équation (6) Beck et Pantellini, 2007). Dans le traitement de Spitzer et Härm,
seules les collisions lointaines, c.à.d. les collisions avec des paramètres d'impact r
de l'ordre de λD sont considérées. Dans ces conditions les coe�cients de transport
ne sont convenablement approximés que pour λ & 10. Pour des valeurs inférieures,
on estime que l'erreur sur les coe�cients est de l'ordre λ−1. Dans un modèle un
peu plus élaboré que celui de Spitzer et Härm, Li et Petrasso (1993) proposent une
correction de l'ordre 1/6λ−1 ce qui ne modi�e que de 4% environ la valeur classique
de Spitzer, loin des 26% que nous trouvons avec nos simulations N -corps.
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8.4 Exemple 2 : expansion d'un plasma non collisionnel dans

le vide

Dans un travail plus récent Beck et Pantellini (2008) (cf Annexe 11), toujours avec
A. Beck, je me suis intéressé au problème de l'expansion dans le vide d'un plasma
à géométrie sphérique. Un plasma d'ions froids et d'électrons chauds, initialement
con�né dans une sphère de rayon R0, est laissé libre de se détendre dans le vide. C'est
une situation que l'on rencontre dans le contexte de la fusion contrôlée (e.g. Ditmire
et al., 1999) où des poussières de matière contenant typiquement entre 103 et 107

atomes sont irradiées par des impulsions lasers intenses d'une durée de l'ordre de
la femtoseconde. L'énergie déposée par le laser dans les grains de poussière chau�e
principalement les électrons, lesquels en se séparant des noyaux atomiques laissent
derrière eux des grumeaux d'ions qui explosent sous l'e�et de la force électrique entre
ions chargés positivement. Selon les mesures expérimentales de Ditmire et al. (1999)
les ions sont accélérés à des énergies de plusieurs keV ce qui, dans le cas d'ions de
deutérium, permet le déclenchement d'une réaction de fusion D + D → He3 + n
avec une probabilité élevée.
Dans Beck et Pantellini (2008) nous présentons un nouveau modèle semi-analytique
et non collisionnel de l'expansion que nous comparons avec des résultats de simula-
tions N-corps. Le modèle que nous proposons reproduit beaucoup mieux les résultats
de simulation que le modèle actuellement en vogue de Murakami et Basko (2006),
principalement en raison du fait que Murakami et Basko supposent que la tempéra-
ture des électrons est spatialement constante, ce qui n'est généralement pas observé
dans les simulations numériques. La �gure 8.5 montre les pro�ls de densité des ions
et des électrons observés dans une simulation N-corps comparés avec les pro�ls théo-
riques issus de notre modèle. L'accord est bon, voire très bon, si on considère que
les conditions initiales8 de la simulation étaient très éloignées des conditions asymp-
totiques (pour des temps longs) prévues par le modèle. Dans le cas particulier de la
�gure 8.5, la principale di�érence entre modèle et simulation est à chercher dans la
densité des électrons pour r/R & 1.39, bien plus forte dans la simulation que dans
le modèle. La di�érence s'explique par le fait que, dans la simulation, une fraction
non négligeable d'électrons possède une énergie su�samment grande pour quitter
dé�nitivement le système. Ainsi la densité électronique mesurée dans la simulation
pour r/R & 1.3 est destinée à décroître au fur et à mesure que les électrons libres se
séparent de la sphère d'ions r/R ≤ 1. Malheureusement, des simulations beaucoup
plus longues et coûteuses sont nécessaires pour con�rmer cette hypothèse, somme
toute très raisonnable. Des simulations plus longues devraient également pouvoir
con�rmer l'existence d'un front électronique, absent du modèle de Murakami et
Basko (2006) dans lequel les électrons sont supposés s'étendre jusqu'à l'in�ni.

8La densité des électrons, la densité des ions, ainsi que la température des électrons sont initia-
lement uniformes.

9r est la distance au centre de l'expansion et R(t) est la position du front ionique.
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Fig. 8.5 � Pro�ls radiaux des densités électroniques et ioniques observés dans une simu-
lation N-corps de l'expansion d'un plasma à symétrie sphérique, comparés avec les pro�ls
issus du modèle de Beck et Pantellini (2008). Les deux paramètres �xant les pro�ls du
modèle sont le rapport Λ = λD(R)/R entre la longueur de Debye en r = R et le rayon de
la sphère d'ions R ainsi que le rapport entre le nombre total d'électrons non libres Ne et
le nombre total d'ions Ni.
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Conclusions et perspectives

J'ai essayé, au �l des chapitres de ce mémoire, de donner un aperçu des sujets aux-
quels je me suis intéressé au cour de ces dernières années de ma vie de chercheur. Les
suites possibles sont nombreuses et, comme le montre l'expérience, souvent impré-
visibles. Certaines sont déjà une demi-réalité, certaines sont juste des pistes ou des
souhaits, et d'autres ne sont pas encore écrites. Je me limiterai ici aux demi-réalités.
Ainsi, dans le cadre des simulations de systèmes avec des collisions non élastiques
(cf tout particulièrement les chapitres 5 et 7), j'ai commencé avec S. Landi, à étu-
dier le cas d'un gaz ou un plasma strati�é par la gravitation, avec l'idée de tenter
de comprendre le rôle des pertes radiatives dans l'atmosphère solaire. Les récentes
simulations N -corps d'un plasma, que A. Beck a réalisées au cours de sa thèse, sont
très prometteuses. Elles le sont tout spécialement en raison de leur complémentarité
par rapport aux simulations largement répandues, réalisées avec les outils classiques
(codes Vlasov, Fokker-Planck, MHD, etc.). Dans ce contexte, les simulations d'ex-
pansion d'un plasma dans le vide, dont il n'a pas été question dans ce mémoire, sont
particulièrement intéressantes en raison du grand nombre d'applications potentielles
en astrophysique (e.g. sillage de la lune) et au laboratoire (expériences d'interaction
laser-matière). L'autre objectif fort, nécessitant un investissement assez considérable,
est l'optimisation du code N -corps suivant les idées présentées dans l'annexe 12 et,
objectif encore plus ambitieux, l'inclusion de la force de Lorentz dans le calcul de
l'interaction entre les charges en mouvement.
J'ai dans le passé utilisé des codes numériques "classiques" pour simuler des plas-
mas sans collisions (cf les chapitres 2 et 3). Je continue d'utiliser ces codes dans le
cadre de mes tâches d'enseignement, où il m'arrive également d'utiliser des codes
�uides hydrodynamiques ou magnétohydrodynamiques. Ces codes seront extrême-
ment utiles dans le cadre de la mission spatiale Bepi Colombo, qui atteindra la
magnétosphère de Mercure au milieu de la décennie 2010-2020, mission pour la-
quelle je me suis engagé à mettre au point des outils de simulation permettant de
modéliser l'environnement complexe de Mercure a�n d'aider à l'interprétation des
données de la sonde.
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ON THE NON-LINEAR MIRROR 
INSTABILITY 

F. G. E. Pantellini, D. Burgess and S. J. Schwartz 

Astronomy Unit, Queen Mary and Westfield College, Mile End Road, 
London El 4NS, U.K. 

ABSTRACT 

It is argued that quasi-linear theory alone does not provide an adequate description of the non 
linear evolution of the mirror instability. Based on a simplified model for the motion of particles in 
a mirror wave, it is found that the main mechanism which ends the linear phase of the instability 
has to be particle trapping. Quasi-linear effects may still play a role for particles with small 
velocities perpendicular to the background magnetic field and do probably dominate the late stage 
of the instability when the wave-particle energy exchange associated with particle trapping becomes 
inefficient. 

INTRODUCTION 

It has been noted a long time ago (e.g. refs /l/, /2/) that the instability threshold for the linear 
proton mirror instability depends on the exact shape of the proton distribution function at small 
velocities ~11 (subscript refers to the background magnetic field), i.e. in the region of Landau 
resonance for this non-propagating mode. The behavior of resonant and non resonant protons in 
the linear mirror instability has been discussed theoretically (e.g. /3/, /4/) but, as far as we kow, 
a satisfactory theory of the non linear mirror instability has not yet been proposed. As a first step 
Shapiro and Shevchenko /I/ have shown that it is possible to apply the methods of standard quasi- 
linear to the mirror instability, despite that fact that it is non propagating, provided 7 < IcllvTll 
(where 7 is the linear growth rate, $1 the longitudinal component of the wave vector and ~~11 the 
longitudinal thermal velocity of the protons). 

Unfortunately a quasi-linear description of the mirror instability can not be entirely correct as it 
can not cope with particle trapping. The relevant question we address in the present paper is 
whether or not trapping becomes important before the quasi-linear saturation level is reached. 

In the following discussion we make the assumption that the particle motion can be described by 
adiabatic theory (e.g. /5/). We therefore assume that the growth rate of the instability is small 
compared to the proton cyclotron frequency 0,. 

TRAPPING VS QUASI-LINEAR EFFECTS 

Trapped particles can efficiently exchange energy with a growing wave as a result of the bouncing 
between converging or diverging mirror points. As a consequence of magnetic moment conservation 
trapped particles also lose (gain) energy if they spend most of the time in regions of decreasing 
(increasing) magnetic field flux very much like the resonant particles described in /3/. Assuming 
there is no longitudinal electric field , i.e. T, = 0 (Cf. /4/), and applying the adiabatic mirror 
criterion we find that all particles whose velocity at a field minimum satisfy 

are trapped in a mirror wave (note that in (1) 26B is the difference in the magnetic field strength 

(8/9)341 
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between troughs and peaks assuming 6B < Be). However, a trapped particle only exchanges 
energy with the wave efficiently when its trapping frequency wt, exceeds the growth rate of the 
wave. Taking the trapping frequency wtr to be given by the approximate expression for particles 
trapped near the bottom of a static mirror potential 

(2) 

and comparing wt”, with y2 from linear theory (see equation (4) below) it follows that a proton with 

velocity ‘~10, and satisfying (l), is efficiently trapped (i.e. it bounces more than once during the 
time 7-l) when the amplitude of the wave satisfies 

(3) 

where, assuming a bi-Maxwellian proton distribution with perpendicular and parallel temperatures 
2’1 and T]l, the normalized linear growth rate l?, for a weak instability and cold electrons, is given 

by (e.g. /I/, /3/ and /4/) 

From equation (3) it is clear that the first particles to be trapped are those at high ~10. As long 
as the trapping velocity limit is much higher than VT~ trapping is unlikely to be efficient in ending 
the linear phase of growth. However, as soon as particles with ~&J/VT* x 1 start being trapped 
linear theory must break down as most of the resonant particles, which drive the linear instability, 
start bouncing near the magnetic field minima. Of course not all trapped particles are resonant 

but nearly all of them, except those which have their mirror points close to a field maximum, do 
contribute to the reduction of the free energy. It is obvious that the above conclusions require that 
a clear peak-trough structure is formed during the linear phase. In fact such structures always 
appear to form in simulations as well as in real plasmas. 

On the other hand equation (34) in /l/ p rovides an expression for the saturation level of the 

magnetic fluctuations in quasi-linear theory, which can be written as 

Note that, unlike equation (2), (5) is _. 
independent of ~10. From (2) and (5) it follows that at 

a wave amplitude corresponding to the saturation level of quasi-linear theory particles satisfying 

(v10/vT_L)2 2 0.18, and satisfying (l), are “efficiently” trapped. This includes most of the particles 
in the trapping sector defined by (1) and suggests that trapping is always an important non linear 
mechanism. The value 0.18, however, suggests that quasi-linear effects are nevertheless important 
at low values of 010 where trapping is inefficient. Moreover quasi-linear effects are likely to be- 
come important at late stages of the non linear instability as the efficiency of wave-particle energy 
exchanges associated with trapped particles decreases as growth slows down. 

SJZ r2 (5) 

SIMULATION OF A SLOWLY GROWING INSTABILITY 

Figure 1 shows the proton distribution function 6F(t, ~1, ~11) 3 vl[f(t, 01, ~11) - f(0, ~1, ul,)] in 
peaks, in troughs, and integrated over the whole simulation domain from a 1D hybrid simulation 
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The bottom panels in figure 1 show 6F at a time corresponding to the maximum amplitude of the 
field fluctuations (SB/& M O.15), i.e. shortly after the end of the linear phase of growth. The 
trapped particle sector is clearly visible in both the trough and the integrated distribution. Since 
the wave is not growing any more the resonant particles are no longer visible in the plots. On 
the other hand circulating particles, which ensure the characteristic magnetic field versus density 
anticorrelation, remain clearly visible at troughs (bright regions). At peaks, as the instability is not 
growing any longer, all particles are by definition circulating. Thus, according to linear theory, we 
expect the distribution function 6F to be negative everywhere in velocity space. The appearance of 
the bright region at low ~1 particularly in the peak distribution is therefore a clear sign of the non 
linear instability. Since at this wave amplitude trapping is only efficient down to vlo M 0.7 (and 
only in troughs), and since the efficiency of the energy exchange is strongly reduced as growth slows 
down, this must be due to quasi-linear effects. Quasi-linear effects act everywhere but are stronger 
at peaks since trapped particles can’t reduce the free energy there. Thus, after a spatially structured 
plasma has been created during the linear phase of growth (the spectrum tends to be initially fairly 
monochromatic), and after the trapped particles have explosively reduced the available free energy 
in the troughs (determining, thereby, the end of the linear phase), quasi-linear effects take over and 
slowly uniformize the plasma (peak and trough distributions will become nearly identical) driving it 
to saturation. In fact the late time distribution functions (not shown) become increasingly similar 

in peaks and troughs. 

CONCLUSION 

We have given arguments which suggest that both particle trapping and quasi-linear effects are 
important in the non linear mirror instability. This view is enforced by results from 1D hybrid 
simulations which indicate that efficient proton trapping at high values of v1 briskly ends the 
linear phase while at low ~1, where trapping is never efficient, quasi-linear effects dominate the 
instability. Quasi-linear effects eventually drive the instability towards saturation as trapping 
becomes ineffective as an energy exchange mechanism in a quasi static field. The late dominance of 
quasi-linear effects would also explain the spatial uniformization of the distribution function which 
indeed is highly spatially structured after the linear and trapping phase. The above conclusions 
are not based on any knowledge of the exact particles’ motion and should therefore remain valid 
even in the frame of a more complete theory of the trapping process. 
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The equilibrium pressure of a perfect gas in a constant gravitational field decreases exponentially
with height. This result, known as the barometric formula, can be observed in a one-dimensional
numerical simulation where the gas molecules are represented by colliding massive points. ©2000

American Association of Physics Teachers.

I. INTRODUCTION

It was in 1686 that the English astronomer Edmund
Halley1 first recognized that the pressurep of the Earth’s
atmosphere decreases exponentially with heightz in good
agreement with the so-called barometric formula

p~z!5p~0!expS 2
z

H D , ~1!

where the constantH is the scale height of the atmosphere. A
number of derivations of the barometric formula and its
amazing history, from antiquity to the twentieth century,
have already been discussed in another paper2 and shall not
be repeated here. Still, a short discussion of the main ingre-
dients that go into most derivations of the barometric for-
mula may be welcome here. The standard derivations based
on fluid theories3 postulate the existence of a particular equa-
tion of state relating the pressurep and the mass density% of
the fluid atmosphere. For gaseous atmospheres it is quite
natural to invoke the perfect gas equation,

p5%
kT

m
, ~2!

wherem is the mass of the gas molecules,k the Boltzmann
constant, andT the temperature. This equation on its own
still doesn’t allow the derivation of the barometric formula,
as one needs a second equation in order to fully specify the
thermodynamic state of the system. In the absence of any
external energy source, the second equation that imposes it-
self quite naturally is

T5constant, ~3!

which states that the temperature is the same everywhere in
the atmosphere. But why should a stratified fluid, say a per-
fect gas for simplicity, be isothermal whereas the pressure,
the density, and even the entropy depend onz? For instance
it is extremely well known that Eq.~3! is not true for the low
Earth atmosphere~the troposphere! where the temperature
typically decreases with height at a rate of 1022 K/m. Of
course, the temperature gradients in the Earth atmosphere are
a consequence of the fact that the system is not a closed one
due to the energy input through radiation from both the Sun
and the Earth surface. It is possible to make~3! a plausible
assumption at least in the case where the collisional mean
free path of the molecules~i.e., the average distance that
particles travel between two successive collisions! is small
compared to the scale of variation of the macroscopic quan-
tities such as the density or the pressure. In this case the local
particle velocity distribution must be very nearly a Maxwell-

ian with zero mean velocity which, for a local number den-
sity n(z)5%(z)/m, reads

f ~z,v !5n~z!S m

2pkTD 3/2

expS 2
mv2

2kTD , ~4!

i.e., the atmosphere must be static. The requirement that the
mean velocity be zero is easily justified since a nonzero
mean velocity implies a mass flux that cannot be compatible
with a stationary solution. For example, the density near the
ground would be increasing or decreasing depending on
whether a downward or an upward net flow is present in the
atmosphere. As we will show below, if the distribution is
Maxwellian at a given height, it must be Maxwellian, with
the same temperature, at any other height, provided the at-
mosphere is a static one. This is the justification of the iso-
thermal hypothesis from the kinetic point of view.

From a fluid point of view, one can justify the choice of a
constant temperature by noting that if there were a tempera-
ture gradient somewhere in the atmosphere, there would in-
evitably be an energy flux~or heat flux! from the higher
temperature to the lower temperature region and the system
could neither be static nor stationary. However, this explana-
tion does not seem to be consistent with our everyday expe-
rience of the Earth atmosphere, which is essentially static but
never, not even nearly, isothermal.

If we accept the isothermal hypothesis as a plausible one,
it is easy to derive the barometric formula using a fluid ap-
proach. In a static atmosphere, subject to a constant gravita-
tional fieldg.0, the pressurep at a given heightz is just the
force exerted by the mass of gas above that height per square
unit, i.e.,

p~z!52gE
z

`

%~z!dz, ~5!

where the minus sign comes from the fact that gravity is
taken to be oriented toward the negativez direction. It then
follows that the pressure differencedp(z) between two
points at heightz andz1dz is simply given by

dp~z!5p~z!2p~z1dz!52g%~z!dz, ~6!

which clearly indicates that pressure cannot be uniform in
the system unlessg50. From the perfect gas equation of
state~2! and Eq.~3!, the barometric formula~1! with a scale
height

H5
kT

mg
~7!
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is readily obtained by integrating the differential equation
~6!.

Besides the fluid derivations of the barometric formula,
there are a number of derivations called kinetic. The latter
are characterized by the fact that the physical state of the
system~the atmosphere! is specified by the distribution func-
tion f (t,r ,v) of the gas molecules,r[(x,y,z) and v
[(vx ,vy ,vz) being the three-dimensional position and ve-
locity vectors, respectively. In a kinetic description,f (t,r ,v)
d3rd3v[ f (t,r ,v)dx dy dz dvx dvy dvz represents the num-
ber of particles that at timet are located in the six-
dimensional phase space volumed3rd3v centered on the
phase space point~r , v!. An elegant kinetic derivation of the
barometric formula, which has not been discussed by
Berberan-Santoset al.,2 has been given by Becker in his
classical book on thermodynamics.4 The derivation is based
on the fact that the number of particles in a volumed3r 0d3v0

at time t0 is the same as the number of particles in the same
volume ~transported along particles’ trajectories in phase
space! d3rd3v at a later timet.t0 , formally

f ~ t0 ,r0 ,v0!d3r 0d3v05 f ~ t,r ,v!d3rd3v. ~8!

In the case of a constant gravitational field, the equations of
motion,dz/dt5vz anddvz /dt52g, can be integrated for a
small time intervalt leading to

z5z01v0zt, ~9!

vz5v0z2gt. ~10!

These equations show that the infinitesimal phase space vol-
umesdz dvz anddz0 dv0z are identical. On the other hand,
since gravity doesn’t affect the velocity components perpen-
dicular to the z axis, one has dx dy dvx dvy

5dx0 dy0 dv0x dv0y , meaning that the phase space volume
d3rd3v is not modified during its motion along particles’
trajectories in phase space. As a consequence, and because
we assume that the system only depends onz, we can write a
linearized form of Eq.~8!, for small time intervalst,

F~ t,z,vz!5F~ t01t,z01v0zt,v0z2gt!

.F~ t0 ,z0 ,v0z!1
]F

]t
t1

]F

]z
v0zt2

]F

]vz
gt,

~11!

whereF represents the reduced distribution that is obtained
after integration off over both velocity componentsvx and
vy . Since, according to~8! and the ensuing discussion,
F(t,z,vz) andF(t0 ,z0 ,v0z) must be equal and since we are
seeking stationary solutions, such that]F/]t50, Eq. ~11!
reduces to a simple differential equation involving partial
derivatives ofz andvz only,

]F

]z
vz2

]F

]vz
g50. ~12!

The general solution of this differential equation is an arbi-
trary function of energy~gravitational energy1kinetic en-
ergy!, i.e.,

F~z,vz!5F~gz1 1
2vz

2!. ~13!

This solution clearly shows that if the velocity distribution
function is Maxwellian at a given heightz0 , it must be Max-
wellian, with the same temperature, at any other height, i.e.,

F~z,vz!5n0S m

2pkTD 1/2

expS 2
mgz1mvz

2/2

kT D , ~14!

wheren0 is the particle number density atz50. As expected,
integration in velocity space of~14! leads to the exponen-
tially decreasing density profile

n~z!5n0 expS 2
mgz

kT D , ~15!

which is nothing else but the barometric formula for an iso-
thermal perfect gas. The main assumption of this derivation
of the barometric formula is that the particles’ velocity dis-
tribution is Maxwellian at some height. As already stated,
this is a reasonable assumption for a static atmosphere, at
least as long as the mean free path is small compared to the
scale heightH.

II. THE NUMERICAL MODEL

Numerical simulations do often offer the best illustration
of the behavior of a physical system. The aim of Sec. II is
precisely the description and the discussion of a simple nu-
merical model describing the evolution of a sort of hard
sphere gas under the influence of a constant gravitational
field. As we will see below, the model allows for an ‘‘ex-
perimental’’ derivation of the barometric formula thus com-
pleting the discussion of Sec. I.

Again we consider the case of a constant gravitational
field pointing toward the negativez direction. We model the
static atmosphere by considering the statistical properties of
N identical free falling massive point particles. We use a
one-dimensional approximation so that the position of each
particle is fully specified by its heightz above the ground
level located atz50. Two particles are supposed to interact
via an elastic collision if they are simultaneously located at
the same height. A particle hitting the ground simply re-
bounds elastically. Despite the fact that the particles’ motion
is restricted to one spatial dimension and in order to intro-
duce ergodicity in the system~see below!, we allow the par-
ticles to have three-dimensional velocities. One can regard
the system as being spatially three dimensional with periodic
x and y directions, the periodicity length being vanishingly
small.

Similar numerical models, involving colliding spheres or
discs instead of points, have already been used some 20
years ago, though not in the case of a gas in a gravitational
field.5–9

A. Ergodicity

In 1887 L. Boltzmann formulated his famous ‘‘Ergoden-
hypothese.’’10 Boltzmann’s hypothesis, which has been put
into a mathematically rigorous form by P. and T. Ehrenfest,11

states that the phase space trajectory of a closed thermody-
namical system covers densely and uniformly the subspace
~a hypersurface in phase space! defined by the condition that
the energyE of the system is constant. A classical dynamical
system, e.g., a system ofN particles governed by Hamilton’s
equations of motion~which is generally called a thermody-
namical system in the limitN→`!, that has this property is
said to be ergodic. Later, starting in 1922, G. D. Birkhoff12

proved the important theorem according to which ergodicity
implies that the long time average over an arbitrary function
of the phase space coordinates is equal to the average of the
same function taken over all possible, and~as can be shown4!
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equally probable, states that the system can go through. Pos-
sible functions of the phase space coordinates one may want
to take averages of are the number densityn(z), the pressure
p(z), or any other macroscopic quantity. The average over
the collection of all states on the energy hypersurface is
called the average over the microcanonical ensemble.4 It
should be noted that the time average and the average over
the microcanonical ensemble may be considered to be equal
for practical purposes only if the time of averaging is long
enough for the system’s trajectory to cover densely the hy-
persurface of constant energyE. In practice, one has just to
wait long enough for the functions that describe the macro-
scopic state of the system~we are not interested in the tra-
jectories of individual particles! to become independent of
the time interval used in the averaging process. One may
then say that the system has reached equilibrium.

In general, one can estimate the minimum time of averag-
ing needed for the system to cover uniformly the surface of
constant energy to be of the order of a macroscopic relax-
ation time. For example, in the case of a large numberN of
molecules with mean energy 3kT/2 restricted to a three-
dimensional cubic box of dimensionL3, the relaxation time
can be estimated to be of the order of the box scale lengthL
divided by the sound velocityc;AkT/m.

The justification of Boltzmann’s ‘‘Ergodenhypothese’’
may now become clear if one asks what happens to a system
that is nonergodic. By definition in such a case the system’s
phase space trajectory does not cover the whole hypersurface
of constant energy. This means that for two different initial
conditions the system’s trajectory generally covers different
parts of the energy surface leading to different temporal av-
erages even if one lets the time of averaging become infi-
nitely long. In such a system there is no longer a unique
equilibrium state since different initial conditions will lead to
different equilibrium states. It is now intuitively clear that a
nonergodic dynamical system is not a good model for a ther-
modynamic system, as the latter should evolve toward a
unique equilibrium that is independent of the initial condi-
tions. This is of course what we expect a thermodynamic
system to do based on the second principle according to
which the system must evolve toward a unique state that
maximizes entropy.7,8,13

Let’s come back to our model of the atmosphere and let’s
suppose first that the trajectory of theN particles is strictly
one-dimensional, i.e., position and velocity are both one-
dimensional vectors. In this case the time evolution of the
system is represented by a curve in a 2N-dimensional phase
space. Now, in the case of one-dimensional velocities, the
result of an elastic collision between two particlesj andk is
nothing else but the exchange of velocitiesvk↔v j . This
configuration is of the type depicted in Fig. 1~a!, where the
balls, within an infinite vertical tube of the same diameter as
the balls, are not allowed to have a velocity component in the
horizontal direction. In this case the net result of a collision
is the same as if the particles would simply go through each
other without any interaction. One may consider the system
as being made ofN noninteracting particles just bouncing
periodically off the ground. In that particular case each par-
ticle conserves energy separately and the system is therefore
characterized byN constants~or integrals! of motion, mean-
ing that its trajectory in phase space is bounded to a 2N
2N5N-dimensional subspace. Thus, ifN.1, the dimension
of the subspace covered by the system’s trajectory is smaller

than the 2N21 dimensions of the hypersurface of constant
energy. The conclusion is that not all points of the latter can
be approached by the system’s trajectory in phase space so
that the ergodic condition cannot be satisfied.

In the case of three-dimensional velocities, it is no longer
possible to consider that each particle in the system sepa-
rately conserves energy. This situation is similar to Fig. 1~b!,
where the balls are contained in a tube of cross section large
enough for the balls to pass each other and where the balls
can therefore have nonzero velocity components in the hori-
zontal direction.14 The only integral of motion in that case is
the energyE, and the system is reminiscent of the hard
sphere Boltzmann gas that has been shown to be ergodic, and
approaching equilibrium, for as few as two particles.15 The
fact that the system is already ergodic for two particles
shows that one does not need to approach the thermody-
namic limit N→` in order to model a gas in a box. This is
the main reason for choosing a small number of particles in
the example in Sec. II E. A convincing illustration of the
ergodicity of a low dimensional dynamical system, which is
similar to the one presented in this paper, is the case of the
motion of disks in a stadium-shaped billiard table.9

We shall conclude this section by noting that the noner-
godicity of the system depicted in Fig. 1~a! is primarily due
to the fact that all the balls in the system are of equal mass.
Thus, as pointed out by Sauer,6 it is possible to make the
system in Fig. 1~a! ergodic by simply choosing the mass to
be different for neighboring balls and for a number of balls
larger than two.16 The consequence is that collisions no
longer reduce to a simple interchange of velocities and one
may no longer consider the system as being made ofN non-
interacting particles just going through each other and indi-
vidually conserving energy. Again there is only one~the total
energy! and notN integrals of the motion and the system is
ergodic.

The interested reader may find the historical bibliography

Fig. 1. System of hard balls in an infinitely long tube under the influence of
gravity. ~a! The balls’ diameter and the tube diameter are identical: The
system is nonergodic.~b! The balls’ diameter is less than half the tube’s
diameter so that the balls can pass each other and can have horizontal
velocities: The system is ergodic and is analogous to the model presented in
Sec. II.
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along with the proofs of the major theorems on the subject of
this section in the review article by D. Ter Haar17 and in
Becker’s course.4

B. Equations of motion

During the time interval between collisions~see Sec. II C!
the particles are free falling. Their trajectories are thus deter-
mined by the integrated equations of motion for a particle in
a constant gravitational field,

z~ t !5z01v0zt2gt2/2, ~16!

vz~ t !5v0z2gt, ~17!

v'~ t !5constant, ~18!

wheret indicates the time interval since the last collision and
wherev' is the velocity of the particle perpendicular to thez
axis.

C. Collisions

In order to make the model as simple at possible, we con-
sider the atmosphere to be made of particles of equal mass
m.18 Two particles are supposed to interact~collide! when
their respective world lines in space–time intersect each
other. The collisions are elastic, i.e., both energy and mo-
mentum of the two-particle system are conserved.

One important difference between our model, where phase
space has one spatial and three velocity dimensions, and the
two ‘‘Gedankenexperiments’’ shown in Fig. 1 is that in the
latter the particles’ trajectories are fully deterministic while
in the former they are not. The reason that the collisions in
our model are nondeterministic is that there are six un-
knowns ~the velocity components of the two particles after
the collision! and only four equations~the energy conserva-
tion equation plus the three components of the momentum
conservation equation!. Thus, we need two more equations
in order to fully specify the post-collision trajectories of the
particles.

It is simplest to represent the collision using a spherical
coordinate system in velocity space centered on center of
mass velocityvc.m.[(v11v2)/2, wherev1 andv2 are the ve-
locities of the two colliding particles in the frame of refer-
ence of the static atmosphere. We defineu to be the angle
with respect to the vertical direction~the z axis!, f the lon-
gitudinal angle~in the horizontal plane!, andu5uv12vc.m.u
5uv22vc.m.u the particles’ speed with respect to the center of
mass. Figure 2 illustrates how the velocitiesu1,25v1,2

2vc.m. of two colliding particles must change during the col-
lision in order to preserve energy and momentum. Two pa-
rameters remain undetermined: the post-collision anglesf8
andu8. Since the model is rotationally invariant with respect
to the vertical direction, we choosef8 at random in the
interval @0, 2p# so that the only parameter one really has to
care about isu8.

In order to get a physical insight into the problem of
wisely choosingu8 in our model, let us come back to Fig.
1~b! and let us suppose that at any time both the heightz and
the velocityv, but not the horizontal position, are known for
all the balls in the tube. Given such an hypothesis, the post-
collision angleu8 is undetermined exactly as in our model.
For example, if we take the balls to be initially aligned ver-
tically and having no horizontal velocity component, they

must rebound vertically and the post-collision angle is there-
fore u850. On the other hand, if the same two balls are not
aligned vertically,u8 can take any value.0 and<p/2 de-
pending on the relative initial horizontal displacement of the
two balls.

The important point is that neither in the experiment de-
picted in Fig. 1~b! nor in our model are we actually inter-
ested in the kinematics of individual collisions. For this rea-
son we shall base our strategy for choosingu8 on statistical
considerations only. For example, we shall suppose that un-
der the effect of a large number of collisions, our system
relaxes toward a stationary state, i.e., toward a thermody-
namic equilibrium. Given that such a state is by definition
invariant under time reversal, we conclude that the differen-
tial probability distributiondP(u) of observing a collision
with a pre-collision angleu in the angular range@u,u1du#
must be equal to the differential probability distribution
dP(u8) of observing a collision with a post-collision angle
u8 in the same angular range.

Let us suppose that after some time the system has be-
come stationary under the effect of collisions and let us con-
centrate on a small interval on thez axis. Let f R(v) be the
particles’ velocity distribution function within that interval.
Now, since in our one-dimensional modelf R(v) depends on
the ~not yet specified! angular distributiondP, we may
choose f R in order to constraindP. Quite naturally we
choose f R to be an isotropic function of velocity in the
center-of-mass frame of reference. Because this assumption
implies that there are no privileged directions in velocity
space, it follows that the distribution of the particles’ relative
velocity m given by

f̃ R~m![
1

n E f R~v! f R~v2m!d3v, ~19!

is also isotropic, i.e.,f̃ R5 f̃ R(m), with m5umu. Now that we
have chosenf R we can compute the associated angular dis-
tribution dP(u). In order to do so, we make the experiment
of following a particle during a sufficiently long time that we
can draw a complete histogram in the angleu of the number
of collisions experienced by the particle. Of course this his-
togram is nothing but the representation of the distribution
dP(u) we are seeking. Strictly speaking we can’t perform
this experiment since the scattering law has not yet been

Fig. 2. Energy and momentum conserving collision of two particles of equal
mass in the center-of-mass frame. Arrows denote velocities before~full
arrow bodies! and after~dashed arrow bodies! the collision. Post-collision
quantities are primed. Note that because of the axial symmetry of the model,
the choice of the post-collision longitudinal anglef8 is arbitrary. The angle
u8 is chosen according to Eq.~24!.
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specified. However, if after each collision we select the post-
collision velocity of the test particle according to the distri-
bution f R , as if we were following a different particle after
each collision, we ensure that its trajectory in velocity space
is statistically representative of the trajectories of all other
particles, i.e., its motion is ergodic and the relative velocities
of all other particles are distributed according tof̃ R(m).
Now, since particles have to move relative to each other
along thez axis in order to collide, it follows that the average
number of collisions per time unitnc experienced by the test
particle is given by the sum of the downward and the upward
fluxes measured in the frame of reference of the test particle,
i.e.,

nc5E f̃ R~m!umzud3m. ~20!

If we write Eq. ~20! in spherical coordinates,

nc54pE
0

`

f̃ R~m!m3dmE
0

p/2

cosu sinu du, ~21!

it appears that the average number of collisionsdnc(u) ex-
perienced by the test particle in the angular range@u,u
1du# is given by

dnc~u!5S 4pE
0

`

f̃ R~m!m3dm D cosu sinu du

5constant3cosu sinu du. ~22!

The important conclusion one draws from Eq.~22! is that the
condition of isotropy for f̃ R(m) implies that the angular
probability distributiondP of observing a collision in the
interval @u,u1du# is given by the relatively simple expres-
sion

dP~u!}cosu sinu du. ~23!

We shall remember that this result is quite general as it is
based on only two assumptions:~1! the system has one spa-
tial and three velocity dimensions and~2! the relaxed veloc-
ity distribution is isotropic.

The probabilityP(u) of observing a collision with an ini-
tial angle with respect to the vertical direction<u is easily
found by integrating Eq.~23!. With the appropriate normal-
izations one obtains

P~u!512cos2 u. ~24!

Since in the relaxed state the probability distributions foru
and u8 have to be identical, Eq.~24! provides the rule for
choosingu8. Thus, choose a random numberP in the range
@0,1# and determineu8P@0,p/2# from Eq. ~24! using this
sameP.

The essence of the whole discussion in this section resides
in the conclusion that for the particles’ velocity distribution
function to relax toward an isotropic distribution, one has to
choose the post-collision velocity of two interacting particles
according to

uu1,28 u5uu1,2u, ~25!

u85arccos~AP! with P5random numberP@0,1#,
~26!

f85random numberP@0,2p#. ~27!

D. The algorithm

We have now assembled all the elements that enter the
algorithm, which goes as follows:

~1! Initiate the velocities$v0
i % and the positions$z0

i % of N
particles. Order the particles according to their height such
that z0

1,z0
2,¯,z0

N .
~2! Determine for each pair of neighboring particles, with

indices i and i 21, the time intervalt i until their next colli-
sion, i.e.,@according to~17!#

t i5
z0

i 2z0
i 21

v0z
i 212v0z

i , i .1,

where one should better sett i to a very large number if the
denominator becomes too small fort i to be computed cor-
rectly. Particlei 51 is special in that its neighbor is in fact
the ground level atz50. That particle hits the ground after a
time

t15
v0z

1 1A~v0z
1 !212gz0

1

g
.

~3! Find the shortest time intervaltmin in the set$t i.0%
~i.e., the time interval until the next collision in the system!
and store the indexI 5 i of the particle corresponding to that
minimum.

~4! Advance all particles in the system using the equations
of motion ~16!–~18! through the time intervalt5tmin .

~5! Perform the collision between particleI and particle
I 21 according to Eqs.~25!–~27!. After the collision, choose
particle I to be the one that has an upward directed velocity
in the center-of-mass frame, so that the spatial ordering of
theN particles remains unchanged. The caseI 51 means that
particle number 1 hits the ground. In this case we choose to
make the particle rebound and simply change the sign of its
vertical velocity component, i.e.,vz→2vz .

~6! Repeat steps~2!–~5! using the newly computed posi-
tions and velocities of theN particles until a given number of
collisions or a given time level has been reached.

This algorithm corresponds to the simulations of an er-
godic system similar to the one shown in Fig. 1~b!. It is a
simple and instructive matter to simulate the nonergodic
equivalent of the system shown in Fig. 1~a! by choosing the
initial particle velocities to have vanishing horizontal com-
ponents and by performing strictly one-dimensional interpar-
ticle collisions, such that particles simply exchange their ve-
locity as if they were going through each other. This system
does not lead to a static atmosphere stratified according to
the barometric formula unless very special initial conditions
are selected for the particles.2

E. The choice of the number of particles

The choice of the numberN of particles that one wants to
put in the system is a crucial one and is dictated by the fact
that an arbitrary initial distribution of particles will evolve
toward a static atmosphere~characterized by a scale height
H! in a time that is much longer than the characteristic free
fall time t f[(H/g)1/2. In order to keep the computation time
at a reasonable level, one must requiret f to be not too large
a number of timestmin , the latter being roughly the interval
between two collisions in the most dense region of the sys-
tem, i.e., close to the ground level atz50. An estimate of the
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typical collision timetmin is easily found by first noting that
the total number of particles in the system is directly related
to the number densityn(z) given by Eq.~15! via

N5E
0

`

n~z!dz5n0H, ~28!

which means that the average distance between particles near
the ground, atz50, is l (0)5H/N. Given that the average
velocity of particles in a Maxwellian gas can be estimated to
be of order (kT/m)1/2, it follows that tmin is of the order of
H/@N(kT/m)1/2# and thus

t f

tmin
;S H

g D 1/2N~kT/m!1/2

H
5N, ~29!

which means that computation time is roughly proportional
to N2 for a given total physical simulation time. From~29!
one also learns that even though afterN collisions a physical
time of ordert f can be reached, the system may still be far
from thermodynamic equilibrium~if it was out of equilib-
rium at the beginning of the simulation!, since on average the
particles in the system have experienced only one collision
during that same time period. Experiments in uniform sys-
tems show that five collisions per particle are needed for
thermalization to be practically complete7,8 so that one may
estimate that after 10N collisions the system will generally
be thermalized. However, one should remember that in our
nonuniform system the collision frequency of the uppermost
particle ~particle i 5N! is much smaller than the collision
frequency of the particle close to the ground~particle i 51!
so that 10N collisions may not be enough in some cases.

III. THE VIRIAL THEOREM

It is easy to compute the statistical relation between the
mean kinetic and the mean potential energy per particle in
our one-dimensional system.

From the identity

d

dt
~zż!5zz̈1 ż2, ~30!

where the dot represents the usual total time derivatived/dt,
and the equation of motion

v̇z5 z̈52g, ~31!

it follows that the average of the squared vertical velocity of
all particles in the system,

^vz
2&[

1

N (
i 51

N

~vz
i !2, ~32!

is given by

^vz
2&5 K d

dt
~zż!L 1^zg&. ~33!

It is easy to convince oneself that in a static system the time
average of the first term on the right in Eq.~33! must vanish
as the time interval used in the averaging process goes to
infinity. This leads to the following relation for the mean
kinetic and the mean potential energy per particle:

^Ez&[
1
2m^vz

2&5 1
2m^zg&[ 1

2^Epot&, ~34!

where overlining means that the temporal average of the cor-
responding quantity must be taken. If collisions are frequent
enough and if the numberN of particles is large enough~see
below!, the velocity distribution is Maxwellian with a tem-
peratureT, which is independent of height@see the discus-
sion leading to Eq.~14!#. The mean kinetic energy per par-
ticle ^Ekin& is therefore independent of height and can be
computed easily by weightingmv2/2 with the Maxwell ve-
locity distribution ~4!:

^Ex&5^Ey&5^Ez&5 1
3^Ekin&5 1

2kT. ~35!

We can thus conclude that if the numberN of particles in the
system is large enough and if one lets the system evolve long
enough, it will reach a stationary state where the mean total
energy per particlee[E/N is related to the temperatureT
via

e5^Ekin&1^Epot&5 3
2kT1kT5 5

2kT, ~36!

where the time averages that appear in Eq.~34! have been
evaluated using the velocity distribution function weighted
quantities in~35!. Using the same procedure, one shows that
in a system withs spatial dimensions the average potential
energy per particle must beskT.

IV. AN EXAMPLE

We start a simulation by distributing a set ofN particles
uniformly between the ground level and an arbitrary height
h. The particles have zero initial velocity, so that the average
total energy per particle is simplye5mh/2. Using Eq.~36!
we can immediately predict that the scale height of the at-
mosphere will beH5kT/(mg)5h/5. Figure 3 shows the
density profile of a simulated atmosphere usingN550 par-
ticles that have been let collide some 107 times during a total
simulation timetend51.433104t f . The density profile has
been obtained by counting the particles’ positions every 50

Fig. 3. The solid line corresponds to the density profile from a simulation of
an atmosphere usingN550 particles that have been allowed to collide some
107 times. The dashed line corresponds to the prediction based on the virial
theorem. The density has been obtained by counting all particles’ positions
every 50 collisions. Bin size isDz50.245H. The vertical lines in the upper
part inform on the theoretical average position of the 50 particles in the
system. For example, the lowest 49 particles are located most of the time
below levelz53.9 while the lowest 48 particles are mostly located below
z53.2, etc. One can also say that the average position of particlei 549 lies
somewhere betweenz53.2 andz53.9, etc. The separation between the
vertical lines also gives a measure of the local mean free path.
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collisions within bins of sizeDz50.245H. However, no po-
sitions have been retained during the first 53104 collisions,
to ensure that the memory of the initial condition is lost.19

Thus the density profile results from averaging over the dif-
ferent possible states visited by the system~a subset of the
microcanonical ensemble!. However, the averaging can also
be interpreted as the time average over the density profiles
recorded at different times. Note that since the system is
ergodic, the entire microcanonical ensemble will be visited
by the system within a lapse of time that depends on how
densely one requires the energy surface to be covered by the
system’s phase space trajectory. In practice we expect that
time to be longer than the longest correlation time in the
system. The latter is most likely the time separating two
successive collisions of the uppermost particle, that is, a time
of the order of^vz

2&1/2/g5t f . As already stated, the total
physical simulation time leading to the density profile in Fig.
3 is 1.433104t f , so that we may consider that temporal
averages are already a good approximation of the microca-
nonical averages.

Figure 3 shows that the simulation is in good agreement
with the prediction of the virial theorem up to levelz'5H
5h. Above that level, the measured curve departs more and
more from the theoretical prediction based on the virial theo-
rem. However, even with only 50 particles in the system, the
barometric formula is extremely well reproduced up to a
height corresponding to a falloff of the density, with respect
to the ground level, by more than three orders of magnitude.
Of course the fact that the simulated density profile departs
from the barometric formula for highz values is not an arti-
fact. Indeed, besides the statistical departures due to the
small count rates at large altitudes~count rate is of the order
102 per bin atz/H510!, the differences between the mea-
sured and the barometric density profile are a consequence of
the fact that the total energy is finite so that the phase space
domain that is accessible for the particle trajectories shrinks
with increasing height, until it vanishes completely above a
critical height that depends on the total energy of the system.
Naturally, the difference of the measured density profile
from the barometric formula is also due to the finite integra-
tion time. If a region in phase space is ‘‘visited’’ on a typical
time scale that is much larger than the integration time and if
the contribution of that region to the barometric distribution
function ~14! is important, the measured density profile will
of course differ from the barometric formula.

Figure 4 shows two things. The first noticeable thing is
that the clouds of dots representing the positions of two par-
ticles in a space–time plot clearly show that, as expected,
there is no temporal correlation between the subsequent po-
sitions of a given particle after a time interval of the order of
the total simulations time'23104t f , consistent with the
fact that the longest expected correlation time is of ordert f
only. Thus the two probability histograms shown on top of
both scatter plots in Fig. 4 won’t change significantly after
further increasing the simulation time. The second striking
aspect in Fig. 4 is that the probability distribution of a par-
ticle in the highly collisional domain of the atmosphere, de-
fined as the domain where the mean free path is such that
l (z)!H, is roughly symmetric about the particles’ average
height. This is the case for particlei 525 shown in panel~a!
for which the mean free path is roughly given by the sepa-
ration between the two vertical lines going through the cloud
of dots. The situation is completely different for the upper-

most particle in the simulation shown in Fig. 4~b!. For this
particle the mean free path is strongly anisotropic, being of
order H in the downward direction and̀ in the upward
direction. Of course, the large and anisotropic mean free path
is the reason for the strong asymmetry in the probability
distribution. However, despite the fact that the domainz/H
&5 is essentially explored by the uppermost particle in the
simulation alone and despite the strong asymmetry of its
probability distribution, the barometric formula is reasonably
well approximated up to a levelz/H'10, which is a clear
demonstration of the~well known?! fact that in the case of
the static atmosphere the ratio of the local mean free path to
the scale heightH is not a critical parameter of the problem,
as the collision time is always small compared to the infi-
nitely long time scale of a static system. This is generally not
so in the case of nonstatic atmospheres, like stationary stellar
winds, since in that case the relevant time scale, which is the
typical time it takes for the flow to travel one scale height, is
finite and may not be long compared to the collision time.
This is precisely the case of the solar wind problem.20

V. CONCLUSION

We have presented a simple one-dimensional kinetic
simulation that shows the formation of a gaseous atmosphere
stratified according to the barometric formula. The interest of
the model resides essentially in its coding simplicity and in
its didactical aspects, as it addresses various subjects at a
time, including interparticle collisions, phase space trajecto-
ries, the problem of ergodicity, and the virial theorem. It is
possible, though much more complicated, to generalize the
model to the astrophysically interesting case of a spherical
body of massM and radiusR0 surrounded by a gas. It is well
known2 that in such case a static equilibrium is not possible
because of the finite value of the escape velocity from the
body surface, which allows for the high energy particles in
the Maxwellian distribution~4! to escape to large radial dis-
tances causing the body to lose its atmosphere sooner or
later.21 However, if one compensates for the escaping par-
ticles by injecting new particles coming from below the sur-
faceR0 , it is possible to sustain a stationary flow.22 Depend-

Fig. 4. Time and position for two different particles registered every 1000
collisions, i.e., roughly every 1.4t f : ~a! corresponds to particlei 525 and~b!
to particlei 5N550. Note the different spatial scales used for the two plots.
The vertical lines through the clouds of dots are the ones discussed in Fig. 3
even though only the ones that are of interest for the given particle are
plotted here. The histograms thus represent the observed probability of find-
ing the associated particle at a given height, with the vertical line going
through the histogram indicating the average measured position of the cor-
responding particle.
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ing on the number density and the temperature atR0 , the
flow can become supersonic at some distance aboveR0 in
very much the same way as in Parker’s fluid theory of the
solar wind.20
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particles’ velocity can only take two valuesvx56vT . The velocityvT

represents a typical velocity of the particles in thex direction and is remi-

niscent of the thermal velocityA2kT/m for a Maxwellian gas. If we as-
sume that the system is ergodic we can easily compute the probability
w(n) of observing exactlyn particles with a speedvx51vT :

w~n!5
N!

n!~N2n!!

1

2N , ~37!

where 2N is the total number of possible states andN!/ @n!(N2n)! # the
number of possibilities of selectingn particles out ofN. For large values of
N, n, andN2n one can use Stirling’s formulaN!'A2pN NN e2N in Eq.
~37!. Thus, for small departuresn[n2N/2 of n from the mean value
^n&5N/2, and after some calculations~see Sec. 23 in Becker’s book—
Ref. 4—for the details!, Eq. ~37! can be transformed into

w~n!5
1

ApN/2
expS2 n 2

N/2D . ~38!

The probability for the system’s average velocityu^vx&u5vT n/N to be
smaller than an arbitrary fractiona is readily obtained by integrating Eq.
~38!,

w~u^vx&u,avT!5
1

ApN/2
E

2aN

aN

expS2 n 2

N/2Ddn

5
2

Ap
E

0

aA2N

e2x2
dx5erf~aA2N!. ~39!

This equation shows that there is a 4.731023 probability for the mean
velocity u^vx&u to be larger thanvTA2/N. The probability falls to an al-
ready ridiculously small 1.531028 for u^vx&.uvTA8/N, which shows how
insignificant the departures from the average behavior are. This is the
justification for ignoring such departures in our model.

15Ya. G. Sinai,Introduction to Ergodic Theory~Princeton U.P., Princeton,
NJ, 1976!.

16The case of only two balls of different massm1 and m2 in a one-
dimensional closed system is not ergodic. The numerical integration of the
equations of motion on a computer shows that the momentump of each
particle can only take a finite number of values. Although the exact num-
ber of accessible states depends on both the mass ratiom1 /m2 and the
initial conditions, it is clear that the ellipse of constant energyE
5(p1

2/m11p2
2/m2)/2 cannot be densely covered. Thus a minimum of three

particles and two species is probably needed for such a system to be an
ergodic one.

17D. Ter Haar, ‘‘Foundations of Statistical Mechanics,’’ Rev. Mod. Phys.
27, 289–338~1955!.

18If there were two, or more, different species of particles, collisions would
thermalize all species to the same temperatureT. Since in our model the
particles can pass each other, every speciesj would separately produce a
pressure profile of the barometric type@cf. Eq. ~1!# with scale heightH j

5kT/mjg. The result is that the relative concentration of light to heavy
particles increases with height. In Sauer’s model—Ref. 6@cf. Fig. 1~a!#,
where particles cannot pass each other, things are quite different. In that
case a sequence of particles, alternatively of massm1 andm2 , lead to an
atmosphere profile of the type given in Eq.~1! with an intermediate scale
height H5kT/(m̄g) with m̄5(m11m2)/2. It is therefore clear that Sau-
er’s model does not provide a good description of a real atmosphere where
species are distributed independently from each other following their re-
spective scale heightsH j . On the other hand, Sauer’s model provides a
good description of ionized atmospheres~e.g., stars’ atmospheres! where
the Coulomb force prevents positive and negative charged particles~for
example, protons and electrons! from separating.

19According to the discussion at the end of Sec. II E a number of collisions
larger than 10N5500 generally suffice for the system to become thermal-
ized.

20E. N. Parker, ‘‘Dynamics of interplanetary gas and magnetic field,’’ As-
trophys. J.128, 664–676~1958!.

21See J. H. Jeans,The Dynamical Theory of Gases~Cambridge U.P., Cam-
bridge, 1925!, in particular the chapter on planetary atmospheres. There
are numerous editions and translations of this classical book, e.g.~Dover,
New York, 1954!.

22In stars there is not a well-defined surfaceR0 , as in the case of nongaseous
planets like the Earth, separating the planet’s body from the atmosphere.
Of course, in the case of a star like the Sun, which is entirely made of gas,
the choice of the reference levelR0 is arbitrary. In a stationary situation
the net amount of gas crossing the spherical surfaceR5R0 per time unit is
the same as the mass loss rate of the star. In the case of the Sun the loss
rate is of the order of 10214 solar mass/yr only.
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A Simulation Method for Semicollisional PlasmasFilippo Pantellini and Simone LandiObservatoire de Paris, FranceMay 25, 2000Abstract. We present a one dimensional kinetic simulation model which can beused to simulate the stationary state of a semicollisional plasma. Results of a simplesimulation are presented and compared to Fokker{Planck calculations. The modelis particularly well suited for the diluted solar atmosphere.Keywords: Simulation, collisions, plasma, kinetic1. IntroductionIt is sometimes impossible to conveniently simulate a plasma usingeither 
uid (i.e. fully collisional) or collisionless model. The solar at-mosphere beyond the upper chromosphere and out to heliocentric dis-tances of the order of an astronomical unit is an example of such aplasma. The method we present in this paper is suited for stationarycon�gurations where the collisional mean free path for a thermal par-ticle is not too small compared to the typical gradients of macroscopicquantities (e.g. temperature, density, etc.) and can be seen as alterna-tive to Fokker{Planck and Monte Carlo simulations. Most basic aspectsof the model have been discussed elsewhere (Pantellini, 2000) for thecase of identical particles undergoing hard{sphere type collisions andshall not be repeated here. Only the extension of the model to thecase of charged particles undergoing Coulomb type collisions is brie
ydiscussed here. 2. The modelA qualitative sketch of the model is shown in Figure 1. The modelis based on the numerical integration of the one dimensional motion(along the z axis) of N protons and N electrons plunged in a z alignedgravitational �eld g and an external self{consistent charge neutralizingconstant electric �eld E which is determined experimentally by trying anumber of di�erent values. Particles are vanishing small, have non zeromass and three dimensional velocities. Whenever the world lines of anytwo particles encounter they may make an elastic collision according toa prescribed velocity dependent probability distribution P . The choicec
 2000 Kluwer Academic Publishers. Printed in the Netherlands.paper.tex; 25/05/2000; 12:14; p.1
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T=TL

protons

0

electrons

T=T

g

z = 0

z = L

EFigure 1. Schematic illustration of the model for a proton{electron plasma. Notethat the particles' velocity is 3D even though the model is spatially 1D.of P speci�es the character of the interaction. A probability distributionP / u�4, where u is the relative velocity of the two particles, mimicsa Coulomb type collision whereas a velocity independent P mimics ahard sphere type collision. Given the low velocity divergency of theprobability distribution for Coulomb collisions we set P (u) = 1 forrelative velocities u < u0 where u0 is typically of the order, or smaller,than half the typical relative velocities between the colliding particles.A particle hitting one of the boundaries at z = 0 or z = L is instantlyreinjected into simulation domain following a not yet speci�ed velocitydistribution function.3. An example: the thermoelectric �eldWe simulate a plasma in a g = 0 gravitational �eld using 80 elec-trons and 80 protons. A proton to electron mass ratio of 100 has beenused to speed{up the simulation. Particles reaching the boundaries arereinjected into the simulation domain according to Maxwellian velocitydistribution functions with temperatures T (0) = T0 and T (L) = TL, re-spectively. For moderate temperature gradients a constant electric �eldis generally good enough to ensure local charge neutrality everywherein the system. Now, if the plasma is su�ciently collisional such that theelectron temperature Te(z) and the proton temperature Tp(z) are equalwe expect the electric �eld to be related to the temperature gradientpaper.tex; 25/05/2000; 12:14; p.2
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A Simulation Method for Semicollisional Plasmas 3via (e.g. Chapter 7.9 in Golant, Zhilinsky and Sakharov (1980))eE = �� @@z (kTe) (1)where k is the Boltzmann constant and e the proton charge. This �eldis called the thermoelectric �eld as it is solely due to the temperaturegradient in the plasma slab. It is reminiscent of the Seebeck e�ect inmetals (�rst described by Seebeck in the early 1820s) which makes thefamiliar thermocouple thermometer to work. The �eld is ultimatelydue to the unbalanced frictional force exerted by the heavy protonson the electrons 
owing from the hot to the cold boundary and viceversa so that the appearance of the numerical constant � is primarilyan e�ect of proton{electron collisions. Figure 2 shows electron num-
Figure 2. Simulation of a plasma slab with imposed temperature gradient. Theelectron temperature (dashed pro�le) and the electron density have been obtainedby periodically sampling the position and the velocity of all electrons in the system.ber density ne (normalized to the average electrons density hnei) andelectron temperature Te (in units of T0) pro�les for a simulation basedon our model. The reason for the normalized temperature pro�le todi�er from the theoretical pro�le Te(z) = 1+0:2 z=L one would expectbased on the imposed temperatures at the boundaries is due to thefact that the typical collisional mean free path is �nite. As expectedboth the proton and electron pressures are equal and constant so thatthe only contribution to the charge neutralizing electric �eld is thethermoelectric �eld which we �nd to be E = �0:0895 (in units ofkT0=eL). On the other hand the temperature gradient, which can bemeasured on the �gure, is @Te=@z = 0:116=L. Using Eq. (1) we �nd�sim = 0:77 which compares quite well with the Fokker{Planck result�FP = 0:71 found by Spitzer and H�arm(1953).paper.tex; 25/05/2000; 12:14; p.3
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4 Filippo Pantellini & Simone LandiUnlike the thermoelectric �eld, which depends on the electron{protoncollisions, the electron heat 
ux is mainly supported by electron{electroncollisions. Accurate Fokker{Planck calculations lead to the followingexpression for the total electron heat 
ux (e.g. Chapter 7.10 in Golant,Zhilinsky and Sakharov (1980))qeFP = �3:16 nekTe�epme @kTe@z (2)where �ep is the collision frequency of an electron with the protons insystem. Replacing the collision frequency measured in the simulationand the temperature gradient of Fig. 2 into Eq. (2) one obtains aheat 
ux qeFP = �0:075 (in units of hneime(kT0=me)3=2) which, again,compares quite well with the heat 
ux qesim = �0:087 measured inthe simulation. This value di�ers substantially from hard sphere typecollisional heat 
ux, which for the observed temperature gradient canbe estimated (cf. most books on statistical physics) to be qeHS = �0:027.Even though a collisionless plasma is unable to support a temperaturegradient it can support a strong heat 
ux. The latter is due to the factthat the upward and downward traveling particles have di�erent tem-peratures given by the injection temperature T0 and TL, respectively.In that case the temperature is constant Te(z) = pT0TL but the heat
ux is roughly twice the Fokker{Planck value, i.e. qeNC = �0:167. Weconclude by noting that the Fokker{Planck results Eqs. (1) and (2)are valid in the limit of small values of the thermal Knudsen numberKT = (@Te=@z)�ee=Te where �ee is the average collisional mean freepath for an electron{electron collision. In the simulation of Fig. 2 we�nd �ee = 0:19L and KT � 0:02 which justi�es comparing our sim-ulation with results from Fokker{Planck calculations. We note thatincreasing the number of particles by roughly a factor 10 leads toKT = O(10�3) which is a typical value in the solar corona or the solartransition region. Simulations in this regime of the Knudsen number,including gravitational e�ects, will be published elsewhere.ReferencesF. G. E. Pantellini. A simple numerical model to simulate a gas in a constantgravitational �eld Am. J. Phys., 68(1):61{68, January 2000.V. Golant, A. Zhilinsky, and I. Sakharov. Fundamentals of Plasma Physics. JohnWiley & Sons, New York, 1980.L. Spitzer, and R. H�arm. Transport Phenomena in a Completely Ionized Gas Phys.Rev., 89:372{380, May 1953.
paper.tex; 25/05/2000; 12:14; p.4
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Abstract. In the solar corona the collisional mean free path λ for a thermal particle (electrons or protons) is of
the order of 10−2 to 10−4 times the typical scale of variation H of macroscopic quantities like the density or the
temperature. Despite the relative smallness of the ratio λ/H, an increasingly large number of authors have become
convinced that the heat flux in such a plasma cannot be described satisfactorily by theories which suppose that
the local particle velocity distribution functions are close to Maxwellian. We address this question through kinetic
simulations of the low solar corona by assuming that non thermal velocity distribution functions are present at
the base of the corona. In particular, we show that if one assumes that the electron velocity distribution functions
at the base of the corona have sufficiently strong suprathermal power law tails, the heat flux may flow upwards,
i.e. in the direction of increasing temperature. Using kappa velocity distribution functions as prototypes for non
thermal velocity distributions, we find that the heat conduction can be properly described by the classical Spitzer
& Härm (1953) law provided the kappa index is ∼> 5. This value is much smaller than the value previously found
by Dorelli & Scudder (1999). In addition we show that, unless extremely strong power law tails are assumed near
the base of the corona (i.e. κ < 4), a local heating mechanism (e.g. waves) is needed to sustain the temperature
gradient between the base of the corona and the coronal temperature maximum.

Key words. Sun: corona – methods: numerical – plasmas – conduction

1. Introduction

In this paper we present results from a one dimensional
kinetic model of a semicollisional electron–proton plasma
plunged in a gravitational field. The model is especially
suited for stationary (not necessarily static) flows and for
Knudsen numbers K = λ/H∼> 10−4, where H is a typical
scale of variation of a macroscopic quantity, such as the
density or the temperature and λ the distance between two
successive collisions of a typical particle in the system. A
simplified version of the model has previously been used
by Pantellini (2000) to simulate a one-species atmosphere
in a constant gravitational field. As expected, the result
was the formation of a stratified isothermal atmosphere
with an exponentially decreasing density known as the
barometric law. The fact that the barometric law could
be recovered was the first confirmation of the fact that,
despite being one dimensional, the model could correctly
reproduce known results. More recently, we implemented
a more sophisticated version of the model to simulate an
electron–proton plasma confined to the space between two
conducting plates held at different temperatures and not
subject to any external force (Pantellini & Landi 2000).

Send offprint requests to: F. G. E. Pantellini,
e-mail: landi@despace.obspm.fr

We could show that the thermoelectric field needed to
ensure quasi–neutrality in our simulation compares quite
well with results of Fokker-Planck calculations with all
possible interspecies collisions included (Spitzer & Härm
1953). These encouraging results motivated us to use the
model to address the question of the heat flux in the solar
corona.

The motivation for applying the model to the solar
corona stems from the fact that observations suggest that
above the transition region the typical thermal Knudsen
number KT ≡ λ ∂ lnT/∂z is of the order 10−3 or larger
(e.g. Dupree 1972; Ko et al. 1997; David et al. 1998;
Fludra et al. 1999). It has been demonstrated that such
a value, despite being much smaller than unity, is large
enough for the classical transport coefficients (obtained by
applying the Chapmann-Enskog formalism to the Fokker-
Planck equation) to become substantially modified be-
cause of the presence of high non thermal energy tails
in the electron velocity distribution functions (e.g. Shoub
1983; Scudder 1992b). Whence the necessity of using a nu-
merical model appropriate for the solar atmosphere above
the chromosphere-corona transition region where high val-
ues of the thermal Knudsen number ∼> 10−3 are com-
monplace. The difficulty with the coronal plasma (and
even for the solar wind plasma out to distances of the
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order of astronomical units) is that neither a collisionless
model based on the Vlasov equation nor a fluid model with
Spitzer-Härm transport coefficients provide a convenient
framework for investigation. Unfortunately, acceptance of
the postulate of the existence of non thermal electron ve-
locity distributions in the solar corona introduces an in-
finite number of additional free parameters required to
define the distributions at the boundaries of the system.
However, it is common practice to generalize the standard
Maxwell-Boltzmann velocity distribution function using
kappa distributions (see Eq. (18) below) which have the
substantial advantage of requiring one additional free pa-
rameter only (the κ index). Depending on the value of the
parameter κ the distribution departs more or less signifi-
cantly from a Maxwell-Boltzmann distribution due to the
presence of a more or less large excess of high energy par-
ticles. At least two studies have already discussed the fate
of electron kappa distributions in the solar corona under
the action of collisions. Anderson (1994) shows that colli-
sions do strongly affect density and temperature profiles
obtained using Scudder’s (1992b) collisionless approach.
After assuming that collisions do merely introduce first
order perturbations to the collisionless distribution func-
tion he finds that the actual perturbations are of order
unity or larger showing that collisions need to be treated
self-consistently. To a certain extent this has been done
by Dorelli & Scudder (1999) who let collisions affect the
first order term of the Legendre polynomial expansion of
the electron distribution function without assuming that
this term was small but with the assumption of all higher
order terms being zero. However, as we shall demonstrate
below, higher order Legendre terms cannot be neglected.
For example we find that collisions substantially mod-
ify the collisionless temperature profile (this has been
observed by Anderson 1994, as well) indicating that at
least the second order Legendre term must be retained
in the expansion. The approach of Lie-Svendsen et al.
(1999) is not substantially different from that of Dorelli &
Scudder (1999) since they also use a first order truncated
Legendre expansions for the electron distribution function.
According to Chapman & Cowling (1970), such a trunca-
tion is valid for KT � 1 (weak inhomogeneity assump-
tion) but, as pointed out by Shoub (1983) and Anderson
(1994), KT ∼< 10−3 is probably a more appropriate con-
dition for the first order truncated Legendre expansion to
remain a justified approximation, especially in the case
of non-thermal boundary conditions. Unfortunately, 10−3

is a typical value for the thermal Knudsen number KT

in the corona and the weak inhomogeneity assumption
may be regarded as questionable. Assuming much stronger
temperature gradients than the ones assumed in both the
Dorelli & Scudder (1999) paper and in the present work,
Lie-Svendsen et al. (1999) argue that the classical Spitzer
& Härm (1953) heat flux adequately describes the heat
flux in the lower solar corona if Maxwellian boundary con-
ditions are chosen at both ends of the simulated plasma
slab. All these Fokker-Planck based models eventually are
affected by additional limitations. For example, Dorelli &

Scudder (1999) use the standard hydrostatic equilibrium
equation as a closure whereas, following Shoub (1983),
Lie-Svendsen et al. (1999) use a contestable zero-gravity
pressure equilibrium condition. We do not need such a
fluid closure equation nor do we require the velocity dis-
tribution functions to be of any particular form. However,
the principal advantage of our model stems from the fact
that collisions are included self-consistently, even though
their treatment is strongly simplified with respect to the
complexity of collisions in a real plasma. We are unable to
evaluate precisely the importance of the simplified treat-
ment of the collisions on our results. However, the very
fact that the transport properties measured in test simula-
tions compare well with those predicted by Fokker-Planck
calculations suggests that our simplified way of handling
collisions allows us to retain most of the essential physics
occurring in a non-magnetized plasma.

Since the simulation model we use has never been de-
scribed in full, we shall devote the next section to doing
so. Non-essential details of the algorithm are presented
in Appendix A. A brief discussion of the differences and
similarities between our model and conventional Fokker–
Planck models is given in Appendix B. The derivation of
some relevant quantities (density, temperature and heat
flux) for a collisionless plasma is given in Appendix C.

2. The model

A qualitative sketch of the model is shown in Fig. 1. The
model is based on the numerical integration of the one
dimensional motion (one space and three velocity compo-
nents) of N protons and N electrons plunged in a constant
gravitational field and an electric field which is generally
needed to ensure quasi–neutrality everywhere in the sys-
tem. Particles are confined to the interval z ∈ [0, L] by
two conducting plates. Each time a particle hits one of the
plates, it is instantly reinjected into the system according
to a user defined prescription (e.g. elastic reflection, con-
tact with a heat bath, etc.). Whenever the world lines of
any two particles meet they may (or not) make an elas-
tic collision depending on the magnitude of their relative
velocity. The functional form of the velocity-dependent
collision probability strongly influences the macroscopic
behavior of the plasma (cf. 2.3).

2.1. Equation of motion

Both the gravitational field acceleration g and the electric
field E(z) = [E0 + δE(z)]ẑ are directed along the z axis
so that the equation of motion for a particle of species α
can be written as

dvz/dt = −g + qαE(z)/mα (1)
vz = dz/dt, vx = const., vy = const. (2)

where qα and mα are the charge and the mass of the parti-
cles of species α (electrons or protons). As can be seen on
the left hand side of Fig. 1, we assume that the electric field
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Fig. 1. Schematic illustration of the model for a proton-
electron plasma plunged in a z aligned constant gravitational
field. The particles’ velocities are 3D even though the model
is spatially 1D. E0 is a z aligned external electric field which
is generally needed to ensure local quasi-neutrality. In some
cases a constant electric field does not suffice for the system to
be neutral everywhere. In this case an additional small inter-
particle electric field is introduced (as shown on the left hand
side of the figure) to compensate for these polarization effects.
When two particles encounter each other, they may collide as
described in Sect. 2.3. If a particle of species α hits one of the
two boundaries at z = 0, L it is injected back into the system
according to prescribed velocity distributions f0,L

α (vz, v⊥) (cf.
Sect. 2.4) where vz is the particle’s velocity along the z axis
and v⊥ the absolute value of the particle’s velocity in a plane
perpendicular to z.

between adjacent particles is constant, eventually increas-
ing (decreasing) discontinuously by an arbitrary amount ε
at the position of each proton (electron) in the system as if
the particles where a succession of condensator plates at-
tracting or repulsing each other depending on the charges
on each plate. We then take the electrostatic field felt by
a given particle (or condensator plate) to be the mean of
the electrostatic field on either side of the particle. Thus,
if we number all the particles in the system from 1 (bot-
tom particle) to 2N (top particle) it follows that particle
i feels the electrostatic field E = Ēi ≡ (Ei +Ei+1)/2 dur-
ing the whole time interval δti until the earliest of the
three possible collisions between i and i± 1 and between
i − 1 and i − 2. Note that only a collision between parti-
cles of different charges may modify the topology of the
electrostatic field in the system, provided the interacting
particles exchange their relative position during the colli-

sion. Since the electrostatic field is piecewise constant, we
always integrate Eq. (1) using a constant E field.

2.2. The electric field

It is often possible to ensure a satisfactory charge neu-
trality in the system without the need for an interparticle
electrostatic field ε. In these cases, the same constant ex-
ternal electric field E0 can be used for all particles in the
system. Particles do not feel each other. However, in the
general case, a constant electric field is not good enough,
as the plasma may behave like a dielectric medium, where
polarization effects are no longer negligible. In that case,
the Poisson equation must be written in the form

∂D

∂z
≡ ∂

∂z
(ε0E + P ) = ρ (3)

where ρ is the charge density, ε0 the permittivity of the
vacuum, D the electric displacement and P the polariza-
tion. If P is negligible or (and) independent of z Eq. (3)
implies that the electric field E needed to ensure charge
neutrality (ρ = 0) is a constant E = E0ẑ. This may be
the case when the density or temperature gradients in the
system are small (Pantellini & Landi 2000). In cases where
polarization effects are not negligible, a better charge neu-
trality can be obtained by introducing a moderately strong
interparticle electric field ε as shown in Fig. 1. Let Ei de-
note the electric field between particles i and i − 1 and
let E0 be an external electric field, for example the gravi-
toelectric field (Rosseland 1924). Let us suppose that the
boundaries at z = 0 and z = L are conducting. It is well
known that in this case a charged particle is attracted by
the boundary as if there was a particle of opposite charge
in the symmetric position behind the conductor. In this
case, it is easy to see that the electric field E1 between the
conducting wall at z = 0 and particle number 1 as well as
the field Ei+1 above particle i must be given by

E1 = E0 + (q2N − q1)ε/2 (4)
Ei+1 = Ei + qiε, i ∈ {1, 2, ..., 2N}. (5)

We emphasize that to simulate a plasma, ε should be taken
to be small enough for the electrostatic energy between
neighboring particles |qiqi−1 εδz| (δz is a typical interpar-
ticle distance) to be much smaller than the typical kinetic
energy of the particles. Otherwise particles of opposite
charge become bounded and form atoms.

2.3. Collisions

A particle of the system shown in Fig. 1 can either collide
with another particle or with one of the two conducting
walls at z = 0, L. The former is elastic, i.e. both total mo-
mentum and total energy of the colliding particles are con-
served while the latter is not, as the walls reflect particles
according to a prescribed velocity distribution function re-
gardless of the particles’ velocities before the collision. Let
us discuss the case of a particle-particle collision first; we
shall come back to the particle-wall collision in Sect. 2.4.
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Two particles may collide if they simultaneously oc-
cupy the same position along the z-axis. During an elastic
collision between two particles (labeled 1 and 2) the veloc-
ity changes according to the well-known rules (e.g. Landau
& Lifshitz 1960)

v′1 =
m1v1 +m2v2

m1 +m2
+

m2

m1 +m2
un(u) (6)

v′2 =
m1v1 +m2v2

m1 +m2
− m1

m1 +m2
un(u) (7)

where primed and unprimed velocities represent pre- and
post-collision velocities, respectively and u ≡ |v2−v1|. We
note that the orientation of the unity vector n in velocity
space is not specified by the requirement of the total en-
ergy (1 equation) and total momentum (3 equations) to be
conserved during the collision, as the number of unknowns
is 6 (the three velocity components for both particles). Let
us use spherical coordinates to define the orientation of n
in velocity space with θ′ being the angle between n and
the z-axis and φ′ the angle between the projection of n in
the (x, y) plane and the x axis. The question is: how shall
we choose the angles θ′ and φ′ for any given collision in
the system? Given the rotational symmetry of our system
around the z axis, it is quite natural to choose φ′ according
to a uniform probability distribution in the interval [0, 2π[.
The answer is not as obvious concerning the angle θ′ since
the system is not spherically symmetric. In the case of
particles of equal mass (Pantellini 2000) the probability
distribution for θ′ is specified by the requirement that the
system (in its most simple configuration, e.g. without ex-
ternal forces and with elastic boundary conditions) must
relax towards a stationary state where the particle velocity
distribution function is isotropic. This condition implies
the post-collision angle θ′ should be chosen according to
(see Sect. II C in Pantellini 2000)

θ′ = arccos(
√
P ), with P = random number ∈ [−1, 1]. (8)

It is straightforward to convince oneself that the same
result holds in the case of particles of unequal mass.

Now, even though the orientation of the n in Eqs. (6)
and (7) must be chosen according to the above probability
distributions if one requires the relaxed particle velocities
to become distribute isotropically, one is still free to decide
whether or not two particles which encounter each other
effectively make a collision. If one decides that there isn’t
a collision, the two particles just go through each other
without changing their velocities. If one decides that there
is a collision, we compute the new velocities of the parti-
cles using Eqs. (6)–(8) to determine n. In general, one is
allowed to decide if two encountering particles collide de-
pending on the magnitude u of their relative velocity only.
The collision probability cannot depend on the orientation
of n as the relaxed state would no longer be characterized
by an isotropic velocity distribution.

Figure 2 shows two choices for the velocity depen-
dence of the collision probability R on the relative veloc-
ity u. One may interpret R as the collisional cross-section.

Fig. 2. Collision probability R for hard sphere type collisions
(solid line) and for Coulomb type collisions (dashed line) as a
function of the relative velocity u.

Accordingly, we call the caseR = 1, where particles collide
at each encounter, the “hard spheres” case and

Rαβ(u) =
{

1 if u < uαβ
(uαβ/u)4 otherwise (9)

the “Coulomb” case. In Eq. (9) the indices α and β indi-
cate that one is considering collisions between a particle of
species α and a particle of species β (e.g. electron-electron,
proton-electron, proton-proton).

A detailed comparison of the present model with other
numerical models based on the Fokker-Planck or the
Boltzmann equation (e.g. Shoub 1992) is beyond the scope
of the present paper. Qualitatively speaking, the justifica-
tion of the model stems from the fact that the scattering
cross-section due to the cumulated effect of distant en-
counters in a near-equilibrium plasma is proportional to
∝ u−4 (e.g. Chandrasekhar 1943). Accordingly, one may
interpret one collision in our model as representing the
cumulated effect of a large number of distant encounters
in a real plasma. Given that the most widely used (and
best justified) numerical model to simulate distant en-
counter dominated plasma are Fokker-Planck models, we
discuss more thoroughly the relation between our model
and Fokker-Planck models in Appendix B. In the paper
by Pantellini & Landi (2000) we show that using cut-off
velocities uαβ of the order of, or smaller than, the typical
relative velocity between α particles and β particles, our
model gives results that compare well with results from
Fokker-Planck calculations.

2.4. Boundary conditions

There are several ways of treating the problem of a par-
ticle hitting one of the boundaries at z = 0 and z = L.
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One may, for example, let the particle rebound elastically
by simply changing the sign of the z component of its
velocity. In this case, total energy is exactly conserved.
However, neither temperature gradients nor non-Max-
wellian distribution functions can be simulated in such
a system. Given that we are interested in situations where
both temperature gradients and non-Maxwellian distribu-
tions are present, we shall use more sophisticated bound-
ary conditions allowing the injection of an arbitrary ve-
locity distribution function. The prescription is as follows.
Each time a particle of species α hits one of the bound-
aries, it is reinjected into the system following a specified
velocity distribution function f0,L

α (v). This implies that in
a stationary state, and apart from statistical fluctuations,
the bulk velocity along z must be zero everywhere. We fur-
ther assume that particles are injected following isotropic
velocity distribution functions, i.e. f0,L

α (v) = f0,L
α (v),

where v = |v| is the magnitude of the velocity of the
injected particle. Accordingly, the theoretical flux of par-
ticles coming from the boundary with velocity v in the
magnitude interval [v, v+dv] and orientation with respect
to the z axis in the range [θ, θ + dθ] is given by

dF 0,L
α (v, θ) = v cos θ f0,L

α (v) 2π v2 sin θdθ dv.

This expression can be integrated separately for both the
velocity v and the angle θ, leading to the probability dis-
tributions Pv and Pθ of observing a particle entering the
system from the boundary at z = 0 with velocity V < v
and θ in in the range [0, θ]

Pθ(θ) = Aϑ

∫ θ

0

cosϑ sinϑdϑ = sin2 θ (10)

Pv(v) = Av

∫ v

0

f(V )V 3 dV (11)

where we have suppressed the species index α for readabil-
ity and where Av and Aθ are normalization constants such
that Pθ(π/2) = Pv(∞) = 1. Thus, each time a particle hits
the boundary at z = 0 it is reinjected following the prob-
ability distributions (10) and (11). This requires that the
expressions (10) and (11) be solved for θ and v . For exam-
ple, the angle θ is obtained by computing θ = arccos(

√
P )

where P is a random number in the range [0, 1]. Similarly
v = P−1

v (P ) where P is again a random number in the
range [0, 1] and where the function P−1

v is obtained by
inverting (in most cases numerically) Eq. (11). Of course
this procedure applies for both boundaries and all species.

3. Results

In the present simulations we consider a thin layer of a
fully ionized electron-proton plasma plunged in a uniform
gravitational field g = GM�/R2� where M� and R� are
the solar mass and the solar radius, respectively while G
is the universal constant of gravitation.

Following the reference paper by Dorelli & Scudder
(1999), we assume typical temperatures and densities
at the z = 0 boundary to be TM

0 ≡ 5 × 105 K and

ne(0) = nM
0 ≡ 108 cm−3 (we shall use these quantities for

normalization in the remaining of the paper). The typical
temperature gradient between the two boundaries at z = 0
and z = L is of the order of 1.4×106 K/R�. For a system
length L = 0.1 R� this leads to an upper boundary tem-
perature TL = 6.4× 105 K. These parameters correspond
to a thermal Knundsen number KT ≡ λee(∂T/∂z)/T (T is
the temperature and λee the mean free path for electron-
electron collisions) of the order 10−4 to 10−3, which is
typical for the low solar corona in coronal holes (e.g.
Ko et al. 1997; David et al. 1998; Fludra et al. 1999).
The Fokker-Planck electron-proton collision frequency for
such a plasma is given by Eq. (B.11). The same collision
frequency is obtained in our simulation model if the num-
ber of electrons (or protons) N is of the order N ' 1000
(cf. Appendix B), which is therefore a typical value for all
the simulations presented in the paper.

In order to reduce computational time a proton-to-
electron mass ratio mp/me = 100 has been chosen for
all simulations. This can be done provided the relevant
dimensionless parameter

γ ≡ g(mp +me)R�
2kBT

≈ gmpR�
2kBTM

0

(12)

is chosen to be the same as in the real world, i.e. γ ≈ 23.
We note that γ is the length R� expressed in units of the
isothermal scale height of the atmosphere. Thus if one as-
sumes protons to be less massive than in the real world,
one has to assume gravity g to be stronger than in the
real world (i.e. a fictitious Sun more massive then the real
Sun), so as to ensure γ remains unchanged. On the other
hand, as we shall see below, a thermoelectric field ET is
needed to ensure quasi-neutrality in a plasma with an im-
posed temperature gradient (cf. Eq. (17)). Since ET does
not depend on the mass of the particles, at least as long
as me/mp � 1, there is no reason to use the real mass
ratio in the simulation, the only requirement being the
condition me/mp � 1.

In simulations it is generally convenient to suitably
normalize all physical quantities. Thus, throughout the
remainder of the paper, we shall assume that velocities
are normalized to vM

0 ≡
√

2kBTM
0 /me, distances to the

slab thickness L, time intervals to tM0 ≡ L/vM
0 , electric

fields to EM
0 ≡ me(vM

0 )2/(eL) and heat fluxes to qM
0 ≡

men
M
0 (vM

0 )3.
Distribution functions and moments are constructed

by regularly sampling positions and velocities of the parti-
cles in the system. In practice, we sample positions in bins
of width 0.03125L and velocities in bins of width of the
order of 0.4 times the thermal velocity of the given popula-
tion. In a typical simulation, 103 particles encounter some
1010 times and the distribution functions are obtained by
sampling positions and velocities every 104 encounters.
This sampling interval is roughly the time it takes for a
thermal proton to cross the plasma slab, which is also an
estimate of the time memory of the system.

The just described procedure allows the construc-
tion of density or heat flux profiles which are not yet
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normalized. In order to do so one has to determine the
“real” number density (in cm−3) somewhere in the system,
for example at z = 0. This is impossible in a collisionless
stationnary and quasi-neutral system where the absolute
density is an arbitrary parameter which can be eliminated
from the equations (e.g. from the Vlasov equation). In
a collisional system, however, the number density is no
longer an arbitrary parameter given its intimate (roughly
linear) connection with, for example, the electron-proton
collision frequency. Thus, by recording the electron-proton
collision frequency somewhere in the system (in units of
1/tM0 and thus in s−1), say at z = 0, one can determine the
absolute density there, provided a relationship between
density and collision frequency has been previously estab-
lished in some way. Such a relationship may have been
established experimentally by measuring the collision fre-
quency in a real Maxwellian plasma as a function of tem-
perature and density. As we shall discuss below, and in
Appendix B, we much more pragmatically adopt the rela-
tionship provided by a Fokker-Planck model. In brief, our
strategy goes as follows: we choose a number of simulation
particles N such that the recorded collision frequency near
z = 0 corresponds to a typical Fokker-Planck collision fre-
quency for a plasma with an electron (or proton) number
density n(0) of about nM

0 = 108 cm−3. In practice we just
ensure that the Knudsen number in our simulation and
in the solar corona are the same, despite the fact that
the number of particles N in our system is ridiculously
small compared to the number of particles which popu-
late the solar corona. Fortunately, only 103 to 104 particles
are required to simulate the corona. A number N ∼ 105

would already require a computational power well beyond
present day computer capabilities.

In the following subsections we shall discuss the be-
havior of a slab of solar corona for three different kinds of
boundary conditions. The thickness of the slab L is taken
to be either 0.1 R� or 0.2 R�. The temperatures (based
on the second moment of the velocity distribution func-
tion) of the boundaries are adjusted to make the mean
temperature and the temperature gradient of the system
compatible with the previously prescribed plasma condi-
tions. No energy sources or sinks are present in the system.
Energy is injected at the boundaries in the form of kinetic
energy of the particles. The only way of transporting en-
ergy in the system is through a collisional (or collisionless)
heat flux which means that all other means (e.g. radiation,
waves, internal energy of the particles) are excluded.

The first subsection is devoted to the simulation of the
“classical” case with thermalized (Maxwellian) boundary
conditions. We shall see that even in this case the Spitzer
and Härm heat flux (Spitzer & Härm 1953) is not able
to sustain the prescribed temperature gradient over a dis-
tance larger than 0.1 R� or so. In the second subsection we
shall discuss the case of non thermal velocity distribution
functions at the lower boundary. These simulations show
that the prescribed temperature gradient can be sustained
without local heating provided the number of suprather-
mal particles is high enough. This number turns out to be

Fig. 3. Maxwell-Maxwell boundaries: in the top panel the elec-
tron density (solid line) and the temperature (dashed line) pro-
files are plotted. The dotted profile in the top panel represents
the Spitzer-Härm temperature profile assuming a spatially con-
stant electron heat flux. The dark square on the right indicates
the temperature of the upper thermostat, i.e. the tempera-
ture of the boundary at z = 0.1 R�. The bottom panel shows
the proton and electron heat flux. As expected, their relative
strength is of the order

√
mp/me. The Spitzer labeled profile

in the bottom panel has been computed via Eq. (14) using the
measured electron temperature and density profiles.

much higher than suggested in previous works (e.g. Dorelli
& Scudder 1999). In the last subsection we briefly discuss
the case of both boundary conditions being non thermal.
We consider this case as rather unphysical as it supposes
a source of suprathermal particles somewhere above the
base depending on the position of the upper boundary. We
discuss this case mainly because in the collisionless studies
(e.g. Scudder 1992b) and in the reference paper by Dorelli
& Scudder (1999) the nonthermal distributions “survive”,
by construction, across the entire slab of plasma.

3.1. Maxwell–Maxwell boundaries

For the simulations in this section we impose Maxwellian
distribution functions at the boundaries, i.e.

f0,L
α (v) ∝

(
mα

2πkBT0,L

)3/2

e
− mαv

2

2kBT0,L . (13)
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The normalized temperature and density profiles as well as
both the electron and proton heat flux profiles are shown
in Fig. 3. As expected, the electron to proton heat flux
ratio is roughly equal to

√
mp/me, which means that the

energy is predominantly transported by the electrons. The
dotted temperature profile in the upper panel has been ob-
tained by assuming that the electron heat flux qe between
the two boundaries is constant and that the heat flux is
given by the Spitzer & Härm formula (Spitzer & Härm
1953), which under the above conditions can be approxi-
mated by qe ∝ T 5/2

e ∂Te/∂z (cf. Eq. (14) and Appendix B).
From the figure, it appears that if the upper thermostat
is located at a distance of 0.1 R� from the surface, the
measured profiles are in good agreement with the Spitzer-
Härm predicted profiles, which seems to indicate that a
classical Spitzer-Härm heat flux can sustain the given tem-
perature profile up to a height of 0.1 R� without the need
for some sort of local heating mechanism (e.g. dissipation
of MHD waves). However, before accepting this statement
as definitive, we have to ensure that the simulated plasma
has the characteristics of the coronal plasma. In order to
do so, we have to compute the “real” density of the sim-
ulated plasma and compare it to the density of the lower
solar corona.

In a collisional plasma, the collision frequencies depend
on the density (the higher the density the higher is the rate
at which a particle undergoes collisions). On the other
hand, the gravitational timescale

√
L/g does not depend

on density, which means that density is not just a free
parameter as in the collisionless case (cf. Appendix C).
We may then estimate the “real” density of the sim-
ulated system from the measured electron-proton colli-
sion frequency. The measured electron-proton collision fre-
quency in the simulation is approximately νep = 717/tM0
near the bottom at z = 0. This means that in the av-
erage an electron collides 717 times with a proton dur-
ing the time interval tM0 . Based on the measured collision
frequency we may now determine the (unknown) num-
ber density n of the simulated plasma. In order to do
so we make a slight detour in the field of Fokker-Planck
models by observing that in Fokker-Planck models of a
close to equilibrium plasma, with temperature T , col-
lision frequency νFP

ep and density n are intimately con-
nected through Eq. (B.11) (cf. Appendix B). Thus, by us-
ing Eq. (B.10) with νep = 717/tM0 and setting νFP

ep = νep

in Eq. (B.11) we can estimate the density at the bottom
of our simulation region to be n0 = 1.01nM

0 ≈ 108 cm−3

which is an acceptable value for the low solar corona.
Similarly, we may compare the electron heat flux ob-

served in our simulation with the Fokker-Planck heat flux
for a fully ionized electron-proton plasma (e.g. Spitzer &
Härm 1953)

qSH = −3.19× 10−3 nek
2
BT

meν
FP
ep

∇T (SI units). (14)

Assuming, as above, that νFP
ep = νep with νep given by

Eq. (B.10) and taking the temperature gradient measured

in Fig. 3, one finds qSH = −1.0 × 10−3qM
0 , which is in

good agreement with the heat flux qobs = −0.9× 10−3qM
0

measured in the simulation.
We emphasize that even in the collisionless case there is

a heat flux flowing from the hot (upper) to the cold (lower)
boundary. The collisionless heat flux qNC can be computed
analytically by applying Liouville’s theorem (e.g. Landau
& Lifshitz 1960) to the electron and proton distributions
in constant gravitational and electric fields and subject to
the above-specified boundary conditions, i.e. TL = 1.28T0

with T0 = TM
0 . Given that the net particle flux is zero,

the neutralizing electric field is nothing but the familiar
gravitoelectric field (Rosseland 1924)

Eg =
gmp

2e

(
1− me

mp

)
. (15)

In general, for Maxwell-Maxwell boundaries the collision-
less electron heat flux is given by (see Appendix C)

qNC =

√
8
π

nLk
3/2
B

m
1/2
e

(
T0T

1/2
L − TLT

1/2
0

)
(16)

where the electron density at the upper boundary nL

is a complicated function of all other parameters, which
turns out to be nL = 0.085n0 for the present case. In
the particular case shown in Fig. 3 we have nL ≈ 0.1n0

from which we obtain a theoretical collisionless heat flux
qNC = −8.9× 10−3qM

0 which is much stronger a flux than
either qSH or qobs. The collisionless heat flux is an upper
limit for the electron transported energy flux.

As already stated, in the collisionless regime Eg is the
charge neutralizing field. However, in the collisional regime
the total electric field is generally made of the sum of Eg

and the thermoelectric field (see e.g. Golant et al. 1980;
Hinton 1983)

ET = −α
e

∂

∂z
(kBT ) (17)

where α is a constant of order unity. In our simulations,
α lies in the range 0.7 to 0.9 when uαβ in Eq. (9) is
smaller than the typical relative velocity between parti-
cles of species α and particles of species β (Pantellini &
Landi 2000). Fokker-Planck models including all kind of
collisions (electron-electron, electron-proton and proton-
proton) predict α = 0.71 (Spitzer & Härm 1953). The
thermoelectric field required to ensure quasi-neutrality in
the simulation of Fig. 3 is ET = −0.11, which is small
(but not negligible) compared to the gravitoelectric field
Eg = 1.17. The question one may now ask is whether the
above results depend on the position of the upper bound-
ary or not. Even if the exact position of the temperature
maximum is unknown it is likewise located somewhere be-
tween 0.2 and 1 R� above the solar surface (e.g. Ko et al.
1997; David et al. 1998). Without going up to such heights
where the zero mass flux hypothesis may no longer be
valid, we may just ask the question of what happens if
the upper boundary is located at twice the distance, i.e.
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Fig. 4. Maxwell-Maxwell boundaries: Same format as Fig. 3.

L = 0.2 R�. For coherence, the temperature of the up-
per thermostat has been chosen to be such that the tem-
perature difference between the two thermostats is twice
the value in the first simulation. The results are shown in
Fig. 4. Interestingly enough, they are not quite the same
as for the smaller system of Fig. 3. One observes that
the electron temperature gradient is too weak to smoothly
connect to the temperature of the upper thermostat (dark
square). The heat that flows from the upper to the lower
boundary is simply too weak to sustain the prescribed
temperature profile: a local heating mechanism (waves?)
is required in this case. The lower panel also shows that the
observed electron heat flux is rather badly approximated
by the Spitzer-Härm heat flux formula Eq. (14), suggest-
ing that even in the most favorable case of Maxwellian
boundary conditions, Eq. (14) does not provide a suffi-
ciently reliable estimate of the thermal heat flux in the
lower solar corona.

3.2. Kappa–Maxwell boundaries

In this section we discuss a run with Maxwellian boundary
conditions at z = L (as in the previous section) and kappa
velocity distribution functions

fκ(v) = Aκ

[
1 +

v2

(κ−3/2)v2
0

]−κ−1
(18)

Fig. 5. Kappa-Maxwell boundaries with κ = 4. The top panel
shows the density (solid line) and the temperature (dashed
line). Note that the temperature of the left boundary is only
0.49TM

0 (instead of TM
0 used in the Maxwellian case of Fig. 3)

to compensate for the strong collisional heating of the plasma
with height. The dashed line reproduces the temperature pro-
file of the thermal boundaries case shown in Fig. 3. The lower
panel shows the heat flux profiles for electrons and protons
as well as the total heat flux (protons + electrons). The colli-
sionless electron heat flux has been computed using Eq. (20).
Note that while the proton heat flows down the temperature
gradient (the “classical” behavior), the opposite is true for the
electrons.

with

Aκ =
n0

2π (κ−3/2)3/2 v3
0

Γ (κ+1)
Γ (3/2)Γ (κ−1/2)

as boundary condition at z = 0. In order to ensure energy
equipartition among species, we use the same κ index for
both protons and electrons and a velocity v0 (reminis-
cent of the thermal velocity in a Maxwellian distribution)√
mp/me smaller for protons than for electrons. The den-

sity and temperature profiles as well the vz distribution
profiles for electron and protons are shown in Fig. 5 for
the case κ = 4. The upper panel shows that the temper-
ature profile increases very rapidly away from the lower
boundary. The rapid rise in temperature is not the man-
ifestation of the collisionless gravitational velocity filtra-
tion mechanism first described by Scudder (1992a) but is
essentially due to collisional effects. This can be demon-
strated easily by estimating the temperature gradient due

Sur le �ux de chaleur dans la couronne

117



694 S. Landi and F. G. E. Pantellini: Temperature and heat flux in the solar corona

to the velocity filtration mechanism. According to Scudder
(1992a) the latter is given by

T∗(z) = T0

[
1 +

ψ(z)
(κ−3/2)kBT0

]
= T0

[
1 +

gz/v2
0

κ− 3/2
mp +me

me

]
(19)

where ψ(z) = mpgz+ eφg(z) = megz− eφg(z) is the total
potential energy of a particle with eφg(z) = (me−mp)gz/2
being the gravitoelectric potential energy (cf. Eq. (15)).
According to Eq. (19), the temperature rises linearly
with height provided 3/2 < κ < ∞. For κ = 4 and
T0 = 0.49TM

0 one has T∗(z) = T0(1+1.95z) and at z = 0.3
the temperature should be T∗(0.3) = 1.59T0 = 0.78TM

0

only. Such a temperature is well below the temperature
T (0.3) ≈ 1.1TM

0 observed in the simulation (see Fig. 5)
from where we conclude that velocity filtration is not the
principal reason for the rapid rise of the temperature pro-
file inward from the z = 0 boundary. Indeed, the strong
inward heating of the plasma is neither due to the gravi-
tational field nor to the temperature gradient imposed by
the boundary conditions. The heating is essentially due
to the effect of collisions on the κ velocity distribution in-
jected from the z = 0 boundary. Of course the heating
effect decreases with increasing κ and in the limit κ→∞
(the Maxwellian case) it disappears completely, as shown
in Fig. 5. Let us give a qualitative physical interpretation
of the strong temperature gradient near the kappa bound-
ary. If there were no collisions in the system, a collisionless
electron heat flux would flow from the lower to the upper
boundary (see Eq. (20)). However, the system is collisional
and collisions do always act in the sense of a reduction of
the heat flux. This is clearly visible in Fig. 5, where the
electron heat flux is seen to decreases inwards from the
right hand boundary over a distance of the order of 0.3L,
inducing a strong heating of the plasma over this very
same distance. Since protons become thermalized much
more rapidly than electrons, the former carry energy in a
“classical” way, i.e. protons transport heat down the tem-
perature gradient against the electron heat flux. We note
that the total (proton + electron) heat flux is constant
despite the fact that this is not so for individual species.
Thus energy is transferred from electrons to protons and
vice versa.

This peculiar behavior of the plasma near a kappa
boundary does not show on the temperature profiles in
Fig. 2 of Dorelli & Scudder (1999). The difference is due
to the restrictions imposed upon the general shape of
the electron velocity distribution functions by Dorelli and
Scudder. In their paper, the general form of the electron
velocity distribution function is a first order truncated
Legendre polynomial expansion. Thus, at any given height
z, the electron velocity distribution is a superposition of an
isotropic kappa distribution function and an odd function
of vz (the first order correction) which does not affect the
even moments of the velocity distribution function so that
the temperature is by construction determined by the zero

order distribution only, i.e. by the isotropic kappa distribu-
tion. Our simulation shows that restricting the Legendre
expansion to the first order term only does not allow for a
correct description of the temperature profiles especially
for boundary conditions with low κ indices. However, as
we shall see in the remainder of this section, and in the
next section, the unusual behavior of the heat flux (un-
usual from a fluid point of view) described by Dorelli &
Scudder (1999), remains qualitatively valid for small val-
ues of κ.

The average total heat flux observed in our simulation
is qobs ≈ 1.6× 10−3qM

0 and is mainly carried by the elec-
trons (cf. Fig. 5). The very fact that qobs > 0 means that
energy flows upwards, i.e. from the cold to the hot thermo-
stat. This may appear to be a surprising result as it seems
to contradict the second law of thermodynamics (cf. the
Introduction in Scudder 1992b). However, the behavior of
our system can be described by the Boltzmann equation
with a particular scattering operator, defined by the rules
outlined in Sect. 2.3, and must therefore obey Boltzmann’s
H-theorem (Boltzmann 1872) and all fundamental laws of
thermodynamics.

As a guiding reference for future discussion, we com-
pute the collisionless electron heat flux qNC by applying
Liouville’s theorem to the proton and electron velocity dis-
tribution functions imposed by the boundary conditions at
z = 0, L and the constraint of zero bulk velocity. Under
these conditions, the charge-neutralizing electric field is
precisely the gravitoelectric field Eg given by Eq. (15).
Straightforward application of Liouville’s theorem then
leads to

qNC =

√
8
π

nLk
3/2
B

m
1/2
e

√
T∗L TL√

T∗L +Bκ
√
TL[(

κ−3/2
κ−2

)
T∗L − TL

]
(20)

where the density nL = n(L) is a complicated function
of the other parameters of the problem (cf. Appendix C),
T∗L ≡ T∗(L) and Bκ is a κ dependent constant

Bκ ≡ Γ (κ−1/2)

(κ−3/2)1/2 Γ (κ−1)
· (21)

With the parameters of the present simulation (i.e. κ = 4,
TL = 1.28TM

0 ) one finds nL = 0.1nM
0 , and qNC = 5.4 ×

10−3qM
0 which, as expected, is stronger than the observed

collisional electron heat flux observed in the simulation
(Fig. 5). However, the general behavior of the system is
neither that of a strongly collisional plasma with a Spitzer
& Härm heat flux (1953) nor that of a collisionless plasma
since the electron heat flux intensity is both spatially vari-
able and substantially smaller than the collisionless value
qNC.

The vz velocity distributions for both electrons and
protons at z = 0.5L are shown in Fig. 6. From the figure
it appears that while the proton distribution is essentially
Maxwellian, the electron distribution has still substantial
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Fig. 6. Velocity distribution functions for kappa-Maxwell
boundary conditions (κ = 4) at height z = 0.5L for the case
L = 0.1 R� shown in Fig. 5. Velocities have been normalized
to the local thermal velocity vT ≡

√
2kBT/m of the relevant

species. The dotted curves are Maxwellians normalized to the
local temperature and density. The dashed curves are kappa
distributions with κ = 4 where n0 and v0 are determined by
the local density and temperature (cf. Eq. (18)).

suprathermal tails, particularly for large positive veloci-
ties vz∼> 2.5. The obvious reason is that the collisional
cross section for a suprathermal proton vs. thermal elec-
tron collision is only weakly velocity dependent given that
the relative velocity is always approximately ve, indepen-
dent of the proton’s velocity. Thus suprathermal protons
are efficiently thermalized by collisions with thermal elec-
trons. This is not so for a suprathermal electron since its
velocity with respect to either a thermal proton or a ther-
mal electron is, by definition, larger than ve. Given that
the collisional cross section decreases as the forth power
of the relative velocity it then follows that the thermal-
ization of the suprathermal electrons is much less efficient
than the thermalization of the suprathermal protons.

Let us conclude this section with a short discussion
of the simulation in the light of the Dorelli & Scudder

(1999) model (we shall call it the DS model). As already
stated, there are some qualitative similarities between the
behavior of the plasma observed in our simulations and
the behavior of the plasma in their model. However, the
very particular form of the distribution function in the
DS model implies that their temperature profiles do dif-
fer significantly from ours. As already stated, the differ-
ence stems from the fact that in the DS model the just
described collisional heating near a kappa boundary is
missing, essentially because by construction the tempera-
ture in the DS model is that of a κ distribution function
with the same κ index throughout the whole plasma slab.
The reason for the DS temperature profile not being the
collisionless temperature profile is due to the fact that
their electric field (which has not been computed explic-
itly by the authors) is not Rosseland’s gravitoelectric field
(cf. Eq. (15)), which happens to be charge neutralizing in
the collisionless case only. Despite these substantial differ-
ences, we do observe an upward-directed heat flux for the
κ = 4 in accordance with the DS model which predicts an
upward directed heat flux for κ∼< 10.

How sensitive are the above results on the rather arbi-
trary position of the upper boundary? Figure 7 shows that
doubling the size of the system and changing the tempera-
ture of the upper thermostat accordingly does not change
the conclusions in a very substantial way. The main differ-
ence is that the average temperature gradient is slightly
reduced with respect to the shorter system. As a conse-
quence, the temperature of the plasma near the upper
boundary is clearly below the prescribed temperature of
the boundary (dark square on the figure). Thus, even with
a kappa index as small as κ = 4 one has to invoke a lo-
cal heating mechanism to sustain the prescribed temper-
ature gradient up to the z = 0.2 level. For comparison, if
the system was entirely collisionless, the temperature near
the upper boundary would be as high as 1.7TM

0 , i.e. above
the temperature of the boundary.

The temperature profiles for different kappa indices of
the z = 0 boundary distribution functions are plotted in
Figs. 8 and 9. For each run the temperature of the z = 0
boundary has been adjusted to obtain equal mid-box tem-
peratures and temperature gradients. The collisional heat-
ing near the z = 0 boundary is clearly visible on all plot-
ted profiles except the κ = ∞ case. Figure 8 shows that
if the upper boundary (the source of energy) is located at
z = 0.1 R� the system is able to sustain the prescribed
temperature profile independently of the κ index. On the
other hand, Fig. 9 shows that if the upper boundary is
located at a height z = 0.2 R� the system is no longer
able to sustain the 1.4× 106 K/R� temperature gradient
unless some local heating is at work. Indeed, all tempera-
ture profiles reach the z = 0.2 R� level with a temperature
which is clearly below the value imposed by the boundary.
We note in passing that the steepening of the temperature
profiles above z ≈ 0.17 R� is not due solely to the vicinity
of the hot boundary but also to the collisionless gravita-
tional velocity filtration. The reason for the collisionless
filtration to become more efficient above z ≈ 0.17 R� is
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Fig. 7. Kappa-Maxwell boundaries with κ = 4. The format
of the figure is the same as in Fig. 5. Note that the upper
boundary is located at z = 0.2 R� and the temperature of the
upper thermostat is the same as for the Maxwell-Maxwell case
of Fig. 4. Again, the temperature of the lower thermostat is
0.49TM

0 , as in Fig. 5. The dashed line in the top panel repro-
duces the temperature profile for the thermal boundary case
of Fig. 4. As in the shorter system of Fig. 5, heat flows upward
in the temperature gradient.

that at such heights the density has become extremely
low (of the order 10−2 times the density at z = 0) and
collisions much less effective in thermalizing the electron
distribution function which still have suprathermal tails
at a non negligible level (cf. Fig. 6) going into the heating
via the collisionless gravitational velocity filtration mech-
anism. Of course gravitational filtration does not work in
the Maxwellian case, which is the reason for the tempera-
ture to grow more slowly for z ∼> 1.7 R� in the Maxwellian
case than in the κ = 4 case (cf. Fig. 7).

Even though the temperature and density profiles ap-
pear to be quite similar over the major part of the sim-
ulation domain for all cases shown in Figs. 8 and 9, the
transport properties are different. This is particularly ev-
ident for the heat flux. In Fig. 10 are plotted the values
of the total heat flux observed in the simulations for dif-
ferent values of the kappa index. The horizontal solid line
represents the total heat flux for the Maxwell–Maxwell
boundaries case, i.e. the classical Spitzer & Härm (1953)
heat flux for the given temperature gradient and plasma
parameters. For the kappa–Maxwell simulations, the en-

Fig. 8. Temperature and density profiles for kappa-Maxwell
boundary conditions. Each profile corresponds to a different
kappa index ranging from κ = 4 (dotted line) to κ =∞ (solid
line). The heat flux associated with each profile are shown in
Fig. 10.

ergy flows depend sensitively on κ; for κ∼< 4 the heat flux
is positive and flows from the cold to the hot boundary.
For κ = 5 the heat flux is negative but its intensity is
still significantly smaller than the classical Spitzer-Härm
value. For κ∼> 6 the heat flux is essentially Spitzer-Härm.
The index κo below which the energy flows in the upward
direction can be determined in the collisionless limit us-
ing Eq. (20) and the condition qNC ≥ 0 from where one
obtains

κ ≤ κo =
1
2

TL

TL − T0

(
1 + 2

ψL

kBTL
+ 3

TL − T0

TL

)
. (22)

Plugging the parameters of the above simulations into
Eq. (22) one finds κo ≈ 12 which is significantly larger
than the value we find in Fig. 10. We conclude by noting
that in the DS model, reversal occurs for κ ≈ 10 which is
also the value for which the collisionless heat flux reverses
in the kappa-kappa case (see Eq. (24) below). Our simula-
tions indicate that the effect of collisions on both the heat
flux and the temperature profile is much stronger than
suggested by the DS model.
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Fig. 9. Same as Fig. 8 for the case extending up to 0.2 R�.

Fig. 10. Heat flux measured in the simulations for kappa-
Maxwell boundaries shown in Fig. 8. Solid line represents the
Spitzer-Härm value for the Maxwell-Maxwell case (cf. Fig. 3).

3.3. Kappa–kappa boundaries

In this section we briefly discuss the case where the veloc-
ity distribution functions are kappa at both boundaries
z = 0 and z = L. The collisionless electron heat flux qNC

can be computed analytically using the general expres-

sions given in Appendix C

qNC =

√
8
π

nLk
3/2
B

m
1/2
e

1
Bκ

κ− 3/2
κ− 2

·√
T∗L TL

(√
T∗L −

√
TL

)
. (23)

As for the kappa-Maxwell case, one can determine the
limiting value κr below which heat flows in the direction
of the temperature gradient by setting qNC ≥ 0 in Eq. (23).
The result is

κ ≤ κr =
3
2

+
ψL

kB(TL − T0)
· (24)

For the parameters we use (which are the same as in the
Dorelli & Scudder 1999, paper) one finds κr ≈ 10 which, of
course, is precisely the value predicted by the DS model.
Indeed, the main effect of collisions in the DS model is
to reduce the intensity of the heat flux, not its sign. We
note that κr is always smaller than the heat flux reversal
value κo found in the kappa-Maxwell case by an amount
TL/2(TL−T0). This difference is due to the fact that heat
flows more easily up the temperature gradient if there is
no downward-directed suprathermal tail due to the kappa
boundary condition at z = L.

We have opted not to present simulations with kappa-
kappa boundary conditions for two reasons. The main rea-
son is that from a conceptual point of view it does not
make much sense to suppose that there is a generator of
kappa distributions located at an arbitrary height L above
the coronal base. How shall one choose this point? What is
the most appropriate value of the kappa index there? Our
approach consists of assuming that there is a mechanism
(e.g. shocks) capable of generating suprathermal tails at
the base of the corona, i.e. at a natural boundary of the
solar atmosphere. This is not so for the fictitious upper
boundary we suppose to be located at 0.1 R� (following
Dorelli & Scudder 1999) or 0.2 R�, given that the solar
corona extends out to distances of the order of many tens
of AU. Also, given the strong collisionality of the system,
we found the choice of the Maxwellian distribution to be
the most natural one (or the less artificial one).

Simulations with a kappa boundary located at much
larger distances, where the wind is supersonic and essen-
tially collisionless, may be realistic as non thermal distri-
butions are systematically observed there. Such simula-
tions may become possible in the near future.

We conclude this section by noting that in the DS
model the lower and the upper boundary conditions are
not independent of each other, as the zero order distribu-
tion function is supposed to be a kappa distribution, with
the same index κ, in all points of the system. The constant
kappa index assumption in the DS model finds its justifi-
cation in the fact that the kappa index is known to remain
unchanged in the collisionless case (Scudder 1992a). As a
consequence, the above discussion on the choice of the up-
per boundary condition for our simulation is irrelevant in
the DS model where the two boundaries cannot be treated
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separately due to the constant constant kappa index as-
sumption.

4. Conclusion

There we summarize the most important aspects arising
from our simulations. First of all, as already suggested by
other authors, it appears that due to their rapid thermal-
ization, on a scale much shorter than the density or tem-
perature scale of height, proton velocity distributions are
close to Maxwellian in the solar corona. Unless some non-
thermal local ion acceleration mechanism (e.g. some kind
of magnetic turbulence) is at work, the Spitzer & Härm
(1953) theory provides a good description of the proton
transport properties in the corona. This seems not to be
the case for the electron velocity distributions which, if
not Maxwellian at a given height (at z = 0 in the simula-
tion), remain non Maxwellian over distances greater than
the scale of height of macroscopic quantities. More specifi-
cally, if the electron velocity distributions have suprather-
mal tails, there is no hope for the Spitzer-Härm theory
to provide the correct value of the electron heat flux. On
the other hand, heat flux density and temperature pro-
files cannot be described by Scudder’s collisionless model
either (Scudder 1992a). This has been demonstrated by
Anderson (1994), who also showed that the effect of colli-
sions on the velocity filtration model is not a minor effect,
which means that linearized collisional operators are in-
adequate for the description of the transport properties
in the corona. Dorelli & Scudder (1999) tried to overcome
this difficulty by expanding kappa distributions in terms
of Legendre polynomials. This approach has the advan-
tage of not requiring the first order Legendre term f1 to
be small compared to the zero order term f0. However,
the limitation of the development to the first order term
only turns out to be too restrictive because of the strong
up-down anisotropy of the problem. In particular, the
temperature profiles cannot be conveniently described us-
ing a Legendre expansion truncated after the first order
term, given that the latter does not directly contribute
to the temperature. This is not very surprising. Anderson
(1994) already suggested that the collisionless tempera-
ture profile is strongly modified by collisions (see Fig. 4 in
his paper). Here we show that the collisionless tempera-
ture profiles of kappa distributions are strongly modified
by collisions and that the effect is strongest close to the
boundaries where the kappa distributions are artificially
maintained (the z = 0 boundary in our simulations). The
simulations show that the collisional heating of the plasma
near a kappa boundary increases with decreasing kappa
index. The scale height of the collisional heating is deter-
mined by the relaxation length of the electron velocity dis-
tribution function, which for coronal plasma conditions is
much shorter than the assumed temperature scale height
[(∂T/∂z)/T ]−1 ≈ 0.4 R�. The heating of a plasma near
a kappa boundary could not be observed by Dorelli &
Scudder (1999) due to the limited impact on the temper-
ature that collisions are allowed to have in their model.

One of the key points of the DS model was to show that
the predictions of the collisionless gravitational velocity
filtration model (Scudder 1992a) for the corona are only
weakly modified by collisions. For example, for a given
coronal temperature gradient, heat flux reversal occurs at
the same kappa value whether collisions are included or
not, the only effect of collisions being a reduction of the
heat flux intensity. In reality, the effect of collisions on the
collisionless results happens to be much more destructive
than suggested by the DS model. We find that in the coro-
nal plasma, heat flux reversal already occurs at κ ≈ 4. For
κ = 5, the heat flux is already of the Spitzer-Härm type
whereas the DS model predicts strong departures from the
classical heat conduction even for κ ∼> 10. Our simulations
also suggest that velocity filtration alone is not capable of
sustaining the assumed coronal temperature gradient of
1.4 × 106 K/R� unless κ < 4. This means that unless
some extremely intense source of suprathermal electrons
exists near the base of the corona some local heating mech-
anism (e.g. waves) has to be at work between the base of
the corona and the coronal temperature maximum, which
we assume to be at a height z∼> 0.2 R�. Thus, gravita-
tional velocity filtration may be capable of sustaining the
observed temperature gradient without substantial heat-
ing, provided electron distributions near the coronal base
have strong suprathermal tails. Even if present observa-
tions of the corona do not allow us to exclude the presence
of strongly non thermal electron distributions at low alti-
tudes, it seems hard to imagine a mechanism (e.g. Fermi
acceleration, Fermi 1954) capable of sustaining such dis-
tributions given the high collisionality of the plasma. The
conclusion would eventually be different if kappa distribu-
tions were injected into the system from the top, i.e. from
the solar wind where non thermal electron velocity dis-
tributions are commonplace. However, this is much more
general problem which cannot be treated in zero mass flux
and plane parallel approximation used in this paper.

Appendix A: The algorithm

The structure of the algorithm for advancing the particles
of the system of Fig. 1 during a given time interval is
very similar to the algorithm described in Pantellini (2000)
for the case of hard sphere particles of equal mass and
no charge. The main difference is that the presence of
an electric field makes the integration of the equations of
motion slightly more complicated (not all particles feel the
same acceleration). In addition, a non negligible fraction
of the simulation time must be spent in computing the
charge-neutralizing electric field.

The algorithm can be summarized as follows:

1. Initialize the velocities {vi(t = 0)} and the positions
{zi(t = 0)} of N protons and N electrons. Order the
particles based on their height such that 0 < z1 < z2 <
... < z2N < L. Make an initial guess for the external
electric field E0 and eventually choose a non zero value

Annexe 7

122



S. Landi and F. G. E. Pantellini: Temperature and heat flux in the solar corona 699

for the variable ε (cf. Eqs. (4) and (5)) if polarization
effects are expected to be important;

2. Determine for each pair of neighboring particles, with
indices i and i − 1 and for i = 2, 3, ... 2N , the time
interval δti until their next collision. If particle i and
i − 1 do not collide in the future, we shall set δti =
∞. Also compute the time δt1 and δt2N+1 until the
next collision of the first and last particle with one of
the boundaries. The equations of motion to be solved
are Eqs. (1) and (2) with the electric field felt by the
particle i being Ei+qi ε/2, where Ei is recursively given
by Eqs. (4) and (5);

3. Determine the time interval δtmin = min{δti} until the
next collision in the system. Let I ∈ {1, 2, ..., 2N + 1}
be the index of the particle making this collision;

4. Advance all particles through the time interval δtmin;
5. Make the collision between particle I and particle I−1

if I ∈ {2, 3, ..., 2N} according to the prescriptions given
in Sect. 2.3. If I = 1 or I = 2N + 1 (particle-wall
collision), draw a new velocity vector for the particle
using, in particular, Eqs. (10) and (11);

6. If the system’s charge neutrality is not satisfactory, in-
crease or decrease E0 in order to reduce departures
from neutrality. E0 should not be corrected too often.
Ideally one should not update E0 before the system
has become stationary. This can be a very long time
since it is of the order of the longest macroscopic relax-
ation time. For a Maxwellian plasma, the characteristic
timescales could be

√
L/g or L/c, where c is the sound

speed. This step is rarely performed;
7. Repeat steps 2–5 until a given time level has been

reached.

The computational time needed to go through one cycle
is proportional to N . A more sophisticated version of the
algorithm allows us to make the computational time be
proportional to

√
N instead.

Appendix B: Comparison with Fokker–Planck
model

Let’s consider a relaxed system where N particles of
species α and N particles of species β are uniformly dis-
tributed in a box of dimension L. Let’s consider particles
which have relative velocities in the spherically geomet-
ric velocity-space element 2πu2dudµ, where µ ≡ cos θ (θ
being the angle between u and the z direction). The num-
ber of collisions per time unit experienced by a particle of
species α with particles of species β with relative velocities
near u is then given by

dναβ = u |µ|Rαβ(u)fαβ(u, µ) 2πu2dudµ (B.1)

where Rαβ is the collision probability function defined in
Eq. (9) and fαβ is the distribution function for the relative
velocities between α and β particles. If the distribution
functions for both species are Maxwellians with thermal

velocities vα =
√

2kBTα/mα and vβ =
√

2kBTβ/mβ, re-
spectively, one has

fαβ(u) =
1

π
3
2 v3
αβ

N

L
e−u

2/v2
αβ (B.2)

with v2
αβ ≡ v2

α+v2
β . Integration of Eq. (B.1) over all veloc-

ities and directions then gives the total collision frequency

ναβ =
4√
π

N

L

1
v3
αβ

∫ 1

0

µdµ
∫ ∞

0

Rαβ(u)u3e−u
2/v2

αβdu (B.3)

i.e.

ναβ =
1√
π

N

L
vαβΨ(ũ2

αβ) (B.4)

where ũ2
αβ ≡ u2

αβ/v
2
αβ and Ψ is the function

Ψ(x) ≡ [1− (1 + x)e−x + x2Γ (0, x)] (B.5)

with

Γ(0, x) =
∫ ∞
x

e−tt−1dt

being the incomplete gamma function of order 0. Sample
values for the function Ψ(x) are given in Table B.1.

Table B.1. Sample values for the function defined in Eq. (B.5);
x =∞ correspond to hard spheres collision.

x 0.125 0.25 0.5 1 ∞
Ψ(x) 0.03256 0.0918 0.230 0.484 1

Let us now consider the case of a thermalized and fully
ionized electron-proton plasma and let’s choose uαβ in
Eq. (9) by setting

uαβ = vαβ/
√

2 (B.6)

so that the dependency on Ψ is the same for all kind
of collisions (i.e. proton-proton, electron-proton, electron-
electron). For mp � me, we then have vee =

√
2ve,

vep ' ve and vpp =
√
me/mpvee which leads to the fa-

miliar relationship between the collision frequencies

νee =
√

2νep =
√
mp

me
νpp. (B.7)

It is common practice to define the collision frequency
ναβ as the rate of momentum exchange between particles
of species α and particles of species β. For isotropic dis-
tribution functions and elastic collisions one has (Golant
et al. 1980)

ναβ =
〈

∂

∂uk

[
ukν
∗
αβ(u)

]〉
(B.8)

where 〈...〉 means averaging over the relative velocities dis-
tribution Eq. (B.2) and ν∗αβ ≡ (N/L)u|µ|Rαβ(u) is the
collision frequency for the particles in the velocity-space
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element 2πu2dudµ. Carring out the integration, using the
collision frequency Eq. (B.4), leads to

ναβ =
2√
π

N

L
vαβ [1− (1 + ũ2

αβ)e−ũ
2
αβ ] (B.9)

= ναβ
2

Ψ(ũ2
αβ)

[
1− (1 + ũ2

αβ)e−ũ
2
αβ

]
. (B.10)

On the other hand, the Fokker-Planck electron-proton
transport collision frequency for a plasma with an elec-
tron density n and temperature T is known to be (e.g.
Golant et al. 1980)

νFP
ep =

ne4

3ε2
0m

1/2
e (2πkBT )3/2

lnΛ (B.11)

where

lnΛ = ln
[

12π(ε0kBT )3/2

n1/2e3

]
is the Coulomb logarithm. We emphasize that the colli-
sion rate given in Eq. (B.11) is based on the time inter-
val it takes for a thermal electron’s trajectory to become
strongly deflected by the protons in the system. After set-
ting νFP

ep = ναβ we find the number of electrons N needed
to simulate a plasma with a given Fokker-Planck collision
frequency νFP

ep to be

N =
1

24π
ne4 lnΛ
ε2

0k
2
BT

2

L[
1−(1+ũ2

ep

)
e−ũ2

ep

] · (B.12)

For typical coronal conditions, e.g. n = 108 cm−3 and
T = 5 × 105 K one has νFP

ep = 20.4 s−1. Thus, in order
to simulate a plasma slab of thickness L = 0.1 R� some
N ' 4000 particles are required. We note that the number
of particles needed to simulate a given plasma strongly
depends on the choice of uαβ in Eq. (B.6): the smaller
the ratio uαβ/vαβ the larger N and the heavier the sim-
ulation. One should therefore choose uαβ/vαβ as large as
possible remembering that when uαβ/vαβ∼> 1 the macro-
scopic characteristics of the plasma (e.g. heat conduction,
thermoelectric coefficient, etc.) are no longer those of a
Coulomb collision dominated plasma because of the large
number of hard-sphere type collisions involving all parti-
cles moving at relative velocities u < uαβ. The properties
of such a plasma may differ substantially from the prop-
erties of a real electron-proton plasma!

Appendix C: The collisionless limit

Let us consider a collisionless electron-proton plasma
plunged in a gravitational field g(z) = −∂φG/∂z, which
is not necessarily constant. At the boundaries, z = 0 and
z = L, particles are injected with kappa type velocity dis-
tributions with temperatures T0 and TL and kappa indices
κ0 and κL, respectively. Due to the unequal mass of elec-
trons and protons, an electric field E(z) = −∂φE/∂z is
needed to ensure local charge neutrality. The stationary

distribution function f(v, z) for particles of mass m and
charge q with a monotonical potential energy

ψ(z) = mφG(z) + qφE(z) (C.1)

can be computed using Liouville’s theorem, viz.

f (v, z) =
{
f0 (v, z) vz > −w
f∗0 (v, z) vz < −w (C.2)

where w2 ≡ 2 [ψL − ψ (z)] /m and

f0 =
(

m

2πkBT0

)3/2
A0Γ(κ0+1)

(κ0−3/2)
3
2 Γ(κ0−1/2)[

1 +
mv2 + 2ψ

(κ0−3/2)2kBT0

]−κ0−1

(C.3)

f∗0 =
(

m

2πkBT ∗0

)3/2
ALΓ(κL+1)

(κL−3/2)
3
2 Γ(κL−1/2)[

1 +
mv2 + 2ψ

(κL−3/2)2kBT ∗0

]−κL−1

(C.4)

and where we have set ψ(0) = 0 and ψ(L) = ψL. In
Eq. (C.4) T ∗0 is the temperature of the downward-traveling
kappa distribution at z = 0 which is linked to the temper-
ature TL = T (z) via (Scudder 1992a)

T ∗0 = TL

[
1− ψL

(κL−3/2)kBTL

]
. (C.5)

The problem has two unknown parameters, A0 and AL,
which are determined by the condition of zero bulk veloc-
ity and nL = n(L). The electric field profile is obtained
by imposing local charge neutrality. We shall show that
this field corresponds to the field required to make the
potential energy of protons and electrons to be equal (cf.
Eq. (C.14)).

Let χ (v, µ) be an arbitrary function of the absolute
velocity v and µ = cos θ, where θ is the angle between z
direction and the velocity. The mean value of this function
is then given by

〈χ〉 = 2π
∫ w

0

∫ 1

−1

dµv2dvχf0

+ 2π
∫ ∞
w

∫ 1

−w/v
dµv2dvχf0

+ 2π
∫ ∞
w

∫ −w/v
−1

dµv2dvχf∗0 . (C.6)

For example, the density is obtained by integrating of
Eq. (C.6) with χ = 1:

n (z) =
A0

2

[
1 +

ψ

kBT0 (κ0−3/2)

]−κ0+1/2

[1 +K (κ0−1, ξ0)]

+
AL

2

[
1 +

ψ

kBT ∗0 (κL−3/2)

]−κL+1/2

[1−K (κL−1, ξL)] (C.7)
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where

K (κ, ξ) ≡ 2√
π

Γ (κ+ 1)
Γ (κ+ 1/2)

∫ ξ

0

dx
(1 + x2)κ+1 (C.8)

and

ξ0 ≡
√

ψL − ψ
(κ0−3/2) (kBT0 + ψ)

(C.9)

ξL ≡
√

ψL − ψ
(κL−3/2) (kBT ∗0 + ψ)

· (C.10)

In the limit k → ∞ we have ξ → √
(ψL − ψ)/kBT and

K → G, the standard error function

G ≡ 2√
π

∫ ξ

0

e−x
2
dx. (C.11)

On the other hand the zero bulk velocity condition 〈vz〉 =
0 leads to

A0 = A

[
(κ0−1)κ0Γ(κ0−1/2)

(κ0−3/2)
1
2 Γ(κ0+1)

]
[
1 +

ψL

(κ0−3/2)kBT0

]κ0−1

(C.12)

AL = A

[
(κL−1)κLΓ(κL−1/2)
(κL−3/2)

1
2 Γ(κL+1)

]
[
1+

ψL

(κL−3/2)kBT ∗0

]κL−1(
T0

T ∗0

)1/2

. (C.13)

All the above calculations indicate that the density n(z)
only depends on the charge and mass of the particles via
the potential energy ψ(z) . Thus, if we use the same κ and
same boundary temperatures T0 and TL for both electrons
and protons the charge neutrality condition reduces to

mpφG + eφE = meφG − eφE (C.14)

which arises from where one easily computes the classical
gravitoelectric field (Rosseland 1924)

φE =
1
2

(mp −me)φG. (C.15)

The constant parameter A in Eqs. (C.12) and (C.13) is
determined by the condition n(L) = nL, i.e.

A =
2nL√
T0

1
(Bκ0/

√
T ∗L) + (BκL/

√
TL)

(C.16)

with

Bκ0 ≡
Γ (κ0−1/2)

(κ0−3/2)
1
2 Γ(κ0−1)

(C.17)

BκL ≡
Γ (κL−1/2)

(κL−3/2)
1
2 Γ (κL−1)

(C.18)

and where the quantity

T ∗L = T0

[
1 +

ψL

(κ0 − 3/2)kBT0

]
(C.19)

has been introduced.
We can now compute explicitly the higher moments for

the velocity distribution function Eq. (C.2). For example,

the parallel pressure (with respect to z) turns out to be

P (z) =
A0kBT0

2

[
1 +

ψ (z)
(κ0−3/2)kBT0

]−κ0+3/2

[1 +K(κ0 − 2, ξ0)]

+
ALkBT

∗
0

2

[
1 +

ψ (z)
(κL−3/2)kBT ∗0

]−κL+3/2

[1−K(κL − 2, ξL)] . (C.20)

If we impose κL = κ0 and T ∗0 = T0, using Eq. (C.7)
and Eq. (C.20), we obtain the well known result (Scudder
1992a)

T∗(z) = T0

[
1 +

ψ(z)
(κ− 3/2)kBT0

]
. (C.21)

Similarly we find the collisionless heat flux by setting χ =
0.5mv3µ in Eq. (C.6), whence

q =

√
8
π

nLk
3/2
B

m
1/2
e

√
T ∗LTL

Bκ0

√
TL +BκL

√
TL[(

κ0−3/2
κ0−2

)
T ∗L −

(
κL−3/2
κL−2

)
TL

]
. (C.22)

The heat flux for the Maxwellian case given in Eq. (16)
can be obtained in the limit κ0 → ∞ and κL → ∞.
Equation (20) is obtained in the limit κL → ∞ and
Eq. (23) by imposing κ0 = κL.
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Abstract. We present and discuss a completely self-consistent kinetic simulation of a steady state transonic solar type wind.
The equations of motion of an equal number of protons and electrons plunged in a central gravitational field and a self-
consistent electric field are integrated numerically. Particles are allowed to make binary collisions with a Coulombian scattering
cross-section. The velocity distributions of the particles injected at the boundaries of the simulation domain are taken to be
Maxwellian. As anticipated by previous authors we find that the transonic solution implies the existence of a peak in the proton
equivalent potential at some distance above the sonic critical point. Collisions appear to be the fundamental ingredient in the
process of accelerating the wind to supersonic velocities. For a given temperature at the base of the simulation domain
the acceleration efficiency decreases with decreasing density. The reason is that the plasma has to be sufficiently collisional
for the heat flux to be converted efficiently into plasma bulk velocity. Concerning the heat flux we find that even when in the
vicinity of the sonic point the collisional mean free path of a thermal particle is significantly smaller than the typical scales
of variation of the density or the temperature, the electron heat flux cannot be described conveniently by the classical Spitzer-
Härm conduction law; not even in most of the subsonic region. Indeed, in the simulations where a transonic wind forms the heat
flux has been found to strongly exceed the Spitzer-Härm flux, in opposition to recently published results from multi-moment
models. We emphasize that given the high coronal temperatures we use in our simulations (3 times the typical solar values) we
do not expect the results presented in this report to be uncritically transposable to the case of the “real” solar wind. In particular,
the quantitative aspects of our results must be handled with some care.

Key words. Sun: solar wind – stars: winds, outflows – plasmas – conduction – methods: numerical

1. Introduction

At all heights, from the bottom of the corona up into the in-
terplanetary space, the solar atmosphere is a permanently ex-
panding, out of thermodynamic equilibrium and fully ionized
plasma. During the 1950’s the recognition of the weak colli-
sionality of the solar wind conveyed some doubts concerning
the ability of fluid models to describe the solar atmosphere
conveniently. As a consequence Chamberlain (1960), largely
influenced by the theories on gas evaporation from planetary at-
mospheres, published the first kinetic model of the solar wind.
In Chamberlain’s evaporation model the wind is subsonic at
the Earth’s orbit in clear opposition with the supersonic so-
lution of the fluid equations proposed a few years earlier by
Parker (1958). During the early 1960’s in situ measurements
confirmed the supersonic nature of the solar wind and kinetic
models just fell in disuse for some time. In the early 1970’s it
became clear that Chamberlain’s erroneous prediction of a sub-
sonic wind was the consequence of having mistakenly assumed

Send offprint requests to: F. Pantellini,
e-mail: Filippo.Pantellini@obspm.fr

that the charge neutralizing electric field was the Pannekoek-
Rosseland field (e.g., Rosseland 1924). The latter is based on
the assumption of a static solar atmosphere which has been a
privileged working hypothesis since Laplace’s Traité de mé-
canique céleste, published in the early years of the nineteenth
century, but has been shown to be completely at odds with ob-
servations. After the definitive relaxation of the static approx-
imation for the electric field, kinetic models of the solar wind
were back on stage again (Jockers 1970).

The simplest, and most widely used kinetic models are the
so called exospheric models (e.g., Lemaire & Sherer 1971). In
these models the solar atmosphere is assumed to change from
fully collisional to collisionless at a sharply defined level called
the exobase. Above the exobase, conventional exospheric mod-
els assume a monotonically decreasing equivalent proton po-
tential Ψp (cf. Eq. (4)) and no protons coming into the sys-
tem from infinity, so that, by construction, all protons have
anti sunward directed velocities. For non pathological distri-
bution functions this means that the plasma bulk velocity at
the exobase is of the order of the proton thermal velocity, i.e.
of the order of the sound velocity. For example, 〈v〉 = vp/

√
π
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is the mean velocity of a proton population with Maxwellian
velocity distribution fM = n0(πv2

p)−3/2 exp[(v2
‖ + v

2⊥)/v2
p] trun-

cated for v‖ < 0 (subscripts ‖ and ⊥ refer to the radial direction
with respect to the center of the Sun). Since the typical veloc-
ity of a proton at the exobase is by construction of the order of
the radial bulk velocity, it follows that the exobase is located
at a heliocentric distance comparable to the distance r∗ where
the subsonic-supersonic transition is located (the sonic criti-
cal point). However, as demonstrated graphically by Jockers
(1970), the proton potential cannot be monotonic from deep
inside the corona, where the bulk velocity is supposed to be
small compared to sound speed and where static approxima-
tion may apply, out to infinity, where the wind is supersonic.
Jockers anticipated that on its way from the corona to infin-
ity a transonic wind must overcome a maximum in the proton
potential Ψp such that Ψp(rψ) > Ψp(∞), where rψ is the loca-
tion of the maximum. In two recent papers Scudder (Scudder
1996a,b) pushes a step farther by identifying the critical point
of Parker’s fluid model with the location of the maximum of
the proton potential energy Ψp. Based on that assumption he
derives a number of constraints on the possible radial varia-
tions of both the proton and the electron temperatures near the
sonic point. However, even though the existence of a transonic
wind seems to be intimately related to the existence of a peak
of the potentialΨp, there is no reason for rψ to coincide with the
sonic point of fluid theories unless very special, and therefore
unlikely, conditions are met there. For example, in the simula-
tions presented in this paper we do always find rψ > r∗. It can
be shown analytically that this is indeed the normal case for
radially decreasing temperature profiles provided T decreases
more slowly than r−1 (Meyer-Vernet et al. 2002).

In this paper we present self-consistent kinetic simulations
of a stationary solar type wind, where we concentrate on those
aspects which cannot be addressed by fluid theories such as
the electric field, the heat flux and the collisionality of the
plasma. We deliberately treat only the most simple case of
Maxwellian boundary conditions for the particles’ velocity dis-
tribution function. The effects of plasma instabilities and waves
are also not included in the model. Such additional “complica-
tions” may hide part of the fundamental physics of the accel-
eration process and shall be discussed elsewhere. In this re-
spect we do merely mention that the effect of resonant waves
on a hybrid (fluid + kinetic) solar wind model has been dis-
cussed by Tam & Chang (1999) who conclude that ions may
well be accelerated more efficiently by resonant waves rather
than by the radial electric field. A similar model has been
used by Lie-Svendsen & Leer (2000) to show that the two
temperature electron velocity distribution functions often ob-
served in the solar wind can be generated by Coulomb col-
lisions without the need of assuming the presence of non-
Maxwellain distribution in the corona. Olsen & Leer (1999)
and Li (1999) use a closed system of transport equations based
on an anisotropic bi-Maxwellian approximation for the velocity
distribution functions to simulate the solar wind from the lower
corona outward. Lie-Svendsen et al. (2001) extend the model
down to the chromosphere based on the argument that chro-
mosphere, transition region, corona and solar wind constitute
a coupled system. The system of equations used by these

authors is known as the 16-moment approximation (e.g.,
Demars & Schunk 1979) is a fluid-type model including trans-
port effects such as heat flow and viscosity and even Coulomb
collisions between interacting species. The main purpose of the
above authors was to reproduce as good as possible the char-
acteristics of the coronal plasma by including ad-hoc heating
functions supposed to mimic the local deposit of energy due
to plasma waves. If suitably chosen the heating functions can
reproduce the temperature profile and temperature anisotropies
which observations suggest to prevail in the solar corona (e.g.,
Esser et al. 1999). In many respects, our model is much more
limited than the above multi-moment models which include
most of the ingredients (e.g. radiation, plasma heating through
waves, collisions, etc.). However, these models are fundamen-
tally fluid models and many ingredients are not self-consistent.
Our model is kinetic and fully self-consistent, but neither waves
nor radiation and not even the lower layers of the corona are
taken into account. In addition, because of computational limi-
tations, we use an artificially low proton to electron mass ratio,
and an exceedingly high coronal temperature, so that transpo-
sition of our results to the case of the real Sun must be done
critically. One substantial difference between our results and
the results from the mentioned multi-moment models is that
we find that the electron heat flux in the corona is one or-
der of magnitude larger than the classical value predicted by
the Spitzer-Härm formula (Spitzer & Härm 1953), whereas the
multi-moment models find it to be of the same order. Of course,
both models are subject to their own limitations so that the
question of whether the heat flux in the solar wind is classical
or not appears to remain an open question.

Even though the physical parameters characterizing the
wind simulated in the following section do not correspond ex-
actly to those observed for the Sun, we shall refer to the simu-
lated wind as the solar wind and to the central star as the Sun.

2. The model

Details of the simulation model have been given in two previ-
ous papers (Pantellini 2000; Landi & Pantellini 2001) and shall
not be repeated here to full extent. The model is spatially one
dimensional, i.e. all fields depend on the heliocentric distance r
only. An equal number of protons and electrons are allowed to
move freely in the domain r0 < r < rmax, where r0 is the solar
radius and rmax is the outer boundary of the system located sev-
eral solar radii beyond the sonic point. The equations of motion
are those of a particle of mass m and charge q in a central grav-
itational field produced by a star of mass M and a radial, charge
neutralizing electric field, E(r), i.e.

d2r
dt2 = −

GM
r2 +

L2

m2r3 +
q
m
E(r). (1)

L ≡ mr × u⊥ = constant (2)

where G is gravitational constant, L the angular momentum of
the particle and u⊥ its velocity component perpendicular to the
radial direction. Two particles finding themselves simultane-
ously at the same radial distance r do either make an isotropic
elastic collision with a probability ∝ u−4r−2 or just go through
each other as if they were transparent. The u−4 dependence

Annexe 8

128



S. Landi and F. Pantellini: Kinetic simulations of the solar wind 771

of the collision probability mimics velocity dependence of the
scattering cross section for Coulomb collisions whereas the r−2

dependence accounts for the spherical geometry of the prob-
lem. The transport properties of such a plasma have been shown
to be very much the same as those of a Fokker-Planck plasma
(Pantellini & Landi 2001; Landi & Pantellini 2001).

3. Defining the simulation

The physical state of the solar corona at heliocentric distance
r0 (the lower boundary of our simulation domain) is charac-
terized by the dimensionless parameter γ defined as (kB is the
Boltzmann constant)

γ ≡ GM
r0

mp + me

2kBT0
≈ GM

r0

mp

2kBT0
≡ γp. (3)

The parameter γ is half the ratio of the escape velocity squared
to the protons thermal velocity squared v2

p0 ≡ 2kBT0/mp. For
a typical solar coronal temperature T0 = 106 K one has γ =
11.6. The fact that γ is larger than unity means that a typical
coronal proton is too slow to escape to infinity. On the other
hand, for coronal electrons at the same temperature one has
γe = 6.3 × 10−3 � 1, meaning that the vast majority of the
electrons would easily escape to infinity if gravity was the only
force field. The solar corona is thus characterized by γ & 1
and γe � 1. In order to reduce the required computational time
to an acceptable level we choose γp = 4 and γe = 10−2, instead
of the above values of the real Sun. This, means that we adopt a
rather high coronal temperature of 2.9×106 K and an artificially
low proton to electron mass ratio mp/me = 400. However, since
the two important constraints for a solar type atmosphere γp &
1, γe � 1 are satisfied we expect the simulations to provide a
fair approximation of the solar case.

The equations of motion Eqs. (1) and (2) are integrated for
N protons, and an N electrons in the radial distance range be-
tween r = r0 and r = rtop ≡ 51r0. The number N is determined
by the requirement of the collision frequency of an electron in
the system (near r = r0) being roughly equal to the Fokker-
Planck collision frequency of a plasma with an electron num-
ber density ne ≈ 108 cm−3, which is a typical figure in the solar
corona. The so calculated number N turns out to be of the or-
der 103 (Landi & Pantellini 2001). Each time a proton or an
electron hits the boundary at r = r0 it is injected back into the
system according to a non drifting isotropic Maxwellian veloc-
ity distributions with a temperature T0. Given that the protons
reaching the top boundary at r = rtop are generally either su-
personic or nearly supersonic most of it must be re-injected
into the system at r = r0. On the other hand, electrons reaching
the r = rtop boundary are injected back into the system either
at r = r0 or at r = rtop depending on what is needed to make the
electron flux to be equal to the proton flux (zero charge current
condition). The injection method ensures that there are always
N protons and N electrons in the system. The velocity distri-
bution of the electrons injected at the top boundary is chosen
to be a drifting bi-Maxwellian with radial and perpendicular
temperatures equal to the radial and perpendicular temperature
of the outgoing electrons. Finally, the drift velocity of the elec-
trons at r = rtop is taken to be equal to the drift velocity of the

protons measured at r = rtop. In case of a supersonic wind this
is just the average velocity of the protons escaping from the top
of the system. In a subsonic wind some protons have to be re-
injected into the system from the top. The temperature and the
number of the re-injected protons is then adjusted iteratively
until a coherent solution is obtained, in a manner similar to the
one used by Landi & Pantellini (2001) to simulate the static
corona. The electric field profile is adjusted iteratively, during
an initialization phase, until zero charge flux and local charge
neutrality is achieved in all points of the system.

4. Results

4.1. Effect of varying the coronal density

The number density n and the collisionality of the simulated
plasma is dependent on the number of particles N used in
the model. Figure 1 shows the results of 4 simulations which
only differ in the number N of simulated particles, i.e. N =
400, 784, 1600, 6400, the N = 400 run being the one with
the most tenuous (i.e. less collisional) atmosphere. The cor-
responding number densities at the base of the system are
n0[108 cm−3] = 0.8, 1.5, 3.6 and 13.4, respectively. The dif-
ferences between the 4 simulations are substantial in many
respects. The most evident difference is that the wind accel-
eration is much more efficient in the high density case, even
though the thermal Knudsen number KT ≡ λep|∂ ln Te‖(r)/∂r|
(where λep ≡ ve‖/νep is the electron-proton collisional mean
free path based on the electron-proton rate of momentum ex-
change νep (Landi & Pantellini 2001, Appendix B), and where
ve‖ ≡ (2kBTe‖/me)1/2 is the radial thermal electron velocity) is
much smaller than unity for all runs, ranging from 10−3, for the
densest case, to 10−2 for the most tenuous case. From the fig-
ure it appears that the two more tenuous cases do not even be-
come supersonic with respect to radial proton thermal velocity
vp‖ ≡ (2kBTp‖/mp)1/2 (which coincides with the fluid isother-
mal sound speed when Tp‖ = Te‖). The curves on the bottom
panel of Fig. 1 illustrate the effect of collisions on the proton
potential energyΨp. The latter results from the sum of the grav-
itational potential and a charge neutralizing electrostatic poten-
tial φ:

Ψp = −GMmp

r0

( r0

r
− 1

)
+ eφ(r) (4)

where e is the absolute value of the electron charge and where,
because of the finite extent of the simulation domain we choose
the level r = r0 to be the reference level for both the grav-
itational potential and the electrostatic potential, rather than
r = ∞. Thus Ψ j(r0) = 0 by construction. The decreasing
height of the potential barrier the protons have to overcome
as the plasma collisionality increases is evident. In the least
collisional case (dash-dot profiles in Fig. 1) the potential Ψp

is a monotonically growing function of r. However, increasing
the system’s collisionality beyond a given threshold makes the
potential Ψp become non monotonic, with the peculiar forma-
tion of a maximum a few solar radii above the bottom bound-
ary at r = rψ. As already stated in the introduction the exis-
tence of a maximum in the proton potential has been suggested
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Fig. 1. Flow velocity, Mach number and proton potential energy pro-
files for four different values of the number of particles N in the
system. From bottom to top the velocity profiles correspond to N =
400, 784, 1600, 6400, respectively. In all runs γ = 4 and mp/me = 400.
The normalizing velocity v0 is the proton thermal velocity vp(r0). The
Mach number is defined as the ratio of the radial bulk velocity of
the plasma divided by the proton thermal speed vp‖ ≡ (2kBTp‖/mp)1/2.
The normalizing energy Ψ0 is given by Ψ0 = GMmp/r0. Thus, as a
reference, if the charge and current neutralizing electric field was the
Pannekoek-Rosseland potential Ψp/Ψ0 ≈ 0.5 for r � r0.

some time ago by Jockers (1970). Scudder (1996a) pushed a
step farther by postulating rψ to coincide with the position of
the isothermal sonic point of Parker’s fluid theory. Figure 1
shows that when a maximum of Ψp exists, it is located above
the sonic point, in agreement with the theoretical predictions
(Meyer-Vernet et al. 2002). Figure 1 also shows that the low
density cases do neither produce a maximum in the proton po-
tential nor a supersonic wind, at least if terms of the parallel
temperature based Mach number. One may suspect that if the
Mach number was defined with respect to the mean temper-
ature T ≡ (T‖ + 2T⊥)/3 the flow would more easily become
supersonic at large distances because of the T⊥ ∝ r−2 depen-
dence implied by the conservation of angular momentum in a
collisionless plasma with negligible heat flux. In the end, how-
ever, given that in the collisionless limit and for r → ∞, one
has T‖ → const. (e.g., Meyer-Vernet & Issautier 1998), so that
T → T‖, asymptotically. As a consequence, the distant Mach

number does not depend on which of the two above definitions
has been used.

In summary, the main consequence of increasing the
plasma density beyond some threshold appears to be a reduc-
tion of the potential barrier the protons have to overcome in
order to escape to infinity, accompanied by the formation of
a local maximum in the Ψp(r) profile. As we shall see below
the formation of the maximum in the proton potential energy is
intimately related to the existence of both an outward directed,
and radially decreasing heat flux, and a radially decreasing tem-
perature profile. Both contribute in strengthening the outward
directed electric field E = −∂φ/∂r, thus facilitating the extrac-
tion of the protons. In this context we shall remember that if the
plasma was static (impermeable boundaries) with equal elec-
tron and proton temperatures, the charge neutralizing potential
φwould be the celebrated Pannekoek-Rosseland potential (e.g.,
Rosseland 1924)

φ(r) = φPR(r) ≡ GM
r0

mp

2e

(
1 − me

mp

) (r0

r
− 1

)
(5)

and the total potential energy of a proton would be a monoton-
ically increasing function of r

Ψp = −GM
r0

mp

2

(
1 +

me

mp

) (r0

r
− 1

)
(static limit)

asymptotically reaching the value GMmp/(2r0) which is much
higher than the values observed in the simulations (cf. bottom
panel of Fig. 1).

4.2. Wind acceleration

Let us now address the question of the wind acceleration mech-
anism. In order to do so we write the energy equation for
the species j for the case of a steady state and purely radial
wind. Indeed, the second moment of Boltzmann’s equation
(e.g., Endeve & Leer 2001) leads to the following expression

E j =
1
2

m jv
2
j + h j(r) + Ψ j +

q j

n jv j
(6)

where q j, n j, v j are the heat flux, density and bulk velocity of
the corresponding species and where we have defined the en-
thalpy per particle of the species j

h j(r) ≡ 3
2

kBT j‖ + kBT j⊥. (7)

We note in passing that the first moment of Boltzmann’s equa-
tion leads to Jockers’s Eq. (1.1) (Jockers 1970)

m jv j
∂v j

∂r
= −1

n

∂
(
nkBT j‖

)
∂r

− 2kB

r

(
T j‖ − T j⊥

)
− ∂Ψ j

∂r
· (8)

When applied to the electrons one may neglect the small terms
proportional to the electron mass me in Eq. (8) which then re-
duces to the usual expression for the electric field E

eE = − 1
ne

∂

∂r
(
nekBTe‖

) − 2
r

kB
(
Te‖ − Te⊥

)
. (9)
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Fig. 2. Proton and electron energy profiles obtained by evaluating
Eq. (6) for the N = 6400 simulation. Note how both, Ee and Ep are
separately constant over most of the simulation domain. The electro-
static profile −eφ is plotted as a reference.

But let us come back to Eq. (6). In all simulations Ee and Ep

are separately approximately constant over the whole simula-
tion domain (excepted for a small region near the r = r0 bound-
ary). This is shown in Fig. 2 for the N = 6400 case. At first,
this seems to indicate that the net energy exchanges between
protons and electrons are quantitatively small. This is not nec-
essarily correct. Indeed, it appears that the system does merely
organize itself in order to ensure a spatially constant proton to
electron energy density ratio throughout the system. The ratio
can be constant even if interspecies energy exchanges via colli-
sions are strong. A simple example of such a system consists of
a collisional proton-electron plasma under the effect a constant
gravitational acceleration field g. In this case the temperatures
of both, electrons and protons, must be equal, isotropic and spa-
tially constant. Further, the heat flux must vanish and the charge
neutralizing electric field is just the Pannekoek-Rosseland field
g(mp − me)/(2e) so that Ep = Ee = (5/2)kBT + g(mp + me)z/2,
i.e. Ep/Ee = 1, independently of the height z. On the other
hand, as we shall see below, in the spherically symmetric case
the heat flux (mainly conveyed by the electrons) is the domi-
nant source of energy for the acceleration of the wind. In order
to proof this affirmation it is useful to evaluate the mean energy
per particle 〈E〉 as a function of r. Averaging the contribution
of electrons and protons according to Eq. (6) leads to

〈E〉 ≈ 1
2

[
1
2

mpv
2 + h(r) +

GMmp

r0

(
1 − r0

r

)
+

q
nv

]
(10)

where the enthalpy term h(r) includes the temperature terms
from all species (electrons and protons). In order to obtain
Eq. (10) we made use of the fact that mp � me and that the pro-
ton and electron number fluxes are equal, i.e. npvp = neve ≡ nv.
As a reference, the number flux nv has been found to be of the
order 10−2ve0n0 in all runs. In particular for the N = 6400 case
we find nv = 1.2 × 10−2 n0ve0. The energy flux FE conveyed by
the wind through the spherical shell located at a distance r is
the product of the particles mean energy at that distance (after

Fig. 3. Relative importance of each term in Eq. (10) for the most dense
case N = 6400 (top panel) and the most tenuous case N = 400 (lower
panel). The dense case supports a transonic wind (the vertical line in
the top panel gives the position of the sonic point r∗) while the tenuous
case does not. From the comparison of the two figures it appears that
the wind acceleration is primarily driven by the heat flux term q/(nv).

deduction of their gravitational energy) times the number of
particles crossing the shell per time unit. Since the total number
density is equal to twice the number density of either species
the particle flux is a constant given by 8πr2nv and the energy
flux becomes

FE(r) = 8πr2nv
[
〈E〉 − GMmp

2r0

(
1 − r0

r

)]
· (11)

Figure 3 illustrates the relative importance of each of
the 4 terms in Eq. (10) as a function of the radial distance r
for the N = 6400 (top) and the N = 400 (bottom) run. Since
the gravity term vanishes at r = r0 and the bulk velocity v
is much smaller than the sound speed, only the enthalpy and
the heat flux term contribute to the total energy there. The rea-
son for the total energy being slightly larger in the low den-
sity case arises from the heat flux term q/(nv) being stronger
in that case. This is because at r = r0 we do not have control
over this term as we do for the enthalpy, which only depends
on the temperature imposed at the boundary. Interestingly the
run characterized by the largest heat flux term q/(nv) (which
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Fig. 4. Radial and perpendicular temperature profiles for 4 different
values of the N. Note the log-log axis of the top two panels.

does not necessarily mean that the heat flux q, or the specific
heat flux q/n are largest) is precisely the one where the wind
remains subsonic. This is particularly surprising in the light of
the fact that the velocity of the wind is clearly boosted by the
heat flux term given that the enthalpy profile is seemingly iden-
tical for the two cases. However, a strong heat flux term near
the bottom does not guarantee that the wind will be accelerated
to supersonic velocities. A sufficient amount of collisions is
needed to efficiently transform the energy transported outward
by the electron heat flux into bulk plasma kinetic energy.

Figure 4 shows that the radial electron temperature pro-
file Te‖ is essentially insensitive to the density while Te⊥ is not.
Indeed, in the collisionless limit the parallel and perpendicu-
lar temperatures are independent of each other and one should
observe Te⊥ ∝ r−2 in order to satisfy to the angular momen-
tum conservation law of individual particles (cf. Eq. (2)). As a
consequence, in the rigorously collisionless case, Te⊥ should
decrease by a factor 502 from bottom to top of the simula-
tion domain. Collisions do significantly contribute in limiting
this bottom to top perpendicular electron temperature gradient
which ranges from 10 to 30 depending on the value of N. On
the other hand, for all four cases the parallel temperature only
drops by a factor 3 from bottom to top, leading to strong tem-
perature anisotropies Te‖/Te⊥ (bottom panel in Fig. 4). This is
not particularly surprising as in the collisionless limit the par-
allel temperature of a plasma plunged in a potential field is
constant as long as the velocity distribution function is close
to Maxwellian.

We can now summarize the wind acceleration scenario
from a kinetic point of view. The natural decrease of the

temperature with distance (essentially due to the fact that in
the collisionless limit T⊥ ∝ r−2) implies the existence of a ra-
dial heat flux predominantly conveyed by the electrons. The
heat flux is transfered from the electrons to the protons which
become accelerated in the outward direction. Since the momen-
tum of the wind is mainly carried by the heavy protons (rather
than by the light electrons) the plasma as a whole becomes ac-
celerated in this way. This mechanism must be particularly ef-
ficient in the region located inside the spherical shell r = rΨ
(location of the maximum of Ψp) where the protons have to
climb uphill in order to escape from the potential energy well
(cf. Fig. 1). As already stated above, collisions contribute in
increasing the electric field strength. Since the electric field is
directed outward, increasing the electric field favors the extrac-
tion of the protons from the gravitational well by reducing the
height of the maximum in the proton potentialΨp. The fluid es-
timate of the macroscopic electric field E for a spherically sym-
metric electro-proton plasma can be obtained by differentiating
Eq. (6) for the electrons. Neglecting the small terms propor-
tional to me and taking advantage of the fact that Ee is approx-
imately constant (in particular if one compares it to the φ(r)
profile shown in Fig. 2) we then obtain

eE ≈ −kB
∂

∂r

(
3
2

Te‖ + Te⊥
)
− ∂

∂r

( q
nv

)
· (12)

This estimate is not as rigorous as the standard estimate based
on Eq. (8) since it is based on the assumption of a con-
stant Ee(r) profile. The equation has the advantage of high-
lighting the role of the heat flux in the shaping of the elec-
tric field profile. For radially decreasing temperature profiles
the first two terms on the right hand side of Eq. (12) are pos-
itive and favor the outward acceleration of the protons. They
are reminiscent of the thermoelectric effect (e.g., Pantellini &
Landi 2001). Given that q/nv has been seen to decrease with
distance for the two extreme cases shown in Fig. 3 it follows
that the third term on the right hand side of Eq. (12) is also
positive for all simulation. However, the contribution of the lat-
ter to the acceleration is significantly stronger in the N = 6400
case than in the N = 400 case, where the radial dependence
of q/nv is seemingly weak.

It is instructive to apply Eq. (12) to a a weakly collisional
system. In such a case the parallel temperature Te‖ is roughly
constant and the perpendicular temperature Te⊥ ∝ r−2. This
leads to the collisionless approximation

eE ∝ constant
r3 − ∂

∂r

( q
nv

)
(13)

where the constant is positive. From Eq. (13) it appears that
when the heat flux term is constant, or only weakly spatially
dependent, such that the first term on the right hand side of the
equation dominates over the second term, the electric field de-
creases faster than the gravitational field (i.e. E ∝ r−3). This is
the reason for the proton potential energyΨp to be a monotoni-
cally growing function of distance r in the N = 400 case shown
in Fig. 1. Increasing the number of particles in the system
makes the plasma more collisional and forces the perpendicu-
lar temperature Te⊥ to fall offmore slowly than r−2 (see Fig. 4)
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r = r0 r = 45 r0

Electrons

vk=ve0 vk=ve0

Fig. 5. Parallel electron velocity distribution functions (solid lines) in
arbitrary units at two different positions in the system, near the base
and in the supersonic region. Shown are results of the N = 6400 simu-
lation. The dashed lines represent Maxwellian distributions for which
the first three moments (density, mean velocity and temperature) are
those of the measured distributions. Velocities are normalized to the
electron thermal velocity ve0 = ve(r0).

making it harder for the gravitational force acting on a pro-
ton to overcome the electric force. Eventually, if Te⊥ decreases
more slowly than r−1, there must be a minimum distance be-
yond which the electric force on a proton overcomes the grav-
itational force and Ψp has a maximum. This is clearly the case
for the N = 6400 case shown in Fig. 4 where Te⊥ ∝ r−0.6. For
the N = 400 case the temperature profile is steeper, with an
average radial dependence given by Te⊥ ∝ r−0.9. Thus, even
though all profiles can be described by a power law which de-
creases more slowly than r−1 (on average over the simulation
domain) all profiles tend to steepen at large distances because
of the plasma tendency to become less collisional. Eventually
beyond some N-dependent threshold distance the Te⊥ profiles
becomes steeper than r−1 so that the formation of a maximum
of Ψp becomes impossible beyond this point. This is the case
for the N = 400 run. In the other three runs a maximum forms
below the point where the Te⊥ profile becomes steeper than r−1.
We can now reexamine Fig. 3 in the light of Eq. (12). Figure 3
already told us that the enthalpy profile is not very sensitive
on the plasma collisionality even though it contributes signifi-
cantly in strengthening the electric field according to Eq. (12).
The determinant contribution in accelerating the wind to super-
sonic velocities comes from the heat flux term q/(nv) which has
been seen to be much more sensitive on the plasma collisional-
ity. As demonstrated by Eq. (12), the heat flux term contributes
to the strengthening of the outward directed electric field, pro-
vided it decrease with distance. Figure 3 shows that the heat
flux term decreases for both simulations represented on the fig-
ure with the steepest profile being associated with the high den-
sity case which therefore produces the strongest electric field,
according to the last term on the right-hand side of Eq. (12).

For the N = 6400 simulation the parallel electron veloc-
ity distribution functions at the base of the system at r = r0,

qr
2
=(
q 0
r2 0
)

Fig. 6. Electron heat flux profile (solid line) and thermal Knudsen
number KT ≡ λep|∂ ln Te‖(r)/∂r| (dashed line) for the most strongly
collisional case N = 6400 normalized to q0 ≡ n0mev

3
e0, where ve0 is

the electron thermal velocity at the base of the system at r = r0. The
triangle on the heat flux axis indicates the heat flux expected near the
base of the system using the Spitzer-Härm formula (Spitzer & Härm
1953). The dot-dash line shows the −T 5/2

e‖ ∂Te‖/∂r law normalized to
the measured flux at r = r0.

and in the supersonic region at r = 45 r0 are shown in Fig. 5.
Since the collisional mean free path λ is proportional to v4 high
energy electrons are nearly unaffected by collisions on their
journey through the system. Thus, the velocity distribution of
the high energy electrons flowing downward is the imprint of
the upper boundary condition whereas the velocity distribution
of the high energy electrons flowing upward is the imprint of
the lower boundary at r = r0. On the other hand, the low en-
ergy electrons, which populate the core of the velocity distri-
bution function, are strongly affected by collisions. As a conse-
quence, at low velocities, the electron velocity distributions are
approximately isotropic Maxwellians which do not carry any
heat flux. Instead, the heat flux is carried by the high energy
electrons which are responsible for the asymmetry of the distri-
bution function. As illustrated by the profiles in Fig. 5 the heat
flux is due to a deficiency of downward flowing high energy
electrons near the lower boundary and to an excess of upward
flowing particles in the supersonic region.

4.3. Comments on the electron heat flux

Figure 6 shows the heat flux and the thermal Knudsen num-
ber KT measured in the N = 6400 run. One observes that
while it remains approximately constant in the supersonic re-
gion above the r ≈ 10r0 level, KT grows steeply in the sub-
sonic region, where it increases from 10−3 to 10−2. Since
KT . 2 × 10−2 in whole simulation domain, it is not particu-
larly surprising that the heat flux closely follows a T 5/2

e‖ ∂Te‖/∂r
dependence (dot-dash curve) as in the case of the classical
Spitzer-Härm heat conduction formula (Spitzer & Härm 1953).
This conclusion is misleading, since, despite the smallness of
the Knudsen number, the heat flux is strongly non classical. As
already pointed out by several authors in the past the classi-
cal heat conduction formulation breaks down either because
the heat flux intensity exceeds a value of the order 10−2q0
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(Gray & Kilkenny 1980), or because the Knudsen number is
larger than 10−3 (Shoub 1983), or because the flow velocity
is a significant fraction of the sound speed (Hollweg 1974;
Alexander 1993), or even because the electric field in the sys-
tem is of the order of the Dreicer field ED ≡ kTe/(eλep)
(Scudder 1996b). Indeed, in the N = 6400 simulation the elec-
tric field at the sonic point is E ≈ ED, reaching an intensity
E ≈ 8ED in the N = 1600 case. Concerning the heat flux in-
tensity, Fig. 6 shows that it is small enough for the the low heat
flux intensity condition established by Gray & Kilkenny (1980)
to be satisfied. One can therefore conclude that the heat flux in-
tensity is low enough for the plasma to be capable to support a
Spitzer-Härm flux. Let us now address the problem of the heat
flux in a flowing, and weakly collisional plasma. As discussed
by Hollweg (1974) and Alexander (1993) a non negligible frac-
tion of the of the energy is carried by a collisionless term of the
form qNC = (3/2)αnvkBTe where α is a positive numerical fac-
tor of order unity (note that the electron temperature has been
supposed to be isotropic by these authors). Given that colli-
sions are still relatively important in our simulations we make
the ansatz that the observed electron heat flux is made of the
sum of a classical (collisional) term (e.g., Braginskii 1965) qSH

and a collisionless term qNC

qe = qSH + qNC

= −3.16
nk2

BTe

meνep

∂Te

∂r
+

3
2
α nvkBTe (14)

where α is a positive constant of order unity whose numeri-
cal value depends on the assumptions of the specific heat flux
model (Hollweg 1974; Alexander 1993). As a guide, Hollweg’s
estimate of α for the solar wind are in the range 2.0 to 7.0
(Hollweg 1974). Equation (14) shows that the two heat con-
duction terms have an extremely different dependence on the
macroscopic moments of the plasma. The Spitzer-Härm heat
conduction does only depend on the temperature, and its radial
variation, while the collisionless term qNC depends on both the
electron number flux and the temperature (but not on the tem-
perature gradient). This situation is reminiscent of the heat con-
duction in a plasma confined to the space between two parallel
plates separated by a distance L at temperatures T0 and TL,
respectively (Landi & Pantellini 2001). If the plasma is domi-
nated by collisions the heat conduction between the two plates
just equal to qSH. However, if the plasma is sufficiently diluted
for a non negligible number of electrons to be able to pro-
ceed from one plate to the other without colliding with other
particles in the system, the heat flux is best described by the
collisionless approximation qNC ∝ n(T0T 1/2

L − TLT 1/2
0 ) which

(unlike qSH) is a function of the number density n. Figure 7
compares the Spitzer-Härm estimate and the collisionless esti-
mates of the electron heat flux with the observed heat flux for
the four simulations. All profiles in the figure have been ob-
tained using Te‖ in place of the temperature Te which appears
in Eq. (14). Even though Hollweg’s collisionless approxima-
tion is not expected to provide an accurate approximation of the
heat flux in the simulated systems, it appears that the measured
heat flux varies significantly from one simulation to the other,
in good qualitative agreement with the non collisional flux qNC

Fig. 7. Electron heat flux calculated using the collisionless approx-
imation qNC = (3/2)αnvTe‖ (top panel), the classical Spitzer-Härm
approximation qSH = −constant × T 5/2

e‖ ∂Te‖/∂r (middle panel). The
lower panel shows the heat flux profiles effectively measured in the
simulations. Fluxes are in arbitrary units, but the same normalization
has been used for all simulations.

obtained using Alexander’s model (Alexander 1993) to com-
pute α in Eq. (14) after replacing Te by Te‖. The Spitzer-Härm
prediction of an equal heat flux intensity for all four simulations
(based on the fact that the radial profiles of Te‖ are very similar
cf. Fig. 4) is completely at odds with the measured intensities.
But why is this so, despite the smallness of the Knudsen num-
ber? The answer is hidden in Eq. (14). Indeed, from Eq. (14),
after replacing Te by Te‖, it follows that the ratio of the two
contributions to the total heat flux is given by

qNC

qSH
=

3α
3.16

v

ve‖
1

KT
· (15)

From Eq. (15) it follows that the condition for the heat flux in
the system to be dominated by the classical term qSH one must
have KT � αv/ve‖. For example, at the sonic point one has
v/ve‖ = (me/mp)1/2 = 1/20 and KT ≈ 10−2 from where one can
estimate qNC/qSH ≈ 5α, which is substantially larger that unity
for any reasonable value of α. Thus, for the heat flux to be of
the Spitzer-Härm type in the vicinity the sonic point requires
the thermal Knudsen number to be larger than (me/mp)1/2. The
simulations suggest that this is not easily achievable because
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the driving of the wind to supersonic velocities does precisely
requires the plasma to be sufficiently collisional at the sonic
point. As already stated, the way around this restriction may be
the presence of an additional scattering mechanism (e.g. waves)
in the plasma. However, in that case the Spitzer-Härm formula-
tion of the heat transport would not be the relevant one anyway.
As already pointed out in the introduction recent multi-moment
simulations of the solar wind yield a close to classical elec-
tron heat flux (e.g. Olsen & Leer 1999; Li 1999; Lie-Svendsen
et al. 2001). The discrepancy may be due to the fact that physi-
cal conditions of the wind we simulate are quite different from
those used in these multi-moment simulations or, eventually, to
the fact that the heat flow equations in the multi-moment mod-
els are affected by the closure scheme. The simplified version
of the Coulomb collision operator used in our model or even the
one-dimensionality of the model may also contribute to the ob-
served discrepancy. The reason for the radial dependence of the
heat flux measured in the simulation (cf. Fig. 6) to be roughly
of the Spitzer-Härm type stems from the fact that the radial de-
pendences of both terms in Eq. (14) are quite similar for the
given temperature profiles. Indeed, if we replace Te by Te‖ in
Eq. (14) and use the fair approximation Te ∝ r−0.4 (from Fig. 4)
it follows that both qSH and qNC vary approximately as r−2.4.

4.4. Effects of varying the proton to electron mass ratio

Given the artificially low mass ratio in our simulations there
is a concern about the sensitivity of the results on the value
of mp/me. In order to address this question we show the same
simulation for two different values of mp/me in Fig. 8. The
other parameters are identical for both simulations , i.e. γp = 4
and N = 6400. In both cases the formation of a transonic wind
occurs, in association with the formation of a maximum in the
proton potential. However, the maximum’s amplitude is sub-
stantially higher, and less peaked, in the low mass ratio simu-
lation. The discrepancy is likely due to the fact that in the high
mass ratio case the scattering of the electrons in velocity space
by the protons is more efficient than in the low mass ratio case.
Indeed, the temperature ratio Te‖/Te⊥ reaches a value of 3 at
the upper boundary in the mp/me = 400 case (cf. Fig. 4) and
a value of 4 in the mp/me = 100 case. As a result the absolute
value of second term on the right hand side of Eq. (9) is signif-
icantly smaller in the high mass ratio case than in the low mass
ratio case. Since the sign of this term is negative it contributes
in reducing the the strength of the overall positive electric field.
From Fig. 4 one may argue that a similar argument applies to
the observation that the electric field strength increases with in-
creasing plasma density (i.e. with increasing collisionality) as
does effectively show Fig. 1.

Extrapolating these observations to mp/me = 1836 and N =
6400 one therefore expects the maximum of the proton poten-
tial to drop to an even lower level. The peak is expected to be
at least as marked as for the mp/me = 400 case.

5. Conclusion

From self-consistent kinetic simulation of a solar type wind we
find that, unless an efficient isotropization mechanism for the

Fig. 8. Dependence of the Mach number and the proton potential en-
ergy on the proton to electron mass ratio for the simulation with N =
6400. Even though the qualitative behavior is similar it appears that a
high mass ratio is in favor of a stronger acceleration of the wind. The
definitions for the Mach number and the normalizing energy Ψ0 are
the same as in Fig. 1.

electron velocity distribution (e.g. wave-particle interaction), or
some source of suprathermal electron distributions are invoked
(e.g. shock produced), the formation of a transonic wind is only
compatible with a sufficiently high collisionality in the vicinity
of the sonic point r = r∗. In oder words, the coronal density
must exceed a threshold density for the wind acceleration to be
sufficiently strong to become supersonic. Given the admittedly
oversimplifications in our model, combined with the fact that
the parameters we use are rather unrealistic (excessively high
coronal temperature and low mp/me ratio) makes it impossible
for us to specify an upper limit for the thermal Knudsen num-
ber at the sonic point r∗. We do merely show that the number
cannot be arbitrarily large, the limiting value most likely being
of the order unity, or less. As already stated, non Maxwellian
boundary conditions, feeding an excess of suprathermal par-
ticles into the system (e.g. kappa distributions) may help over-
coming the low Knudsen number condition. However, the exis-
tence of non thermal particle distributions rises the question of
their origin. We chose not to address this question and assume
Maxwellian boundary conditions which have the advantage of
not requiring the introduction of additional ad hoc parameters
into the model. Thus, in the absence of any electron scattering
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mechanism (apart from collisions), and unless special bound-
ary conditions are imposed at the base of the simulation do-
main, collisions appear to be the essential ingredient for the
wind to become accelerated to supersonic velocities, mainly
because collisions are necessary to convert the electron heat
flux into bulk energy of the plasma. The enthalpy gradient does
also contribute to the acceleration of the wind. However, the
acceleration associated with the radially decreasing enthalpy is
found to be weakly dependent on the plasma collisionality and
doesn’t seem to be the discriminating factor in the acceleration
of the wind to supersonic velocities.

In simulations where a transonic wind forms we find that
the proton potential has a maximum near (but above) the
sonic point. Typical values of the electric field near the sonic
point r∗ are found to be of the order of Dreicer’s field, or
larger. The presence of such strong electric field intensities
may contribute in making the electron heat flux depart from
the classical Spitzer-Härm formula (which requires the electric
field being much weaker than Dreicer) but the main reason
for the observed heat flux to depart from the Spitzer-Härm
prediction is due to the presence of a strong “non collisional”
heat flux qNC ∝ nvTe. The latter appears to contribute sig-
nificantly to the total electron heat flux, even in the region
where the wind velocity is much smaller than the sound speed.
We are aware of the fact that extrapolating the above results
to the “real” Sun is a perilous exercise. However, we do not
expect the qualitative behavior of a system with real coronal
temperature and real proton to electron mass-ratio to behave
in a substantially different way from the high density case
discussed in this paper. In particular, increasing the proton
to electron mass ratio from 400 to 1836 implies a factor two
increase in the electron thermal velocity, only. Given that
the electron thermal velocity at the base of the system is
already one order of magnitude larger than the escape velocity
for the mp/me = 400 case, not much difference is expected
in a system with twice this thermal velocity. The skeptical
reader may also argue that using a realistic mass ratio would
substantially modify the transport properties of the plasma.
This is certainly true, but we expect the modifications to be
small, essentially because neither the classical electron heat
flux qSH nor the collisionless heat flux qNC depend on the
mass ratio, at least as long as mp/me � 1. We expect the
excessively high coronal temperature used in our simulations
to be a more crucial limitation in the process of transposing
the above results to the solar case just because the pro-
ton thermal velocity and the escape velocity are of the same

order, i.e. √γp = O(1). Indeed, the coronal temperature of the
real Sun is roughly 3 times smaller that the value we use here.
This implies a factor

√
3 difference for the order unity quan-

tity γp. The impact is certainly non negligible from a quantita-
tive point of view but there aren’t any reasons for us to believe
that the qualitative aspects of our results do not apply to the
solar case. For instance, whether or not the collisionless heat
flux near the solar sonic point is really one order of magnitude
stronger that the classical Spitzer-Härm flux remains an open
question since this finding discords with recent results from
multi-moment models.
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Abstract. We present one dimensional molecular dynamics simulations of a two species, initially uniform,
freely evolving granular system. Colliding particles swap their relative position with a 50% probability
allowing for the initial spatial ordering of the particles to evolve in time and frictional forces to operate.
Unlike one dimensional systems of identical particles, two species one dimensional systems of quasi-elastic
particles are ergodic and the particles’ velocity distributions tend to evolve towards Maxwell-Boltzmann
distributions. Under such conditions, standard fluid equations with merely an additional sink term in the
energy equation, reflecting the non elasticity of the interparticle collisions, provide an excellent means to
investigate the system’s evolution. According to the predictions of fluid theory we find that the clustering
instability is dominated by a non propagating mode at a wavelength of the order 10πL/Nε, where N is
the total number of particles, L the spatial extent of the system and ε the inelasticity coefficient. The
typical fluid velocities at the time of inelastic collapse are seen to be supersonic, unless Nε . 10π. Species
segregation, driven by the frictional force occurs as a result of the strong temperature gradients within
clusters which pushes the light particles towards the clusters’ edges and the heavy particles towards the
center. Segregation within clusters is complete at the time of inelastic collapse.

PACS. 45.70.Mg Granular flow: mixing, segregation and stratification – 45.50.Tn Collisions – 02.70.Ns
Molecular dynamics and particle methods

1 Introduction

Granular materials are ubiquitous in the macroscopic world
[1]. The consequence of the inelasticity of the collisions be-
tween grains is that the standard fluid equations used to
describe a gas of atoms or molecules need to be modified.
Even for the simplest systems, the mathematical expres-
sions for the transport coefficients turn out to be much
more involved than the expressions for a system of elastic
particles. In addition, granular materials are often polydis-
perse. For example sand grains are generally characterized
by a broad range of particle sizes and shapes. Thus, the-
oretical models and numerical simulations based on gran-
ular systems of identical particles may be too limited to
describe a real system, even on a purely qualitative level.
On the other hand, systems of identical particles have the
non negligible advantage of being mathematically simple
while retaining many important features of real dissipative
systems.

One of the most spectacular consequences of the in-
elastic nature of collisions in a granular system is the so
called inelastic collapse. In the absence of energy injection
statistical fluctuations in an initially uniform system can
lead some regions to cool faster than others producing lin-
early growing density fluctuations which can be described

in the frame of continuum model theories [2, 3, 4]. In the
non linear regime the high density regions collapse produc-
ing clumps of particles where the collision frequency grows
to infinity[5, 6]. The instability is a long wavelength insta-
bility which is hardly avoidable in freely evolving systems
provided the number of particles in the system exceeds
some minimum value which very much depends on the
system’s characteristics [6, 3]

It is often acceptable to describe granular systems by
means of fluid equations derived from the inelastic Boltz-
mann equation using the Chapman-Enskog procedure [7,
8, 9]. Hydrodynamic models have been applied to the
case of inelastic particles in a constant gravitational field
[10, 11, 12]. These systems often behave non intuitively.
Hence, it is shown in [12] that a collection of inelastic par-
ticles confined to a vertical box with permanent injection
of energy from the base (e.g. by shaking the base of the
box vertically) the granular temperature profile is a non
monotonic function of height. The temperature decreases
near the bottom, goes through a minimum, and finally
rises indefinitely with height above the minimum.

It has been recently shown in [13] that during the
homogeneous regime of the temporal evolution of a one
dimensional system of identical particles the spatial or-
dering of the particles appears to play a crucial role in
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2 Filippo Pantellini, Simone Landi: Species segregation in one-dimensional granular system simulations

shaping the particles’ velocity distribution. Thus, works
[14], based on the so-called pseudo-Maxwell model, a ho-
mogeneous model where no spatial ordering is assumed by
construction, have been found to be unable to describe the
evolution of a system of inelastically interacting particles,
even during the homogeneous regime. The late evolution
of systems of identically spatially ordered particles has
been shown to be strongly affected by the development of
spatial correlations between the particles’ velocities even-
tually leading to an inelastic collapse [e.g. 2, 13].

One dimensional systems of identical particles behave
in a very peculiar way. Thus, in the elastic limit, the over-
all velocity distribution of the particles’ is not modified by
collisions. Colliding particles do merely exchange their ve-
locities and the system is not ergodic. Adjunction of just
one anomalous particle forces the velocity distribution to
relax towards a Maxwell-Boltzmann distribution.

In this paper we use molecular dynamics (MD) simu-
lations to investigate the evolution of a two species one-
dimensional, periodic, system of N point particles. N/2
particles have mass m1 = 1 (species 1) and N/2 particles
have mass m2 = 4 (species 2). The system is a proto-
type for more complex systems with broader mass distri-
butions. One important ingredient of the model is that
colliding particles swap their relative position with a 50%
probability allowing for the initial spatial ordering of the
particles to evolve in time. This introduces the possibil-
ity of species to stream with respect to eachother giving
frictional forces the opportunity to operate.

The restitution coefficient r, appearing in the collision
rules (12) and (13), is close to elastic such that the ther-
malization time is always much shorter than the cooling
time. As a consequence, the velocity distribution function
of both species are always close to Maxwellian, at least
as long as the species do not segregate. Such dissipative
systems are always linearly unstable with respect to the
so-called clustering instability. In one dimension the clus-
tering instability is a fluid instability which is found to
triggers the formation of non propagating spatial density
inhomogeneities at scales of the order 10πL/Nε, where
ε ≡ 1− r2 and L is the size of the system. The clusters of
particles which form due to the clustering instability are
characterized by a temperature profile which increases ex-
ponentially as a function of the particle index l away from
the center of the cluster (cf e.g. Figure 6). These strong
temperature gradients within clusters drive the light par-
ticles away from their centers towards the edges of the
clusters while the opposite happens to the heavy parti-
cles which tend to become concentrated in a very small
region near the center of the cluster. (cf Figures 4 and 5).
The species segregation is driven by the frictional force (7)
which points in opposite directions for the light and heavy
particles. At the time of inelastic collapse, fluid motions
may or may not be supersonic depending on whether or
not the number of particles N exceeds a critical number
of order 10π/ε. In order to avoid confusion, we do loosely
define the time of inelastic collapse in our simulations as
the time for which the molecular dynamic simulation is
essentially ”frozen”. By ”frozen” we mean that the total

energy and, consequently the fluid velocity profiles of the
system do not change significantly by doubling the num-
ber of collisions.

The paper is organized as follows. In Section 2 we in-
troduce the set of fluid equations whereon we base our
analysis of the simulation results. The numerical model is
presented in Section 3. Simulations with N = 19600 par-
ticles and 3 different values of the restitution coefficient
r are presented in Section 4, In Appendix A we develop
the linear theory of the clustering instability for a two-
species, one dimensional system. The collision frequency
for such a system in the homogeneous limit and close to
the thermodynamic equilibrium, is given in Appendix B.

2 Fluid equations for a mixture of two species

In the general case [see e.g. 15], the expressions for the
hydrodynamic transport coefficients describing a granular
gas with two species of inelastically interacting particles
are so involved that they are of little practical use to de-
scribe real systems. It is not even clear under which condi-
tions fluid equations are relevant for real granular systems.
However, over the years it has been shown that fluid equa-
tions are extremely useful to help understand results from
granular system simulations. Over the few last decades,
explicit expressions for the transport coefficients in 2 and
3 spatial dimensions have been published by various au-
thors. To our knowledge, expressions for the 1d case have
not been published until now, certainly because of the
non-ergodicity of most 1d systems. Yet, in the case of a
mixture of unequal particles, collisions among particles of
different mass do inevitably drive the velocity distribution
functions for all species towards Maxwell-Boltzmann. The
tendency to thermalization in such one dimensional mix-
tures indicates that ”standard” fluid equations may apply
to such systems as well.

The fluid equations of this section all stem from a
Chapman-Enskog type treatment of the Boltzmann equa-
tion by various authors [7, 8, 15, 9] which implies that
their validity is at best limited by the assumptions on
which the Chapman-Enskog procedure is based on. One
of the most stringent conditions, in a system characterized
by a mean free path lmfp and a spatially varying temper-
ature T (x), is the requirement of the Knudsen number
K ≡ lmfp ∂ log T/∂x being much smaller than unity. The
K ≪ 1 condition means that the particles’ distribution
functions do not vary substantially over distances of the
order of the mean free path lmfp and that the velocity dis-
tributions are close to Maxwellian. A related condition is
that fluid time scales must be long compared to the colli-
sional time scale, i.e. the time between successive collisions
of a thermal particle.

We write the continuity equation for two species α =
1, 2 in terms of the species mean velocities uα and mass
densities ̺α = mαnα:

∂̺α

∂t
+

∂

∂x
(̺αuα) = 0. (1)
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Filippo Pantellini, Simone Landi: Species segregation in one-dimensional granular system simulations 3

Defining the total density ̺ ≡ ̺1 + ̺2 and the center of
mass flow velocity u ≡ (u1̺1+u2̺2)/̺ one can add the two
continuity equations (1) and write a one fluid continuity
equation:

∂̺

∂t
+

∂

∂x
(̺u) = 0. (2)

According to [16] we write the momentum equation for
both species in the form

̺α

(
∂uα

∂t
+ uα

uα

∂x

)
= −∂[pα(1 + Kα)]

∂x
+ φα (3)

where φα represents the frictional force on the species α
due to the collisions with the other species in the system
and where Kα is the contribution to the pressure tensor
from collisions with all species (shear and bulk viscosity).
Momentum conservation implies φ1 = −φ2. The sign dif-
ference between φ1 and φ2 indicates that if the frictional
force is dominant, it can act as a species filter. The par-
tial pressures pα in equation (3) are defined with respect
to the center of mass flow velocity u, i.e.

pα ≡
∫

mα(v − u)2fα(v)dv = nαTα. (4)

For the remaining of this section, and throughout the pa-
per, we assume that collisions are efficient enough to en-
sure energy equipartition among species, i.e. T = T1 = T2.
This restriction implies the characteristic cooling time for
each species being long with respect to the thermalization
time. The energy equation for the mixture in the one-
dimensional case is then given by [15]

∂p

∂t
+ u

∂p

∂x
+ 3p

∂u

∂x
+ 2

∂q

∂x
− 8

3
η

(
∂u

∂x

)2

= −ζp (5)

where p ≡ p1+p2 is the total pressure, q the total heat flux,
η the shear viscosity and ζ the cooling rate due to inelastic
collisions. The bulk viscosity is zero by construction [see
9]. Similarly, the momentum equation for the mixture can
be written in the conventional form [15]

∂u

∂t
+ u

∂u

∂x
= −1

̺

∂

∂x

(
p− 4

3
η
∂u

∂x

)
. (6)

We note that this equation is equivalent to equations (3)
up to terms which are quadratic in the species relative
drift velocity δu1 ≡ (u1 − u).

In the quasi-elastic limit, for small relative drift veloci-
ties, and assuming energy equipartition among species the
following relations do conveniently close the above set of
fluid equations. According to [16] the frictional force may
be cast into the form

φ1 = a(n1, n2) 2T
n1n2

n

∂

∂x

[
ln

(
n1

n2
T m12

)]
(7)

with m12 ≡ (m2−m1)/m, m ≡ m1 +m2 and n ≡ n1 +n2.
In equation (7) a is a dimensionless function of n1 and n2

which takes into account the species volume fraction and

the radial distribution function of the contacting pairs.
Explicit forms have been given for the 2 and 3 dimensional
case [16]. In this paper we do not care about the exact form
of equation 7. We are just interested in the qualitative
dependence of φ1 on the temperature T and on the relative
species concentration n1/n2. Following [9, 15] we write the
constitutive relation for the heat flux as

q = − nT

ν0
√

m1m2

∂T

∂x

[
b1

n1

n

√
m

m1
+ b2

n2

n

√
m

m2

]
(8)

where we have defined the frequency ν0 ≡ V12nσ and
the characteristic velocity V 2

12 = 2Tm/(m1m2), which, for
species with Maxwellian distributions, is just the thermal
velocity for the relative velocities between the two species
(cf Appendix B). Again, both, b1 and b2, are rather in-
volved functions of n1/n, m1, m2 and even V12, which
we do not need to care about in this paper. In the above
equation σ has the dimension of a surface and may be
interpreted as a collisional cross section. Formally, we ex-
press σ in terms of the total number of particles N , the
box length L and the mean number density n:

σ =
N

nL
. (9)

With this definition, in a uniform system one has ν0 =
V12N/L. Starting from equation (27) of Jenkins and Mancini
[7] we find that ζ must depend on the species densities via
an expression of the kind

ζ = εν0

[
c11

n2
1

n2

√
m2

m
+ c22

n2
2

n2

√
m1

m
+ c12

n1n2

n2

]
(10)

where the numerical coefficients c11, c12, and c22 are un-
known for the 1d case and where ε is the fractional energy
loss per collision (see Section 3). Equation (10) is correct
up to terms of order two in the gradients of hydrodynamic
quantities[8, 15]. Following Garzo et al [15] we write the
shear viscosity coefficient η as

η =
nT

ν0

[
d1

n1

n

√
m

m2
+ d2

n2

n

√
m

m1

]
(11)

where, once more, d1, and d2 are order unity coefficients
for which we do not care about the exact form. As a final
remark, we note that in the set of fluid equations (2),(5)
and (6) the inelasticity coefficient ε does only appear in
the energy equation (5) through the cooling rate ζ ∝ εν0.
In particular, neither the friction φ1, nor the heat flux q
depend on ε, which is only acceptable in the quasi-elastic
limit ε ≪ 1 [15].

3 Simulation model

We use a one-dimensional model which is close to the tra-
ditional point-like hard particles on a ring model [13] with
the notable difference that N/2 particles have mass m1

and N/2 particles have mass m2. In the strict one dimen-
sional case the post collision velocities v′i and v′j for two
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4 Filippo Pantellini, Simone Landi: Species segregation in one-dimensional granular system simulations

Table 1. Basic parameters for the 3 simulations discussed in
the paper. The total number of particles in each simulation is
N = 19600 with half of the particles with mass m1 = 1 and
the other half with mass m2 = 4.

Run ε r2 Nε

1 5× 10−4 0.9995 9.8

2 2× 10−3 0.998 39.2

3 2× 10−2 0.98 392

colliding particles i and j = i + 1 of mass mi and mj and
center of mass velocity v0ij = (mivi + mjvj)/(mi + mj)
are given by

v′i = ± mjvij

mi + mj
r + v0ij (12)

v′j = ∓ mivij

mi + mj
r + v0ij (13)

where r is the restitution coefficient (r = 1 for elastic
collisions), vk the velocity of particle k = i, j before the
collision and vij ≡ vj−vi < 0 (we implicitly suppose a one
dimensional axis x with coordinates increasing from left
to right xi < xj). With this definition of the restitution
coefficient r the kinetic energy of two colliding particles
is reduced by a factor ε ≡ 1 − r2 in the center of mass
frame. The + sign in (12) and the − sign in (13) corre-
spond to the normal case where particle i and j do not
exchange their relative positions during collision. The −
sign in (12) and the + sign in (13) correspond to the case
where particles i and j swap their relative positions dur-
ing collision. In the latter case, taking r = 1, one has
v′i = vi and v′j = vj , i.e. particles just ignore each other.
In principle one should reject this possibility as it is a non
physical event for the case of a system of beads on a ring.
We shall take advantage of this possibility as it allows for
the different particles to become distributed spatially in-
dependently of the initial ordering with the possibility of
species segregation to operate as in 2 and 3 dimensional
systems.

4 Simulation results

In all simulations N particles are initially distributed uni-
formly over the spatial domain [0, L[. We consider a simple
two species system of N/2 particles with mass m1 = 1 and
N/2 particles with mass m2 = 4. Particles of both species
are initially disposed in alternating order. The initial ve-
locity of a particle with mass mα is randomly selected in
the interval [−0.5, 0.5]/m

1/2
α following a uniform probabil-

ity distribution as in the [13] where the reference case of
N identical particles is discussed. The mean energy per
particle is therefore the same for all species. Bulk veloc-
ities of all species are initially set to zero. The parame-
ters for the 3 runs which will be discussed in the paper
are listed in Table 1. The somewhat arbitrary mass ratio
m2/m1 = 4, which will be used throughout the paper,
is sufficiently small to ensure efficient interspecies energy

thermalization, so that we can assume T1 = T2, and suffi-
ciently large for the frictional force φ1 (see equation (7))
to play a non negligible role.

4.1 Homogeneous phase

The evolution of a one-dimensional system with not all
particles having the same mass is very different from that
of a one dimensional system of identical particles [e.g 6,
2, 13]. The difference is substantial, even in the elastic
limit r = 1. Indeed, while in the case of elastically in-
teracting identical particles the velocity distribution does
not change in time, the asymptotic velocity distribution is
a Maxwell-Boltzmann velocity distribution when different
species coexist in the system. The global thermalization
rate strongly depends on the particles’ mass distribution,
each species α thermalizing at different rates depending on
the species number density Nα and on the mass mα of the
species particles. For example in the case of a system with
N ≫ 1 and just one anomalous particle, the evolution to-
wards a Maxwell-Boltzmann distribution is much slower
than in the case of a two species system with N/2 parti-
cles for each species, since only collisions among unequal
particles can modify the velocity distribution functions in
one dimensional systems.

In Figure 1 a snapshot of the velocity distribution func-
tion of both species are shown for Run 1 after a total
number of 8 × 107 collisions . The distribution for both,
light and heavy particles, which should be compared to
the double peaked distribution of Figure 1 in [13] for the
one species case, do closely follow a Maxwell-Boltzmann
distribution disregarding of the fact that the initial distri-
bution was strongly non thermal. This tendency of the ve-
locity distributions to evolve towards Maxwell-Boltzmann

m=4
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Fig. 1. Homogeneous regime for the case of r2 = 0.9995 and
N = 19600 particles half of which have mass m1 = 1 and
the other half m2 = 4 (Run 1). Shown are the velocity dis-
tribution histograms for both species after 8 × 107 collisions.
The solid line represents the Maxwell-Boltzmann distribution
corresponding to the measured particles’ mean energy.
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Fig. 2. Energy versus collision index I for Run 1. The exponen-
tial part of the profile closely follows the E = E0 exp(−I/2×
107) profile of the fluid theory.

allows the use of standard fluid theories [7, 8, 15, 9] to
analyze the system’s behavior.

Figure 2 shows the evolution of the energy in Run 1.
The energy decreases exponentially as a function of the
number of collisions I during the first 5 108 collisions. We
shall define this phase as the homogeneous phase as it is
perfectly well described by the homogeneous version of the
fluid energy equation (5) (see equation (A.7) together with
the relation (B.7)) which predicts a per collision energy
loss of

δE

E
= −2

ε

N
(14)

Specifically, for r2 = 0.9995 and N = 19600 one has
δE/E ≈ 5.1×10−8 which corresponds to the value 2×107

observed in Figure 2.

4.2 Inhomogeneous phase

After the initial homogeneous phase the system enter a
new, inhomogeneous, regime where cluster formation be-
comes the dominant effect. The transition between the
homogeneous and the inhomogeneous regime is clearly vis-
ible as a departure from the exponential energy decay in
Figure 2. In this section we discuss the cluster structures
observed in the simulations in the light of the fluid equa-
tions exposed in Section 2.

4.2.1 Species segregation

As in the one species case, the inhomogeneous regime in
the multi species case is characterized by the presence of
clusters of particles. Given the smallness of the inelastic-
ity coefficient ε and the initial homogeneity of the system,
one expects the pressure to be spatially uniform for both
species, except near the center of the collapsing cluster
where the cooling rate ζ goes to infinity. Indeed, the tem-
perature and density profiles, plotted for the light particles

N=19600, r=0.9995, m=1

x
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Fig. 3. Run 1: Temperature and density profiles for the light
particles (i.e. m = 1) normalized to their average value at the
end of the simulation. Note the high concentration and low
temperature within the cluster near x = 0.416. Also note the
presence of a second cluster forming near x = 0.8.

at the end of Run 1 are seen to vary in antiphase (cf Figure
3) ensuring an approximate pressure balance.

However, light and heavy particles are not evenly dis-
tributed within the cluster. The relative concentration of
light particles as a function of the particle index l is shown
in Figure 4 which clearly shows that the heavy particles
are concentrated in the central part of the cluster, leav-
ing an excess of light particles in the wings of the 6000
particles cluster.

In order to appreciate the spatial scales associated with
the concentrations of light and heavy particles in the clus-
ter we compute the integrated heavy particles excess func-

0 4000 8000 12000 16000 20000
0

0.5

1

iter=11000000000
 histogram of light particles
 N=19600,r=0.9995

Particle index l

Concentration of light (m=1) particles

Run 1 
(inhomogeneous regime)

Fig. 4. Light particles histogram (m=1) at the end of Run
1. Bin values represent the fractional number of light parti-
cles n1/n. Each bin contains 400 particles. The main cluster
includes all particles with index l in the range 5000 to 11000.
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0.41590 0.41598

−1000

0

1000

 
1e−5

4.1593521e−01 4.1593533e−01

−1000

0

1000

 

1e−8

1000

0

-1000

10−8

x

10−5

x

Fig. 5. Function Y (x) (see equation (15)) for Run 1. The slope
of the function Y is a measure of the heavy (positive slope) or
light (negative slope) particle excess.

tion Y defined as

Y (x) =
N∑

l=1

(δmlm2 − δmlm1)
∫ x

0

δ(ξ − xl)dξ (15)

Contribution to the integral is -1 for light particles (ml =
1) and +1 for heavy particle (ml = 4).

The function Y (x) is plotted in Figure 5 and illustrates
how disparate the spatial repartition of light and heavy
particles are in the system. The core of the cluster con-
tains some 3×103 heavy particles concentrated in a region
of size 10−8. From Figure 4 we know that the 3×103 light
particles of the cluster are largely excluded from this small
central region dominated by the heavy particles but Fig-
ure 5 shows that the light particles dominate over a much
larger region of size 10−5, the characteristic size of the
cluster at the end of the simulation. The species segrega-
tion is the visible effect of the frictional force φ1 (cf equa-
tion (7)) of the two fluid momentum equations (6). In case
of equal densities n1 = n2 and a spatially varying tempera-
ture profile T (x) the frictional force φ1 ∝ (m2−m1)∂T/∂x
points up the temperature gradient for the light species m1

and down the temperature gradient for the heavy species
m2. Segregation appears as a ineluctable consequence of
the temperature gradients within clusters.

4.2.2 Temperature profiles in clusters

Figure 3 shows that the temperature in a cluster strongly
decreases towards its center. Figure 6 shows the tempera-
ture profiles in the inhomogeneous regime for Run 1 and 2.
The figure illustrates the fact that the temperature drops
exponentially as a function of the particles index l towards
the center of the cluster. In these particular cases the tem-
perature decreases by several order of magnitudes from
edge to center. As expected, the thermalization time being

Fig. 6. Fluid temperature (circles) and light particles’ tem-
perature (plus) as function of the particle index for Run 1 (top
panel) and Run 2 (bottom panel) during the inhomogeneous
regime. In both simulations the temperature is found to de-
crease exponentially towards the center of the cluster according
to a characteristic scale of order ε−1/2.

much shorter than the cooling time, the fluid and light par-
ticle temperature profiles closely follow each other. The in-
teresting point is that the granular temperature decreases
exponentially towards the center of the cluster with a scale
which seems to be of order ε−1/2. Again, the ε−1/2 scaling
of the temperature profile in Fig. 6 can be deduced eas-
ily from the fluid equations. In order to do so, we evaluate
the temperature profiles within clusters in the static limit.
Using the energy equation (5) we can write

2
∂q

∂x
= −ζp (16)

Let us suppose that in a given region of the system species
1 is the dominating one, i.e. n ≈ n1 ≫ n2. In this case the
heat flux reads (cf equation (8))

q = −b1

σ

(
T

2m1

)1/2
∂T

∂x
(17)

whereas the right hand side of Eq. (16) becomes

−ζp = −εc11σ

(
2T

m1

)1/2

T n2 (18)
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and the static energy equation (16) writes

∂

∂x

(
T 1/2 ∂T

∂x

)
= ε

c11

b1
σ2T−1/2p2

0 (19)

where we have used the static limit p = p0 = const of the
momentum equation (6). In order to compute the temper-
ature profile as a function of the particle index l we have to
introduce the transformation from the spatial coordinate
x to the particle index l.

l(x) = A

∫ x

0

n(ξ)dξ (20)

where A is a surface such that An(ξ)dξ is the number of
particles in the interval [ξ, ξ + dξ]. Using the transforma-
tion (20) we write the energy equation (19) in terms of
the particle index l

∂

∂l

(
T−1/2 ∂T

∂l

)
=

ε

4
c11

b1
T 1/2 (21)

where we have used the fact that the particles’ cross sec-
tion σ is equal to A/2 given the 50% swap probability for
colliding particles. The solution of (21) is

T ∝ exp

{
±l

(
ε

c11

2b1

)1/2
}

(22)

If c11 and b1 are numerical constants of order unity, it
follows, as already suggested by Figure 6, that the typical
scale of variation for the temperature profile is of order
ε−1/2.

4.3 Cluster formation and linear fluid theory

As in one species simulations [6], Figure 7 shows that at
the time of inelastic collapse, the number of clusters is
an increasing function of the Nε. Even the Mach number
of the fluid motions is seen to depend on Nε, the simu-
lation with the smallest value of Nε being characterized
by subsonic motions and the two other simulations be-
ing characterized by supersonic motions with the evident
formation of shocks. As pointed out by Ben-Naim et al
[17] the piecewise linear velocity profiles observed in Fig-
ure 7 are a direct consequence of the momentum equation
(6). Indeed, as already discussed in the context of Figure
3, the pressure in the system is essentially constant ev-
erywhere except within clusters (shocks in the supersonic
regime). In this case the momentum equation reduces to
̺(∂u/∂t + u∂u/∂x) = 0.75η∂2u/∂x2 with solutions of the
type u(x, t) = u0 + (x − x0)/t, where u0 and x0 are inte-
gration constants.

The difference between the velocity profiles at the time
of inelastic collapse for the three runs shown in Figure
7 can be explained on the basis of a linear analysis of
the fluid equations of Section 2 developed in Appendix A.
The linearized system of equations has three eigenmodes,

m=4 particles

−0.02

0

0.02

−0.002

0

0.002

−0.000001

0

0.000001

0 0.2 0.4 0.6 0.8 1
x

Run 3: I = 1.5 108, ε = 0.02

Run 2: I = 109, ε = 0.002

Run 1: I = 1.5 1010, ε = 0.0005

Fig. 7. Inhomogeneous regime: scatter plot for the m = 4
particles for all runs at the time of inelastic collapse.

two of which correspond to the right and left propagat-
ing sound wave and the non propagating (zero real fre-
quency) entropy mode. The main difference with respect
to classical gas dynamics is that all modes are unstable
at long wave length. The other important prediction of
linear theory is that in general, but more specifically for
wave vectors k such that k̃ ≡ kL/(Nε) . 1, the non prop-
agating entropy mode grows substantially faster than the
sound mode. Indeed, the growth rate of the entropy mode
always peaks at k = 0 whereas the sound mode’s growth
rate vanishes as k → 0. A careful analysis of the growth
rates does actually shows that the entropy mode is always
the fastest growing mode (see Appendix A).

4.3.1 The dominant mode

What determines the number of clusters in a one dimen-
sional system at the time of inelastic collapse? Knowledge
of the initial conditions for the velocity fluctuations of all
modes makes it possible to estimate different character-
istic time scales in terms of the dimensionless (pseudo)
time variable τ (defined in A.5) using the approximations
of linear theory.

Initially, in all systems, particles are distributed uni-
formly in the spatial interval [0, 1[ with N/2 particles of
mass m1 = 1 and N/2 particles of mass m2 = 4. The ve-
locity of a particle of mass m is sorted randomly in the ve-
locity interval [−0.5, 0.5]/m1/2 so that the average kinetic
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energy per particle is the same for all species correspond-
ing (formally) to an initial temperature T0 = 1/12 and
thermal velocity v2

0 = 2/(6m) = 1/15. Thermalization of
such a system takes only a few collisions per particle so
that all species can be assumed to be initially distributed
according to a Maxwellian distribution at temperature
T0 = 1/12, ε being much smaller than unity. The initial
amplitudes of the velocity fluctuations can be evaluated
using the Wiener-Khintchine theorem which states that
the power spectrum of the fluid velocity field for a set par-
ticles with uncorrelated velocities is flat (white noise). The
immediate consequence of the Wiener-Khintchine theo-
rem is that energy is evenly distributed among all Fourier
modes, i.e. all modes have equal amplitude |δu0|. Requir-
ing the total kinetic energy of all particles in the system
being NT/2 one must have

δu2
0 =

T

m

4
N

= 2
v2
0

N
(23)

In all simulations, at t = 0, we have T = 1/12, N = 19600,
m1 = 1 and m2 = 4. The initial amplitude of the velocity
fluctuations are therefore of order δu0 = 2.6 × 10−3 with
v0 = 0.258, which corresponds to δU0 = (2/N)1/2 = 1.01×
10−2.

From linear theory we know that at small values of
the wave vector k̃ . 1/2 the growth rate is approximately
given by γN/ε = 1 − k̃2/2 indicating that the mode with
the longest possible wavelength is always the fastest grow-
ing mode. It is then expected that clustering always oc-
curs at the largest possible scale allowed by the system
with only one cluster growing in the system. This is ef-
fectively the case in Run 1 only but not in Run 2 (with
2 clusters) and particularly in Run 3 where several clus-
ters occur. This can be understood by noting that linear
theory predicts that the density fluctuation of the entropy
mode is proportional to the wave vector k:

δnk

n
= −ik̃δUk (24)

where δUk ≡ δuk/v0 is essentially the fluctuation’s Mach
number. Thus, for two modes k1 and k2 with equal ini-
tial velocity fluctuation amplitude δUk1 = δUk2, the one
with the largest wave vector is the one with the largest
associated density fluctuation and therefore a more likely
candidate for triggering the inelastic collapse, provided the
growth rate of the two modes are not too dissimilar. For
example, in Run 3, there are some 10 visible density clus-
ters corresponding to an average distance between clusters
of the order λ = L/10. Therefore, the mode which triggers
the inelastic collapse has k̃ = 0.16 and a linear growth rate
which is only roughly 1% less than the growth rate of the
smallest possible wave vector k̃min ≡ 2π/Nε, but, accord-
ing to equation 24, with a 10 times larger density fluctu-
ation. Thus, as long as the velocity fluctuation amplitude
of the mode k̃ = 0.16 is not much smaller than the veloc-
ity fluctuation amplitude of the fastest growing mode, i.e.
potentially during the first 100γ−1 ≈ 100N/ε = 9.8× 107

collisions, the strongest density fluctuations in the sys-
tem are due to the mode with k̃ = 0.16. Indeed, in Run

Table 2. Characteristic time scales of the entropy mode for
the smallest possible wave vector k = kmin ≡ 2π/Nε. The
column labelled Supersonic indicates whether or not the fluid
motions are supersonic at the time of inelastic collapse. γ refers
is the linear growth rate of the mode, τs and τn are defined in
equations (25) and (26), respectively. The parameters of the
runs are given in Table 1.

Run Supersonic k̃min γ−1 τs τn

1 no 0.64 4.9× 107 2.3 × 108 2.5× 108

2 yes 0.160 1.0× 107 4.6 × 107 6.4× 107

3 yes 0.016 1.0× 106 4.5 × 106 8.6× 106

3 particle clustering and supersonic motions are already
present after I ≈ 4× 106 collisions, which, using the defi-
nition for τ given by (B.7) in Appendix B corresponds to
τ = 2.06I ≈ 8× 106. This time is too short by more than
one order of magnitude for the fastest growing mode to
become dominant in terms of density fluctuations.

We conclude that, for quasi elastic restitution coef-
ficients ε ≪ 1, the mode which dominates the inelastic
collapse has a wave vector k̃ ∼ 1/5 corresponding to a
wavelength λ ∼ 10πL/Nε. If such a long wavelength does
not fit into the system, the dominant mode is simply the
one with the longest possible wavelength, i.e. λ = L.

4.3.2 Supersonic fluid motions

Let us now address the question of the magnitude of the
characteristic fluid velocities at the time of the inelastic
collapse. Velocities are subsonic in Run 1 and supersonic
in Runs 2 and 3.

We introduce the sonic time scale τs, defined as the
time for the amplitude of the velocity fluctuation δUk to
reach unity assuming linear growth, i.e.

τs(k̃) = − ln(δU0)
γ(k̃)

. (25)

For a system of uniformly distributed particles with un-
correlated velocities, the initial fluctuation amplitude is
δU0 ≈ (2/N)1/2. Similarly, using equation (24) we define
τn as the time for the density fluctuation δn(k)/n to reach
an amplitude of order unity, i.e.

τn = − ln(k̃ δU0)
γ(k̃)

. (26)

Both, τs and τn are listed in Table 2 for the mode with
the longest wavelength k̃min.

In Run 1 the motions remain subsonic at the time of
the inelastic collapse despite the simulation lasting signif-
icantly longer than τs, meaning that supersonic motions
had enough time to develop. We conclude that an inelas-
tic collapse is not necessarily associated with supersonic
motions. The explanation at hand can be found in Table
2 which shows that in Run 1 the characteristic times τs
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and τn are very much the same for the dominant mode
k = kmin ≡ 2π/Nε while the sonic time scale τs is sig-
nificantly shorter than τn for the dominant mode in Runs
2 and 3. From Table 2 it follows that supersonic motions
develop before the occurrence of an inelastic collapse pro-
vided k̃min . 1/5, i.e. 10π . Nε.

5 Conclusions

We have performed simulations of a one dimensional two
species periodic system of N point particles undergoing
inelastic collisions. In order to keep the possibility for the
system to arrange particles independently of the initial
configuration, particles are allowed to change their rel-
ative positions during collisions with a 50% probability.
Initial velocities for particles of species α are selected ran-
domly according to a constant distribution in the range
[−0.5, 0.5]/m

1/2
α . Unlike one dimensional systems of iden-

tical particles, where the homogeneous regime is charac-
terized by double peaked velocity distributions [13, 18],
one dimensional multi-species systems tend to evolve to-
wards a Maxwell-Boltzmann distribution. This tendency
justifies the use of “standard” fluid equations to describe
such systems. As for one dimensional systems of identi-
cal particles, the inhomogeneous regime is characterized
by the formation of clusters which eventually make an in-
elastic collapse. It has been shown in [2] that clustering
in one species systems is driven by a beam instability. We
show that in a two species system clustering is triggered by
a fluid instability of the non propagating entropy mode,
for which density and temperature fluctuations vary in
antiphase ensuring spatial pressure balance. The sound
mode is also found to be unstable but its growth rate is
always substantially smaller than the growth rate of the
entropy mode. Because of the non propagating nature of
the entropy mode, the one dimensional system does evolve
naturally towards a series of clusters with symmetric tem-
perature and density profiles and antisymmetric velocity
profiles.

The number of particles in the clusters is determined
by the number of particles in one wavelength of the domi-
nant mode of the clustering instability, i.e. the mode which
first reaches a relative density fluctuation of order unity.
The typical wavelength of this mode has been found to be
of the order λ ≈ 10πL/Nε corresponding to 10π/ε par-
ticles per cluster. Clustering is generally characterized by
supersonic fluid motions unless the total number of parti-
cles N . 10π/ε.

A peculiar aspect of the late evolution of a multi-
species systems is the appearance of species segregation
within the collapsing clusters, heavy particles becoming
concentrated in an extremely small region around the cen-
ter of the cluster and the light particles filling the space
between the central region and the edges of the cluster.
Segregation is driven by the temperature gradient inside
the cluster [19] via the frictional force φ in the one-species
fluid momentum equation (3).

We thank both referees for the many pertinent and helpful
comments which strongly helped us to improve the original
manuscript.

A Linear theory for a one-dimensional system

In this appendix we develop the linear theory for the clus-
tering instability in a one-dimensional and spatially uni-
form system of inelastically colliding particles using the
set of fluid equations of Section 2. Assuming particles of
mean mass m, we write the set of equations pertinent to
the one-dimensional one-fluid case as

∂n

∂t
+ u

∂n

∂x
+ n

∂u

∂x
= 0 (A.1)

m

(
n

∂u

∂t
+ nu

∂u

∂x

)
+

∂

∂x

(
nT − 4

3
η
∂u

∂x

)
= 0 (A.2)

∂

∂t
(nT ) + u

∂

∂x
(nT ) + 3nT

∂u

∂x

+2
∂q

∂x
− 8

3
η

(
∂u

∂x

)2

+ c ε
N

L
v0Tn = 0 (A.3)

where c is a constant of order unity, which will be com-
puted explicitly for a two species system in Appendix B.
The other quantities in equation (A.3) are defined as

v0 ≡
(

2T

m

)1/2

η ≡ d
nT

ν0
= d

nT

v0

L

N

q ≡ −b
nT

ν0m

∂T

∂x
= − b

2
nv0

L

N

∂T

∂x

with b and d being two more constants of order unity.
We note that for a two species system the normalization
velocity v0 is related to the thermal velocity V12 of the
species relative velocity of Section 2 via

V 2
12 = 2

m

m1m2
v2
0 . (A.4)

The linear analysis of the system is easier if performed in
terms of the dimensionless variables τ and U :

dτ = N2 v0

L
dt (A.5)

U =
u

v0
. (A.6)

where dτ/dt is a measure of the number of collisions per
time unit in the system during the homogeneous phase
and U is essentially the flow’s Mach number.

We assume a static equilibrium u(x, τ) = 0 with a
uniform density n = n0, and temperature T (x, τ) = T0(τ)
decreasing according to equation (A.3), i.e.

∂T0

∂τ
= −c

ε

N
T0 → T0(τ) ∝ e−cετ/N . (A.7)
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During the linear phase of the instability c is a constant
which only depends on the species relative densities and
on the species particle mass (see Appendix B). For exam-
ple, if N/2 particles have mass m1 = 1 and N/2 particles
m2 = 4, one has c = 0.97. Thus, c = 0.97 must be used
for all runs discussed in the paper except Run 1, where
all particles are identical and for which the linear theory
presented here is not applicable.

Let us now investigate the response of the equilibrium
characterized by n = n0 and T = T0(τ) to small pertur-
bations δn, δθ and δU by setting

n = n0 + δn (A.8)
T = T0(1 + δθ) (A.9)
U = δU. (A.10)

The coefficients of the resulting linear system are inde-
pendent of τ and x so that we can solve it using standard
Fourier techniques. We therefore assume perturbations of
the type δn, δθ, δU ∝ exp[i(kx−ωτ)] which, when plugged
into the linearized system, lead to

M ·


δn/n0

δU

δθ

 = 0. (A.11)

where M is the 3× 3 matrix given by

M ≡


−iω̃ ik̃ 0

ik̃ 4
3Dk̃2 − 2iω̃ − 2 ik̃

2− iω̃ 3ik̃ Bk̃2 − iω̃

(A.12)

with k̃ ≡ kL/(Nε), ω̃ ≡ ωN/ε, B ≡ εb and D ≡ εd. Non
trivial solutions of the system correspond to a vanishing
determinant of the matrix M. Splitting the complex fre-
quency ω = ωr + iγ into real and imaginary parts ωr and
γ, and assuming real wave vectors k leads to two equa-
tions for the real and the imaginary part of the condition
detM = 0 (in the remaining of this appendix we drop the
tildes to ease readability):

2
(

1−Bk2 − 2
3
Dk2 − 3γ

)
ω2

r

+Bk4 + 3γk2 − 2γ2 + 2γ3 − 2k2 − 2Bγk2

+2Bγ2k2 +
4
3
Dγ2k2 +

4
3
DBγk4 = 0 (A.13)

and either

ω2
r = 3

(
γ2 +

k2

2

)
− 2γ

(
1−Bk2 − 2

3
Dk2

)
− Bk2 +

2
3
BDk4. (A.14)

for the modified sound wave, or

ωr = 0 (A.15)

for the modified, non propagating, entropy wave. The dis-
persion relation for sound waves, ω2

r = 3k2/2, is imme-
diately obtained by setting γ = B = D = 0 in equa-
tion (A.14) (we shall remember that frequencies are mea-
sured in terms of the pseudo time τ and not the real time
t). Switching back to real time using equation (A.5), the
dispersion relation reduces to the more familiar relation
ω2

r = 3Tk2/m for a one dimensional system. The growth
rate γ(k) for both, sound and entropy mode, can be ob-
tained by substituting ω2

r from equation (A.14) or (A.15),
respectively, into (A.13). After some juggling one ends up
with

fs(γ, k , B, D) = 16γ3 − 16
(

1− 2
3
Dk2 −Bk2

)
γ2

−
(

12Bk2 − 8BDk4 − 4B2k4 − 16
9

D2k4

+
16
3

Dk2 − 6k2 − 4
)

γ

− 2B2k4 +
4
3
B2Dk6 +

8
9
BD2k6 − 8

3
BDk4

+ 2Bk4 + 2Bk2 + 2Dk4 − k2 = 0 (A.16)

for the sound mode, and

fe(γ, k , B, D) = 2γ3 +
(

2Bk2 +
4
3
Dk2 − 2

)
γ2

+
(

3k2 − 2Bk2 +
4
3
BDk4

)
γ

+ Bk4 − 2k2 = 0 (A.17)

for the entropy mode. For small values of B and D, i.e.
at sufficiently large spatial scales such that both thermal
conduction time scale 1/Bk2 and the viscous time scale
1/Dk2 both exceed the linear time scale 1/ω, one may use
the asymptotic expressions for the imaginary part of both
the sound wave and the entropy wave, viz.

fs(γ, k, 0, 0) = 16γ3 − 16γ2

+ (6k2 + 4)γ − k2 = 0. (A.18)

and

fe(γ, k, 0, 0) = 2γ3 − 2γ2

+ 3k2γ − 2k2 = 0. (A.19)

We note that fs,e(0, k, 0, 0) < 0 for all values of k. Since
fs,e(γ → ∞) = ∞, a positive real solutions γ > 0 must
exist for both equations (A.18) and (A.19). Thus, both
the sound and the entropy mode are always unstable for
k → 0. There is indeed, only one real solution of (A.18)
which goes as k2 for |k| → 0 and tends towards the asymp-
totic value 1/6 for |k| → ∞. Similarly, for |k| → ∞,
the entropy mode’s growth rate tends towards 2/3. Of
course, for sufficiently large values of k both modes must
be damped by diffusive effects. However, unlike the en-
tropy mode, which is always unstable for |k| → 0, the
sound mode is completely stabilized for thermal diffusiv-
ity values B > 1/2.
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Fig. 8. Growth rate for the both the sound mode and the en-
tropy mode for a particular value of the thermal diffusion co-
efficient B and the shear viscosity coefficient D. Plotted is also
the real frequency of the sound mode ω(k) and the asymptotic
values of the growth rates for both modes in the limit k & 1,
and D = B = 0.

The fact that the entropy mode is a non propagating
mode implies that density and temperature fluctuations
vary spatially in antiphase, ensuring pressure balance. In-
deed, for k → 0, one has −iω = 1 − k2/2 (see Figure 8)
from where, using the second line of the matrix in equa-
tion (A.11), one immediately deduces the linear pressure
equilibrium condition δn/n0 = −δθ which is valid up to
order one in k. To same order in k, the first equation in
(A.11) implies the δn/n0 = −ikδU . This latter relation
shows that in the entropy mode density and velocity fluc-
tuations are out of phase by π/2 corresponding to the fluid
flowing from the low density to the high density parts of
the wave. These linear motions, eventually enforced by
non linear effects (i.e. velocity profile steepening) at late
times, ineluctably drive the system toward the final in-
elastic collapse.

B Collision frequency for Maxwellian
distributions

The number of collisions per time unit of a particle of
species α with the particles of species β for relative veloc-
ities in the range [u, u + du] is given by

dναβ = |u|fαβ(u)du, u < 0. (B.1)

In equation (B.1) fαβ(u) denotes the distribution of the
relative velocities. If one assumes Maxwellian distributions
for both species, the distribution of the relative velocities
is also Maxwellian. In one dimensions, with Nβ particles
uniformly distributed in a system of length L it must be

that

fαβ(u) =
1

Vαβ π1/2

Nβ

L
e−u2/V 2

αβ (B.2)

where Vαβ is the thermal velocity defined as

V 2
αβ ≡ V 2

α + V 2
β = 2

Tα

mα
+ 2

Tβ

mβ
. (B.3)

Integration of equation (B.1), assuming the Maxwellian
distribution (B.2), gives the collision frequency of a parti-
cle α with the particles of species β:

ναβ =
∫ 0

−∞
|u|fαβ(u)du =

Nβ

L

Vαβ

2π1/2
. (B.4)

The total collision frequency ν in the system is obtained
by adding the contributions from all kinds of collisions,
i.e.

ν = Nα ναβ + Nβνβα + Nαναα + Nβνββ =

2
NαNβ

L

Vαβ

2π1/2
+

N2
α

L

Vαα

2π1/2
+

N2
β

L

Vββ

2π1/2
.(B.5)

Assuming energy equipartition T = Tα = Tβ and an equal
number of particles for both species Nα = Nβ = N/2, one
ends up with

ν(mα, mβ , T, N) =
N2

4L

v0

π1/2

[(
m

mα
+

m

mβ

)1/2

+

(
m

2mα

)1/2

+
(

m

2mβ

)1/2
]

(B.6)

where m ≡ (mα + mβ)/2 and v2
0 ≡ 2T/m. Using the

expression for the collision frequency given by (B.6) it be-
comes possible to specify the constant c which establishes
a relation between the time variable t and the collision
index I (cf equations (A.3) and (A.7)). Of course, given
the above assumptions, the relation between t and I only
holds as long as the inhomogeneities in the system are
weak. By comparing (A.7) and (14) one obtains the fol-
lowing relation between the pseudo time variable τ and
the collision index I:

2δI = cδτ. (B.7)

Given the relation between τ and the time variable t (see
equation (A.5)) and using the fact that the collision fre-
quency is just ν = δI/δt it follows that

c ≡ 2ν
L

N2v0
=

1
2π1/2

[(
m

mα
+

m

mβ

)1/2

+
(

m

2mα

)1/2

+
(

m

2mβ

)1/2
]

(B.8)

We note that c does not depend on the temperature, as
long as energy equipartition is a valid approximation.
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Abstract. We use ab initio numerical simulations of a moderately coupled (Coulomb logarithm λ = 3.8), classical,
electron-proton plasma to investigate the electron heat flux in a steep temperature gradient. The temperature gradient
is forced by confining the plasma within a cylinder with “thermal” walls at both ends. The thermal Knudsen number
Ke,T, defined as the ratio of the electron mean free path to the characteristic scale of variation of the temperature, is in
the range 10−3 . Ke,T . 10−1. We show that under such circumstances the electron heat flux is approximately 3/4 of
the canonical Spitzer&Härm value for Ke,T . 5 10−2. For Ke,T & 5 10−2 the non local contribution to the heat flux from
the thermal walls is no longer negligible and the heat flux saturates at roughly 10−1 times the free streaming value. The
simulations are based on N−body techniques which are widely used in the context of gravitationally interacting bodies
but rarely in the context of interacting charges. Such simulations have the advantage of not relying on any particular
choice of the collision operator in Boltzmann’s equation.

PACS. 52.25.Fi Transport properties – 45.50.Tn Collisions – 44.10.+i Heat conduction

1 introduction

We adapted the FalcON code, originally developed by W. Dehnen
[1] for system of gravitationally interacting bodies, to the case
of a system of a large number of interacting positive and nega-
tive charges.

More specifically, in this paper we apply the N-body tech-
nique to the study of the heat flux in an, overall neutral, and
moderately coupled electron-proton plasma characterized by
a Coulomb logarithm in the range 2 . λ . 10 (cf. equation
(1)). The Coulomb logarithm λ for an electron-proton plasma
at temperature T and electron density ne is a dimensionless pa-
rameter usually defined as

λ ≡ ln
(
λD

rs

)
. (1)

where λD ≡ (kBT ε0/nee2)1/2 is the Debye length, kB the Boltz-
mann constant, rs ≡ e2/12πε0kBT the strong interaction radius,
e the absolute value of the electron charge and ε0 the elec-
trical permittivity of free space. The Debye length λD is the
typical spatial scale required by the plasma to screen a local
charge excess. Indeed, despite the electrostatic interaction be-
ing a long distance interaction, any two charged particles in
the plasma do not interact if their separation exceeds the De-
bye length. Thus, at a given time, any particle in the plasma
interacts simultaneously with all particles within a distance of
order λD. Most of these interactions have little influence on the
particle’s trajectory unless the interacting distance is not much
larger than the strong interaction radius rs. The latter corre-
sponds to the distance between two electrons such that their

interaction energy e2/4πε0rs is twice their individual charac-
teristic kinetic energy 3

2 kBT . The strong interaction radius rs
corresponds to the impact parameter for a 90◦ deflection of a
thermal electron interacting with a stationary positive ion of
charge e. In extremely hot plasmas the strong interaction radius
eventually becomes shorter than the mean electron De Broglie
length oe = ~/me〈v2〉1/2 (where 〈v2〉 = 3kBT/me, ~ = h/2π and
h is the Planck constant) and quantum effects can no longer be
neglected in the treatment of close encounters. In such an event
our model, which is based on classical electrostatics, fails as
most close encounters will be dominated by quantum mechan-
ical effects, and the Coulomb logarithm definition of Equation
(1) is no longer the pertinent dimensionless parameter charac-
terizing the plasma. The requirement rs & o for the validity of
the classical approach requires temperatures T . 105K .

A plasma is said to be weakly coupled if λ ≥ 10 and strongly
coupled if λ ≤ 1. In this paper we consider a moderately cou-
pled plasma with λ = 3.8, which corresponds to a Coulomb
coupling parameter Γ = 0.11. The coupling parameter Γ is the
average ratio of the electrostatic to kinetic energy of neighbor
electrons in the plasma, i.e.

Γ ≡ e2

4πε0akBT
(2)

where a ≡ (3/4πne)1/3 is the Wigner-Seitz radius. We note
that the coupling parameter Γ and the Coulomb logarithm λ
are equivalent parameters as they are linked by the relation

λ = ln
 √3
Γ3/2

 = ln(9ND) (3)
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2 Beck & Pantellini: Heat flux in moderately coupled plasma

From equation 3 it follows that the number of electrons ND en-
closed by a sphere of radius λD is larger than unity when λ & 2.
Consequently, a moderately coupled plasma, unlike the weakly
coupled ones, does not necessarily have much more than one
electron in this sphere. In this particular case, the use of sta-
tistical means (i.e. particle distribution functions) to compute
the plasma’s spatial and temporal behavior may be inappropri-
ate. Another difference between weakly and moderately cou-
pled plasmas is that, with λ & 10, the number of particles mak-
ing distant collisions is so much larger than the number of par-
ticles making close collisions, that the latter’s contribution to
the transport coefficients can be neglected. Under such condi-
tions, relatively simple collision operators, including only the
first moment of the distribution function, can satisfactorily be
used in the Boltzmann equation in transport coefficient compu-
tations [see e.g. 2]. Whereas in moderately coupled plasmas,
when λ is reduced below ∼ 10, the relative importance of close
encounters becomes increasingly large and the collision opera-
tors, required to increase accuracy to better than ∼ λ−1, become
increasingly complicated and unpractical [3, 2]. On the other
hand, the λ . 10 regime appears to be particularly well suited
for, ab initio N-body simulations where all kind of collisions
are naturally included. In such numerical models, the limita-
tions are merely computational, as in N-body simulations the
spatial resolution of the particles’ trajectories must be of the
order of the strong interaction radius rs � λD while the typi-
cal system size must extend over several times λD in order to
account for the effects of distant encounters. In practice classi-
cal N-body simulations are limited to classical plasmas in the
moderately coupled regime 2 . λ . 10.

Laser plasmas and inertially confined fusion plasmas are
sometimes in the moderately coupled regime (see [4] and [5]
for references). The solar interior is also in the moderately cou-
pled regime, with the upper 70,000 km of the convection zone
being in the classical regime with rs & oe.

The problem of the heat conduction in a strong tempera-
ture gradient has been investigated theoretically a few decades
ago in the case of weakly coupled plasmas [6, 7, 8]. Using the
physically justified technique of forcing the anisotropic por-
tion of the electron distribution function f1(v) to be smaller
than the isotropic portion f0(v) such that the total distribution
f remains positive in the Legendre development f = f0 + µ f1
used in the standard Spitzer and Har̈m procedure. Bell et al
[6] and Shvarts et al [7] suggest that the electron heat flux qe
is always substantially smaller than the free streaming limit
q0 ≡ ne(kBT )3/2/m1/2

e confirming the experimental findings of
[9]. Shvarts et al [7] do also indicate that qe falls below the
canonical Spitzer and Har̈m value qe,S for Ke,T & 2. 10−3. Lu-
ciani et al [8] use a non local extension of the classical Spitzer-
Har̈m expression of the electron heat flux which includes the
contributions from the temperature profile up to a distance of
the order of the mean free path from the point of observation.
The Luciani et al expression only depends on the temperature
and density profile in the vicinity of the observation point and
not on a manipulation of f1(v). Despite being quite different
from the approach of [6, 7] Luciani et al [8] do also find that
the maximum heat flux is limited to about 0.1q0, a value which
is consistent with our results (see Figure 3).

In this paper we show that in a moderately coupled plasma
the electron heat flux is substantially smaller than the Spitzer
flux qe,S over the entire investigated range 10−3 & Ke,T & 10−1,
if the classical estimate of the mean free path (presumably valid
in the λ & 10 regime) is used in the definition of the Knudsen
number Ke,T. The electron heat flux is shown to peak at qe ≈
10−1q0 for the Ke,T ≈ 5 10−2. We note that in the collisionless
limit the Knudsen number is undefined but not the heat flux
which can be calculated analytically [10]

qNC =

√
8
π

nek3/2
B

m1/2
e

(
T1T 1/2

2 − T2T 1/2
1

)
(4)

In the numerical set-up, the non collisional (non local) contri-
bution to the heat flux qNC due to the free streaming of electrons
from the thermostats only becomes relevant for Ke,T & 5. 10−2

when q/qNC & 0.35 (see Table 1). One possible interpreta-
tion is that the classical collision frequency resulting from the
Spitzer and Härm treatment for weakly coupled plasmas un-
derestimates the real collision frequency in moderately coupled
plasmas.

2 The model

We simulate the stationary state of N mutually interacting charged
particles (N/2 protons and N/2 electrons) confined within a
cylinder of height L and radius R. Values of L and R for all
runs are given in Table 1. The basic setup for the simulations
is shown in figure 1. Particles reaching one of the two bound-
aries of the cylinder at z = 0 and z = L are re-injected follow-
ing resting Maxwellian velocity distributions at temperatures
T1 and T2 > T1, respectively. Particles hitting the curved wall
of the cylinder are reflected back elastically into the cylinder’s
interior. Because of the upper thermostat being hotter than the
lower thermostat a heat flux q is expected to flow down the
temperature gradient. The heat flux intensity in the cylinder is
a function of the plasma parameters. We note that this exper-
imental set-up is similar to the set-up in the heat front simu-
lations of Luciani et al [8] where a hot and a cold region are
connected by steep temperature and density profiles. The main
parameters which affect the heat flux intensity are the Coulomb
logarithm λ and the thermal Knudsen number KT,α defined as

KT,α ≡ lα
LT

(5)

where lα is the collisional mean free path for a typical particle
of species α and LT ≡ ∂(ln T )/∂z is the characteristic scale of
variation of the temperature profile along the z direction.

The definition of the collisional mean free path lα in terms
of fluid quantities, such as the density, the temperature and
λ is model dependent as the definition depends on the actual
choice of the collision operator [see e.g. 3]. In order to facil-
itate comparisons with other authors, we adopt the canonical
collision times for both electrons and protons in a quasi neutral
and weakly coupled plasma [3, 2],

τe =
3m1/2

e (kBTe)3/2

4
√

2π nλe4
(6)
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Fig. 1. Schematic illustration of the simulated system: a collection of
N/2 electrons and N/2 protons confined within a cylinder of length L
and radius R. The temperature gradient imposed by the thermostat at
both ends of the cylinder at temperature T1 (at z = 0) and T2 > T1 (at
z = L) drive a heat flux q.

τi =
3m1/2

p (kBTp)3/2

4
√
π nλe4

(7)

where n = ne = np is either the proton or the electron number
density. These collision times are pertinent to plasmas with λ &
10. In a moderately coupled plasma where 10 & λ, the above
collision times may merely represent a zero order estimate of
the effective collision times. However, the advantage of using
the collision times (6) and (7) for all values of λ permits the
unambiguous definition of the Knudsen number which is the
crucial parameter which determines the heat flux intensity in
a plasma (see below). The mean free path lα for a particle of
species α is a function of the collision times (6) and (7) and the
species characteristic velocity vα (thermal velocity)

vα ≡
(

2kBTα
mα

)1/2

. (8)

The mean free path is then simply given by

lα = τα vα. (9)

Temperature
Density

0 10 20 30 40 50 60 70 80

Heat Flux

z
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q/<q>

n/<n>
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T/<T>

Fig. 2. Run 5: Electron density and temperature (top panel) and elec-
tron heat flux (bottom panel) from ten bins along the cylinder axis. All
quantities are normalized to their average value in the cylinder.

which we use to characterize the plasma’s collisionality inde-
pendently of whether or not the collision times (6) and (7) rep-
resent good estimates of the effective collision times.

Concerning the temperature length scale LT in the simula-
tions, we note that when the temperature difference between
the two thermostats is small, such that (T2 − T1)/T1 � 1, LT
can be assumed to be constant:

LT ≡
[
∂(ln T )
∂z

]−1

' L
2

T2 + T1

T2 − T1
. (10)

We restrict our simulations to the limit of small temperature
variations in the system such that the LT can effectively be as-
sumed to be spatially constant. As an example, Figure 2 shows
the density, temperature and heat flux as a function of z for
Run 5. Apart from the statistical fluctuations, the temperature
is seen to increase linearly with z, by about 10%, between the
thermostats. The density decreases linearly by the same amount
ensuring a constant pressure. The electron heat flux has a clearly
defined mean value but is not completely constant over the
whole simulation domain, indicating that the system is still re-
laxating.

3 Simulation parameters

We show results from eight runs. In all runs the plasma is char-
acterized by the same Coulomb logarithm λ = 3.8 while the
thermal Knudsen number KT,e ranges approximately from 10−3

to 10−1. As already stated, there are five free parameters: the
cylinder length L, the cylinder radius R, the total number of
particles N, and the temperatures T1 and T2 of the thermostats
at both ends of the cylinder. We are interested in the role of
the collisions in the transport properties of the plasma so it is
essential that a thermal particle makes at least a few collisions
on its way from one thermostat to the other. This requirement,
which is also a necessary condition for a temperature gradient
to exist, can be expressed as le/L < 1.
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4 Beck & Pantellini: Heat flux in moderately coupled plasma

Run KT,e L/λD R/λD q/qNC le/L
1 1.25 10−3 280 5.2 0.15 0.07
2 2.50 10−3 198 6.2 0.19 0.10
3 3.07 10−3 161 6 0.22 0.13
4 5.33 10−3 140 7 0.23 0.15
5 1.70 10−2 443 6 0.25 0.13
6 2.90 10−2 161 10 0.32 0.23
7 4.98 10−2 90 11 0.34 0.30
8 7.40 10−2 70 24 0.67 2.1

Table 1. All parameters listed are computed using the temperature and
densities at the center of the cylinder, at z = L/2. Proton to electron
mass ratio is mp/me = 50 for all runs.

The cylinder radius R is typically of the order of a few & λD
and L/λD � 1. All simulations are performed with a proton to
electron mass ratio mp/me = 50. This helps reducing computa-
tional times considerably without any significant impact on the
numerical values of the transport properties as the condition
mp � me is still holding.

The relevant parameters for the eight runs are shown in Ta-
ble 1.

4 Results

In all runs, particles are initially uniformly distributed inside
the cylinder, following a Maxwellian distribution at tempera-
ture 1

2 (T1 +T2). The system then freely evolves under the effect
of the sole electrostatic forces towards a stationary state, with
stable temperature and density profiles and approximately con-
stant proton and electron heat fluxes. Asymptotically the sys-
tem reaches a state of energy equipartition between species (i.e.
Te = Tp) and quasi neutrality ne = np except near the bound-
aries overs scales of the order of the Debye length λD � L.
Figure 3 shows the electron heat flux qe, normalized to the free
streaming flux q0 = ne(kBT )3/2/m1/2

e , for the eight runs of Ta-
ble 1 once a stationary state with an approximately spatially
and temporally constant electron heat flux has been reached.
The temperature used to determine q0 is the initial tempera-
ture 1

2 (T1 + T2) which is also the temperature in the middle of
the cylinder once the stationary state is reached. The heat flux
values and the associated error bars in Figure 3 represent the
average and the standard deviation obtained by measuring the
heat flux in 10 equally spaced bins along the z axis as illus-
trated in Figure 2. We note that the Spitzer&Härm flux given
by [11, 12]

qe,S = 3.2
kBT
me

neτe∇(kBT ) (11)

only depends on the Knudsen number and the free streaming
flux q0. In normalized units we then write

q̃e,S =
qe,S

q0
= 2.26 KT,e. (12)

Figure 3 shows that the measured heat flux systematically lies
below the Spitzer&Härm flux, even at low Knudsen numbers.
The normalized heat flux appears to depend linearly on the
Knudsen numbers, exactly as q̃e,S, provided the temperature

0.001 0.01 0.1
0.001

0.01

0.1

Knudsen number (K_T,e)

Simulation
Spitzer Harm
Fit

q/q0

Fig. 3. Circles show the normalized electron heat flux measured in the
8 runs listed in Table 1 as a function of the Knudsen number KT,e.
The normalized Spitzer&Härm electron heat flux is shown as a refer-
ence. The linear fit, based on the 6 points to the left corresponds to a
heat flux which is only 3/4 of the Spitzer&Härm flux. The Coulomb
logarithm is λ = 3.8 for all runs.

gradient is not too steep, i.e. KT,e . 5 10−2. A linear fit (exclud-
ing the two points corresponding to the steepest temperature
gradients) gives

q̃ =
q
q0
' 1.68 KT,e (13)

Finding an electron flux which is systematically smaller than
q̃e,S is not necessarily surprising as the computation of qe,S is
based on a collision operator which neglects terms in λ−1 and
the moments of the velocity distribution function of order ≥ 2
(see [2, 3] for a discussion on this point). Corrections of or-
der λ−1 may be neglected in the weakly coupled plasma regime
λ & 10 but not for λ = 3.8. In [5], Li and Petrasso use a modi-
fied collision operator including λ−1 terms which are shown to
effectively reduce the conventional Spitzer&Härm flux. How-
ever, the modification of the heat flux predicted by Li and Pe-
trasso [5] is only of order 1/6λ which is much smaller than
observed in our simulations. The Li and Petrasso correction is
clearly insufficient to explain the result of Figure 3.

When the temperature gradients are as steep as in the simu-
lations shown in this paper, non local contributions to the heat
flux may not be negligible. In order to evaluate the non local
contributions to the heat flux, we have computed the collision-
less electron heat flux qNC (see equation (4)) for all runs, i.e.
the heat flux generated by the thermostats if the electrons were
allowed to stream freely (with no velocity variations) from one
thermostat to the other. Table 1 shows that the collisionless flux
qNC is always substantially larger than the measured flux q ex-
cepted for Run 8. We conclude, that, at least in the case of
Maxwellian boundaries, the non local contribution to the heat
flux is not dominant as long as Ke,T . 510−2. In the high Knud-
sen number domain (KT,e & 0.05), the heat flux appears to sat-
urate at a level . 10−1q0, as already mentioned in [9] and [7]
for the λ & 10 case.
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5 Conclusion

Numerical simulations of a moderately coupled electron-proton
plasma in the classical regime (Coulomb logarithm λ = 3.8)
have been used to quantify the strength of the electron heat flux
in a steep temperature gradient. The simulations are based on
N-body techniques which are particularly well suited for mod-
erately coupled plasmas and have the enormous advantage of
producing results which do not depend on a particular choice
of the collision operator in the Boltzmann equation.

As expected for the highest Knudsen numbers (KT,e & 510−2),
when non local (collisionless) contributions to the heat flux be-
come dominant, the electron heat flux qe is seen to saturate at
∼ 10−1 times the free streaming flux q0. For KT,e . 5 10−2 the
normalized flux qe/q0 linearly depends on the Knudsen num-
ber KT,e. However, the intensity of the flux is found to be only
about 75% of the classical Spitzer & Härm flux.
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Abstract. We present a self similar three dimensional and spherically symmetric
fluid model of the expansion of an either globally neutral or globally charged
collisionless plasma into vacuum. As in previous works by other authors the key
parameter of the model is the ratio of the electron Debye length to the radius R of the
expanding ion sphere. The main difference with respect to the recently published model
of Murakami and Basko [1] is that the electron temperature is spatially non uniform.
The major consequence of the spatial variability is that the self-similar solution is
characterized by the presence of a sharp electron front at some finite distance ahead of
the ion front. Explicit analytic expressions for the self-similar profiles of the ion and
electron densities, the electron temperature and the heat flux are given for the region
inside the ion front. The model is shown to be in good qualitative agreement with
results from ab initio plasma simulations.
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Spherical expansion of a collisionless plasma into vacuum 2

1. Introduction

Plasmas freely expanding into vacuum are commonly observed in the astrophysical

context. Examples are the negatively charged dust particles in cometary tails expanding

into the interplanetary space [2, 3] or the expansion of the solar wind plasma into the

wake region of inert objects such as asteroids or the moon [4]. Besides the astrophysical

studies, most of the material on freely expanding plasmas has been published in the

context of laser-matter generated plasmas [5, 6, 7, 8] or discharge generated plasmas

[9]. During the last decade, the particular case of the collisionless spherical expansion

has focused attention after the experimental confirmation that the irradiation of small

cluster of deuterium atoms with high intensity laser pulses can produce a sufficiently

large number of up to MeV ions for efficient fusion reactions to occur [10]. In a typical

laser-cluster fusion experiment all, or just a fraction of the electrons are instantly

stripped from the cluster atoms or molecules and heated to up to keV energies by

the laser field [11, 10, 6]. The heated electrons depart from the cluster leaving a

clump of positively charged ions which become accelerated under the action of their

mutual electrostatic repulsion. To lowest order, the spatial structure of the expanding

plasma consists in two distinct regions. An inner region (the ion sphere), surrounding

the expansion centre, where both ions and electrons are present, and an outer region,

populated by electrons only [12, 1, 13]. The detailed structure is generally more complex,

especially in the case of large clusters where the initial heating is spatially non uniform.

In this case a two-component electron distribution and intricate spatial and temporal

structures of the expanding plasma are expectd [14, 15]. As shown in [6, 16] the minimum

cluster size for a two-component electron distribution to form is a function of the cluster’s

chemical composition and of the lasers’ characteristics.

Numerical studies have shown that even in the most simple case with only one single

Maxwellian electron population the initial evolution of the system is characterized by

wave steepening of the ion fluid velocity profile with associated formation of a peaked ion

front and development of plasma microinstabilities as the ion velocity becomes multi-

valued [17, 18]. Thus, as first pointed out on theoretical grounds in [17] and subsequently

observed in plasma discharge experiments [9], the late time (self-similar) ion density

profile is sometimes expected to be smoothed out by the microinstabilities at the ion

front. Recent two and three-dimensional kinetic simulations [14, 13] have also pointed

out how critically the expanding plasma depends on the characteristics of the laser

pulses used to heat the electrons. However, a model is only useful if it is simple and if

it contains all of the fundamantal ingredients of the problem. We therefore restrict our

model to the case of one single, not necessarily isothermal electron fluid, and an infinitely

steep ion front. The model describes the self-similar expansion of one single, spherically

symetric plasma plunged in an infinite empty volume. As already pointed out in [17] it

is expected that the expansion is self-similar when the radius of the expanding plasma

bubble largely exceeds the initial radius of the bubble, i.e. after a time long enough

for the memory of the initial conditions to be lost. Ions are assumed to be cold with
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Spherical expansion of a collisionless plasma into vacuum 3

a discontinuous ion-front while the electrons’ density and temperature are related to

each other by a simple polytropic law. The ion and electron fluid velocities are assumed

to be shear-free, meaning that they vary linearly with the distance from the expansion

centre [19]. The linear variation of the fluid velocity with respect to the radial distance

is necessary condition for the solution to be self-similar unless some special conditions

are assumed near the expansion centre [20].

The self-similar solution we propose differs from previously published self-similar

solutions [1, 8] in that the electrons are not assumed to be spatially isothermal, in

accordance with results from two dimensional PIC simulations [14] and our N -body

simulation of Section 3. The implications of a spatially varying electron temperature is

that the electron heat flux is finite with energy flowing towards the expansion centre.

In addition, the electron density drops to zero at some distance ahead of the ion front

while it extends to infinity in the Murakami and Basko model. For completeness, we

note that self-similar isothermal solutions similar to the one discussed in [1, 8] but with

a moving inner boundary, have been published in [21, 22, 20].

The paper is divided into two main sections. In section 2 we present the complete

theory of the self-similar model. In section 3 we compare the model with results from a

numerical N -body simulation.

2. Self-similar two fluid model

We describe the self-similar expansion of a plasma into vacuum within the context of a

two species (ions and electrons) spherically symmetric fluid model. The main difference

with respect to the self-similar model of Murakami and Basko [1] is that the electron

temperature is not assumed to be spatially uniform. The spatial dependence of the

electron temperature being confirmed by the case simulation presented in section 3. As

in the Murakami and Basko model we do consider the limit where the thermal energy

of the electron fluid is much larger that the thermal energy of the ion fluid (cold ion

limit).

2.1. Basic assumptions and equations

In this section, for the sake of completeness and to avoid ambiguities, we do briefly

present the definitions and assumptions whereon our model is based.

2.1.1. Definition of the plasma We consider a non magnetized two species collisionless

electron-ion plasma with an electron to ion mass ratio me/mi ≪ 1. For simplicity

we assume single ionized ions with charge qi = e (e is the elementary charge) the

generalization to higher ionization levels being a trivial extension of the model.

2.1.2. Fluid equations The collisionless hypothesis allows the systematic construction

of fluid equations by computing the velocity moments of Vlasov’s equation [23].
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Spherical expansion of a collisionless plasma into vacuum 4

Assuming spherical symmetry, and postulating isotropic velocity distribution functions,

the order zero and order one velocity moments of the non relativistic Vlasov equation

for species j = i, e (ions and electrons) lead to the continuity and momentum equations

in the form

∂nj

∂t
+

1

r2

∂

∂r
(r2njvj) = 0 (1)

̺j

(
∂vj

∂t
+ vj

∂vj

∂r

)
= − ∂pj

∂r
+ njqjE (2)

where nj , ̺j ≡ mjnj, vj and pj are the number density, the mass density, the fluid

velocity and the pressure for species j. As usual, the electric field E appearing in the

momentum equation is implicitly determined by the spatial distribution of ions and

electrons via Poisson’s equation

1

r2

∂

∂r
(r2E) = 4πe(ni − ne). (3)

The system of fluid equations is closed with a barotropic equation of state for the

electrons

pe = pe(̺e) = A̺γ
e . (4)

and pi = 0 for the ions. As already pointed out in [1] the only choice for the polytropic

index which is compatible with a self-similar solution of the equations is γ = 4
3
, unless the

plasma is quasi-neutral in all points of space, as for the self-similar solutions proposed

in [18]. We discuss this point in more details in section 2.2.

2.1.3. Shear-free flow In addition to the spherical symmetry of the flow we postulate it

to be shear-free. As shown in [19] the shear-free hypothesis implies that the fluid velocity

vj must be a linear function of the radial coordinate r multiplied by an arbitrary function

of time Hj(t), i.e. vj = rHj(t). Of course shear-free flows are a rather restrictive class

of spherically symmetric flows. For example, it has been first pointed out in [17] for

the quasi-neutral planar case and more recently in [24, 13] for the so-called Coulomb

explosion, the case where the totality of the electrons can escape from the cluster, that

for non uniform initial ion densities the ion velocity profile inevitably steepens until

it becomes multiple-valued and potentially unstable to plasma microinstabilities. The

shear-free assumption may still be pertinent for the late time evolution of the system

when the volume occupied by the expanding plasma greatly exceeds the initial volume,

and all wave activity has been damped out through wave-particle interactions.

The consequence of the shear-free flow assumption is that the continuity equation

(1) reduces to

∂ñj

∂t
+ rHj

∂ñj

∂r
= 0, with ñj ≡ njr

3 (5)

whose general solution is ñj = ñj(r/Rj) where the spatial scale Rj is a function of

time such that Hj = Ṙj/Rj, where overdots represent the time derivative d/dt. Thus,
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Spherical expansion of a collisionless plasma into vacuum 5

assuming flow velocities of the type

vj = r
Ṙj

Rj
≡ ξjṘj (6)

ensures both, that the flow is shear-free, and that the continuity equation (1) is

identically satisfied for any density profile ñj = ñj(ξj) where ξj = r/Rj is the self-similar

coordinate for species j. We conclude this section by noting that velocity profiles that

are not linear in r can lead to self-similar solutions in a limited region of space. For

example, in [20] the fluid velocity is assumed to be zero at an inner boundary r = r0 > 0.

2.1.4. Zero electron-ion drift velocity In the previous section we did not put any

constraints on the temporal evolution of the scaling lengths Rj . However, because

of the electrostatic coupling between species, we do not expect ions and electrons to

evolve on different scales. We then postulate the same scaling length R(t) ≡ Ri = Re

for both species, which is equivalent to assuming equal fluid velocities v ≡ ve = vi. The

overall fluid motion for both ions and electrons is therefore a function of just one single

scaling length R:

v = ξṘ. (7)

For example, the zero drift assumption implies that the density ratio ni/ne at the self-

similar position ξ = r/R does not change in time.

2.1.5. Cold ions approximation Given the zero drift hypothesis ve = vi and assuming

that the ion pressure term ̺−1
i ∂pi/∂r is small compared to the electron pressure term

̺−1
e ∂pe/∂r, it follows from (2) that the electric field within the ion sphere, where both

electrons and ions coexist, only depends on the spatial variation of the electron pressure:

eE
me

= − mi

me + mi

1

̺e

∂pe

∂r
≈ 1

̺e

∂pe

∂r
(8)

Using the above expression for the electric field, instead of Poisson’s equation (3), does

considerably simplify the electron momentum equation within the ion sphere leading to

simple analytic expressions for the density and temperature profiles in that particular

region.

2.2. Plasma structure inside of the ion sphere

We chose the ion front to be located at r = R(t), or, in terms of the self-similarity

variable ξ, at ξ = 1. All of the ions are therefore located within the spherical volume

ξ ≤ 1 where the electric field is given by equation (8). Substituting this expression for

the electric field in the momentum equation for the electrons (2) leads to the simpler

form

̺e

(
∂ve

∂t
+ ve

∂ve

∂r

)
= −α

∂pe

∂r
(9)
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Spherical expansion of a collisionless plasma into vacuum 6

where we have defined the small, dimensionless variable α ≡ me/(me + mi) ≈ me/mi.

Using the barotropic closure (4) and the shear-free flow (7) one can write (9) in terms

of a differential equation for the dimensionless electron density Ne ≡ neR
3 = ñe/ξ

3:

NeξR̈R2 = −αγA(Neme)
γ−1R−3γ+4 ∂Ne

∂ξ
. (10)

The general solution of this equation is not self-similar as it depends explicitly on the

spatial scale R. However, one can make the left-hand side of equation (10) independent

of R by setting R̈R2 = k1. The meaning of the constant k1 becomes clear immediately

by noting that in a self-similar solution the net charge of the plasma within an arbitrary

sphere of radius ξ must be constant in time. Thus, if Q(ξ) is the net charge within a

sphere of radius ξ we can write the momentum equation (2) for the ions as

miξR̈R2 = e
Q(ξ)

ξ2
. (11)

and consequently k1 = eQ1/mi is just a measure of the net charge Q1 ≡ Q(1) of the ion

sphere ξ ≤ 1. The explicit dependence on the spatial scale R in the right-hand side of

equation (10) is then easily eliminated by setting γ = 4
3

leading to the simple equation

∂

∂ξ

(
Ne

N1

)
= −k2(1 + α)ξ

(
Ne

N1

)2/3

(12)

where N1 = Ne(1) is a reference density which we chose to be the electron density at the

edge of the ion sphere and where k2 is a dimensionless parameter denoting the relative

importance of electrostatic and kinetic energy of an electron at ξ = 1

k2 ≡ 3

4

eQ1

R

1

kBT (1)
. (13)

In (13) kB is the Boltzmann constant and T (1) the electron temperature at ξ = 1. As

k2 is not allowed to vary in time we deduce that in the self-similar solution the electron

temperature goes as T (ξ) = T0(ξ)R0/R and where the index 0 refers to time t = 0 (also

see [1]).

2.2.1. Electron density profile inside of the ion sphere The solution of equation (12) is

a simple polynomial

Ne

N1
=

[
1− k2

6
(1 + α)(ξ2 − 1)

]3

≈
[
1− k2

6
(ξ2 − 1)

]3

. (14)

The smaller k2, i.e. the hotter the plasmas, the flatter the electron density profile. A

schematic representation of the electron density profile in the inner region is shown in

figure 1.
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Figure 1. Dependence of the ion and electron density profiles on the parameters a

and k2. The departure from charge neutrality in the inner region is specified by the
parameter a = [Ni(1) − Ne(1)]/Ne(1) and the curvature of the density profiles near
r = 0 by k2. As shown in section 2.3, the parameters a and k2 are not independent of
each other.

2.2.2. Electric field and ion density profiles inside the ion sphere The electric field in

the inner region is given by equation (8), together with the polytropic approximation

pe ∝ ̺
4/3
e and the equation for the electron density (14). Not considering the constant

factors one then easily finds that the r2E ∝ ξ3. With Q1 being the net charge of the

ion sphere, the electric field at ξ = 1 is just E(1) = eQ1/R
2 and the electric field in the

inner region must be

E(ξ ≤ 1, t) =
Q1

R(t)2
ξ. (15)

We note that the electric field always peaks at the edge of the ion sphere ensuring that

any given ion is always less accelerated that all ions ahead of it. Thus, as it must

necessarily be, no ion overtaking occurs during the self-similar phase of the expansion.

Ion overtaking is nevertheless a common event during the early, non self-similar phase

of the expansion, unless very special initial conditions are chosen such that the electric

field increases monotonically from r = 0 to r = R [24, 13].

In order to compute the ion density we multiply Poisson’s equation (3) by R3 and

rewrite it in terms of the self-similar variable ξ

∂

∂ξ

(
r2E)

= 4πeξ2(Ni −Ne). (16)

Since r2E ∝ ξ3 it follows that Ni −Ne is a constant:

Ni(ξ)

N1

=
Ne(ξ)

N1

+ a, for ξ ≤ 1 (17)

where, as before, N1 = Ne(1) and where the constant a = 3Q1/(4πeN1) is settled by

the constraint that the net charge in the ion sphere is Q1 =
∫ 1

0
dx 4πx2(Ni − Ne). The
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Spherical expansion of a collisionless plasma into vacuum 8

dimensionless constant a can therefore be interpreted as the relative departure from

charge neutrality at ξ = 1, i.e. a = [Ni(1)−Ne(1)]/Ne(1) (see figure 1).

2.3. Structure of the plasma outside of the ion sphere

The region ξ > 1 is populated by electrons only. The electric field for this region is

obtained by integration of the Poisson equation (16) with Ni = 0

ER2 =
1

ξ2

(
Q1 − 4πe

∫ ξ

1

dx x2Ne(x)

)
. (18)

Plugging this expression for the electric field into the electron momentum equation (2)

for j = e conducts to the integro-differential equation for the electron density in the

region ahead of the ion sphere

1

N
1/3
1

N ′
e

N
2/3
e

= −k2

[
αξ +

1

ξ2

(
1− 3

a N1

∫ ξ

1

dx x2Ne(x)

)]
(19)

where the prime symbol ′ stands for the derivative with respect to the self-similar variable

∂/∂ξ. Equation (19) must be integrated numerically. We used a standard adaptive

Runge-Kutta solver for all figures of the paper. However, even without performing

the integration, the equation tells us that the electrons extends to a maximum radial

distance ξf . For example, in the particular case of overall neutral plasma, for ξ → ∞
the second term on the right-hand side of (19), which is essentially the electric field,

must vanish. In this case, sooner or later, it must be that the electron density decreases

as Ne ∝ −ξ6 which necessarily implies Ne = 0 for a finite value of ξ. Knowing that

both the density and the electric field vanish at some finite distance ξ = ξf (the electron

front) we conclude that at that particular distance N
−1/3
1 N ′

e/N
2/3
e = −k2αξf and that

therefore in the vicinity of ξf the density rapidly falls off as Ne ∝ (ξf − ξ)3. This is an

important difference with respect to the infinite electron precursor of the Murakami and

Basko model [1].

Equation (19) is a function of two constants a and k2 which are apparently

independent of each other. However, if one assumes that the electron density is

not discontinuous in ξ = 1 so that Ne(1
+)/N1 = 1 can be used as a boundary

condition, the two constants a and k2 are constraint by the requirement that the

electric field and the density both vanish at ξ = ξf . The former condition implies

that 3(a N1)
−1

∫ ξf
1

dx x2Ne(x) = 1. The k2(a) dependence for an overall neutral plasma

and an electron to ion mass ratio α = 1/50 is graphically illustrated in figure 2. The fact

that a and k2 are not independent shows that for a given choice of the charge separation

parameter a there is only one possible choice of the parameter k2 such that the electron

density and the electric field both vanish at exactly the same position ξf . Thus, the

behaviour of the system depends on the value of one single dimensionless parameter.

For coherence with previous works on the subject [1, 13] we use a combination of a and

k2 to define the key parameter

Λ2 ≡ a

4k2
=

[
λD1

R

]2

(20)
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Figure 2. Relation between the parameters a, k2 and Λ2 ≡ (λD1/R)2 for an overall
neutral plasma and α = 1/50 obtained by numerically solving the differential equation
for the electron density ahead of the ion front (19).

where λD1 = [kT (1)/4πe2ne(1)]1/2 is the electron Debye length at the ion front ξ = 1.

An additional parameter is required if the plasma of the self-similar solution is not

globally neutral (see section 2.3.1).

Two examples illustrating a moderate and a strong charge separation, respectively,

are shown in figure 3. As the charge separation grows with growing temperature we

may class the two examples as mild and hot, respectively. Not surprisingly, the electrons

being less coupled to the ions in the hot case (right panels) the electron precursor extends

to a significantly larger distance ahead of the ion front with an overall flatter density

profile. In figure 4 the profiles for 4 different values of Λ2 are shown starting form a

quasi-neutral (mild) case with Λ2 = 0.02 where electrons hardly detach from the ion

sphere up to the hot case with Λ2 = 3 which already resembles to a Coulomb explosion

[13].

2.3.1. Overall charged plasma In the previous section we considered the case of an

overall neutral plasma, i.e. a plasma where the total number of ions Ni equals the total

number of electrons Ne. However, in some experiments (real or numerical), as in the

numerical simulation presented in the Section 3, a non negligible fraction of electrons

may be sufficiently energetic to become completely decoupled from the ion sphere. These

electrons do essentially conserve their original speed and their evolution is trivial. Only

the electrons which remain coupled to the ions do then participate to the self-similar

evolution of the remnant which is not necessarily globally neutral.

If we assume that the plasma remnant’s global charge is Qf ≡ e(Ni − Ne),

one has to integrate equation (19) under the condition that the electric field at the

electron front is just E(rf) = Qf/r
2
f which corresponds to let (...) → Qf/Q1 for
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Figure 3. Electron and ion density profiles (top panels) and electric field profiles for
two different values of Λ2. The left panels correspond to a quasi-neutral (mild) case
with Λ2 = 0.02. The right panels correspond to a strongly non neutral (hot) case with
Λ2 = 0.5.
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Figure 4. Electron density profiles for an overall neutral plasma and various values
of Λ2. The electron to ion mass ratio is α = 1/50 for this figure and for all figures in
the paper.

ξ → ξf in (19). Near the electron front, the differential equation (19) reduces to

N
−1/3
1 N ′

e/N
2/3
e = −k2[αξf +ξ−2

f Qf/Q1] while the electric field is E(ξf)/E(1) = ξ−2
f Qf/Q1.

Thus, in the charged case, as in the neutral case discussed in the previous section, the

electron density decreases as Ne ∝ (ξf−ξ)3 for ξ → ξf . In figure 5 the self-similar profiles

for a neutral plasma (left panels) and a charged plasma (right panels) are shown. Both
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Figure 5. Electron and ion density profiles (top panels) and electric field profiles for
two different values of the total charge Qf/Q1 and Λ2. The total number of electrons in
the charged system is only 67% of the total number of ions so that the electric field is
not zero at the electron front. In the neutral case Λ2 = 0.02 with (a, k2) = (0.73, 9.16)
(left panels) while for the charged case Λ2 = 0.08 with (a, k2) = (3.6, 11) (right panels).
The electron front is much closer to the ion front in the charged case, despite being
characterized by a larger value of Λ. These two particular examples are discussed
further in connection with the numerical simulation of section 3.

cases are rather mild with (Λ2 = 0.02 and Λ2 = 0.08 respectively. In the charged case,

the total number of electrons is only 2/3 of the total number of ions. Not surprisingly,

the electron front is substantially closer to the ion front in the charged case compared

to the neutral case because of the missing electrons. The k2 parameter being larger in

the charged case, both the ion and electron densities decrease faster in the charged case

than in the neutral case, even though the latter is the coldest of the two. The plasma

parameters for the two examples in figure 5 have been chosen for the ion density profiles

to fit the density profile of the case simulation presented in section 3.

2.4. Ion front motion

The position of the ion front R(t) can be computed explicitly from the equation of motion

by integrating the condition R̈R2 = k1 = eQ1/mi which expresses the conservation in

time of the net charge of the ion sphere. Thus, the differential equation for R(t) can be

written in the form

Ṙ2 = −2
k1

R
+ V 2

∞ (21)
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Spherical expansion of a collisionless plasma into vacuum 12

where V∞ is to the asymptotic velocity of the ion front. If we assume that the ion front

is initially at rest, then V 2
∞ = 2k1/R0 and therefore

Ṙ2 = V 2
∞

(
1− R0

R

)
. (22)

Multiplying equation (22) by (R0ωe,1)
−1, where ωe,1 = [4πe2ne(1)/me]

1/2 is the electron

plasma frequency at ξ = 1, leads to the differential equation in the normalized time

variable t̃ ≡ tωe,1 and the normalized ion front position R̃ ≡ R/R0

dR̃

dt̃
=

(
2aα

3

)1/2 (
1− 1

R̃

)1/2

(23)

whose solution is

t̃

(
2aα

3

)1/2

=
[
R̃(R̃− 1)

]1/2

+ ln
(√

R̃ +
√

R̃− 1
)

. (24)

We note that for a ≫ 1 one has ωe,1

√
aα ≈ ωi,1 (see (17)) and (24) reduces to the

expression given in [13] for the case of a pure Coulomb explosion. The solution (24)

shows that the characteristic time scale for approaching the asymptotic velocity is of

order of (ωe,1

√
aα)−1 indicating that acceleration time and wave period of Langmuir

oscillations near the ion front are of the same order for
√

aα of order unity.

2.5. Ion energy distribution

Using (15) the total (kinetic + electrostatic) energy of an ion at any position ξ ≤ 1 can

be written as

E =
1

2
miξ

2Ṙ2 − 1

2

eQ1

R
ξ2. (25)

From the ion front equation of motion (21) and the equation for the electric field (15)

one finds that the energy of an ion at position ξ grows in time as

E(ξ, t) =

[
1

2
miV

2
∞ −

3

2

eQ1

R(t)

]
ξ2. (26)

approaching the asymptotic value E(ξ) ≈ 1
2
miξ

2V 2
∞ for t → ∞. Given that the ion

density profile Ni(ξ) is known through equations (17) and (14) the number of ions in

the interval [ξ, ξ + dξ] (normalized to the total number Ni) is explicitly given by

dNi([ξ, ξ + dξ]) = 4πξ2Ni(ξ
2)dξ. (27)

Using the energy-position relation (25) and the density distribution (27), one obtains

the number of ions in the energy interval [Ẽ, Ẽ + dẼ]:

dNi([Ẽ, Ẽ + dẼ]) = 2πẼ1/2Ni(Ẽ)dẼ. (28)

where Ẽ = E/E(1) = ξ2 is the energy of an ion at position ξ normalized to the energy

of an ion at ξ = 1. The distribution dNi/dẼ of the ions kinetic energy in the system is

shown in figure 6 for various values of Λ2.

We note that for Λ2 & 0.2 the distribution peaks at the maximum energy,

corresponding to the contribution of the ions at ξ = 1. For Λ2 . 0.2 the contribution
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Figure 6. Ion energy distribution for α = 1/50 and various values of Λ2. The figure
is qualitatively similar to results from numerical simulations shown in figure 9 of [13].

from the ions near the front ξ = 1 is no longer dominant since their relative number

decreases with decreasing Λ2 as shown by equations (14) and (17) or even figure 4. The

structure of the ion energy spectrum and its dependence on Λ2 is qualitatively similar

to the spectra in [25, 13].

2.6. Electron heat flux

In order to compute the heat flux q carried by the electrons we write the energy equation

in Lagrangian form, derived from the collisionless Boltzmann equation, for a spherically

symmetric flow and isotropic electron temperature [26]:

3

2

(
∂T

∂t
+ v

∂T

∂r

)
= − T

r2

∂

∂r

(
vr2

)− 1

nekB r2

∂

∂r

(
qr2

)
(29)

The first term on the right corresponds to the cooling of the fluid element du to the

expansion, the second term to the cooling (or heating) of the fluid element collisionless

heat conduction. For a polytropic fluid with T ∝ nγ−1
e equation (29) can be written in

the form:

3

2

(
γ − 5

3

γ − 1

)
nekB

DT

Dt
= − 1

r2

∂

∂r

(
qr2

)
(30)

where D/Dt ≡ ∂/∂t + v∂/∂r is the convective derivative. As expected, equation (30)

shows that the electron heat flux vanishes when the polytropic index equals the adiabatic

value γad = 5
3

and infinity for the isothermal index γ = 1. Since the spatial profiles of

both density and temperature are flat near the expansion centre we find that the heat

flux near the expansion centre is given by q(r) ≃ 1
2
nekB r ∂T/∂t < 0, indicating that

energy is transported in the direction of decreasing r, i.e. in the direction of increasing

temperature. The reason for this non intuitive behaviour is that the energy flux goes
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from high to low entropy regions but not necessarily from regions of high to regions of low

temperature. In general, in a collisional gaz or in a fluid, temperature and entropy vary

together and energy effectively flows down the temperature gradient. In the polytropic

approximation entropy variations ds and temperature variations dT are related via [27]

ds

R =
3

2

(
γ − 5

3

γ − 1

)
dT

T
= −3

2

dT

T
(31)

where R is the gaz constant and where γ = 4
3

has been set. The entropy-temperature

relation indicates that spatial and temporal variations of the electron temperature are

opposite with respect to the spatial and temporal variations of the entropy. Thus, in the

self-similar solution of the expansion problem, entropy increases spatially away from the

expansion centre with a logarithmic divergence s ∝ − ln(ξf − ξ) for ξ → ξf . Similarly,

in the central region, near r = 0, one has ∂s/∂t = −3
2
R∂ ln T/∂t > 0. Entropy grows

in time because the reduction of entropy due to cooling is more than compensated by

the entropy increase due to the fluid expansion.

Specialising to shear-free flows v = ξṘ with the self-similar polytropic index γ = 4
3
,

the energy equation (30) simplifies to

3

2
kBTNe

Ṙ

R3
= − 1

ξ2

∂

∂ξ
(ξ2q) (32)

The left-hand side of this expression is strictly positive indicating that the heat flux is

directed towards the expansion centre, against the temperature gradient, in all parts of

the fluid. Equation (32) can be solved for the heat flux which after some rearrangements

becomes

q(ξ, t) = −6πe2N2
1 Λ2 Ṙ

R4

1

ξ2

∫ ξ

0

[
Ne(x)

N1

]4/3

x2dx. (33)

This equation shows that at any given time t the energy |4πξ2R2q(ξ, t)| which flows

towards the centre through the sphere of radius ξ increases monotonically with the

distance ξ, reaching a maximum at the electron front ξ = ξf . The heat flux at any

position ξ varies in time as −Ṙ/R4. Thus, according to (33), the heat flux, which is

initially zero if the initial expansion velocity is assumed to be zero, first grows in time

until it reaches a maximum intensity at the time when R = 9
8
R0. At later times the

heat flux intensity decreases everywhere monotonically and, in particular for R ≫ 1,

the expansion velocity can be assumed to be constant and q ∝ R−4 ∝ t−4.

3. Ab initio simulation

In this section we present a numerical case simulation of a two species collisionless

plasma expanding into vacuum. We use a slightly modified version of Walter Dehnen’s

non relativistic N -body code [28], initially conceived for gravitational problems. N -

body simulations have the advantage of not resting on simplyfing assumptions being

merely based on Newton’s second law of motion and Coulomb’s law to compute the

self-consistent evolution of a system of point charges. The major disadvantage of
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N -body simulations, compared to either fluid [29, 30], semi-kinetic [13] or even fully

kinetic simulations [31, 14, 4] resides in the computational difficulty to follow the plasma

evolution over a sufficiently long physical time for the system to enter into a clean self-

similar phase. The choice of an artificially small mass ratio mi/me, necessary to keep

the computational time within reasonable limits, is another drawback of the N -body

simulations. On the other hand, N -body simulations are more realistic representations of

collisionless systems with a small number of particles than ideal, noise-free, simulations

based on the Vlasov-Poisson system. Strictly speaking the Vlasov-Poisson equations are

only applicable to plasmas where the number of electrons within the Debye sphere tends

to infinity. However, in real plasma-cluster experiments the number of atoms in a cluster

is rather small, ranging between 103 [32] and 107 [6]. Accordingly, in the simulation of

this section a total number of 1.5 105 ions and an equal number of electrons have been

chosen. The parameter Λ having been selected in the the most interesting regime for

numerical simulations Λ = O(0.1) (see Section 3.1), the expected number of electrons in

Debye sphere is of order 102. As explained in [33], the applicability of a Vlasov-Poisson

model for a system with such a small number of particles is questionable since a non

negligible fraction of orbits are expected to become chaotic, i.e. non reversible, during

the time of the simulation. Thus, contrary to the prediction of the Vlasov-Poisson

model, in the N -body and in the corresponding real system, the total Gibbs entropy is

not constant but a growing function of time.

3.1. Plasma parameters and initial conditions

We simulate a total of 1.5 105 single ionized ions and an equal number of electrons. The

ion to electron mass ratio is mi/me = 50. Such a mass ratio is sufficiently large for the

two fluid model of Section 2 to be applicable.

At t = 0 ions and electrons are distributed uniformly within a sphere of radius R0.

Initially, all ions are motionless whereas the electrons’s velocities are drawn following a

Maxwell-Boltzmann distribution at temperature T0 and zero bulk velocity.

The initial temperature T0 and density ni,0 = ne,0 = n0 are selected for the

expansion to be in the mild regime with Λ = O(0.1), the hot case Λ ≫ 1 corresponding

to the Coulomb explosion and the cold case Λ≪ 1 to the quasi-neutral case.

The strong interaction radius rs ≡ e2/3kBT , representing the characteristic distance

for binary collisions, is taken to be much smaller than the ion sphere R and even much

smaller that the average distance between electrons n
−1/3
e . The mean free path for a

binary collisions of a test electron with another electron in the system can be estimated

to be λee,bin = 1/ne4πr2
s = 9(kBT )2/4πe4ne. Using the definition of the key parameter

Λ2 = kBTR−2/4πnee
2, and the polytropic relation T ∝ N

1/3
e , the normalized mean free

path for binary collisions becomes

λee,bin(ξ)

R
= 36πΛ4Ne(1)

[
Ne(ξ)

Ne(1)

]−4/3

(34)

which shows explicitly that in the self-similar model the collisionality does not evolve
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in time as the right-hand side of (34) is constant. In weakly coupled plasmas where

the Coulomb logarithm ln(λD/rs) & 5, binary collisions are unimportant compared to

the cumulative effect of long distant interactions with impact parameters of the order

λD ≫ rs. The mean free path can then be obtained in the Fokker-Planck approximation

which is given, within a constant factor of order unity, by λee,FP ∼ λee,bin ln−1(λD/rs)

[34].

In the simulation the Coulomb logarithm is larger than unity, the density at the ion

front N1 ≈ 2× 103 and the key parameter Λ2 & 0.02 (see figure 7). We can then make

an estimate of the mean free path at the ion front λee,FP(1) ∼ λee,FP(1) & 90R ≫ R.

which confirms that the plasma is collisionless and that it can be treated in the frame

of the collisionless fluid model of section 2.

3.2. Density and temperature profiles inside of the ion sphere

Figure 7 shows that the simulated ion density profile can be fairly well approximated

using the self-similar density from (17) with Λ2 = 0.02 and an overall neutral plasma.

On the other hand, the electron density predicted by the model are substantially higher

than the density observed in the simulation everywhere within the ion sphere. A much

better agreement for both ion and electron densities can be obtained by assuming that

the plasma is not globally neutral as shown in the right panel of figure 7 where the total

number of electrons is only 2/3 of the total number of ions and Λ2 = 0.08. The fact

that the non neutral model provides a better approximation is the consequence of a non

negligible fraction of electrons having a sufficiently high initial energy to escape from

the system keeping the memory of the initial condition which is not compatible with the

self-similar solution. The flattening of the electron density profile from the simulation

for ξ & 1.6 is a trace of these escaping electrons which are even better visible in figure 9.

Figure 9 also shows that some of the electrons located ahead of the ion front are falling

back towards the ion sphere on time scales which are of the order of the simulation

time. These slowly falling electrons do still carry the memory of the initial conditions

and may not yet be entirely compatible with the asymptotic solution.

The small ion excess observed in the simulation when approaching the ion front

is due to ion overtaking which has been shown to occur whenever the electric field

maximum occurs in a region of decreasing ion density [24, 13].

In figure 8 the electron temperature profile at the end of the simulation is compared

to the model predictions based on the same two sets of parameter used for figure 7.

As already announced, the electron temperature measured in the simulation is strongly

dependent on the spatial variable ξ despite having been uniform at t = 0. The agreement

between simulation and model prediction is rather satisfactory for ξ . 0.8 for both the

overall neutral and the overall charged case. In particular the convex shape of the

temperature profile predicted by the theory is apparent in the simulated profile. The

spike in the temperature near ξ = 0.9 is a transient feature due to the presence of

counterstreaming electron beams. Indeed, as shown in figure 9, electron beams are
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Figure 7. Rescaled density profiles for both ions and electrons from the simulation
compared to model profiles. The model profiles in the left panel correspond to those
of an overall neutral plasma and Λ2 = 0.02. The model profiles in the right panel
correspond to those of a globally charged plasma with Λ2 = 0.08. and a total number
of electrons Ne which is only 67% of the total number of ions Ni. The experimental
profiles have been obtained by averaging the densities from the simulation during the
time interval 7 ≤ tωe0 ≤ 41 (see figure 9). The model densities have been normalized
as to make the total number of ions in the simulation to be equal to the total number
of ions in the model. All densities have been normalized to the model electron density
Ne(1) (see equation (14)).

sporadically expelled from the ion sphere. Most of these beams, except the very first

one, are not energetic enough to escape and fall back into the ion sphere where they first

appear as inward propagating beams and later, passed the pericentre, again as outward

propagating beams.

3.3. Ion front expansion and electron density fluctuations

Figure 9 shows the electron density in arbitrary units and the position of the ion front

as a function of time. Given the difficulty of predicting the value of Λ2 based on the

initial choice of the electron temperature we fit the ion front position using equation

(24). The fit produces an estimate of the parameter a and, from which, using figure 2,

one deduces the value of the key parameter Λ2 = 0.08 and the scaling of the time axis

in terms of the electron plasma frequency.

The figure shows that regardless of the strong electron density fluctuations around

the ion front, the latter closely follows the temporal evolution of equation (24). The

time period of the electron density fluctuations near the ion are compatible with a

period of the order 2π/ωe(1). The slowing down of the oscillation frequency with time

is a consequence of the decreasing plasma frequency ωe(t) ∝ n
1/2
e ∝ R−3/2. Individual
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Figure 8. Electron temperature profiles at the end of the simulation compared to
model profiles for an overall neutral model with Λ2 = 0.02 (left pannel) and for a
globally charged plasma with Λ2 = 0.08. and a total number of electrons which is only
0.67% of the total number of ions (right panels).

Figure 9. Logarithm of the electron density and ion front position measured in
the simulation (diamonds). The R̃(t) curve has been obtained by forcing the self-
similar solution (24) to pass through the latest position of the ion front observed in
the simulation with Λ2 = 0.08 and α = 1/50.

electron trajectories are visible in the upper part of the figure. Some electrons are

clearly ”falling” back onto the expanding ion sphere. However, a non negligible fraction

of electrons, of the order of 1
3

the total number, have a sufficiently high initial kinetic

energy to freely escape from the system. In the long run, once the not bounded electrons
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have escaped, the system does more likely evolve according to the self-similar solution

of a charged plasma with Qf/Q1 = 0.33 as suggested by the good agreement between

the profile from the simulation and the manual fit in the right panel of figure 7.

3.4. Ion energy distribution
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Figure 10. Ion energy distribution at the end of the simulation compared to the
energy distributions from the self-similar model for the neutral case with Λ2 = 0.02
and the charged case with Λ2 = 0.08 and Qf/Q1 = 0.93 corresponding to a plasma
where the total number of electrons is 67% of the total number of ions.

The energy spectrum of the ions in the simulation is shown in figure 10 at the

end of the simulation when the ion front velocity can be assumed to be constant and

the electrostatic energy stored in the ions negligible. Also shown are the model energy

distributions for the two sets of plasma parameters used for the two panels in figure 7.

Both the charged and the neutral case do qualitatively agree with the distribution from

the simulation. The main difference between simulation and model is the existence of

a secondary peak in the ion energy distribution from the simulation. This secondary

peak at the ion front is a remnant of the initial condition, due, at least in part, to

ion overtaking as described in [17, 18] for the quasi-neutral case and in [24, 13] for the

Coulomb explosion case. Ion overtaking does also manifest itself with the formation of

a peak in the ion density profile which is visible on the ion density profiles near ξ = 1

in figure 7. However, as shown in [20], a spike near the maximum energy can also be

part of a self-similar solution by relaxing the zero velocity condition at ξ = 0.

4. Conclusions

We have presented a new spherically symmetric self-similar solution for the problem

of the expansion of a collisionless, either globally neutral or globally charged plasma,
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into vacuum. The model is based on a two fluid system of equations derived from

the collisionless Boltzmann equation with a polytropic closure for the electrons and

a zero temperature closure for the ions. The model is similar to the one recently

published in [1] with the notable difference that electrons are non isothermal. The

consequence is the appearance of a sharp electron front at some distance ahead of

the ion front and an inwards directed heat flux. Analytic expressions for the ion and

electron densities as well as for the electron heat flux and the ion energy distribution

are given for the region inside the ion sphere. The self-similar solution has been found

to be in good qualitative agreement with results from an ab initio numerical simulation.

Longer simulations than the one presented are needed to establish if the self-similar

solution is effectively an “attractor” for the late evolution of the system, when the

memory of the initial conditions are lost. We note that the fluid model is based on the

restrictive assumption that the radial and tangential temperatures of the electron fluid

are equal. This condition is not necessarily satisfied in the collisionless limit where the

pressure tensor can be anisotropic. Thus, an even better agreement between model and

numerical simulations may be obtained by assuming a non isotropic pressure tensor for

the electron fluid which is a current assumption in the context of solar wind modelling

[26] possibly with a different equation of state for the radial and tangential directions.

However, allowing for the pressure to be anisotropic does only make sense if some

physical mechanism (e.g. plasma instability) triggering the degree of anisotropy has

been previously identified.

We conclude by observing that the presented self-similar solution is expected to

apply to the late expansion of a plasma resulting from the irradiation of small clusters

of atoms where the totality of the electrons are heated to high energies independently

of their original location within the cluster. The case of an expanding plasma with

two distinct electron populations is certainly a more realistic representation of the case

of large clusters [16, 15, 1] worth being addressed in a future publication. In this

repect, we note that the two populations case with a mild, cluster bounded population,

and a hot, escaping population, has already been discussed implicitly in Section 2.3.1

where we have treated the case of an overall charged plasma. The generalization of the

solution to the case of two or more populations of electrons with different temperatures

and densities should be straightforward and much easier to carry out than the more

ambitious generalization to an anisotropic electron pressure tensor.

References

[1] M. Murakami and M. M. Basko. Self-similar expansion of finite-size non-quasi-neutral plasmas
into vacuum: Relation to the problem of ion acceleration. Physics of Plasmas, 13:2105–+,
January 2006.

[2] S. R. Pillay, S. V. Singh, R. Bharuthram, and M. Y. Yu. Self-similar expansion of dusty plasmas.
Journal of Plasma Physics, 58:467–474, October 1997.

[3] K. E. Lonngren. Expansion of a dusty plasma into a vacuum. Planetary and Space Science,
38:1457–1459, November 1990.

Annexe 11

176



Spherical expansion of a collisionless plasma into vacuum 21

[4] P. C. Birch and S. C. Chapman. Two dimensional particle-in-cell simulations of the lunar wake.
Physics of Plasmas, 9:1785–1789, May 2002.
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1 Introduction

FalcON is a hierarchical O(N) force calculation code for the approximate
computation between N mutually interacting bodies. The underlying al-
gorithm, mainly intended for gravitationally interacting bodies, has been
extensively described in the reference article by the author of the code W.
Dehnen (1) (hereafter D2002). This note is about a possible extensions of
the basic algorithm to make it applicable to plasma simulations, i.e. with
the possibility of having both attractive and repulsive forces in the sys-
tem, while keeping the O(N) computational complexity of the algorithm.
Even though, both electrostatic and gravitational force fields are governed
by the Poisson equation, non exact methods (like the falcON algorithm) to
solve Poisson’s equation in the gravitational case may not be uncritically
transposed to the electrostatic case. For example, the electrostatic field due
to a system of positive and negative charged particles can vanish exactly,
whereas any system of gravitationally interacting bodies induces a non van-
ishing gravitational field. Concerning falcON, the most important difference
arises because in a globally neutral plasma of N particles the monopole con-
tribution to the electrostatic field is zero, whereas in the gravitational case
the monopole term is proportional to the sum of all masses in the system
which is always positive. In addition, given that in the original version of
falcON the multipole expansion of the field is barycentric, the dipole term
is zero by construction. In a plasma, the dipole term is often dominant, the
monopole term being generally small or zero.

Details on the falcON algorithm can be found in Dehnen’s article ((1)).
In section 2 we propose a better suited definition of the expansion center for
the approximate and in section 3 the associated expansion coefficients.

1

Annexe 12

180



2 Modifying the definition of the expansion center

Figure 1: Two interacting cells (boxes). The stars indicate the position of the
”center of mass” based on the sum of the absolute value of the charges µi in the
corresponding cell according to equation (1). The figure has been adapted from Fig
1 in reference (1).

The algorithm is based on a multipole expansion of the electrostatic force
acting on the bodies in cell A due to all bodies in cell B for well separated
cells (see figure 1). The key point is a convenient definition of the expansion
center zBbased on the position and on the electric charge µi of all charges i
in cell B. It is reasonable to set

zB ≡
∑

i |µi|yi∑
i |µi| . (1)

This new definition of the expansion center has the advantage of being iden-
tical to the original definition in Dehnen’s paper when all µi in the system
are positive. In the case of two charges of equal strength and opposite sign
(e.g. an electron and a proton) zBis locate at half the distance between the
two charges, which is a convenient location for a multipole expansion. With
the old definition in D2002 one has µi instead of |µi| in (1). In this case
the expansion center would be located at zB→ ∞ because of the vanishing
denominator !
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3 The new version of the field tensors

The potential at every position x in cell A generated by all charges in cell
B is given by the expansion

ΦB→A(x) = −
p∑

m=0

1
m!

(x− zA)(m) �Cm,p
B→A +Rp(ΦB→A) (2)

where x(n) indicates the n-fold outer product of the vector x with itself, �
the tensor inner product and Rp the Taylor reminder due to multipole terms
of order higher than p. Given the definition (1) of the expansion center zB,
the field tensors Cm,p

B→Ain equation (2) do now depend on the dipole moment
M1, which vanishes by construction in the gravitational case. The general
expression for the field tensors in (2) is

Cm,p
B→A =

p−m∑
n=0

(−1)n

n!
∇(n+m)g(R)�Mn

B (3)

Mn
B =

∑
yi∈B

µi(yi − zB)(n) (4)

where R ≡ zA − zB and g(R) = 1/|R| is the spherical Green function. As
in the D2002 we limit the expansion to the order p = 3. Using the following
definition for the operator Dm

Dm ≡
(

1
r

∂

∂r

)m

g(r)
∣∣∣r = |R| (5)

so that, for example, D2 writes

D2 =
1
r

∂

∂r

(
1
r

∂g(r)
∂r

) ∣∣∣r = |R| (6)

The explicit form of the relevant coefficients (using Einstein’s sum conven-
tion), including contributions proportional to the non vanishing dipole M1,

3
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can the be written as (assuming Einstein’s summation convention)

C0,3
B→A = M0D0 +

1
2
M2

iiD
1 +

1
2
RiRjM

2
ijD

2

−RiM
1
i D

1 +O(M3) (7)

C1,3
B→A,i = Ri

(
M0D1 +

1
2
M2

jjD
2 +

1
2
RjRkM

2
jkD

3

)
+RjM

2
ijD

2

−M1
i D

1 −RiRjM
1
j D

2 (8)

C2,3
B→A,ij = M0(δijD1 +RiRjD

2)

−M1
k

[
(δijRk + δkiRj + δjkRi)D2 +RiRjRkD

3
]

(9)

C3,3
B→A,ijk = M0

[
(δijRk + δkiRj + δjkRi)D2 +RiRjRkD

3
]
. (10)

Box surrounded terms are new with respect to D2002. Note that the oc-
topole term M3 only appears in the C0,3

B→A. Following D2002 we ignore this
contribution since it does not affect the force field ∇Φ.
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