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Préface

Je résume dans cet ouvrage quelques uns des sujets de recherche sur lesquels j’ai
travaillé au cours de la derniére douzaine d’années. La présentation est volontaire-
ment peu détaillée et peu technique, dans la mesure ou il m’aurait été difficile d’aller
au fond des choses pour chacun des sujets traités dans ce mémoire. Les références
bibliographiques, les notes de bas de page et les articles en annexe pourront cepen-
dant guider le lecteur curieux vers les articles pointus de la littérature spécialisée.
Les choix thématiques au sein de chaque chapitre sont plus dictés par leur relation
avec mon propre travail que par leur importance absolue dans le domaine de la
science traité au sein du chapitre. Certains travaux, notamment d’écriture de codes,
qui m’ont souvent pris des mois de travail mais qui n’ont pas donné les résultats
escomptés ne sont pas présentés ici.

Méme si le centre de gravité de mes activités de recherche se situe dans le domaine
de la physique des plasmas spatiaux, il m’est difficile de classer sous une dénomina-
tion commune les sujets traités dans ce mémoire. Il est cependant possible de relier
les différentes activités de recherche qui m’ont occupé depuis mon doctorat, par un
lien logique que l'on devrait pouvoir classer dans la catégorie des liens dits "de fil
en aiguille". Au début du fil il y a des travaux sur la simulation de chocs dans les
plasmas non collisionnels (chapitre 2). Suivent des travaux sur 'instabilité miroir
(chapitre 3) qui est une instabilité des plasmas non collisionnels, souvent observée
dans les plasmas spatiaux et quelques fois en association avec des chocs. Aprés ces
débuts dans le domaine des plasmas non collisionnels lesquels, il est vrai, trouvent
un champ d’application formidablement riche dans le contexte de 'exploration du
vent solaire et des environnements planétaires, je me suis intéressé aux plasmas col-
lisionnels que 'on trouve aussi bien en astrophysique qu’au laboratoire. Au départ
de cette nouvelle phase dans ma vie de chercheur, il y a eu un petit code en fortran,
a destination des étudiants en maitrise de physique a I’Université Paris Diderot dans
laquelle j’ai enseigné la mécanique des fluides par I'intermédiaire de la simulation nu-
mérique pendant une dizaine d’années. Le code, léger et facile d’utilisation, permet
de simuler en une seule dimension! et sans hypothéses arbitraires, 1’établissement
de I'équilibre hydrostatique d’un gaz dans un champ gravitationnel constant donné

I unidimensionalité du domaine de simulation est la principale raison de ’efficacité du code en
raison du petit nombre de molécules (de 'ordre de 50) nécessaires pour modéliser une atmosphére
statique sur une distance de plusieurs fois I’échelle de hauteur.
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Préface

par la formule barométrique établie pour la premiére fois, en 1686, par I’astronome
anglais E. Halley (cf annexe 5). Le code était initialement conc¢u pour la simulation
d’un gaz dans lequel les molécules subissent des collisions élastiques de type boules
de billard. Trés rapidement, 'envie d’adapter le code a la simulation de plasmas col-
lisionnels s’est fait sentir. Malgré les difficultés techniques innombrables, inhérentes
a toute conception et mise en oeuvre d’un nouveau code numérique, ’adaptation au
cas plasma a finalement pu se faire, en grande partie, pendant le doctorat de Simone
Landi. Coté applications, dans un premier temps a deux, Simone et moi, nous nous
sommes intéressés au probléme de la conduction de la chaleur dans des plasmas peu
collisionnels, tels la couronne solaire (chapitre 5) et le vent solaire (chapitre 6). Voici
que, inspiré et fasciné par I'étrangeté du comportement des systémes granulaires
dans lesquels les collisions entre particules (par exemple des grains de sable) sont in-
élastiques, j’ai une fois de plus, adapté le code pour étudier I’évolution d’un systéme
de particules interagissant de facon inélastique entre elles (cf chapitre 7), avec I'idée
de Pappliquer par la suite a4 I’étude de situations astrophysiques. A c6té de cette
recherche sur les systémes granulaires, a priori fort éloignée de la physique des plas-
mas spatiaux, mais néanmoins trés riche en enseignements, j’ai eu 1'idée d’adapter
un code de type N-corps (normalement utilisé pour simuler les mouvements d’étoiles
dans une galaxie) pour la simulation d’un plasma collisionnel. Avec Arnaud Beck,
actuellement doctorant dans notre équipe, je me suis ainsi aventuré dans le domaine,
trés peu exploré, de la simulation numérique des plasma modérément couplés et peu
collisionnels (cf 8). Cette derniére partie est un peu plus détaillée que les autres;
non qu’elle soit plus importante, ou que je lui ai consacré plus de temps, mais parce
qu’elle fait appel & des notions de physique des plasmas qui sont peu familiéres au
sein de la communauté des physiciens des plasmas spatiaux.

Aucun des sujet n’est traité dans le détail. Je me suis simplement efforcé, dans
chacun des chapitres, de présenter les ingrédients physiques et/ou techniques de base
pouvant permettre la compréhension des articles en annexe, méme lorsque le lecteur
n’est pas un spécialiste de la discipline. L’enchainement général des sujets peut se
résumer de facon expressionniste : plasmas non collisionnels — gaz collisionnels —
plasmas collisionnels peu couplés — systémes granulaires (collisions inélastiques) —
plasmas collisionnels modérément couplés.

Je voudrais remercier, tout particuliérement, Pierluigi Veltri de I'Université de Ca-
labre a Arcavacate di Rende et Gérard Belmont du Centre d’Etudes des Environne-
ments Terrestre et Planétaires a Velizy, pour avoir accepter d’écrire un rapport sur
mon travail, ainsi que Marcello Fulchignoni, professeur & I'université Paris Diderot
qui a bien voulu écrire le troisiéme rapport et présider le jury d’habilitation. Merci
également & Jean-Claude Adam de I’Ecole Polytechnique a Palaiseau, & Jacques
Léorat de ’Observatoire de Paris et & Jan-Claude Vial de I'Institut d’Astrophysique
Spatiale & Orsay pour avoir bien voulu faire partie du jury.
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Chapitre 1
La préhistoire

Le présent ouvrage est un résumé, non exhaustif, de mes travaux de recherche au
cours d’'un peu plus d’une décennie. Les sujets que j’ai eu le plaisir d’aborder au
cours de cette période, avec collégues et étudiants, se distinguent de ceux que j’ai eu
a traiter au cours de ma thése a I’Observatoire de Paris et, encore avant, a I’école po-
lytechnique de Zurich ou j’ai été formé a la physique. J’ai en effet commencé ma vie
de scientifique et physicien (accessoirement d’astrophysicien) avec un stage de mai-
trise dans le groupe d’astronomie du Polytechnique de Zurich en 1986. A ’époque,
sous la direction de J. Stenflo et S. Solanki, je me suis intéressé a 1’étude des tubes
de flux photosphériques du Soleil en utilisant des observations en lumiére polarisée
obtenues au télescope McMath a Kitt Peak en Arizona. Dans une premiére publi-
cation Solanki et al. (1987), nous avions établi une liste de lignes photosphériques
particuliérement bien adaptées, en raison de leur grande sensibilité & 1'effet Zeeman,
pour I'é¢tude des mouvements et des propriétés thermodynamiques a l'intérieur des
tubes de flux magnétique qui, en ce temps, échappaient a 'observation directe. Une
analyse statistique détaillée du profil de température et des vitesses fluides & 'inté-
rieur de ces tubes a été publiée dans un travail ultérieur Pantellini et al. (1988) dans
lequel nous avions montré que la température dans les tubes dépend de la densité
des tubes par unité de surface (le "filling factor") et que les mouvements a l'inté-
rieur de ceux-ci sont aussi bien verticaux qu’horizontaux. Ce premier contact avec
la recherche en astrophysique m’a donné envie de chercher un sujet de thése dans
un laboratoire européen. Les places de doctorant étant trés peu nombreuses dans le
petit groupe de physique solaire zurichois, je me suis inscrit en DEA & ’Observatoire
de Paris, histoire de me perfectionner en astrophysique mais aussi pour améliorer
mon francais hésitant. Au cours de la foire aux stages du DEA je me suis trouvé face
a André Mangeney qui m’a proposé un sujet sur I'instabilité de Kelvin-Helmholtz
dans les plasmas non collisionnels, avec I'idée que cette instabilité, responsable de
la formation des vagues sur 'eau par jour de vent, puisse étre active dans la ma-
gnétosphére terrestre, 14 ot des forts gradients de vitesse ont été mesurés par de
nombreuses sondes spatiales. Aprés des mois de travail de dépouillement statistique
de raies photosphériques, je me suis dit que je tenais 1a la possibilité de faire de la
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physique, et pourquoi pas de la physique des plasmas. Le stage s’étant bien passé,
André Mangeney m’a proposé un sujet de thése axé principalement sur la simula-
tion numérique des chocs sans collisions’ avec un code écrit par J.C. Adam et A.
Heron de I’école polytechnique de Palaiseau. Bien str, j’ai accepté, avec le grand
enthousiasme qui envahit, je suppose, 'explorateur qui léve I'ancre pour partir a
la recherche du mythique passage du Nord-Ouest. Commencait alors ma deuxiéme
expérience dans le monde de la recherche scientifique, sur une thématique plutot éloi-
gnée de la premiére. Méme si mon travail en physique solaire n’avait pas été¢ de tout
repos, étant "condamné" & un travail d’extraction d’informations dans un ensemble
de données (des raies spectrales) dont on ne pouvait pas savoir a 'avance si elles
contenaient I'information recherchée, j'ai pu constater, au cours de cette deuxiéme
expérience de la difficulté de la mise en oeuvre et de l'exploitation d’un code nu-
mérique destiné & la modélisation d’un phénomeéne physique, en 'occurrence des
chocs sans collisions. Les difficultés étaient, bien siir, d’ordre informatique (algorith-
mique, vectorisation, etc.) mais également, et surtout, d’ordre conceptuel. Se posait
en effet, la question du comment transformer un code périodique? pour simuler des
chocs dont la structure spatiale de base n’est absolument pas périodique puisque,
par définition, un choc sépare spatialement un plasma en mouvement supersonique
(le plasma amont) d’un plasma en mouvement subsonique. Il est bien évidemment
possible de simuler des structures spatialement non périodiques, en choisissant une
périodicité spatiale du domaine de simulation trés grande par rapport aux échelles
spatiales caractéristiques des chocs. Ainsi, par exemple, dans le vent solaire, I’échelle
caractéristique de variation de la structure d’un choc est déterminée principalement
par le rayon de giration des ions majoritaires (protons et particules alpha) dans le
champ magnétique interplanétaire, c.a.d. de 'ordre de la centaine de kilométres. On
pourrait alors décider de simuler un choc interplanétaire avec un code périodique en
choisissant une période spatiale de I'ordre de plusieurs dizaines de fois le rayon de
giration des ions, afin de cantonner le choc dans une zone restreinte du domaine de
simulation comme illustré dans le panneau du haut de la figure 1.1. Les limites en
mémoire et en vitesse de calcul des machines de I’époque m’ont bien str conduit &
choisir de simuler des chocs en les enfermant dans des domaines de simulation non
périodiques, comme illustré dans le panneau du bas de la figure 1.1. Malgré les trés
gros problémes de contamination de l'intérieur du domaine de simulation par les
bords que pose ce type de simulation®, nous avons pu montrer dans Pantellini et al.

I faudrait plutot parler de chocs dans les plasmas sans collisions mais 1'usage en a décidé
autrement.

2Dans un code dit périodique I'univers & simuler est d’extension infinie, mais en ajoutant une
condition de périodicité spatiale, cela revient a considérer un systéme (souvent appelé familiére-
ment "boite de simulation") de dimension égale a la longueur de la périodicité dans chacune des
dimensions spatiales (de 1 & 3) retenues pour le calcul. Le grand avantage des boites de simula-
tion périodiques est qu’elles ne comportent aucun bord réel, le systéme simulé étant de dimension
infinie.

3Notons que dans les simulations périodiques la contamination existe également, non pas a
cause des bords qui sont un lieu particulier dans les simulations non périodique, mais a cause de la



La préhistoire

Choc dans un domaine periodique

Choe dans un domaine non periodigue

F1G. 1.1 — On peut simuler un choc (ici en rouge, schématiquement, le profil de densité
observé par les instruments d’une sonde spatiale) en utilisant un code périodique (figure du
haut). Dans ce cas le domaine de simulation doit étre plus grand que l'extension spatiale
caractéristique L du choc afin que la densité, et tous les autres champs tels la température,
la vitesse du fluide, l'intensité du champ magnétique, etc. ne soient pas discontinus entre
les bords du domaine, méme si la zone qui intéresse le simulateur se limite a la zone grise.
Dans un code non périodique (figure du bas) on peut limiter la zone de simulation a la
zone intéressante (la zone grise), les bords du domaine de simulation n’étant pas reliés par
la condition de périodicité. Le domaine simulé est dans ce cas plus petit que dans le cas de
la simulation périodique, mais se pose alors le probléme du choix des conditions du plasma
au voisinage des limites du domaine de simulation.
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chee
Vv

aval

amont

s
whastlrs

F1G. 1.2 — Si les conditions sont favorables, un train d’ondes stationnaires (dans le repére
du choc) peuvent exister en amont d’un choc. Dans un plasma non collisionnel ce train
d’ondes “whistler” est parfois associ¢é & un comportement non stationnaire du choc (cf
Pantellini et al. (1992)).

(1992) que dans certains cas les chocs en propagation quasi-paralléle par rapport au
champ magnétique ambiant (cf figure 2.1) sont instables et subissent des destruc-
tions cycliques, en raison d’ondes dites "whistler" émises vers Pamont du choc (cf
figure 1.2). J’ai continué a travailler dans le domaine de la simulation des chocs non
collisionnels aprés ma thése, au cours de mon postdoc au Queen Mary College de
Londres avec principalement David Burgess et Steve Schwartz. C’est le sujet du pro-
chain chapitre, dans lequel je détaille la question des ondes dites "whistler" (siffleurs
en frangais) dans les chocs.

condition de périodicité elle méme qui permet, par exemple, & une fluctuation de densité sortant a
droite de revenir par la gauche.
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Chapitre 2

Sur les chocs non collisionnels

2.1 Généralités sur les chocs non collisionnels, spatiaux en
particulier

Depuis plusieurs décennies, les chocs sans collisions constituent un champ d’explo-
ration particuliérement riche pour tous les simulateurs de plasmas sans collisions.
La raison principale, mais non unique, est qu'un choc non collisionnel est un objet
d’une complexité stupéfiante. Il suffit, pour s’en convaincre, de parcourir la littéra-
ture spécialisée sur les observations de chocs non collisionnels dans 1’héliosphére pour
constater qu’il n’y en a jamais deux qui se ressemblent (voir les exemples dans I’ar-
ticle de revue sur les observations des sondes ISEE1 et ISEE2 Russell et Greenstadt,
1979). Comment peut-on, dans ces conditions, arriver a résumer succinctement le
"fonctionnement" d’un choc sans collisions ? Bien évidemment, la structure du choc
dépend des paramétres du plasma dans lequel il se propage. Citons, parmi les para-
métres importants, le "beta" du plasma 8 = pg/pm, i.e. le rapport entre la pression
gazeuse p, (due & l'agitation thermique des ions et des électrons du plasma) et la
pression magnétique p, = B%/2, mais également, puisque le plasma est non colli-
sionnel et donc potentiellement hors équilibre thermodynamique, le rapport entre
la température des ions 7} et la température des électrons T,. Mais ce n’est pas
tout, car en plus des paramétres du plasma, interviennent les paramétres du choc
lui méme, lesquels, dans le cas le plus simple d’un choc plan et unidimensionnel, sont
au minimum deux : 1) le nombre de Mach M, c.a.d., le rapport entre la vitesse de
propagation du choc V' le long de la normale au choc 77 et une vitesse caractéristique
du milieu (par exemple la vitesse du son) et 2) Pangle g, entre la normale au front
du choc et la direction du champ magnétique g, comme illustré dans la figure 2.1.
En outre, les chocs naturels ne sont jamais plans. Ainsi, les ondes de choc formées
par 'interaction des magnétosphéres planétaires avec le vent solaire dont le rayon
de courbure est typiquement de l'ordre de un ou deux fois le rayon de la planéte
(c’est le cas de Mercure) voire une dizaine ou plus de fois le rayon de la planéte
(c’est la cas de la Terre ou des planétes géantes du systéme solaire). Les rayons
de courbure des chocs se propageant dans le milieu interplanétaire ot des ondes de
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F1G. 2.1 — Sans compter les parameétres qui spécifient le plasma, la structure d’un choc
stationnaire, plan et infini, dépend uniquement de I’angle 0, entre le champ magnétique
B et la normale au choc 7 et de sa vitesse de propagation V' le long de 7.

choc engendrées dans le milieu interstellaire par I'explosion d’étoiles (les chocs de
supernovae) sont évidemment encore bien plus grands pouvant atteindre, dans ce
dernier cas, des courbures de 'ordre de plusieurs parsecs. La complication inhérente
aux chocs non collisionnels et non plans est que certaines zones du choc peuvent étre
"contaminées" par d’autres zones du choc, 'absence de collision permettant, dans
certains cas, la remontée de particules de I'aval vers 'amont en suivant les lignes de
champ magnétique. C’est un moyen efficace, trouvé par les chocs non collisionnels
a grand nombre de Mach! pour transformer 1’énergie cinétique du plasma incident
en énergie thermique, ce qui au fond est le "job" d’un choc. La figure 2.2 montre
la magnétosphere terrestre et le choc formé par son interaction avec le vent solaire
avec, en couleurs, les zones en amont du choc "contaminées" par les électrons et les
protons réfléchis. En jaune la zone dominée par des électrons réfléchis (précurseur
électronique), en rouge la zone ot on retrouve aussi bien des ions que des électrons
réfléchis (précurseur ionique). De toute évidence, les électrons et les protons ne sont
pas réfléchis de la méme maniére. La différence est bien évidemment la conséquence

1On nomme ces chocs supercritiques, par opposition aux chocs sous critiques qui ne réfléchissent
aucune particule vers 'amont du choc, les instabilités cinétiques & petite échelle localisées dans la
rampe du choc étant suffisamment efficaces pour transformer 1’énergie cinétique dirigée en énergie
thermique. Dans le vent solaire, le nombre de Mach alfvénique d’un choc supercritique doit satisfaire
a Mp Z 2, mais cette limite dépend de I’angle de propagation fp,,.



Sur les chocs non collisionnels

Magnétosphere
terrestre

F1G. 2.2 — En jaune la zone en amont du choc de la Terre peuplée par des électrons
réfléchis (précurseur électronique), en rouge la zone peuplée par des ions et des électrons
réfléchis (précurseur ionique). Les courbes grises représentent les lignes de force du champ
magnétique interplanétaire. Les courbes marron représentent les lignes de force du champ
magnétique terrestre. Adapté de Sagdeev et Kennel (1991).

de la différence de masse entre les deux espéces de particules. En effet, dans un
plasma a température T la vitesse caractéristique des particules de masse m est de
l'ordre de /kg/m. Il s’en suit que, si les températures des espéces sont du méme
ordre, les électrons sont environ 40 fois plus rapides que les protons, et peuvent
donc remonter beaucoup plus facilement le long d’une ligne de champ magnétique
advectée par le vent solaire?. Méme lorsque ’angle 0, est proche de 90° les électrons
(largement plus rapides que le choc) sont en mesure de remonter vers ’amont, alors
que pour les ions, cela n’est en général possible que pour des angles 0g, < 50°. C’est
la raison de la ségrégation spatiale entre électrons et ions réfléchis en amont du choc
de la Terre. Par ailleurs, la figure 2.2 illustre le fait que lorsque ’amont du choc est
fortement perturbé par des ions réfléchis, c.a.d. dans la région en amont du choc pa-
ralléle ou oblique, la structure magnétique du choc est trés irréguliére avec de fortes

2La trés bonne conductivité électrique du milieu interplanétaire a pour conséquence que le
champ magnétique est advecté par la matiére. Cette propriété des fluides infiniment conducteurs
est un théoréme de la MHD idéale connu sous le nom de "théoréme du gel".
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fluctuations en amplitude, en nette contraste avec la transition monotone et lisse
observée coté choc perpendiculaire. La Figure 2.2 illustre et résume donc de fagon
impressionniste la complexité d’une onde de choc dans un plasma non collisionnel.

2.2 Reésultats d’une simulation PIC en deux dimensions spa-
tiales

Dans l'article Krauss-Varban et al. (1995) de I'annexe 1, nous utilisons le code
PIC 3 en deux dimensions spatiales afin de simuler un choc en propagation quasi-
perpendiculaire, i.e. g, = 60°. Les simulations sont basées sur le code PIC que
j’avais précédemment utilisé pendant mon doctorat, mais avec un rapport de masse
entre proton et électron m,/m. = 400, ce qui était une valeur trés élevée pour
I’époque ou 'on se limitait le plus souvent a des valeurs inférieures a 100. Comme le
montre la relation de dispersion des ondes whistler de la figure 1 de I'article, calculée
pour des conditions typiques du choc de la Terre, un rapport de masse trop faible
(par exemple m,/m. = 100), change le sens de propagation des ondes whistler dans
le repére du choc. En d’autres termes, si m,/m. = 100 la vitesse de phase des whist-
lers se propageant a 30° par rapport au champ magnétique est dirigée vers 'aval,
alors que pour m,/m. 2 400, la vitesse de phase de ces mémes whistlers est dirigée
vers I’amont, ce qui évidemment change considérablement la structure du choc. Dans
cet article nous montrons que les ondes whistler se propagent vers I’amont du choc
dans une direction intermédiaire entre la normale au choc 7 et le champ magné-
tique B. Ces ondes sont engendrées par les ions réfléchis, elles sont donc excitées par
un mécanisme cinétique ne pouvant pas se produire dans un code fluide (magnéto-
hydrodynamique en I'occurrence). Les caractéristiques des ondes (longueur d’onde,
fréquence, compressibilité, etc) sont parfaitement compatibles avec les ondes dites
"one-Herz" en raison de leur fréquence caractéristique, observées en amont de chocs
non collisionnels. Contrairement aux ions qui subissent un chauffage irréversible et
violent lors du passage du choc, les électrons ont un comportement essentiellement
adiabatique. Une des nombreuses spécificités qui différencie les chocs non collision-
nels des chocs collisionnels est que dans les premiers, le chauffage que le choc produit
lors de son passage n’est pas nécessairement le méme pour chacune des espéces qui
constituent le plasma. En particulier les protons, mais c’est souvent le cas pour les
ions en général, sont plus fortement chauffés que les électrons. Mais il y a "pire" : le
chauffage est souvent extrémement anisotrope par rapport a la direction du champ
magnétique. Ainsi, par exemple, dans le cas d’un choc quasi-perpendiculaire se pro-
pageant dans le vent solaire, le chauffage est quasiment toujours plus efficace dans le

3PIC pour "Particles In Cell". Les particules (électrons et protons) se déplagant sous I’action de
champs électriques et magnétiques définis sur les coins d’une grille spatiale en une, deux, ou trois
dimensions. Les détails de la méthode dite "méthode directe" sont & chercher dans I’article fonda-
teur de Hewett et Langdon (1987). La version périodique du code avait été écrite par Anne Héron
et Jean-Claude Adam de I’Ecole Polytechnique & Palaiseau. La version non-périodique utilisée dans
I’article est de moi.



Sur les chocs non collisionnels

plan perpendiculaire au champ magnétique. Le résultat de ce chauffage anisotrope
est la formation d’un gaz de protons dont la température perpendiculaire est plus
forte que dans la direction paralléle. C’est une situation potentiellement instable qui
peut, sous certaines conditions, provoquer le déclenchement de I'instabilité miroir
dont il est question dans le chapitre 3.
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10



Chapitre 3

Sur 'instabilité miroir protonique

3.1 Généralités

Comme nous venons de le souligner a la fin du chapitre 2, dans un plasma non colli-
sionnel, I'agitation thermique des particules (température) n’est pas nécessairement
identique parallélement et perpendiculairement au champ magnétique, le mouve-
ment d’'une charge le long du champ étant a priori découplé du mouvement perpen-
diculaire au champ. Lorsque la température perpendiculaire 7', est plus grande que
la température paralléle T| le plasma est potentiellement instable. Une des instabili-
tés possibles est 'instabilité miroir. Si nous considérons le cas d’un plasma homogéne
et uniforme constitué uniquement de protons et d’électrons, et que nous supposons,
dans un premier temps, que les électrons sont complétement froids T, = 0, nous pou-
vons imaginer que la distribution en vitesse des protons (de masse m,) est donnée
par la distribution dite bi-maxwellienne

r3/2 V2 02
Flog02) = nog— s exp | =5 = - (3.1)
UL UT|

ol ng est la densité de protons, U”QFH = 2kgT/m, la vitesse thermique paralléle, v, =
2kgT| /my la vitesse thermique perpendiculaire, et kg la constante de Boltzmann.
Un iso-contour de la distribution (3.1) dans le plan (v, v, ) est montré dans la figure
3.1. On devine que cette configuration est potentiellement instable dans la mesure o
une partie de 'excés d’énergie cinétique dans la direction perpendiculaire au champ
magnétique (voir figure 3.1) peut étre utilisée pour alimenter la croissance d’ondes
magnétohydrodynamiques. Sans trop rentrer dans le détail, il est intuitivement clair
qu'une augmentation du champ magnétique tend a relever le niveau de anisotropie
nécessaire pour déclencher l'instabilité. Le calcul rigoureux, a partir de I’équation de
Vlasov pour un plasma constitué d’électrons froids et de protons, dont la distribution

11



Chapitre 3

Vi

F1G. 3.1 — Isocontour de la fonction de distribution (3.1) dans le cas potentiellement
instable T /T| = 2 (courbe en trait plein). Le cas stable avec T'; /T = 1 est donné comme
référence.

a I’équilibre est donnée par (3.1), conduit a la condition d’instabilité !

T, 1

7 >1+ 3 (3.2)
ou 3, = 8mwp,/B? est le rapport entre la pression gazeuse des protons p, et la
pression magnétique B?/87. Méme s’ils n’ont pas été les premiers a s’intéresser
a D'instabilité, connue depuis les années 1960, Southwood et Kivelson (1993) ont
donné une description détaillée du mécanisme physique de I'instabilité en mettant
en avant son caractére fondamentalement cinétique?. I.’instabilité miroir a été re-
connue comme étant a 'oeuvre dans quasiment tous les plasmas spatiaux visités
par des sondes, aussi bien dans le vent solaire libre que dans les magnétosphéres
planétaires. Elle se caractérise principalement, aussi bien dans la phase linéaire que
dans la phase saturée, par le fait que les fluctuations du champ magnétique 0B et
les fluctuations de densité dn sont anticorrélées®, (cf figure 3.2) mais aussi par le fait
que la vitesse de propagation de ces fluctuations est nulle dans le repére du plasma.
Si on trace, spatialement et en 2 dimensions, les lignes de champ magnétique apreés

ILorsque la distribution d’équilibre des protons n’est pas bi-maxwellienne, la condition d’insta-
bilité (3.2) peut différer quelque peu de (3.2) (voir Rose (1965)). D’autre auteurs ont plus récem-
ment généralisé la condition d’instabilité (3.2) au cas d’un plasma comportant plusieurs espéces
(Pokhotelov et al., 2002; Hellinger, 2007).

2Un comportement cinétique est un comportement qui ne se laisse pas décrire par les équations
fluides classiques de la MHD. Cela est souvent lié¢ au fait qu’un petit nombre de particules du
plasma se comporte différemment de toutes les autres, par exemple & cause de résonances avec des
ondes électromagnétiques.

3Notons que les fluctuations de densité et de champ magnétique sont anticorrélées afin d’assurer
une pression spatialement constante. De ce fait, les fluctuations de la pression totale (thermique
+ magnétique) sont nulles. Dans le cas d’instabilités a faible croissance on a dp + BydB/4m = 0
(e.g. Pantellini et Schwartz, 1995). Le plasma n’est alors soumis & aucune force, ce qui se manifeste
également par une absence de propagation.

12



Sur I'instabilité miroir protonique

Fi1G. 3.2 — Variation spatiale des fluctuations de densité et des fluctuations de champ
magnétique dans un mode miroir.

croissance de l'instabilité a partir d’une situation initialement uniforme, on obtient
des déformations des lignes de champ formant des structures en bouteille comme
dans la figure 3.3, avec des zones de concentration et des zones de raréfaction du
champ. La fluctuation magnétique dans la figure 3.2 s’obtient, par exemple, en me-
surant le champ le long de 'axe de la bouteille (ligne pointillée dans la figure 3.3).
Ce type de configuration magnétique permet le piégeage de particules dans la zone
de champ magnétique faible, i.e. dans la zone centrale de la bouteille. Le piégeage est
une conséquence directe du fait que lorsque le champ magnétique ne varie pas trop
lors d’un tour de la particule de masse m autour du champ magnétique local, il y a
conservation du moment magnétique p = mv? /2B (premier invariant adiabatique)
et de I'énergie cinétique mv?/2. Ces deux invariants impliquent, dans la limite de
fluctuations faibles §B/B < 1, que les particules pour lesquelles les composantes
de vitesse | et || au voisinage du minimum magnétique (le long de leur trajectoire)
satisfaisant a la condition (vo|/vo1)?* < 26B/B sont piégées dans la bouteille magné-
tique. La force responsable du piégeage dépend donc de la variation de l'intensité
du champ magnétique le long des lignes de champ. La force qu’on appelle pour des
raisons évidentes force miroir, dépend donc du moment magnétique de la particule
i et de la variation de l'intensité du champ dans la direction paralléle. Elle s’écrit
Jm = —uV Bj. Dans l'article de 'annexe 2 (Pantellini et al. (1995)) nous montrons,
avec des arguments théoriques et avec des simulations a 'appui, que les particules
piégées jouent un role important dans la phase non linéaire de I'instabilité miroir
et que la théorie quasi-linéaire proposée par Shapiro et Shevchenko (1964) ne peut
atre valable en général puisque le piégeage de particules n’y est pas prévu. Emerge
donc 'idée que le piégeage des protons est un ingrédient fondamental de I’évolution
non linéaire de l'instabilité miroir.

3.2 Instabilité miroir et trous magnétiques

Dans l'article de 'annexe 4 (Pantellini (1998) je vais plus loin en proposant un mo-
déle purement théorique de la phase non linéaire et de la saturation de 'instabilité
miroir toujours avec le piégeage des protons comme ingrédient fondamental. Une des
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Chapitre 3
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F1G. 3.3 — Lignes de champ magnétique résultant de 'instabilité miroir avec trajectoire
caractéristique d’une particule piégée rebondissant entre deux points miroir & 'intérieur
de la bouteille magnétique.

raisons qui m’avaient poussé a continuer a travailler sur le sujet était qu’une forte
majorité des structures magnétiques statiques, observées dans les plasmas spatiaux
et qui pouvaient avoir été engendrées par l'instabilité miroir, était de type “trou
magnétique” et non de type bosse magnétique (voir figure 3.4) comme semblaient
I'indiquer les simulations numériques parmi lesquelles la simulation de I’annexe 2. Il

IE|

Cac = s P p——y

\ v
v \ ; m P
\ 1 ¢ |
\v’l n ‘i." - ..—' “__'_Q‘-_-/ \_’__-—
Bosses magnétiques Trous magnétiques

F1G. 3.4 — Les structures magnétiques statiques, observées dans les plasmas spatiaux sont
le plus souvent de type “trou” plutot que de type “bosse” (e.g. Winterhalter et al., 1994).

s’agissait, en fin de compte, d’établir si 'instabilité miroir pouvait étre responsable
de la formation des trous magnétiques, ce dont peu de connaisseurs du sujet dou-
taient a I’époque. Le modéle, simple, mais complétement analytique conduit a deux
prédictions importantes pour 'instabilité miroir dans des conditions voisines de la
stabilité :

14



Sur I'instabilité miroir protonique

1. le mode miroir tend & saturer dans une configuration de type trou magnétique
(sauf, peut-étre lorsque ) est trés grand 2 20),

2. Dintensité maximale du champ saturé est Buax = Bo{l — R+ [3|R(1— R)]'/*},
ot R =T, /T) et By l'intensité moyenne.

Des simulations PIC avec un trés grand nombre de particules ou des simulations
Vlasov pourront peut-étre confirmer ou infirmer la validité du modéle au cours des

années a venir?.

3.3 Sur le roéle des électrons dans 1’instabilité miroir

Dans I'article de 'annexe 3, antérieur a celui sur ’évolution non linéaire, il est ques-
tion du role des électrons dans l'instabilité miroir. Comme souvent, par esprit de
simplicité, j’ai adopté 'hypothése d’une température des électrons nulle 7, = 0.
Dans cette limite, les électrons, beaucoup plus légers et mobiles que les protons, se
comportent comme un fluide neutralisant sans pression. Lorsque T, # 0, les varia-
tions spatiales de la densité électronique n, (et donc de la pression électronique p,)
engendrent un champ électrique non nul Ey = —Vp,/en,, dirigé le long des lignes de
champ magnétique. Dans la limite isotherme, T, = const, les fluctuations linéaires
de la densité, du champ magnétique et du champ électrique sont illustrés dans la
figure 3.5. La figure illustre le fait que la force électrostatique due aux électrons
chauds s’oppose a la force miroir, moteur de I'instabilité. En effet, nous montrons
dans l'annexe 3 que les électrons chauds augmentent légérement ’anisotropie de
température 7' /T) nécessaire au déclenchement de I'instabilité (Figure 5 dans Pan-
tellini et Schwartz (1995)) et réduisent sensiblement le taux de croissance du mode le
plus instable (Figure 5 dans Pantellini et Schwartz (1995)). Des travaux postérieurs
Pokhotelov et al. (2000) ont par ailleurs confirmé cette conclusion.

4Petr Hellinger (Institute of Atmospheric Physics & Prague) me dit qu’il est actuellement en
train d’étudier la question de la saturation du mode miroir a l’aide de simulations PIC lourdes, ce
qui devrait permettre de trancher la question dans un futur proche.
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——,> Force miroir : H},LV(SB”)
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F1G. 3.5 — Profils en fonction de la position le long d’une ligne de champ magnétique de
fluctuations de densité, de champ magnétique et de champ électrique associés au mode
miroir lorsque la température des électrons est non nulle. On remarque que la force élec-
trostatique s’oppose a la force miroir suggérant qu’une température électronique non nulle
s’oppose a 'instabilité miroir (extrait de Pantellini et Schwartz (1995)).
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Chapitre 4

Simulations d’'un gaz dans un champ
gravitationnel

4.1 Introduction

Pour introduire ce chapitre, j’invite le lecteur intéressé a lire ’excellent article de
Berberan-Santos et al. (1997) qui expose de fagon détaillée I'histoire de la découverte
de la pression atmosphérique et de sa variation avec ’altitude. Dans le cas le plus
simple d’une atmosphére isotherme soumise a un champ gravitationnel constant, la
formule barométrique, écrite pour la premiére fois par E. Halley en 1686, est donnée
par

p(z) = poexp(—z/H) (4.1)
ol p est la pression et z la hauteur au dessus du niveau de référence z = 0. Inspiré
par l'article de Berberan-Santos et al. (1997) je me suis demandé s’il n’était pas
possible d’écrire un petit code numérique pour simuler I’établissement du profil de
pression prédit par la formule barométrique dans un systéme de billes (ou boules
de billard) semblable au systéme (a) de la figure 4.1. L’avantage du systéme (a)
par rapport au systéme (b), plus proche de la réalité, est qu’il est sensiblement plus
facile a coder.

4.2 Des simulations basées sur un modéle simple mais efficace

Quelle ne fut pas ma stupeur lorsque en simulant le systéme (a) j’obtins un profil
p(z) proche de celui prévu par (4.1) mais différent tout de méme. C’est en constatant
la différence, méme faible, entre simulation et théorie que je me suis souvenu de mes
cours de thermodynamique dans lesquels j’avais appris que le systéme (a) n’est pas
ergodique alors que le systéme (b), comme 'atmosphére terrestre, sont des systémes
ergodiques !. En substance, le systéme (b) est chaotique alors que le systéme (a) ne
I'est pas, car dans le systéme (a) a chaque fois que deux sphéres se rencontrent, elle ne
font qu’échanger leurs vitesses, et puisque les sphéres sont identiques c’est comme

Lef chapitre I1.4 dans annexe 5
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(a) (b)
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Fi1G. 4.1 — Collection de billes identiques dans un tube comme modéle pour simuler un
gaz dans un champ gravitationnel g. Dans le systéme (a) la position de chaque molécule
est fonction d’une seule variable d’espace : la hauteur. Dans le systéme (b) il faut trois
coordonnées spatiales pour décrire la position d’'une molécule. Malgré ’apparente similarité,
seul le systéme (b) permet de reproduire correctement la formule barométrique (4.1).

si elle se croisaient sans interagir. Dans cette condition, le cas (a) est équivalent
a un systéeme de N sphéres se mouvant indépendamment les unes des autres, ce
qui n’a, bien siur, rien de chaotique. L’état stationnaire du systéme est dans ce
cas entiérement déterminé par les conditions initiales, alors que dans le cas (b) les
conditions initiales sont oubliées aprés quelques collisions par sphére seulement.
Dans Pantellini (2000), je propose un modéle qui s’apparente au systéme (b) dans
la mesure ou les particules se déplacent dans un monde spatialement unidimension-
nel (la section du tube étant beaucoup plus petite que sa longueur), mais avec des
vitesses tridimensionnelles. La meilleure image d’un tel systéme est une suite verti-
cale de plans horizontaux, infinis et identiques, pouvant glisser horizontalement les
uns par rapport aux autres. Ce systéme est ergodique, et moyennant les régles de
collision établies dans le chapitre ITI.C de I'annexe 5, la distribution en vitesse des
particules tend vers une distribution de Maxwell-Boltzmann isotrope

Flv,2) = n(z)”;;/z exp [—%] (4.2)

oil n(2) est la densité de particules par unité de longueur, v = |v], et vy = (2kgT/m)*/?
la vitesse thermique. La figure 4.2 montre que le systéme suit rigoureusement, méme
avec seulement 50 particules, la courbe (en pointillée) prévue par la formule baromé-
trique 4.1 pour une température constante et ceci, indépendamment des conditions
initiales.

Le modéle de Pantellini (2000) est trés simple a programmer (quelques dizaines de
lignes de fortran si on ne cherche pas 'optimisation) et permet d’aborder la question
des collisions, de 'ergodicité d’un systéme thermodynamique et, accessoirement, de
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Simulations d’un gaz dans un champ gravitationnel
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F1G. 4.2 — Profil de densité n(z) (trait plein) obtenu avec 50 particules. Le profil est le
résultat d’une moyenne pendant U'intervalle de temps couvrant les premiéres 107 collisions
entre I'ensemble des particules du systéme. Le profil barométrique (en pointillé) est donné
comme référence, ainsi que la position moyenne des 50 particules (traits pleins verticaux).
Le profil est le résultat d’'une moyenne dans le temps (extrait de Pantellini (2000), cf annexe
5)

voir s’installer ’équilibre barométrique. Mais, comme nous le verrons dans les cha-
pitres suivants, il permet également de simuler, & bon coit, des plasmas collisionnels.
Le principal inconvénient de la version originale de ’algorithme est son inefficacité
numérique car le nombre d’opérations mathématiques nécessaires pour atteindre un
temps physique donné croit comme N2. Au cours du doctorat de Simone Landi,
nous avons établi un algorithme pour lequel le nombre d’opérations croit comme
N3/2 sans perte de précision. Typiquement, dans les différentes simulations dont il
sera question dans les chapitres 5-7, le nombre de particules N varie entre 103 et
10°. Le gain, en termes de temps de calcul sur un ordinateur donné, est donc d’un
facteur tout a fait considérable de 30 a 300!
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Chapitre 5

Simulations d’un plasma dilué
soumis a un gradient de température

Vu le succes du modéle numérique du chapitre 4 pour la modélisation d’un gaz dans
un champ gravitationnel, j’ai été tenté de 'adapter au cas d’'un plasma dans un
champ gravitationnel, afin de simuler ’atmosphére solaire dans un premier temps,
et le vent solaire dans un second temps. On remplace les boules de billard par
des électrons et des protons et le tour est plus ou moins joué. Les choses ne sont
évidemment pas si simples que cela. Premiére difficulté : contrairement aux boules de
billard qui n’interagissent qu’avec leurs voisins immeédiats, les charges interagissent
a longue distance par l'intermédiaire du champ électrique. Deuxiéme difficulté : la
disposition des charges dans le systéme, méme lorsqu’il est en équilibre statique
engendre, dans le cas général, un champ électrique a grande échelle qui n’est pas
connu a priori. A ce propos, Pannekoek (1922) et Rosseland (1924) ont montré qu’un
plasma statique plongé dans un champ gravitationnel est nécessairement associé avec
un champ électrique a grande échelle qui assure la quasi-neutralité en tout point du
plasma.! On calcule facilement le champ de Pannekoek-Rosseland pour un plasma de
protons et d’électrons dans la limite statique plongé dans un champ gravitationnel
constant g, moyennant une hypothése de quasi-neutralité n. = n, et une hypothése
d’équipartition de I'énergie T, = T},, ou n,; et T; sont respectivement la densité et
la température de 'espéce ¢ = e, p. Notons pour commencer que lorsque les forces
de friction entre les deux espéces sont nulles ou négligeables (c’est le cas pour une
atmosphére isotherme), I’équilibre hydrostatique pour les deux espéces comporte la

1'On comprend intuitivement que les électrons, étant plus légers que les ions, ont tendance &
vouloir se placer au dessus des ions, exactement comme le ferait un fluide peu dense par rapport &
un fluide dense. Le champ électrique & grande échelle empéche la décantation des charges et assure
la quasi-neutralité.
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somme de 3 forces, i.e.

Op,

np(mpg + GEPR) - E =0 (51)
Ope
ne(meg — eEpr) — 8],)2’ 0. (5.2)

ou p; = n;kgT; est la pression de la population 7, et oli nous avons supposé que le
champ gravitationnel est dirigé le long de 'axe z, i.e. § = —gZ2. Les hypothéses de
quasi-neutralité et d’équipartition de I’énergie entre protons et électrons impliquent,
bien évidemment, ’égalité des pressions p, = pe., ce qui permet d’éliminer les termes
de pression dans le systéme ci-dessus pour aboutir a I’équation pour le champ élec-
trique de Pannekoek-Rosseland Epg :

myg -+ eEPR = Meg — eEpR. (53)

En résolvant ’équation précédente pour le champ électrique, on obtient donc

&m:—%@%—mJ%—%mp (5.4)
Dans le cas du proton, la force électrostatique s’oppose au champ gravitationnel
alors qu’elle accompagne le champ gravitationnel dans le cas de 1’électron. Notons
que si une seule des hypothéses utilisées pour obtenir 1’équation (5.4) est abandon-
née, le champ électrique a grande échelle n’est pas nécessairement égal au champ
Epg. Ainsi, lorsque le plasma est soumis & un gradient de température, comme par
exemple dans le cas de I'atmosphére solaire, ot la température passe de 5600K dans
la photosphére & 10K dans la couronne, un deuxiéme champ, appelé thermoélec-
trique Er apparait dans le systéme. Contrairement au champ Pannekoek-Rosseland,
qui est complétement indépendant de la collisionalité du plasma, le champ ther-
moélectrique Er n’existe que dans les plasmas collisionnels. Les équations fluides
pertinentes, décrivant 1’équilibre hydrostatique sont alors :

dp
npeET - a—; + (I)p = 0 (55)
—neeEr — %pe +®, = 0. (5.6)
V4

ou P; représente la force de friction exercée sur les particules de la population ¢
par les collisions avec les particules de toutes les autres espéces dans le systéme et
oll nous avons négligé la gravitation. Conservation de la quantité de mouvement
implique que ). ®; =0, c.a.d. ¢ = ¢, = —D, dans (5.5)-(5.6). Comme pour 'ob-
tention du champ de Pannekoek-Rosseland, I’hypothése de quasi-neutralité associée
a ’hypotheése d’équipartition de 1’énergie conduit a I’expression

Fr=—— (5.7)
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Simulations d’'un plasma dilué soumis a un gradient de température

La détermination de ® en fonction des variables thermodynamiques n et T' n’est pas
simple. Le résultat dépend, en particulier, du choix de 'opérateur de collision. Dans
la limite d’un plasma faiblement couplé (cf chapitre 8.2 et la Table 8.1) soumis a un
faible gradient de température, Spitzer et Harm (1953) trouvent ® = andT/0z, et
donc

Er = . az(kBT)' (5.8)
Le champ thermoélectrique de 1’équation (5.8) dépend donc de la variation de la
température T en fonction de la position z, de la constante de Boltzmann kg et d’une
constante sans dimension « qui vaut o = 0.71 dans un plasma protons-électrons
faiblement couplé.
Le champ électrique n’est donc pas déterminé, contrairement au champ gravitation-
nel, par des facteurs externes au plasma. Il faut le calculer de fagon autocohérente,
ce qui complique notablement les simulations par rapport au cas d'un gaz de molé-
cules discuté au chapitre 4. La deuxiéme complication inhérente au cas plasma est
le traitement des collisions. Dans un gaz, les collisions différent peu du cas de la
collision entre sphéres dures avec une section efficace pratiquement indépendante de
la vitesse relative entre les particules qui font la collision. Dans ce cas, le modéle du
chapitre 4 est parfaitement valable. Dans le cas d’un plasma, les collisions sont de
type Coulombien, avec une section efficace qui varie comme l'inverse de la vitesse
relative entre les particules & la puissance quatre (cf chapitre 2.3 de 'annexe 7).
Lorsqu’on simule numériquement un plasma plongé dans un champ gravitationnel,
on est forcé de limiter I’étendu du domaine de simulation. Dans le cas d’une accé-
lération gravitationnelle constante, on doit limiter ’étendue verticale du domaine
de simulation afin que I'approximation d’accélération gravitationnelle constante soit
acceptable. Par exemple, dans le cas d’une simulation de 'atmosphére du Soleil, la
condition de gravitation constante implique que I’étendue verticale de la simulation
L (cf figure 5.1) soit petite devant le rayon du Soleil rg, i.e. L/rg < 12

5.1 Caractéristiques du modéle utilisé pour les simulations

Un schéma qui résume les caractéristiques générales des simulations d’un plasma
soumis a un gradient de température, présentées dans les annexes 6 (sans gravitation)
et 7 (avec gravitation), est montré dans la figure 5.1. Le gradient de température est
imposé par les conditions sur les vitesses des particules atteignant un des deux bords
du domaine de simulation en z = 0 et z = L. A chaque fois qu'une particule atteint
un des deux bords, elle est réinjectée dans le systéme au méme endroit (ce qui assure
un flux de masse nul) avec une vitesse qui dépend du choix du programmeur tout

2Le Soleil concentre pratiquement toute sa masse en dessous de la photosphére. De ce fait, au
dessus de la photosphére, ’accélération gravitationnelle g décroit alors comme l’inverse du carré
de la distance au centre du Soleil, i.e. g(r) oc 1/r2. A une distance L au dessus de la photosphére,
le champ gravitationnel est alors approximativement donné par g(ro + L) = g(ro)(1 — L?/rd) et
donc, pour L/rg < 1, g(ro + L) =~ g(ro).
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F1G. 5.1 — Schéma général illustrant les ingrédients pour la simulation d’un plasma soumis
a un gradient de température et (le cas échéant) un champ gravitationnel constant. Les gra-
dients sont imposés par le choix de la fonction de distribution des vitesses f;(¥, v, entrant)
(zones grises) pour chaque espéce j (électrons ou protons).

puissant qui décide de la forme de la distribution en vitesse des particules entrantes
(zones grises dans la figure 5.1). La trajectoire des particules est calculée en intégrant
I’équation du mouvement suivant z :

d?z

— =—g+&(2 5.9

e g+E&(2) (5.9)
ot le champ électrique £(z) est déterminé de maniére autocohérente, par ajustements
successifs, jusqu’a ce que le plasma soit quasi-neutre partout dans le systéme.

5.2 Reésultats concernant la couronne solaire

Dans larticle Pantellini et Landi (2001) (cf annexe 6) nous simulons un plasma
soumis & un gradient de température relativement faible, tel que le libre parcours
moyen d’un électron thermique A est petit devant I’échelle de variation caractéris-
tique de la température Lt = T /0T /0z, ce qui implique que le nombre de Knudsen
Kt = Ae/LT = 0.02 < 1. Le but premier de cet article était de montrer que
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le champ thermoélectrique obtenu dans nos simulations était bien celui prévu par
I'équation (5.8) avec v de I'ordre de 0.71.

A Porigine de Particle Landi et Pantellini (2001) sur le transport de la chaleur dans
la couronne solaire (cf annexe 7), il y a larticle de Dorelli et Scudder (1999) dans
lequel les auteurs soutiennent qu’un excés d’électrons suprathermiques® dans la cou-
ronne (particules que nous pouvons introduire dans nos simulations en agissant sur
les parties grises de la fonction de distribution des électrons en z = 0, L dans la figure
5.1), la chaleur est transportée de la zone froide vers la zone chaude. En clair, et
contrairement a l'idée généralement admise, le flux de chaleur serait alors dirigé de
la photosphére vers la couronne et non 'inverse, a condition qu'un nombre suffisant
d’électrons suprathermiques soit présents & la base de la couronne®. Ces électrons
suprathermiques pourraient étre engendrés par des chocs se propageant dans la chro-
mosphére ol des mouvements supersoniques sont souvent observés. La conséquence
remarquable d’un tel scénario est qu’il explique, sans la nécessité d’invoquer un
hypothétique mécanisme de transport de I’énergie entre la chromosphére et la cou-
ronne, le pourquoi de I'existence d'une couronne solaire chaude. Et méme si ’excés
d’électrons suprathermiques est insuffisant pour "chauffer" la couronne, il peut étre
suffisant pour modifier sensiblement le flux d’énergie de 'ordre de 5 102W/m? gé-
néralement admis comme nécessaire pour maintenir la couronne & une température

de l'ordre du MK.

En réalité, le modeéle proposé par Dorelli et Scudder (1999) est une version avec
collisions (et dans la couronne il y en a) du modéle non collisionel de "filtrage des
vitesses" que Scudder (1992) a proposé comme explication de la couronne chaude.
L’essence du modéle de Scudder est illustré dans le figure 5.2. L’idée étant que
lorsqu’une population (mettons les électrons) présente un exces de particules supra-
thermiques a une hauteur de référence z = 0 et une température Ty = m(v?)/kg,
cet excés se traduit par une population globalement plus chaude T'(z = h) > Ty du
fait que les particules avec v? < 2gh ne peuvent ni monter vers le niveau z = h ni en
provenir. Seules les particules avec v? > 2gh peuvent se retrouver au niveau z = h.
Ces derniéres étant caractérisées par un spectre en énergie globalement plus dur
(pente plus faible) que les particules avec v? < 2gh qui dominent le niveau z = 0,
la température doit étre une fonction croissante de z. Notons que dans le cas d’une
distribution de Maxwell-Boltzmann, la température ne varie pas avec la hauteur z
et que dans le cas d’une distribution déficiente en particules suprathermiques (ce cas
n’est pas illustré dans la figure 5.2), la température décroit avec la hauteur z. Notons
également que les distributions de la figure 5.2 sont parfaitement symétriques, ce qui
implique un flux de chaleur nul (!) méme lorsque la température varie en fonction
de z.

3L’exces est défini par rapport a la distribution de Maxwell-Boltzmann (4.2). L’adjectif supra-
thermique dénote les particules dont la vitesse v excéde la vitesse thermique (2kgT/ m)l/ 2.

4Le point faible du modéle est qu’il est basé sur la présence d’un excés d’électrons suprather-
miques & la base de la couronne. Les observations ne permettent malheureusement pas de confirmer
ou invalider la présence d’un excés d’électrons suprathermiques a la base de la couronne.
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F1G. 5.2 — Variation avec la hauteur z de la fonction de distribution des vitesses f(v,)
dans le cas Maxwellien (gauche) et dans le cas d’une distribution comportant un excés de
particules suprathermiques (droite). En raison du champ gravitationnel g, et en I’absence
de collisions, seules les particules des zones rouges peuvent transiter entre le niveau z =
0 et z = h. En conséquence, I’énergie moyenne par particule ne varie pas dans le cas
Maxwellien alors qu’elle augmente avec z pour une distribution avec un excés de particules
suprathermiques.

Dorelli et Scudder (1999) suggérent que le mécanisme de filtrage non collisionnel des
vitesses de Scudder (1992) reste valable dans la couronne, méme en tenant compte
des collisions. Les collisions ne sont donc pas, selon eux, suffisamment efficaces pour
invalider le modéle non collisionel de Scudder (1992). Les calculs de Dorelli et Scud-
der (1999) ont 'inconvénient de s’appuyer sur une forme particuliére de la fonction
de distribution des vitesses des électrons, basée sur un développement en polynémes
de Legendre tronqué apreés le premier ordre seulement. Nos simulations (dans Landi
et Pantellini (2001)) ont montré que 'excés d’électrons suprathermiques nécessaires
pour inverser le flux de chaleur est beaucoup plus important que prévu par Dorelli
et Scudder (1999)°, mais également que le profil de température dans la couronne ne
peut étre soutenu sans un apport d’énergie sous la forme d’ondes électromagnétiques
et ce, méme en supposant un nombre extravagant de particules suprathermiques a la
base de la couronne. En résumé, nous trouvons que la couronne ne peut se mainte-

®Dans un modéle postérieur, plus élaboré, Dorelli et Scudder (2003) trouvent effectivement des
résultats plus proches des notres.
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nir & 1MK sans apport d’énergie sous forme d’ondes, méme en supposant 'existence
d’une trés forte composante d’électrons suprathermiques a la base de la couronne.
Nos résultats contredisent ceux de Dorelli et Scudder (1999, 2003) qui sont une
extension, aux plasmas non collisionnels, de la théorie non collisionnel du "filtrage
gravitationnel" de Scudder (1992). La raison est a chercher dans le traitement sim-
plifié des collisions par Dorelli et Scudder ce qui se traduit par une sous estimation
de leur efficacité a détruire les distributions suprathermiques supposées exister a la
base de la couronne.
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Chapitre 6

Le role des collisions entre charges
dans ’accélération du vent solaire

6.1 Considérations géométriques pour la simulation d’un vent
stellaire

Dans le chapitre précédent, il a été question de simulations spatialement unidi-
mensionnelles d’un plasma en géométrie cartésienne. La géométrie cartésienne est
compatible avec une gravitation constante, ce qui est parfaitement acceptable pour
des simulations de tranches fines de 'atmosphére solaire. La géométrie cartésienne
ne peut cependant pas permettre la simulation de 'atmosphére étendue du Soleil,
laquelle, méme lorsqu’on se limite & la couronne, monte & plus d'un rayon solaire de
la surface (la photosphére). Méme si on suppose que l'accélération gravitationnelle
décroit comme 1/2% dans la figure 5.1, cela ne suffit pas pour rendre compte de la
symétrie sphérique de ’atmosphére étendue du Soleil. Dans le modéle numérique du
chapitre 5, il y a une seule coordonnée spatiale : z (la hauteur) dans le cas cartésien
et r (la distance radiale mesurée a partir d'un point) dans le cas sphérique. Nous
pouvons facilement nous rendre compte que la coordonnée z du probléme carté-
sien ne peut pas remplacer la coordonnée r du probléme sphérique en étudiant le
mouvement rectiligne et uniforme, a la vitesse v, d’'une particule de masse m.
Supposons que la particule se déplace horizontalement a I'instant ¢t = 0, c.a.d. ¥ = vz
dans le cas cartésien et @ = vf dans le cas sphérique (cf figure 6.1). Les équations
du mouvement sont extrémement simples dans le cas cartésien :

Uy =V = const dz_x_dQ_y
vy, = 0= const dt2  dt?

Dans le cas sphérique c’est un peu plus compliqué puisque ni v, ni vy ne sont

constants. Par contre, en observant que v, = vsinf et vy = vcosf on obtient
que
r*v; = r*v? cos® 0 = riv; = const (6.1)
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F1G. 6.1 — Particule en mouvement rectiligne et uniforme dans un systéme de coordonnées
cartésiennes et dans un systéme de coordonnées sphériques.

L’équation (6.1) n’est rien d’autre que ’équation de conservation du moment angu-
laire L = mi X ¥ car L = rvsin(r/2 — 0) = rv. Notant que I'angle 0 augmente en
fonction du temps suivant sin @ = vt/r, nous pouvons écrire I’équation du mouve-
ment radial de la particule :

dv, d . 0 v vt dr
=v—sinf = v|—-——= —
dt dt roor2dt
2
-z (1 —sinf ﬁ)
r v
r2v} L?
= "3 T3 (6.2)

Donc, contrairement au cas cartésien oul toutes les composantes de la vitesse sont
constantes, dans le cas sphérique, la particule subit une force apparente le long de
la direction radiale. Si la particule se trouve dans le champ gravitationnel central
du Soleil, qu’on choisira logiquement de placer au centre du systéme de coordonnées
sphériques, on ajoutera laccélération gravitationnelle GM/r? (cf Newton (1687)),
ou M est la masse du Soleil, a la force apparente de I’équation (6.2) ainsi que la
contribution du champ électrique neutralisant ¢€(r)/m. On obtient ainsi 1’équation
générale du mouvement radial d’une particule dans un monde & symétrie sphérique
(cf équation (1) dans annexe 8) :
2 2

G e, (6.3)

dt? r? m2r3  m
Cette équation est le pendant en sphérique de ’équation (5.9) en cartésien. Alors
que I’équation du mouvement est trés différente en cartésien et en sphérique, le trai-
tement des collisions est pratiquement identique dans les deux cas. Seule différence :
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dans le cas cartésien, la probabilité de collision entre deux particules ne dépend pas
de z, alors que dans le cas sphérique celle-ci décroit comme 1/r%. !

6.2 Reésultats des simulations

Dans I'annexe 8 nous appliquons le modéle sphérique a la simulation du vent solaire
de la couronne jusqu’a des distances héliosphériques de l'ordre de 50rq, ot rg =
6.69 10%m est le rayon moyen du Soleil. Ce qui est absolument remarquable c’est
que N = 6400 particules suffisent pour simuler un domaine aussi étendu couvrant
A la fois la zone d’accélération et la zone de croisiére du vent?. La courbe du haut
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F1G. 6.2 — Profil du nombre de Mach du vent solaire (courbe du haut) et profil de la
variation du potentiel total (gravitationnel et électrostatique) en fonction de la distance
au soleil. (adapté de Landi et Pantellini (2003), cf annexe 8)

dans la figure 6.2 montre la variation du nombre de Mach avec la distance au Soleil
obtenu dans une simulation avec un rapport de masse proton/électron my,/me =
400. Des simulations plus récentes, non publiées, avec un rapport my,/m. = 1836

! Ceci pour tenir compte du fait que la contribution d’une particule & la densité dans une coquille
sphérique d’épaisseur dr dépend de la distance, i.e. nq(r) = 1/(4nr?dr). En somme, une particule
a la distance r couvre un angle solide 4 fois plus grand qu’a la distance 2r.

2La zone de croisiére correspond trés vaguement & r > 107, distance au dela de laquelle le
vent est largement supersonique et sa vitesse approximativement constante, signe que son énergie
cinétique gv?/2 est désormais largement supérieure & ’énergie gravitationnelle oG M /7.
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montrent peu de différences avec les résultats de Landi et Pantellini (2003). Notons
que I"augmentation du nombre de Mach M = v, /v,p avec la distance r est due, un
peu, a la croissance de v, avec r, mais surtout a la décroissance de la température
avec r. Le profil du nombre de Mach différe fort peu des courbes obtenues par
"I'inventeur" du vent solaire. Parker (1958) avec un modéle hydrodynamique. La
principale différence est que le profil de la figure 6.2 a été obtenu avec un plus petit
nombre d’hypothéses. Premiérement, Parker se donne un profil de température, alors
que celle-ci est libre dans le cas de notre modéle. Ensuite, Parker suppose que la
température est la méme dans la direction radiale et dans la direction transverse, ce
qui n’est pas justifiable a priori, en raison de la faible collisionnalité du vent solaire?.
Les principaux apports des simulations de Landi et Pantellini (2003) (annexe 8) sont
au nombre de trois. Premiérement, nous montrons que 1’accélération du vent a des
vitesses supersoniques peut se faire sans la contribution d’ondes électromagnétiques,
le flux de chaleur porté par les électrons suffit a cet effet. Deuxiémement, nous
montrons que le flux de chaleur électronique g, ne se laisse pas décrire par la formule
classique g, oc T°/20T /Or obtenue par Spitzer et Harm (1953) dans le contexte des
plasmas collisionnels. Nous trouvons que le flux de Spitzer et Hirm est une piétre
estimation du flux méme dans la zone d’accélération du vent, 14 ou les taux de
collisions sont les plus élevés de tout le domaine simulé (cf 6.2). Le flux que nous
observons dans nos simulations est généralement bien plus intense que le flux de
Spitzer et Harm. Son intensité se trouve étre bien mieux décrite par 'expression non
collisionnelle gne o< nvkgT, ot v est la vitesse du vent et n la densité électronique,
proposée par Hollweg (1974). Troisiémement, nous montrons, pour la premiére fois
dans une simulation autocohérente, que le potentiel protonique posséde un maximum
au voisinage du point sonique (courbe du bas dans la figure 6.2)%.

3Les observations in situ dans le vent solaire, & des distances supérieures & 50ry, montrent
cependant que la température du plasma est généralement du méme ordre dans la direction radiale
et transverse, alors que les simulations cinétiques, comme les notres, suggérent une forte anisotropie
en faveur de la direction radiale. On estime que des instabilités plasmas, en particulier I'instabilité
"firechose", absentes de nos simulations, empéchent le développement de ces anisotropies (Matteini
et al., 2007, e.g.).

4Notons que Jockers (1970), en se basant sur une démonstration graphique, a été le premier
a préconiser ’existence d’un maximum dans le profil du potentiel protonique. Une discussion
approfondie des caractéristiques du maximum en fonction des paramétres du vent, ainsi que sa
relation avec le point sonique du modéle fluide de Parker a été publiée dans Scudder (1996).
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Simulations de systémes granulaires

7.1 Introduction

Depuis les années 1930, il paraissait clair, en particulier suite aux observations de
Bernard Lyot avec le coronographe de son invention, que la température de la cou-
ronne solaire est bien plus élevée que la température de la surface sous-jacente. Ce
n’est que grace a l'identification d’ions hautement ionisés par Edlén (1943) que nous
savons avec certitude que la température de la couronne est prés de 200 fois plus
élevée que la température de la photosphére. Depuis lors, de nombreuses théories ont
été proposées pour tenter d’expliquer la raison de cette vertigineuse croissance de la
température au dessus de la surface du Soleil. La plupart de ces théories sont basées
sur un mécanisme de chauffage de la couronne par des ondes plasmas engendrées
par les mouvements turbulents dans la photosphére et dissipées, aprés propagation,
dans la couronne. Une théorie alternative (e.g. Scudder, 1992), dont il a été question
a la fin du chapitre 5, se base sur le fait qu'un plasma peu collisionnel soumis a un
champ de pesanteur constant voit sa température varier avec la hauteur, tant que
la distribution des vitesses des particules n’est pas de type Maxwell-Boltzmann!.
L’extraordinaire augmentation de la température entre la chromosphére et la cou-
ronne semble violer le deuxiéme principe de la thermodynamique. La source de
chaleur se situant au coeur du Soleil, on ne voit pas, a priori, comment la tempé-
rature pourrait augmenter en s’en éloignant. On dirait qu’un démon de Maxwell,
qu’on pourrait localiser dans la région de transition (cf Figure 7.1), filtre les parti-
cules en laissant transiter de la chromosphére vers la couronne seulement les plus
énergétiques.

C’est précisément en cherchant sur internet avec les mots clés "démon" et "Max-
well" que je suis tombé sur un article fort intéressant de Eggers (1999) relatant,
avec explication physique a 'appui, U'expérience de la figure 7.2. J’admets volontiers
que le lien entre 'expérience décrite par Eggers et le probléme du chauffage de la

!Une croissance de la température électronique entre la chromosphére et la couronne par effet
de filtrage gravitationnel ((Scudder, 1992)) nécessite l’existence d’un excés d’électrons suprather-
miques par rapport a la distribution de Maxwell-Boltzmann (cf chapitre 5).

33



Chapitre 7

7

T T T 310
1016 n \ Cromosphére Basse Couronne E
- Photospheére Region de transition 1
=10°
1014 ;
7 1 - =
g 1082
[ 1012 [~ ] =
= ]
4
<10
1010 E
108 1 1 1 1 103
0 2000 4000 6000

Hauteur [Km]

F1G. 7.1 — Modéle empirique de la densité et de la température dans I’atmosphére solaire
(extrait de Landi (2001))

couronne n’est pas immédiatement apparent : il sera plus clair par la suite. L’expé-
rience illustrée dans la figure 7.2 est facilement réalisable chez soi si on est un peu
bricoleur. Elle consiste en un récipient (par exemple un aquarium en plastique) sé-
paré en deux parties égales par une paroi comportant un petit trou prés du fond. Le
récipient, rempli avec des petites boules en plastique pouvant passer par le trou, est
agité verticalement avec une fréquence w. Lorsque la fréquence w est suffisamment
élevée, on observe que les boules finissent par se repartir uniformément dans les deux
compartiments, indépendemment des conditions initiales (cas A dans la figure 7.2).
Si maintenant on baisse la fréquence d’oscillation w en dessous d’un seuil critique, un
phénoméne curieux se produit : spontanément un nouvel état stationnaire s’installe
avec un plus grand nombre de particules dans un des deux compartiments, mais
avec des particules plus énergétiques, en moyenne, dans 'autre compartiment. En
somme, on se retrouve avec un compartiment avec du "gaz" froid et dense (compar-
timent de droite dans le cas B de la figure 7.2) et un compartiment avec du "gaz"
chaud et dilué. L’explication détaillée du phénoméne est un peu compliquée, mais
la raison fondamentale de 'apparition de deux états distincts se trouve dans la non
élasticité des collisions entre les petites boules en plastique. Dans le cas élastique
(comme dans un gaz ou les collisions entre molécules sont parfaitement élastiques),
la solution d’équilibre est toujours symétrique, alors que dans le cas inélastique, la
solution d’équilibre n’est pas toujours symétrique. Mais ce n’est pas tout, concer-
nant le comportement exotique du systéme de la figure 7.2. Une analyse détaillée du
profil de température vertical dans le récipient, conduite par Ramirez et Soto (2003),
montre que contrairement a ce qu’on pourrait soup¢onner naivement, la température
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F1G. 7.2 — Expérience du récipient contenant des boules en plastique. Le récipient est
agité verticalement avec une fréquence w. Adapté de Eggers (1999)

n’est pas une fonction monotone et décroissante de la hauteur z. Comme l'illustre
la figure 7.3, la température décroit effectivement dans la partie dense du systéme,
mais le gradient finit par s’inverser et la température augmenter en s’éloignant de
la source d’énergie, exactement comme dans I’atmosphére du Soleil au dessus de la
chromosphére.

L’expérience de la figure 7.2 illustre de maniére exemplaire le comportement par-
fois trés exotique des systémes de particules interagissant de maniére inélastique.
Les exemples de matiére granulaire? que 1’on rencontre quotidiennement sont trés
nombreux. Citons : le café, le sable, la neige, les tas de pomme de terre, etc. Les sys-
témes de matiére granulaire ne sont pas moins fréquents en astrophysique. Citons :
les anneaux astrophysiques (e.g. les anneaux de Saturne), les nuages protoplané-
taires et la matiére interstellaire froide en générale. Le lecteur intéressé trouvera
dans la revue de Jaeger et al. (1996) la description d’expériences de laboratoire met-
tant en évidence les propriétés spécifiques des systémes granulaires, et en quoi leur
comportement différe de celui des gaz ou liquides ordinaires.

Mais revenons  notre discussion sur I’atmosphére du Soleil. Evidemment, le plasma
de I'atmosphére du Soleil n’est pas un systéme granulaire. Les particules ne sont
pas des boulettes en plastique mais des charges élémentaires (principalement ions et
électrons) interagissant de fagon élastique. Il n’y a donc aucune raison, a priori, pour

2Matiére granulaire : conglomérat de particules macroscopiques interagissant par I'intermédiaire
de collisions non élastiques, i.e. avec perte d’énergie.
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Fi1G. 7.3 — Profil de température vertical caractéristique dans une expérience similaire &
celle de la figure 7.2. Adapté de Ramirez et Soto (2003)

que le profil de température augmente avec la hauteur comme dans la figure 7.3.
Cependant, si on tient compte du fait qu'une (petite) partie de I’énergie cinétique
des charges interagissant entre elles est perdue sous forme de rayonnement, la diffé-
rence entre systéme granulaire et plasma n’est plus aussi grande qu’il n’y parait. La
simulation de 'atmosphére solaire, en incluant les collisions inélastiques, constitue
la suite prévisible du travail que je présente dans ce chapitre. Mais avant d’en arriver
a traiter 'atmosphére solaire avec les outils de la physique des systémes granulaires,
j’al di me familiariser avec un sujet complétement étranger a mes préoccupations
antérieures et bien plus complexe et riche que ce que j'imaginais au départ.

7.2 Ségrégation d’espéces dans un systéme granulaire unidi-
mensionnel

Méme le comportement des systémes granulaires les plus simples, tels le collier de
billes de la figure 7.4, n’a pas encore été entiérement élucidé a ce jour. C’est la raison
qui m’a poussé a "recycler" le code précédemment utilisé pour simuler un gaz dans
un champs gravitationnel (cf chapitre 4), avec I'idée de traiter, dans un premier
temps, le systéme de la figure 7.4, sans bien stir tenir compte de la courbure du
collier, ni méme de la taille des billes que nous supposons ponctuelles.

Le systéme est proche du systéme non-ergodique (a) de la figure 4.1, mais cette
fois les collisions ne sont pas élastiques et I’énergie cinétique totale des billes n’est
pas constante, car a chaque collision une petite fraction de ’énergie cinétique des
particules interagissantes est perdue. Le systéme a été étudié mathématiquement

36



Simulations de systémes granulaires

Fi1G. 7.4 — Le modeéle numérique utilisé dans le chapitre 4.1 de l'article Pantellini et
Landi (2008) (cf annexe 9) ressemble schématiquement au probléme d’une série de billes
identiques sur un fil périodique. Ce systéme n’est pas ergodique dans la limite élastique.

par plusieurs auteurs au cours des deux derniéres décennies, mais le lecteur intéressé
trouvera l'essentiel, avec références et explications, dans l’excellent article de Bal-
dassarri et al. (2002). Une des caractéristiques marquantes du systéme de la figure
7.4, mais qui est également une caractéristique quasi-universelle de tout systéme
granulaire, est sa tendance a vouloir former des grumeaux, c.a.d. & concentrer les
billes dans des groupes, méme lorsque la distribution initiale est uniforme.

-@9°

F1G. 7.5 — Le modéle numérique utilisé dans le chapitre 4.2 de l’article Pantellini et
Landi (2008) (cf annexe 9) ressemble schématiquement au probléme d’une série de billes
non identiques sur un fil périodique. Le comportement de ce systéme est profondément
différent de celui d'un ensemble de particules identiques de la figure 7.4. 1l est ergodique
dans la limite élastique et peut se décrire avec des équations fluides.

Le systéme 7.4 ayant été décrit de facon détaillée par Baldassarri et al. (2002), nous
avons décidé (cf annexe 9 ou Pantellini et Landi (2008)) d’étudier numériquement
le cas plus compliqué d’un systéme a deux espéces de billes de masses différentes
comme illustré sur la figure 7.5. Malgré les apparences, les deux systémes des figures
7.4 et 7.5 évoluent de fagon trés différente, méme avant la formation de grumeaux.
La figure 7.6 montre 1’état de la fonction de distribution d’un systéme de N = 19600
particules identiques (figure 7.4) et d’un systéme de N/2 particules de masse m = 1
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FI1G. 7.6 — Evolution de la fonction de distribution des vitesses pendant la phase homogéne,
pour un systéme de N particules identiques (gauche) et un systéme de N/2 particules de
masse m = 1 et N/2 particules de masse m = 4 (droite).

et N/2 particules de masse m = 4 (figure 7.5) au cours de la phase dite homogéne,
c.a.d. avant la formation d’inhomogénéités dans la distribution spatiale des billes.
Dans les deux cas, le coefficient de dissipation £ qui représente, en gros, la frac-
tion d’énergie perdue & chaque collision entre deux particules, est e = 5107* < 1
(cas faiblement inélastique). En outre, dans les deux cas, la vitesse initiale des parti-
cules est distribuée uniformément dans 'intervalle [—0.5,0.5]/y/m, afin que Iénergie
moyenne par particule soit la méme pour toutes les espéces. La différence entre les
deux distributions de la figure 7.6 est frappante. Dans le cas de particules identiques
on observe une tendance a la formation d’une distribution a deux pics (surtout vi-
sible aprés 16 107 collisions) alors que dans le cas a deux espéces, les distributions
sont parfaitement bien décrites par une distribution maxwellienne.? La différence
est bien sir due au fait que, comme nous ’avions déja souligné dans le chapitre 4,
un systéme unidimensionnel de particules identiques, comme celui de la figure 7.4,
n’est pas ergodique. Remarquons cependant que la distribution des vitesses n’évolue
nullement dans le cas élastique, alors qu’elle évolue considérablement dans le cas
inélastique comme illustré dans le panneau de gauche de la figure 7.6.

Le fait que les distributions en vitesse sont bien décrites par des distributions max-
welliennes, nous a incité a établir des équations fluides qualitatives* pour un systéme
unidimensionnel & deux espéces et un petit coefficient de dissipation ¢ (cf chapitre

3Benedetto et al. (1997) ont montré que dans la limite quasi-élastique ¢ — 07 la distribution en
vitesse du systéme de particules identiques évolue vers une somme de deux distributions de Dirac,
que lon devine clairement dans la figure 7.6.

4Nous ne donnons pas dans l'article de annexe 9 les expressions exactes des coefficients de
transport pour le cas 1d qui nous occupe. Les calculs sont excessivement compliqués et de peu
d’intérét en 1d, entre autre en raison de la non ergodicité des systémes & une seule espéce. En outre,
une connaissance détaillée des coefficients de transport n’est pas nécessaire pour la compréhension
de la physique du systéme. Un calcul détaillé des coefficients de transport dans un mélange de 2
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2 dans l'annexe 9). Les équations fluides nous ont permis d’appréhender beaucoup
plus facilement le comportement du systéme a deux espéces. Dans 'annexe A de
Pantellini et Landi (2008) nous linéarisons les équations fluides correspondant au
systéme unidimensionnel & deux espeéces de la figure 7.5 et montrons que le mode le
plus instable, celui donc qui est responsable de la formation des grumeaux, n’est pas
le mode sonore mais le mode a équilibre de pression, appelé parfois mode entropique.
Nous établissons également que la longueur d’onde du mode le plus instable Ay .x
est de 'ordre de Aoy ~ 10mL/Ne (L étant la dimension physique du systéme, c.a.d.
la longueur du fil dans le systéme de la figure 7.5).

L’instabilité de "clustering", c’est son nom, génére donc des fluctuations de la den-
sité de particules a 1’échelle \,... Les fluctuations de densité ainsi engendrées par
linstabilité conduisent généralement le systéme vers une catastrophe que l'on ap-
pelle effondrement inélastique ("inelastic collapse" en anglais). L’effondrement in-
élastique se produit a I'endroit ol apparaissent des surdensités de particules. Il est
di au fait que dans les lieux de surdensité, la dissipation est plus forte qu’ailleurs,
ce qui engendre un ralentissement de ’agitation des particules et donc une baisse de
la température, laquelle baisse engendre a son tour une augmentation de la densité
afin d’assurer ’équilibre spatial de la pression : c’est ’effondrement. Trés rapidement
le systéme se remplit de grumeaux formés de particules collées les unes aux autres
pratiquement sans plus aucun mouvement relatif (voir les grumeaux A et B dans la
figure 7.7)

F1G. 7.7 — Les systémes 7.4 et 7.5 ont une tendance & former des grumeaux. Lorsqu’on
permet aux particules d’échanger leur position relative au cours des collisions, les grumeaux
(A et B sur la figure) expulsent les particules légeéres vers leur périphérie.

La tendance vers la formation de grumeaux de particules est une caractéristique
universelle des systémes granulaires. Elle se produit aussi bien dans les systémes
de particules identiques que dans les systémes multi-espéces. Avec 'estimation de
la Apax ci-dessus, on peut évaluer le nombre de particules N, dans un grumeaux a
N, ~ 5m/ed.

espéces en 3 dimensions spatiales et en fonction du coefficient d’inélasticité e, de la taille et de la
masse des des grains a été publié récemment par Garzo et al. (2006).

50n obtient N, en prenant le nombre de particules moyennes dans la demie longueur d’onde
Amax/2, correspondant a la portion de surdensité de ’onde.
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Ce que nous avons voulu explorer dans Pantellini et Landi (2008), ¢’était comment
les particules de masse différente se distribuent dans un grumeau lors de son ef-
fondrement. Evidemment, dans un systéme 1d comme celui des figures 7.5 et 7.7,
la distribution relative des particules est entiérement déterminée par la distribu-
tion initiale, alors que dans un systéme a 2 ou 3 dimensions, les particules peuvent
échanger leur position par rapport au centre du grumeau. Pour éviter que la dis-
tribution spatiale des espéces dans notre systéme unidimensionnel soit figée par le
choix initial, nous permettons a deux particules qui entrent en collision d’échanger
leur position relative avec une probabilité de 50%. Lorsque la distribution spatiale
initiale est uniforme pour les deux espéces séparément, 'introduction de la possibi-
lité d’échanger les positions n’affecte guerre ’évolution du systéme. Par contre, au
moment de I'effondrement, on observe que les particules légéres sont expulsées vers
les bords du grumeau comme illustré dans la figure 7.7. Nous montrons que la force
de friction est responsable de la ségrégation des espéces dans les grumeaux en ef-
fondrement. La force de friction est non nulle en raison du gradient de température,
les particules lourdes subissant une force dirigée vers les zones froides, i.e. le centre
des grumeaux, alors que les particules légéres subissent une force qui les écarte du
centre des grumeaux.

Dans Pantellini et Landi (2008) nous montrons également que les mouvements d’en-
semble des grumeaux au moment de I'effondrement sont supersoniques si le nombre
de particules N dans le systéme 1d est supérieur a un seuil de l'ordre de 47 /e.

Ces résultats ont été établis en analysant numériquement et théoriquement des sys-
témes unidimensionnels. L’extrapolation a des systémes a 2 ou 3 dimensions n’est
pas évidente. Nous prétendons que la ségrégation entre les espéces de masse diffé-
rente a l'intérieur des grumeaux est un phénomeéne universel dans la mesure ou il
est dii & Paction d’une force qui n’est pas I’apanage des systémes 1d.
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Simulations d’un plasma avec un
code N-corps

Ce chapitre est volontairement un peu plus détaillé que les autres. Non que je consi-
dére les sujets traités ici plus importants que ceux des chapitres précédents mais
simplement parce que, d’une part, la technique de simulation numérique dont il sera
question ci-dessous est extrémement peu répandue, voire inexistante en physique
des plasmas et que, d’autre part, des paramétres fondamentaux, tels le paramétre
de couplage I ou le logarithme de Coulomb A ainsi que le rayon d’interaction forte rg,
sont incontournables pour la caractérisation des plasmas, qu’ils soient naturels ou de
laboratoire. Ces paramétres sont finalement peu ou mal connus dans la communauté
des plasmas naturels (spatiaux ou astrophysiques). Cela s’explique vraisemblable-
ment par le fait que dans bien des cas il est plus simple, et souvent parfaitement
justifié, de se contenter soit d’une description fluide, soit d’une description complé-
tement non collisionnelle du plasma. Il est effectivement parfaitement raisonnable
d’appliquer les équations fluides de la magnétohydrodynamique (MHD) au plasma
trés collisionnel de intérieur des étoiles convectives. Il est également parfaitement
raisonnable d’appliquer I’équation de Vlasov, décrivant les plasmas non collisionnels,
aux magnétosphéres planétaires dans la mesure ot le libre parcours moyen des ions
et électrons qui s’y trouvent sont des centaines de fois plus grands que les dimen-
sions caractéristiques de ces mémes magnétosphéres. De nombreux plasmas peuvent
cependant se trouver entre ces deux extrémes. Ce sont les plasmas dans lesquels
les échelles spatiales de variation des quantités macroscopiques, tels la densité ou la
température, ne sont pas énormément plus grandes que les libres parcours des par-
ticules, c.a.d. les plasmas caractérisés par un nombre de Knudsen thermique (voir
chapitre 5) Kt = Aeo/Lr entre 107 et 107''. De nombreux plasmas astrophysiques
et de laboratoire peuvent se trouver dans ce régime, en particulier lorsqu’ils sont
stratifiés par la gravitation (atmosphéres planétaires ou stellaires, e.g. chapitre 5)

!Dans cette expression Aee est le libre parcours moyen caractéristique d’un électron di & son in-
teraction avec les autres électrons du plasma et Lt = T/9T/0z I’échelle de variation caractéristique
de la température T'.
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mais également & l'interface plasma-vide, situation fréquente dans les expériences
laser-plasma. Dans ces cas, ni 'approche fluide, ni 'approche non collisionnelle se
justifient réellement, mais c’est précisément dans ce type de plasmas que les simu-
lations de type N-corps trouvent leur principal champ d’application. Notons que
méme le vent solaire, dans lequel le libre parcours moyen est de I'ordre de I'unité
astronomique ne peut étre considéré comme non collisionel a grande échelle, car les
variations de la température avec la distance héliocentrique ne sont significatives
qu’a des échelles a peine plus petites que 'unité astronomique.

En 2003, en feuilletant sans rien chercher de précis, un volume du Journal of Compu-
tational Physics je suis tombé, un peu par hasard, sur Particle de W. Dehnen (Deh-
nen, 2002), traitant du probléme du calcul de linteraction gravitationnelle entre un
grand nombre de particules ponctuelles. Ce qui avait surtout retenu mon attention,
c’était le titre de 'article qui annoncait un algorithme de type N-corps (appelé
FalcON par l'auteur) d’une complexité algorithmique d’ordre N. Dit autrement, le
temps d’ordinateur nécessaire pour calculer l'interaction gravitationnelle entre N
particules avec FalcON augmente linéairement avec N. Lorsque le nombre de parti-
cules N est de 'ordre du million, voire du milliard, le gain en temps de calcul par
rapport a l'algorithme en Llog(N) de Barnes et Hut (Barnes et Hut, 1986), lar-
gement répandu dans la communauté astrophysique, devient considérable. D’autres
algorithmes affichaient a I’époque une complexité d’ordre N, mais aucun d’entre eux
n’avait vraiment fait la preuve de son efficacité (voir les explications dans Iintro-
duction de I'articles de W. Dehnen sur ce point). Je demandais a 'auteur s’il voulait
bien m’envoyer une version de son algorithme. Je recus donc, immédiatement, une
version en C+—+, parfaitement bien documentée de FalcON. J’ai un peu joué avec
le code, histoire d’en comprendre le fonctionnement avant de me poser la question
de sa transposition au cas de 'interaction coulombienne entre charges électriques,
Pinteraction gravitationnelle entre deux masses ponctuelles et I'interaction électro-
statique entre deux charges ponctuelles obéissant a la méme équation. Le fait que
I'interaction gravitationnelle entre masses est toujours attractive, alors que l'inter-
action électrostatique peut étre attractive ou répulsive, implique une adaptation de
FalcON pour le rendre efficace dans les applications électrostatiques. C’est le sujet
du chapitre 8.1.

8.1 Quelques aspects techniques

Des essais avec un petit nombre de charges semblaient montrer que la transposi-
tion du cas gravitationnel vers le cas électrostatique ne comportait aucun probléme.
Cependant, les mesures de temps de calcul par A. Beck au cours de son stage de
master ont montré que le temps de calcul était, dans le cas électrostatique, propor-
tionnel & N? alors qu’il était proportionnel & N dans le cas gravitationnel. Nous
nous sommes rapidement rendus compte que le probléme provenait du fait qu’en
premiére approximation, lorsqu’on veut calculer la force exercée par un groupe de
particules dont les positions y; tombent dans la cellule B sur une particule distante
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en position x (cf Figure 8.1), celle-ci est simplement donnée par > _p m;/r? ou
r = |x — z| est la distance de la particule au barycentre z définie par ’ensemble des
particules dans la cellule B, i.e.

Z m;x;

y;€B

> my

y,€B

(8.1)

z

Donc, si Mg = ZyieB m; dénote la masse totale dans la cellule B, la force exercée

Fia. 8.1 -

par les particules de la cellule B sur la particule en  est simplement M /r?, comme
si toutes les particules étaient concentrées en un seul point z. Il est donc raisonnable,
dans le cas gravitationnel d’utiliser I’équation (8.1) comme définition du centre du
développement pour l’expansion multipolaire de la contribution de la cellule B au
champ gravitationnel ressenti par la particule en x. Dans le cas Coulombien, le
choix de (8.1) comme centre d’expansion est calamiteux. Ainsi, comme le montre
schématiquement ’exemple & deux charges de la figure 8.2, le barycentre z.. calculé
sur la base de la définition (8.1), en remplacant les masses par des charges, n’est
méme pas localisé entre les deux charges, car avec une charge 2¢q en z = 0 et une
charge —q en z = d, le barycentre se trouve en z = —d. Plus extréme encore, pour
deux charges ¢; et ¢ de signes opposés mais de force presque égale |g2/q1| = 1 + ¢,
le barycentre calculé sur la base de (8.1) se trouverait a une distance de l'ordre de
d/e > 1, voire & une distance infinie dans le cas g = —¢;. Afin de ramener le centre
du développement dans la zone ot sont concentrées les charges, nous utilisons la
définition plus pertinente :
> lailz:
% Y, €B

2 = —Z i (8.2)

Y, €B
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Cette nouvelle définition raméne le centre de développement au milieu des charges
(cf z* dans la figure 8.2) avec la conséquence importante que le moment multipolaire
d’ordre 1 M*' = 3", ¢i(y; — 2*) (le moment dipolaire) est non nul. Le moment M*!
étant nul dans le cas gravitationnel, il n’est pas possible d’utiliser, sans modifications,
les expansions multipolaires du potentiel données par Dehnen. Le développement
multipolaire du potentiel produit par les particules dans la cellule B sur la particule
en z, en incluant les contributions du moment M*! est présenté dans 'annexe 12.

Solution sale mais bon marché

Il existe une solution "bon marché" pour utiliser de fagon efficace le code FalcON
dans le cas d'un plasma sans nul besoin de modifier I'algorithme de base.

La solution "bon marché" consiste a calculer dans un premier temps le champ de
force produit par ’ensemble des particules de charge positive et d’y soustraire en-
suite le champ de force produit par ’ensemble des particules de charge négative.
Techniquement cela consiste a attribuer, dans un premier temps, une charge posi-
tive mais quasi-nulle € a toutes les particules de charge négative. On demande alors &
FalcOn de calculer 'accélération a,(x;), pour chaque particule i & 'emplacement ;.
FalcON n’a aucun probléme pour le faire dans la mesure ou toutes les charges sont
maintenant positives, comme dans le cas gravitationnel. Dans un deuxiéme passage,
on attribue une charge € a toutes les charges positives et la valeur absolue de leur
charge aux charges négatives, et on demande une deuxiéme fois & FalcOn de calculer
'accélération a.(x;). La force totale f(z;) exercée par ’ensemble des charges sur la
charge i est alors donnée par f(z;) = ¢;[a,(x;) — ac(z;)] ol ¢ est la charge réelle
(négative ou positive) de la particule 1.

Cette solution "bon marché" présente 'avantage considérable de ne pas nécessiter
de transformation de I’algorithme original de W. Dehnen. Elle a I'inconvénient de
nécessiter deux appels a la routine de calcul des forces. Une solution plus précise

nécessitant un seul appel a la routine de calcul des forces est présenté dans ’annexe
12.
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8.2 Les collisions dans un plasma

Les applications d'un code de type N-corps en physique des plasmas sont nom-
breuses, mais tous les plasmas ne sont pas forcément de bons candidats pour des
simulations N-corps. Par exemple, dans les plasmas dits non collisionnels, dont il a
été question dans les chapitres 2 et 3, le mouvement d’une particule n’est que trés
rarement dominé par D'effet du champ électrique d’une seule particule voisine. Le
plus souvent, le mouvement d’une particule donnée est piloté par le champ cumulé
d'un tres grand nombre de particules localisées dans son entourage plus au moins
proche. Dans un tel cas, le plasma est dit "collectif" et se laisse décrire avantageu-
sement par I'intermédiaire d’une fonction de probabilité f;(¢,z,v) (une pour chaque
espéce i de particules dans le systéme) plutdt que par un ensemble N de particules.
[’évolution spatiale et temporelle d’un tel plasma est dans ce cas convenablement
décrit par des équations cinétiques faisant intervenir f;(¢,z,v), ses dérivés spatiales
et temporelles, ainsi que ses dérivées, d’ordre plus au moins élevé par rapport a la
vitesse?.

Deux longueurs caractéristiques fondamentales

Lorsque dans un plasma les effets quantiques ne jouent aucun role, c.a.d. lorsque les
distances caractéristiques entre les charges sont sensiblement plus grandes que les
longueurs de De Broglie qui leur sont associées®, son comportement est conditionné
par deux longueurs caractéristiques : la longueur de Debye et le rayon d’interaction
forte.

Prenons, par simplicité, le cas d’'un plasma uniforme, globalement neutre, composé
uniquement de protons et d’électrons (ionisation totale). Lorsque 'interaction entre
particules voisines est faible, et que le plasma est proche de I'équilibre thermody-
namique, il n’est pas surprenant que le plasma soit entiérement caractérisé par des
quantités macroscopiques telles la densité numérique n, la température 7', et la
charge élémentaire e. En combinant ces quantités avec les constantes fondamentales
€0 (la permittivité du vide) et kg (la constante de Boltzmann) on construit une
longueur caractéristique, la longueur de Debye :

1/2
Ap = (EokBT) (8.3)

n e2

2Dans I'équation de Vlasov (e.g. Delcroix et Bers, 1994; Golant et al., 1980) df; /0t +vO f; |0z +
a;0f;/0v = 0, qui décrit 1’évolution de la fonction de distribution f; sous l'effet d’une accélération
a;(t, x), apparaissent uniquement les dérivées premiéres par rapport a la vitesse. Dans I’équation de
Fokker-Planck (e.g. Delcroix et Bers, 1994; Golant et al., 1980) apparaissent également les dérivées
d’ordre deux, ce qui permet de prendre en compte l'effet des collisions produisant des faibles
déviations de la trajectoire des particules par rapport au cas non collisionnel. Une description
compléte de I'évolution de la fonction de distribution implique, en principe, 'intégration d’une
équation cinétique comportant un nombre infini de termes comportant les dérivées de f; par rapport
a la vitesse a tous les ordres.

3Pour une particule de masse m se déplacant & la vitesse v la longueur de De Broglie est définie
par /i/(mv) ou i est la constante de Planck divisée par 2.
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On interpréte généralement la longueur de Debye comme étant la longueur au dela
de laquelle le champ électrique d’une charge test positive placée dans le plasma
est complétement écrantée par le nuage d’électrons qu’elle concentre autour d’elle.
Par extrapolation, on admet en général que les particules du plasma séparées d’une
distance supérieure a A\p ne peuvent interagir directement. La longueur de Debye est
donc souvent considérée comme étant la limite supérieure du paramétre d’impact
pour les collisions dans un plasma. Evidemment, la définition de la longueur de
Debye, faisant intervenir les quantités macroscopiques n et T', n’a de sens que lorsque
le nombre de particules dans un volume 3, est grand devant 'unité.

Dans un plasma classique, c.a.d. dans un plasma ou les distances entre particules
sont plus grandes que les longueurs de De Broglie de ces mémes particules, il est
possible de définir une autre longueur caractéristique, indépendante de la densité :

62

= — 8.4
127wegkpT (8-4)

TS
appelée rayon d’interaction forte ou rayon de Landau. Dans (8.4) r, représente la
distance entre deux électrons pour laquelle 'énergie électrostatique e?/4meqrs est
égale a deux fois I’énergie cinétique caractéristique %kBT qui les anime. On en conclut
que la trajectoire d’un électron sera fortement infléchie lorsque ce dernier croise un
autre électron a une distance de 'ordre de rg. En résumé, rg représente la distance
caractéristique pour les collisions proches, avec forte perturbation de la trajectoire,
et \p la distance caractéristique pour les collisions distantes avec faible perturbation
de la trajectoire.

Le logarithme de Coulomb

En I’absence de champ magnétique, et de forces extérieures, il est possible de décrire
I’état d’un plasma uniforme, complétement ionisé et proche de I’équilibre thermody-
namique avec deux variables thermodynamiques indépendantes seulement. Ces deux
variables sont, par exemple, la température T et la densité électronique n = n,.
La température, a elle seule, permet de définir une échelle de longueur ry oc 771,
une échelle de vitesse (nous choisissons la vitesse du son adiabatique des électrons
ce = /3kpT/2m,) et donc une échelle de temps 7 = ry/c.. Nous pouvons, avec
ces échelles de longueur et de temps, dédimensionner les équations du mouvement
des particules® et faire disparaitre la température du systéme. Ainsi, par exemple,
Paccélération d’un électron de masse m et charge e due a l'interaction électrosta-
tique avec un autre électron a une distance r donnée par ’expression bien connue
i = e2/(mdmeor?) devient 7 = 2/7 dans la version adimensionnée (avec 7 = r /7
et t = tco/rs. Dans le systéme dédimensionné, la température n’apparait donc plus
de facon explicite, elle n’est donc pas, a elle toute seule, un paramétre fondamental
du systéme. Reste la deuxiéme variable thermodynamique : la densité électronique.

4Les équations du mouvement d’un particule sont dz/dt = v et dv/dt = a ou a est 'accélération
due & toutes les autres particules dans le systéme.
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Simulations d’'un plasma avec un code N-corps

En variables adimensionnées cette derniére s’écrit ., = nr? et relie les deux échelles

caractéristiques s et Ap :
A 1
g (8.5)

re 12710’

Dans la grande majorité des plasmas astrophysiques, la longueur de Debye Ap est
bien plus grande que 74 ce qui, suivant (8.5), signifie n < 0.027. Cependant, ['usage
veut que pour caractériser un plasma, on n’utilise ni 72 ni le rapport Ap/rs, mais
bien plus souvent, le logarithme de Coulomb

A=l (A—D) | (3.6)

T's

Le logarithme de Coulomb intervient ainsi dans les coefficients de transport des
expressions pour le flux de chaleur, le courant courant électrique, etc. que ’'on trouve
dans les livres (Braginskii, 1965; Hinton, 1983; Golant et al., 1980, e.g.). Calculons,
par exemple, la force de friction exercée par les protons sur un électron se déplacant
a la vitesse caractéristique ¢, = (3kgT/2m)'/? le long de la direction z, comme
représenté sur la figure 8.3.

Ce

z — o
5 @ ® L
F1G. 8.3 — Electron se mouvant dans un champ de protons a la vitesse ¢, le long de I'axe
z. Est montré le paramétre d’impact r par rapport a un proton du systéme. La force de

friction F' exercée par les protons sur 1’électron est donnée par 1’équation (8.9). La force F’
est proportionelle au logarithme de Coulomb A défini par (8.6)

La variation de la quantité de mouvement dans la direction z due a la présence
d’un proton avec un paramétre d’impact r se calcule facilement Trubnikov (1965);
Landau et Lifshitz (1960) :

r? 412

Ap, = —V8cem (8.7)
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ot 'on voit immédiatement que la variation est forte lorsque le paramétre d’impact
r est de 'ordre de rg alors qu’elle est faible pour r > r,. La force de friction F
exercée par tous les protons du systéme s’obtient en intégrant (8.7) pour tous les
parameétres d’impact r possibles, et en multipliant le résultat par le flux de protons
nce vus par ’électron en mouvement, i.e. :

oo o0 d
F = nce/ 2mrdr Ap, = 2\/§7rmnc§r52/ % (8.8)
0 o T247?

Cette intégrale diverge logarithmiquement pour les grandes valeurs du parameétre
d’impact r. Pour obtenir une valeur finie, il faut la tronquer. Ayant déja observé
que le potentiel Coulombien d’une charge test dans le plasma est écranté pour des
distances supérieures a la longueur de Debye Ap, s’impose le choix de tronquer
'intégrale dans (8.8) a r = Ap. Si A\p > 7y, comme dans grand nombre de plasmas

astrophysiques, on obtient que la force de friction dépend linéairement du logarithme
de Coulomb

oo A
F = 2\/§7rmnczr§/ o~ 2v/8rmnc?r? In (—D> : (8.9)

o Tr24r? s

D’ou Uintérét de classer les plasmas suivant A = In(\p/rg) plutot que par Ap/rs.

Classification des plasmas

On dit d’un plasma qu’il est fortement couplé lorsque A\ < 1 et qu’il est faiblement
couplé lorsque A = 10. L’intensité du couplage des particules du plasma se me-
sure en comparant I'énergie électrostatique entre deux électrons voisins® et I’énergie
cinétique caractéristique d’une particule 3kgT/2. Ce rapport est un nombre sans
dimensions appelé paramétre de couplage du plasma, généralement désigné par la
lettre I dont on montre facilement (en utilisant la définition de I' de 'annexe 10) qu’il
est lié a \ par la relation A = In(v/3/I"*/2). Donc, plus le couplage entre particules
voisines est fort moins le logarithme de Coulomb est grand. La table 8.1 montre une
classification possible, plus au moins consensuelle, des plasmas en trois catégories
distinctes suivant les valeurs de A ou I'. Les plasmas fortement couplés sont froids
et denses. Leur comportement s’apparentent davantage a celui d’un liquide ou d’un
cristal qu’a celui d'un gaz lorsque I' 2 10. Ils peuvent étre produits en laboratoire
par irradiation de solides avec un faisceau laser mais ils existent également dans
les atmosphéres d’étoiles dégénérées (par exemple dans les atmosphéres de naines
blanches (Koester et Chanmugam, 1990)). Dans les plasmas fortement couplés, la
dynamique des particules est dominée par le champ des particules proches. A 'autre
extréme, les plasmas faiblement couplés sont des plasmas chauds et peu denses au
comportement de type gazeux. Pratiquement tous les plasmas spatiaux (vent solaire,

®Dans un plasma de densité électronique n la distance moyenne d entre électrons voisins est
évidemment de Pordre de n=1/3
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TAB. 8.1 — Proposition de classification des plasmas en fonction du logarithme de
Coulomb A et/ou du paramétre de couplage I'

Log de Coulomb | Paramétre de couplage | Dénomination

A <1 r =205 fortement couplé
1< A <10 05> I 221073 modérément, couplé
105 A 210> T faiblement couplé

magnétosphéres planétaires) et méme le milieu interstellaire ainsi que les plasmas
des tokamak sont faiblement couplés. Dans les plasmas faiblement couplés la dyna-
mique des particules est dominée par le champ collectif des particules distantes. Les
collisions binaires peuvent dans ce cas étre négligées car relativement peu fréquentes.
On devine aisément que dans les plasmas faiblement couplés, deux particules test®
initialement voisines dans ’espace des phases (Z,v) vont le rester pendant long-
temps dans la mesure ot le champ électrique ressenti par les deux particules ne
différe guére. Dans ce cas, des modéles numériques basés sur I'équation de Vla-
sov ou de Fokker-Planck sont parfaitement adaptés. Dans les plasmas modérément
ou fortement couplés, il arrive plus fréquemment que dans les plasmas faiblement
couplés, que des particules se rapprochent a des distances de 1'ordre r,. Dans ces
conditions, deux particules test initialement proches dans I’espace des phases (&, V)
voient leurs trajectoires diverger en un temps trés court’. Ces divergences de tra-
jectoires dans 'espace des phases sont incompatibles avec une description de type
Vlasov ou Fokker-Planck dans lesquels la divergence entre trajectoires voisines est
par définition faible. Dans ces conditions les simulations de type N-corps sont plus
pertinentes car elles ne sont pas basées sur une hypothése de non divergence de
trajectoires voisines dans l’espace des phases.

8.3 Exemple 1 : la conduction de la chaleur dans un plasma
modérément couplé

Avec Arnaud Beck, nous avons envisagé de simuler le transport de la chaleur dans un
plasma modérément couplé d’électrons et protons avec A = 3.8 (cf Annexe 10). C’est
une valeur compatible avec les paramétres du plasma dans la partie supérieure de la
zone convective du Soleil, zone dans laquelle les effets quantiques sont négligeables.
Pour un tel plasma nous trouvons que le flux de chaleur transporté par les électrons
est approximativement 26% en dessous de la valeur prévue par I'expression classique

6Particule test : particule qui se déplace dans le champ global di aux autres particules du
plasma sans influencer ces derniéres par sa propre présence.

"Pour un électron rencontrant un autre électron le temps d’interaction est bien évidemment de
Pordre de ry/ce.
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(a) plasma faiblement couplé

(b) plasma modérément couplé

| -
| collision

7

F1G. 8.4 — Dans un plasma faiblement couplé les trajectoires de deux particules test
voisines dans l’espace de phase évoluent de fagon quasi-identiques (cas (a)). Dans un plasma
modérément couplé (et davantage dans un plasma fortement couplé) il n’est pas rare qu’'une
des particules test se retrouve & une distance de 'ordre de r¢ d’'une autre particule. Dans
ce cas, sa vitesse change brutalement en un temps trés court (collision sur la trajectoire
2) se séparant considérablement de la trajectoire 1. Les divergences de trajectoires sont
d’autant plus fréquentes que le plasma est couplé.

de Spitzer et Harm (1953) :

kT

Me

ge = 3.2 n1.V (kgT) (8.10)

oll 7, est la fréquence de collision pour les électrons dans la limite de couplage faible
(équation (6) Beck et Pantellini, 2007). Dans le traitement de Spitzer et Hérm,
seules les collisions lointaines, c.a.d. les collisions avec des paramétres d’impact r
de l'ordre de A\p sont considérées. Dans ces conditions les coefficients de transport
ne sont convenablement approximés que pour A = 10. Pour des valeurs inférieures,
on estime que erreur sur les coefficients est de I'ordre A~!. Dans un modéle un
peu plus élaboré que celui de Spitzer et Harm, Li et Petrasso (1993) proposent une
correction de 'ordre 1/6A~! ce qui ne modifie que de 4% environ la valeur classique
de Spitzer, loin des 26% que nous trouvons avec nos simulations N-corps.
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Simulations d’'un plasma avec un code N-corps

8.4 Exemple 2 : expansion d’un plasma non collisionnel dans
le vide

Dans un travail plus récent Beck et Pantellini (2008) (cf Annexe 11), toujours avec
A. Beck, je me suis intéressé au probléme de 'expansion dans le vide d'un plasma
a géométrie sphérique. Un plasma d’ions froids et d’électrons chauds, initialement
confiné dans une sphére de rayon Ry, est laissé libre de se détendre dans le vide. C’est
une situation que I'on rencontre dans le contexte de la fusion contrélée (e.g. Ditmire
et al., 1999) ou des poussiéres de matiére contenant typiquement entre 10 et 107
atomes sont irradiées par des impulsions lasers intenses d’'une durée de 'ordre de
la femtoseconde. L’énergie déposée par le laser dans les grains de poussiére chauffe
principalement les électrons, lesquels en se séparant des noyaux atomiques laissent
derriére eux des grumeaux d’ions qui explosent sous l'effet de la force électrique entre
ions chargés positivement. Selon les mesures expérimentales de Ditmire et al. (1999)
les ions sont accélérés a des énergies de plusieurs keV ce qui, dans le cas d’ions de
deutérium, permet le déclenchement dune réaction de fusion D + D — He® +n
avec une probabilité élevée.

Dans Beck et Pantellini (2008) nous présentons un nouveau modéle semi-analytique
et non collisionnel de I’expansion que nous comparons avec des résultats de simula-
tions N-corps. Le modéle que nous proposons reproduit beaucoup mieux les résultats
de simulation que le modéle actuellement en vogue de Murakami et Basko (2006),
principalement en raison du fait que Murakami et Basko supposent que la tempéra-
ture des électrons est spatialement constante, ce qui n’est généralement pas observé
dans les simulations numériques. La figure 8.5 montre les profils de densité des ions
et des électrons observés dans une simulation N-corps comparés avec les profils théo-
riques issus de notre modeéle. [L’accord est bon, voire trés bon, si on considére que
les conditions initiales® de la simulation étaient trés éloignées des conditions asymp-
totiques (pour des temps longs) prévues par le modeéle. Dans le cas particulier de la
figure 8.5, la principale différence entre modéle et simulation est & chercher dans la
densité des électrons pour /R 2> 1.3%, bien plus forte dans la simulation que dans
le modéle. La différence s’explique par le fait que, dans la simulation, une fraction
non négligeable d’électrons posséde une énergie suffisamment grande pour quitter
définitivement le systéme. Ainsi la densité électronique mesurée dans la simulation
pour /R 2 1.3 est destinée a décroitre au fur et & mesure que les électrons libres se
séparent de la sphére d’ions r/R < 1. Malheureusement, des simulations beaucoup
plus longues et coiiteuses sont nécessaires pour confirmer cette hypothése, somme
toute trés raisonnable. Des simulations plus longues devraient également pouvoir
confirmer l'existence d’un front électronique, absent du modéle de Murakami et
Basko (2006) dans lequel les électrons sont supposés s’étendre jusqu’a l'infini.

8La densité des électrons, la densité des ions, ainsi que la température des électrons sont initia-
lement uniformes.
97 est la distance au centre de I'expansion et R(t) est la position du front ionique.
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Fi1aG. 8.5 — Profils radiaux des densités électroniques et ioniques observés dans une simu-
lation N-corps de 'expansion d’un plasma & symétrie sphérique, comparés avec les profils
issus du modele de Beck et Pantellini (2008). Les deux paramétres fixant les profils du
modele sont le rapport A = Ap(R)/R entre la longueur de Debye en r = R et le rayon de

la sphére d’ions R ainsi que le rapport entre le nombre total d’électrons non libres N, et
le nombre total d’ions M.
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Conclusions et perspectives

J’ai essayé, au fil des chapitres de ce mémoire, de donner un apercu des sujets aux-
quels je me suis intéressé au cour de ces derniéres années de ma vie de chercheur. Les
suites possibles sont nombreuses et, comme le montre ’expérience, souvent impré-
visibles. Certaines sont déja une demi-réalité, certaines sont juste des pistes ou des
souhaits, et d’autres ne sont pas encore écrites. Je me limiterai ici aux demi-réalités.
Ainsi, dans le cadre des simulations de systémes avec des collisions non élastiques
(cf tout particuliérement les chapitres 5 et 7), j’ai commencé avec S. Landi, a étu-
dier le cas d’'un gaz ou un plasma stratifié par la gravitation, avec 'idée de tenter
de comprendre le role des pertes radiatives dans ’atmosphére solaire. Les récentes
simulations N-corps d’un plasma, que A. Beck a réalisées au cours de sa thése, sont
trés prometteuses. Elles le sont tout spécialement en raison de leur complémentarité
par rapport aux simulations largement répandues, réalisées avec les outils classiques
(codes Vlasov, Fokker-Planck, MHD, etc.). Dans ce contexte, les simulations d’ex-
pansion d’un plasma dans le vide, dont il n’a pas été question dans ce mémoire, sont
particulierement intéressantes en raison du grand nombre d’applications potentielles
en astrophysique (e.g. sillage de la lune) et au laboratoire (expériences d’interaction
laser-matiére). L’autre objectif fort, nécessitant un investissement assez considérable,
est 'optimisation du code N-corps suivant les idées présentées dans I’annexe 12 et,
objectif encore plus ambitieux, I'inclusion de la force de Lorentz dans le calcul de
linteraction entre les charges en mouvement.

J’ai dans le passé utilisé des codes numériques "classiques" pour simuler des plas-
mas sans collisions (cf les chapitres 2 et 3). Je continue d’utiliser ces codes dans le
cadre de mes taches d’enseignement, ou il m’arrive également d’utiliser des codes
fluides hydrodynamiques ou magnétohydrodynamiques. Ces codes seront extréme-
ment utiles dans le cadre de la mission spatiale Bepi Colombo, qui atteindra la
magnétosphére de Mercure au milieu de la décennie 2010-2020, mission pour la-
quelle je me suis engagé a mettre au point des outils de simulation permettant de
modéliser ’environnement complexe de Mercure afin d’aider & 'interprétation des
données de la sonde.
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Abstract. The collisionless, supercritical, quasi-per-
pendicular fast shock is investigated on sub-ion scales
using an implicit, two-dimensional (2-D) full particle
code. For the first time, simulations are carried out with
realistic characteristic frequencies and sufficiently high
mass ratio between the protons and electrons. As a re-
sult, there is relatively little scattering of the electrons,
i.e., they behave largely adiabatically as previously sug-
gested based on spacecraft observations at the Earth’s
bow shock. The large mass ratio also allows for a realis-
tic description of the whistler mode dispersion. Phase-
standing whistlers with propagation along the shock
normal appear as transients. The dominant whistlers
found at late times in the simulations have upstream di-
rected group velocity but propagate at oblique direction
between the shock normal and the ambient magnetic
field. Their properties match those of the ubiquitous
observed upstream whistlers (“one-Hertz waves”).

1. Introduction

Through a combination of spacecraft observations,
theory, and simulations, much progress has been made
in our understanding of collisionless shocks, such as
the Earth’s and other planetary bow shocks. At su-
percritical quasi-perpendicular shocks (angle between
the upstream magnetic field B, and shock normal n is
0pn 2 45°), ion thermalization and the global shock
structure are dominated by reflected ions, which are
convected back into the shock [Leroy et al., 1982; Sck-
opke et al., 1983; McKean et al., 1995, and references
therein]. Compared to the ions, electron thermalization
and associated wave processes are only understood to
a much lesser extent. The microphysical description of
the electrons constitutes one of the outstanding prob-
lems of shock physics. It is not known to what extent
the ion and electron dynamics at the shock are coupled.
This paper presents initial results of two-dimensional
(2-D) implicit full particle simulations that are carried
out to address this topic.

Observationally, a number of points relevant to the
present study have been established: (1) The Earth’s

INow at DESPA, Observatoire de Paris, Meudon, France.
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bow shock shows various features in the electron veloc-
ity distribution such as a loss-cone, temperature aniso-
tropies, and beams before a thermalized, flat-topped
distribution is reached downstream [Feldman et al.,
1983]. (2) Still, the observed distributions are consistent
with the idea that electrons behave mostly adiabatically
(i.e., conserving the magnetic moment), with only mod-
erate scattering that may fill in otherwise inaccessible
parts of the phase space [Feldman et al., 1983; Scudder
et al., 1986). (3) While the overall shock ramp appears
to be of the order of the proton inertial length c¢/wy, the
steepest part may have an exponential scale that is only
a fraction of that (~ 0.2 ¢/wp, Scudder et al. [1986]).
(4) In addition to electrostatic turbulence, electromag-
netic whistler waves are observed both upstream and in
the shock transition [Gurnett, 1985]. In the upstream,
these waves were sometimes called “one-Hertz waves”
[Hoppe and Russell, 1983] but are now simply referred
to as “upstream whistlers” [Orlowski et al., 1993, 1995].

It is generally believed that in addition to the macro-
scopic fields, which determine the overall mapping of
the distribution function, the above mentioned waves
are responsible for the pitch-angle scattering (and any
additional thermalization) of the electrons [Feldman et
al., 1983; Krauss-Varban, 1992; Veltri and Zimbardo,
1993]. However, a genuine physical explanation of the
wave generation, electron dynamics, and any sub-ion
scale shock structure requires analysis of the evolution
of the electron distribution in the self-consistent fields.
The ideal tool for such a study are particle simula-
tions which include processes in which both electrons
and ions are involved. Due to the different tempo-
ral and spatial scales of these particles, such simula-
tions are extremely difficult to perform. Below we show
that for a realistic ordering of the frequencies and to
capture the correct propagation characteristics of the
waves, a large mass ratio between the protons and elec-
trons is necessary. Simply speaking, a low mass ratio
implies artificially strong coupling between the protons
and electrons. This affects not only the wave prop-
erties but also leads to unphysical heating of the elec-
trons and protons. Since most previous simulations em-
ployed the conventional explicit particle codes [Forslund
et al., 1984; Lembége and Dawson, 1987; Savoini and
Lembége, 1994], which require time steps smaller than
the inverse electron plasma frequency, the goal of a re-
alistic mass ratio could not be achieved except in short
duration 1-D simulations [Liewer et al., 1991]. Making
use of an implicit full particle code, which does not have
the above time step restriction, we present here for the
first time results of realistic, large mass-ratio 2-D shock
simulations.
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2. Simulation

The implicit, full particle simulation code is based
on the so-called direct (predictor-corrector) method as
described by Hewett and Langdon [1987], with several
improvements due to Heron and Adam [1989]. A vari-
ant of this code has previously been used for simula-
tions of the quasi-parallel bow shock [Pantellini et al.,
1992]. The particles and fields are initialized accord-
ing to Rankine-Hugoniot, with an initial linear shock
ramp 4 c/w. wide in the center of the box. Parti-
cles are continuously injected and allowed to escape at
both sides (along the z-axis) to maintain upstream and
downstream Maxwellian distributions. The total flux
through the system is constant such that the shock re-
mains in the center of the box, and the number of sim-
ulation particles is kept constant. The -x direction is
aligned with the shock normaln. The second simulation
direction is along y with periodic boundary conditions.
The upstream magnetic field B, is kept in the simu-
lation plane, making an angle of fp, = 60° with the
shock normal. The other plasma parameters are set to
reflect generic bow shock conditions: the Alfvén Mach
number is M4 = 5, and the electron and ion upstream
beta are 8. = 8; = 0.5.

The electron plasma to cyclotron frequency ratio is
we/Qe = 100 and the proton to electron mass ratio is
set to m,/m. = 400. This separates the characteristic
frequencies (we, e, QrLH, p) by more than an order
of magnitude each. Here, Qpp is the lower hybrid fre-
quency and €, is the proton cyclotron frequency. Also,
this gives a ratio of (¢/wp)/(c/w.) = 20 between the
proton and electron inertial lengths. The cell sizes are
Az = 0.25 ¢/w, and Ay = 1.0 ¢/w,, with a box size
X xY of 1600 x 64 cells or 20 x 3.2 ¢/w,, and an aver-
age of 20 particles per cell for each species. The simu-
lation is run in two parts with 10,000 time steps each.
The initial part has a time step At = 0.16 Q.~!, the
second part has 1/2 of this to properly resolve the elec-
tron gyromotion. The total run time is 6 ,7. The
above parameters are carefully balanced to satisfy nu-
merical conditions, allow a sufficiently large space-time
domain, and avoid excessive numerical cooling or scat-
tering within a feasible total CPU.

For the fast mode shock transition, and to differenti-
ate between shock-generated phase-standing and insta-
bility-generated propagating waves, it is crucial to de-
scribe the whistler dispersion properly. Figure 1 shows
the dispersion relation w(k) normalized to ion scales and
in the shock frame for several mass ratios m, /m., as in-
dicated. The propagation angle is (a) x5 = 30°, i.e.,

20 T T 40 T T
8, = 30° B, = 60°
1600 1600/ | =
10F , 201 , 18
Q m m, m m
o ol e Lm0 LT L €
< IR ¥
8 100 2
-10f > 4 204 100 1%
25 =
20l®@ 1 3 aol® N
0 2 4 6 8 0 4 8 12 16
ck/ o, ck/ oy

Figure 1. Dispersion relation w(k) for whistler waves
(a) propagating at an angle x5 = 30° and (b) at 65 =
60° with respect to B,, for mass ratios as indicated.
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Figure 2. Compressional magnetic field component at
(a) early and (b) late time in the simulation. Note the
transition from phase-standing waves to oblique, up-
stream propagating whistlers.

wavevector k between —B, and n, and (b) 65 = 60°,
i.e., k || n. Except for the scale there are few differ-
ences. One can conclude that a value of m,/m, ~ 400,
as employed here, is necessary to capture waves that are
approximately phase standing or that have an upstream
directed group velocity w/dk > 0.

3. Results and Discussion

In this letter we concentrate on the overall shock so-
lution, whistler waves, and the general electron phase
space evolution. A more detailed description of the sim-
ulation results will be given in a forthcoming publica-
tion.

For the Mach numbers common to the front of the
bow shock, no phase-standing whistler wave train is
found in satellite observations. Such whistlers would
be expected to form in a sufficiently thin and steady
shock ramp as part of the steepening/evolution of the
shock, and should propagate along the shock normal [cf.
Tidman and Northrop, 1968]. Instead, the whistlers ob-
served in the ramp and upstream propagate at an an-
gle to n and have varying phase velocities, although
they are still mainly confined to the plane of B, and n
[Orlowski and Russell, 1991]. Typical propagation an-
gles between k and B, at both Earth and Venus are
20° < Ok < 40° [Fairfield, 1974; Orlowski and Rus-
sell, 1991], with a strong preference for ~ 40° [Fair-
field, 1974; Hoppe et al., 1982]. The decreasing ampli-
tude away from the shock led Fairfield to suggest that
the waves are generated in the ramp; a more thorough
analysis by Orlowski et al. [1995] has recently confirmed
this and has shown independent evidence that the waves
are not generated in situ in the upstream. A lower fre-
quency cut-off has been found to correspond to a wave-
length of ~ 1 ¢/wp, with the conjecture that it coincides
with the shock width [Orlowski et al., 1995].

Turning to the simulations: When the shock is first
forming, we find some transient, approximately group-
standing whistlers that are generated by reflected or
leaking ions. Soon after that, a phase-standing wave
trains develops. Up to this point the results are similar
to 1-D hybrid simulations (kinetic ions, fluid electrons)
that we conducted for comparison, with the exception
of strong electron Landau damping present here. How-
ever, at later times we find that eventually most of
the phase-standing wavetrain is suppressed in favor of
whistler waves that appear to propagate at some angle
between n and B,. Figure 2 shows the compressional
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Figure 3. Spectral analysis of waves in Fig. 2b. Power
peaks at 8, ~ 20°; waves are on the whistler branch
with upstream directed group and phase velocity.

field component By at (a) early times (4 ©,71) and (b)
late times (6 €, 1) in the simulation, in the shock vicin-
ity. The difference between the early, phase-standing
waves and the later, oblique waves is quite evident. At
both times the total shock width is approximately one
ion inertial length, and it is a fraction of that (~ 0.25
to 0.5 ¢/wp or 5 to 10 c¢/we) for the e-folding scale of
the magnetic field. The latter is in fair agreement with
the observations by Scudder et al. [1986].

Figure 3 shows a spectral diagnostic of the waves.
There is finite power at all angles between r. {0°) and
-B, (60°), with a peak propagation angle of 0, ~ 20°
or Oy ~ 40°, and upstream directed group and phase
velocities. The frequency in the plasma rest frame is
~ 30+5 €y, the wavelength 1 ¢/w,. Thus, we find that
these waves have all the major properties of observed
“one-Hertz waves” [Orlowski et al., 1993, 1995]: they
are finite bandwidth in the shock frame, generated in
the ramp but propagate upstream, they are significantly
Landau damped, and have k in the coplanarity plane at
some small angle away from n but between n and B,,
with 0ch ~ 40°.

An analysis of the proton phase space shows that the
most likely free energy source for these waves is in the
reflected, gyrating ions. While a detailed instability cal-
culation remains to be carried out, it is known that the
effective anisotropy contained in these ions can drive a
variant of the cross-field streaming instability [Wu et
al., 1983]. This instability is not driven by the cross-
field current. Rather, is related to the anisotropic pro-
ton beam instability advanced by Wong and Goldstein
[1988] to explain upstream whistlers. The main differ-
ence here is that the waves are generated in the ramp by
the gyrating ions that convect back into the shock, and
not in situ upstream by a propagating ion beam as sug-
gested by Wong and Goldstein. Indeed, these authors
have shown that the growth rate maximizes at oblique
propagation if the perpendicular energy of the ions is
large, as in the present case.

Figure 4 shows y-averaged profiles of the total mag-
netic field and the parallel and perpendicular electron
temperature (all normalized to upstream values). Also
shown is the electron phase space vy - f(v),vL), nor-
malized with the upstream thermal velocity, at three
selected regions: in the ramp, at the overshoot, and
just downstream from the overshoot. There is a factor
of two per contour line with an overlayed grey scale.
Note that the averaging over y broadens the apparent
shock profile. There is very little pre-shock heating of
the electrons, although there is a finite upstream di-

rected heat flux as evidenced by the ramp phase space.
Although the averaging has diluted some of the finer
details of the phase space, the tilt of the ramp distribu-
tion shows that it is the electrons with large magnetic
moment p that are preferentially reflected. There is a
small temperature anisotropy Te1 /Ty > 1 in the vicin-
ity of the overshoot. Note, however, tlat the maximum
T.. is achieved just in front of the overshoot, and its
value farther downstream is slightly below what is ex-
pected from p-conservation. We interpret these find-
ings as due to selective reflection of electrons with large
p. There may also be some cooling associated with
the filling of the parallel phase space. Values of T,
slightly below expectations from p-conservation have
also been found in observations [Scudder et al., 1986).
Te) remains nearly constant downstream. The total en-
ergy gain (Eip, — Eip, = 60 €V —20 eV) is commensu-
rate with the deHoffmann-Teller frame cross-shock po-
tential determined from the simulation (e¢ ~ 40 eV).
The distribution downstream from the overshoot has
the characteristic shape that results in a flat-top when
integrated over v .

Further analysis of the phase space will be presented
in a separate publication. Here the central point is
that the phase space evolution appears to be largely
determined by the macroscopic fields, as originally con-
jectured by Feldman et al. [1983] and Scudder [1986]
based on detailed spacecraft observations. It should be
pointed out that the amount of scattering necessary is
small here; it would be larger for a shock with a higher
ratio of the cross-shock potential energy to the adia-
batic perpendicular energy of the electrons. We find
no evidence of additional heating, due to either electro-
static waves or due to strong non-adiabatic motion in
a sharp gradient of ¢(z), as was suggested by Balikhin
and Gedalin [1994]. Note that while simulations with
smaller mass ratio or fewer particles per cell may also
result in flat-tops, such distributions can be due to a
number of reasons, such as scattering in numerical (i.e.,
non-physical) waves, or unrealistic coupling of the pro-
ton and electron scales. The nearly adiabatic behavior
of the electrons and lack of additional heating in the
present simulations are from a physical viewpoint more
significant features than the simple presence of a flat-
top. The lack of signatures indicating strong free en-
ergy is also compatible with the idea that the upstream
whistlers are generated by the reflected ions, with little
kinetic contribution by the electrons. However, since
these waves are strongly Landau damped, they may be

6 8 10

12 ¥[c/o,]

Figure 4. Electron phase-space, and cross-shock pro-
files of the magnetic field and parallel and perpendicular
electron temperature, at the end of the simulation.
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responsible for a slight pre-heating of the electrons in
the vicinity of the ramp [c.f. Liewer et al., 1991].

4. Summary

We presented the first 2-D full-particle simulations
of a quasi-perpendicular shock with a large mass ra-
tio mp/me = 400. A large mass ratio is important to
achieve the correct wave properties and particle ther-
malization at the shock. We find that a phase stand-
ing whistler wavetrain, which is not seen in satellite
observations, is a transient feature. It is eventually re-
placed by upstream propagating oblique whistlers, most
likely generated by the cross-field streaming instability
of the reflected ions. The oblique waves satisfy all of the
observed properties of upstream whistlers (“one-Hertz
waves”). Given that phase-standing waves can only ex-
ist if the phase coherence of the ramp is not disturbed,
the simulations can explain both the presence of the ob-
served upstream whistlers and the absence of a phase-
standing wavetrain. The electron phase-space evolution
is largely adiabatic, in agreement with the observations
by Feldman et al. [1983] and Scudder [1986]. The large
mass ratio effectively decouples the kinetic evolution of
the ions and the electrons.
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ON THE NON-LINEAR MIRROR
INSTABILITY

F. G. E. Pantellini, D. Burgess and S. J. Schwartz

Astronomy Unit, Queen Mary and Westfield College, Mile End Road,

London E1 4NS, UK.

It is argued that quasi-linear theory alone does not provide an adequate description of the non
linear evolution of the mirror instability. Based on a simplified model for the motion of particles in
a mirror wave, it is found that the main mechanism which ends the linear phase of the instability
has to be particle trapping. Quasi-linear effects may still play a role for particles with small
velocities perpendicular to the background magnetic field and do probably dominate the late stage
of the instability when the wave-particle energy exchange associated with particle trapping becomes
inefficient.

INTRODUCTION

It has been noted a long time ago (e.g. refs /1/, /2/) that the instability threshold for the linear
proton mirror instability depends on the exact shape of the proton distribution function at small
velocities v (subscript refers to the background magnetic field), i.e. in the region of Landau
resonance for this non-propagating mode. The behavior of resonant and non resonant protons in
the linear mirror instability has been discussed theoretically (e.g. /3/, /4/) but, as far as we kow,
a satisfactory theory of the non linear mirror instabi]jty has not yet been proposed. As a first step
Shapii‘\’) and Shcn,hcu}\u / 1/ ha.vt: shown that it is PUDBIblE (1] a.pl,uy the methods of standard g qud.m-
linear to the mirror instability, despite that fact that it is non propagating, provided v < kjoyy
(where 7 is the linear growth rate, ky the longitudinal component of the wave vector and vry the
longitudinal thermal velocity of the protons)

Unfortunately a quasi-linear description of the mirror instability can not be entirely correct as it
can not cope with particle trapping. The relevant question we address in the present paper is
whether or not trapping becomes important before the quasi-linear saturation level is reached.

In the followine r]u:rne;:inn we I{'""e t}ln assumnption t
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adiabatic theory (e.g. /5/). We therefore assume that the growth rate of the i
compared to the proton cyclotron frequency §,.
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TRAPPING VS QUASI-LINEAR EFFECTS

Trapped particles can efficiently exchange energy with a growing wave as a result of the bouncing
between converging or diverging mirror points. As a consequence of magnetic moment conservation
trapped particles also lose (gain) energy if they spend most of the time in regions of decreasing

(1nrrnamna\ magenetic field flux very much like the resonant narticles described in /?/ ARR‘I‘Imlp_ﬂ‘

1AcIeasllly,; aghetlc lele X IR0 AXE VA0 Ie30allt paltlelts aeacllhecd i HbsuUInl

there is no longitudinal electric field , i.e. T, = 0 (Cf. /4/ ), and applying the a.dlabatlc mirror
criterion we find that all particles whose velocity at a field minimum satisfy

/ Yjjo \ 2 78BN ( )
ALY <2 (— 1
(Mo) By ) tr
are trapped in a mirror wave (note that in (1) 26B is the difference in the magnetic field strength
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between troughs and peaks assuming 6B « Bp). However, a trapped particle only exchanges
energy with the wave efficiently when its trapping frequency wy, exceeds the growth rate of the
wave. Taking the trapping frequency w;, to be given by the approximate expression for particles
trapped near the bottom of a static mirror potential

2 k2
3 _ YLofj 5_3)
(JJ"— 2 (BO o (2)

and comparing w?. with 42 from linear theory (see equation (4) below) it follows that a proton with
velocity v, 0, and satisfying (1), is efficiently trapped (i.e. it bounces more than once during the
time y~!) when the amplitude of the wave satisfies

53) (m)2 2
—) =22(—) T 3
(Bo tr vi0 ®)

where, assuming a bi-Maxwellian proton distribution with perpendicular and parallel temperatures
T, and T, the normalized linear growth rate T', for a weak instability and cold electrons, is given

by (e.g- /1/, /3/ and /4/)

S L Ty L) (I
P_’UTJ.kll— \/77(1 T(|+ﬂL) (T¢> )

From equation (3) it is clear that the first particles to be trapped are those at high v 0. As long
as the trapping velocity limit is much higher than vry trapping is unlikely to be efficient in ending
the linear phase of growth. However, as soon as particles with vyo/vr) = 1 start being trapped
linear theory must break down as most of the resonant particles, which drive the linear instability,
start bouncing near the magnetic field minima. Of course not all trapped particles are resonant
but nearly all of them, except those which have their mirror points close to a field maximum, do
contribute to the reduction of the free energy. It is obvious that the above conclusions require that
a clear peak-trough structure is formed during the linear phase. In fact such structures always
appear to form in simulations as well as in real plasmas.

On the other hand equation (34) in /1/ provides an expression for the saturation level of the
magnetic fluctuations in quasi-linear theory, which can be written as

Note that, unlike equation (2), (5) is independent of vyo. From (2) and (5) it follows that at
a wave amplitude corresponding to the saturation level of quasi-linear theory particles satisfying
(vio/vry)? X 0.18, and satisfying (1), are “efficiently” trapped. This includes most of the particles
in the trapping sector defined by (1) and suggests that trapping is always an important non linear
mechanism. The value 0.18, however, suggests that quasi-linear effects are nevertheless important
at low values of v, where trapping is inefficient. Moreover quasi-linear effects are likely to be-
come important at late stages of the non linear instability as the efficiency of wave-particle energy
exchanges associated with trapped particles decreases as growth slows down.

SIMULATION OF A SLOWLY GROWING INSTABILITY

Figure 1 shows the proton distribution function §F(t,v.,v) = vi[f(t,ve, ) — f(0,v1, )] in 69
peaks, in troughs, and integrated over the whole simulation domain from a 1D hybrid simulation
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Fig. 1. Plots of 6F(t) = vy [f(t) — f(0)] during the linear phase of growth of the mirror
instability (top panels) and at time of maximum wave field amplitude (bottom panels).
The peaks and trough distributions have been collected over a spatial distance of 3¢/w,
around the five peaks and troughs which are present in the simulation. The integrated
distribution results from the integration over the whole simulation domain. White (black)
corresponds to positive (negative) values of §F. Color saturation occurs at +20 counts,
with respect to the initial distribution, with a maximum of about 400 counts in peaks
and troughs distributions and 1400 in the integrated distribution.

(particle protons, fluid electrons) of a fairly weak instability. The initial proton distribution is
a spatially uniform bi-Maxwellian distribution with 7 /7)) = 3 and §) = 1. The ratio of the
proton plasma to the proton cyclotron frequency is w,/Q, = 3.3 x 102 and the electrons are cold
(8. = 107*). The total size of the system is 54.165 c/w, (c is the velocity of light) which corresponds
to five times the wavelength A of the linearly most unstable mode (A = 10.8¢/wy, v = 8.3 x 107%Q,).
The simulation domains consists of 128 cells and is filled with a total of 3 x 10% particles. The
axis of the simulation is oriented at an angle of 56° with respect to the magnetic field which again
corresponds to the orientation of wave vector of the fastest growing mode. The upper three panels
in the figure show §F during the linear phase of growth, at a time when the amplitude of the
magnetic field fluctuations is § B/ Bo ~ 0.05. The resonant particles near v = 0 are clearly visible
in both peaks (white stripe) and troughs (black stripe). At this early time the trapping angle
2tan~1[2(6 B/ By)s,] is about 35° and according to (3) trapping is already efficient down to vy ~ 1.
Thus part of the dark central region in the trough distribution has already widened due to particle
trapping. This is the reason why the bright region corresponding to the resonant particles in the
peak distribution is not as wide. Even though the noise level is still relatively high, it is possible
to identify the signature of the circulating particles (particles with v; > v/ky). These particles do
not exchange energy with the wave and are responsible for the bright (dark) regions in the trough
(peak) phase space and ensure that the density and magnetic field fluctuations are anticorrelated.
Even though the magnetic field fluctuations still grow at the linear rate, the non linear effects
are already visible in in the panel with the integrated distribution (linear effects cancel in the
integration). The signature of the trapped particles at vy 2 1 and v = 0 is evident while at low
v, poor statistics prevent us from clearly identifying quasi-linear effects which may occur there.
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The bottom panels in figure 1 show §F at a time corresponding to the maximum amplitnde of the
field fluctuations (6B/ Bo ~ 0.15), i.e. shortly after the end of the linear phase of growth. The
trapped particle sector is clearly visible in both the trough and the integrated distribution. Since
the wave is not growing any more the resonant particles are no longer visible in the plots. On
the other hand circulating particles, which ensure the characteristic magnetic field versus density
anticorrelation, remain clearly visible at troughs (bright regions). At peaks, as the instability is not
growing any longer, all particles are by definition circulating. Thus, according to linear theory, we

exnect the distribution function § F to be nesative evervwhere in velocity snpace. The anpearance of

expect the distribution function §F to be negative everywhere in velocity space. The appearance of
the bright region at low v, particularly in the peak distribution is therefore a clear sign of the non
linear instability. Since at this wave amplitude trapping is only efficient down to v ¢ =~ 0.7 (and
only in troughs), and since the efficiency of the energy exchange is strongly reduced as growth slows
down, this must be due to quasi-linear effects. Quasi-linear effects act everywhere but are stronger
at peaks since trapped particles can’t reduce the free energy there. Thus, after a spatially structured
plasma has been created during the linear phase of growth (the spectrum tends to be initially fairly
monochromatic), and after the trapped particles have explosively reduced the available free energy
in the troughs (determining, thereby, the end of the linear phase), quasi-linear effects take over and
slowly uniformize the plasma (peak and trough distributions will become nearly identical) driving it
to saturation. In fact the late time chstnbutlon functions (not shown) become mcrea,smgly similar
in peaks and troughs.

CONCLUSION

We have given arguments which suggest that both particle trapping and quasi-linear effects are
important in the non iinear mirror instability. This view is enforced by resuits from 1D hybrid
simulations which indicate that efficient proton trapping at high values of v, briskly ends the

Tin shase while at low 2. . where trapning is never efficient. guasi-linear offects dominate the
iinear pnast wali€ abv (oW v, Wiere Irapping is never emcient, qu TeCls tne

instability. Quasi-linear effects eventually drive the instability towards saturation as trapping
becomes ineffective as an energy exchange mechanism in a quasi static field. The late dominance of
quasi-linear effects would also explain the spatial uniformization of the distribution function which
indeed is highly spatially structured after the linear and trapping phase. The above conclusjons
are not based on any knowledge of the exact particles’ motion and should therefore remain valid
even in the frame of a more complete theory of the trapping process.
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Electron temperature effects in the linear proton mirror
instability

F.G.E. Pantellini' and S.J. Schwartz
Astronomy Unit, Queen Mary and Westfield College, London, England, United Kingdom

Abstract. It is shown that when the electron temperature 7T, is of the same order
of the proton temperature parallel to the background magnetic field, the growth
rate of the proton mirror mode in the long-wavelength limit is reduced by the
presence of a longitudinal electric field. The field is due to the electron pressure
gradient which builds up when T, # 0, because the electrons are dragged by
nonresonant protons which are mirror accelerated from regions of high into regions
of low parallel magnetic field flux. In return, the longitudinal electric field causes
the density of nonresonant protons with a perpendicular velocity smaller than

a strongly Te-dependent critical velocity v cri¢ to increase (decrease) at maxima
(minima) of the parallel magnetic field flux. These nonresonant protons thus behave
differently from the “circulating” protons described by Southwood and Kivelson
(1993) in the cold electron limit. Although the instability threshold is only weakly
affected by changes in T, quantities like the growth rate, the compressibility, the
polarization, and the angle between wave vector and magnetic field for the most
unstable mode, as well as the structure of the perturbed proton distribution itself,
are strongly modified by variations in the electron temperature. The predictions
of the model are shown to agree well with numerical solutions of the full Vlasov

dispersion relation, indicating that most long-wavelength aspects of the proton

mirror instability are included in the model.

1. Introduction

The proton mirror instability is a nonpropagating,
slowly growing (less than proton cyclotron frequency)
long-wavelength (greater than proton Larmor radius)
instability driven by a pressure anisotropy pi/py > 1
where the perpendicular and parallel subscripts refer to
the direction of the zeroth order magnetic field. The
minimum anisotropy required to destabilize the mode
generally depends on other plasma parameters. For ex-
ample, in a homogeneous and spatially uniform magne-
tized bi-Maxwellian proton plasma with cold electrons
(number density Ng) the instability threshold depends
on the ratio 8, between the perpendicular proton pres-
sure py = NoT\ (temperatures are assumed to be mul-
tiplied by the Boltzmann constant throughout the pa-
per) and the magnetic field pressure BZ/87 and is given
by T\ /Ty = 14 1/8.1 [e.g., Hasegawa, 1969].

Although the mirror instability has been known for
some time [e.g., Chandrasekhar, 1958], it has been

!Now at Observatoire de Paris-Meudon, Département de
Recherche Spatiale, Meudon, France.
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revisited by a number of authors. As a first step,
Rose [1965] pointed out how critically the instability
threshold depends on the details of the proton distribu-
tion at small parallel velocities. Later, Barnes [1966]
and Tagiri [1967], for the case of hot electrons, and
Hasegawa [1969], for the case of a nonuniform medium,
numerically solved the kinetic dispersion relation in the
low-frequency and long-wavelength limit. The kinetic
treatments revealed that the dispersion relations ob-
tained from fluid treatments are wrong in the prediction
that the mirror mode is oscillating when the instabil-
ity threshold is not exceeded. Furthermore, the growth
rates deduced from fluid and kinetic theories differ by
a nonnegligible numerical factor.

Until the first observations in the Earth’s magne-
tosheath by Kaufmann et al. [1970] the major inter-
est in the mirror instability was related to the problem
of plasma confinement by a theta pinch in fusion ex-
periments (see, for example, the collection of reprints
published by Jeffrey and Taniuti [1966]). Since then,
an increasingly large number of observations have con-
firmed the existence of the mirror instability in vir-
tually all of the explored space plasmas where a pro-
ton temperature anisotropy can be generated by some
mechanism. Besides the identification in the Earth’s
magnetosheath, e.g., well downstream from the quasi-
perpendicular portion of the Earth bow shock [Hubert
et al., 1989], mirror waves have been observed at comets
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[Russell et al., 1987] and in interplanetary space [ Tsuru-
tani et al., 1992]. More recently, Lacombe et al. [1992]
have reported the existence of mirror waves even in the
overshoot of the quasi-perpendicular Earth bow shock,
suggesting that mirror waves take part, at least in some
cases, in the energy dissipation within the shock itself.
Moreover, Anderson and Fuselier [1993] have shown
that in the Earth’s magnetosheath, mirror waves tend
to occur when the proton temperature anisotropy is
small (i.e., 7. /T ~ 1.5) and the proton pressure is
high (i.e. 82 5).

Stimulated by the observations and favored by the
rapidly increasing capabilities of modern computers, nu-
merical simulations of the instability started to become
fashionable during the last decade or so. Thus the one-
dimensional simulations of Price et al. [1986] showed
that the instability can be excited far downstream of su-
percritical, quasi-perpendicular shocks as a result of the
proton temperature anisotropy generated in the shock
ramp. McKean et al. [1993] investigated the distribu-
tion functions from hybrid simulations and found that
in the case of slowly growing instability, the results do
qualitatively agree with linear theory [Southwood and
Kivelson, 1993]. Discrepancies are likely to be due to
nonlinear effects [cf. Pantellini et al., 1995]. McKean
et al. [1993] also suggested that wave-particle energy
exchanges in the linear instability tend to be most ef-
fective along magnetic slopes rather than at magnetic
peaks or troughs.

By the end of the 1980s it became clear that an-
other instability which develops under similar condi-
tions, namely the Alfvén Ion Cyclotron (AIC) insta-
bility [e.g., Davidson and Ogden, 1975], usually has
a faster linear growth rate than the mirror instabil-
ity in a pure proton-electron plasma [Lacombe et al.,
1992; Gary, 1992], making it difficult to understand why
the latter is observed at all. The predominance of the
AIC instability over the mirror instability has been con-
firmed in one- and two-dimensional hybrid simulations
le.g., McKean et al., 1992; Winske and Quest, 1988]. At
least three possible explanations have been suggested
for the fact that mirror waves are nevertheless observed
in space plasmas. The first is that the alpha particles in
the solar wind, which are usually neglected in numer-
ical simulations, significantly reduce the growth of the
AIC but not of the mirror instability [Price et al., 1986;
Gary, 1992]. The second is that at sufficiently high g
and small temperature anisotropies and given the pres-
ence of the alpha particles, the mirror instability grows
more rapidly than the AIC instability. Mirror waves
have been observed under these conditions by Ander-
son and Fuselier [1993] and Anderson et al. [1994]. The
third [Southwood and Kivelson, 1993] is that from the
nonpropagating nature of the unstable mirror mode it
follows that its linear development crucially depends on
the spatial structure of the field. Such a spatial struc-
ture may exist in the plasma prior to the the develop-
ment of the instability, namely at shocks. As a result,
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the AIC wave may not be able to grow in the structured
field due to the fact that the proton cyclotron resonance
condition (the base of the AIC instability) continually
changes as the wave moves through the plasma, causing
the efficiency of the resonance to be reduced. However,
this mechanism has not yet been demonstrated to be
efficient in numerical simulations.

The physical mechanism of the proton mirror insta-
bility has been investigated only very recently in the
limit of cold electrons and small growth rates by South-
wood and Kivelson [1993]. They pointed out that the
growth of the instability crucially depends on the dis-
tribution of the Landau resonant protons (v ~ 0) (see
also Rose [1965]). This is the fundamental reason for
the fluid models to fail in describing some of the main
features of the mode such as the fact that it is damped,
and not oscillating, below the stability threshold. Al-
though cold electrons do allow for any longitudinal elec-
tric field to be short-circuited which, in turn, results
in the plasma dispersion relation being much simpler
le.g., Hasegawa, 1969], it is clear that in the free so-
lar wind (where the electrons are typically hotter than
the protons) and even in the Earth’s magnetosheath,
the cold electron approximation won’t apply in general.
We show that besides a slight change to the instabil-
ity threshold, taking into account the presence of hot
electrons strongly modifies some of the characteristics
of the proton mirror mode such as the growth rate, the
wave’s polarization, the compressibility, and even the
perturbed proton distribution function. These effects
are shown to be ultimately related to the longitudinal
electric field which is generated by an electron pressure
gradient through the wave. The latter arises because
the electrons are dragged away from the regions of high
into regions of low parallel magnetic field flux by the
protons for which the mirror force dominates.

2. The Physical Model

We start from a spatially homogeneous electron-pro-
ton plasma permeated by a magnetic field By point-
ing in the z direction of a right-handed Cartesian sys-
tem (z,y,z). The equilibrium electron distribution f,
is Maxwellian with an isotropic and nonzero tempera-
ture T, while the equilibrium proton distribution f, is
taken to be bi-Maxwellian with perpendicular and par-
allel temperatures T and 7j (we use a subscript e for
electron quantities for clarity but usually omit a sub-
script p for the proton quantities).

2.1. The Perturbed Proton and Electron
Distribution Functions

Following Southwood and Kivelson [1993], we derive
an expression for the linear response of the proton and
electron distributions in a slowly growing wave (the
long-wavelength limit). Accordingly, a change ¢B in
the magnetic field strength produces a change in the
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energy W of a particle following the adiabatic expres-
sion [Northrop, 1963]

d a

—6W = p—4dB,

@’V = rat

where p = mv? /(2B) is the magnetic moment of the
particle. If in addition, a longitudinal electric field § E)
is present, then the total rate of change in the particle’s
energy W contains the work done by this field, namely,

d 0
—6W = p—46 JE).
3OV = 1z 0B) + qu0 1)
Noting that §W, = uéB) and §W) = dW — pé By, one
finds that the rate of change in the particle’s perpen-
dicular and parallel energy is given by

d d
d d d

Liouville’s theorem states that phase space density is
constant along particle trajectories. Writing the distri-
bution function f = f(t,x, Wy, W)) as the sum of a spa-
tially uniform equilibrium distribution fo = f(Wy, W)
and a small perturbation §f = §f(t,x, WL, W)), one
obtains the linearized version of Liouville’s theorem in
the form

e} 8 d e
v T g
d 0
+ 5‘”4/”51/7"‘”_0'

Using 8/0t+v-8/9x = d/dt, we can rewrite this in the
more compact form
0

d d i
SsF=_2= Y o A
@ =@ g @™ awy ! )

Assuming perturbations o« exp[i(kLz + kyz) + ¥t], one
finds that the change of an initially bi-Maxwellian pro-
ton distribution is given by

o= [ (5]

ot - 22
¥+ ikyy) HpO 2 ik

edE) ] f_p
iky 1T

while that of an initially Maxwellian electron distribu-
tion reads

(4)

vy ed B ) edE) ] fe
8fe=|——— | HeIB + —— | ——— | 7=
f ['y + ik (“ I ik iky | Te

In order to compare the different terms in the expres-
sions for the perturbed distribution functions, J By has
to be determined as a function of §B). This can be
done by solving the Poisson equation which, in the case
of a slowly growing wave (i.e., ¥ — 0), simply reduces
to a quasi-neutrality condition

R (6)

where N, and § N, can be obtained by taking the first
moments of §f, and & f, respectively. Neglecting terms
proportional to v/(y + ikjv)), which is justified by the
fact that their contribution to the density perturba-
tions is small as ¥ — 0 or more precisely as long as
[6Np/No| > +/mv/(kyvr)) (see (25)), one obtains the
linear response for the density perturbation of the pro-
tons

SNy _ 8By (1 _ T_J-) cd By M
No  Bo Ty /) ik T
and similarly for the electrons
6N, __ 65E” (8)
Ny ik T ’

Equation (8) is nothing else but the usual fluid equa-
tion V) dpe = —eNodE) for isothermal electrons. The
desired expression for d B is finally found by using the
quasi-neutrality condition (6) which yields

$By (TL — Ty iky
=" (?—ﬁ” e - ©

The parallel electric field §E) can now be eliminated
from (4) and (5), and the following expressions for the
perturbations of the distributions are obtained

oo (0
fp U%” T
7 i — <ZJ_-. — 1) Te
vy \Tj T.+T

‘T
(y + ikyy)

T, ) Te JB”
= o | 10
+(T" Te+T||}Bo (10

e _ il ["_l L. - TH]
fe (v +ikyoy) Lo~ Te+T
T, - T, 3B
- ( = ") =1 (11)
Te +Tj By
where the notations vy = (27)/m,)"/? and ve =
(2T./m.)/? have been introduced.
For nonzero values of T, the last term on the right-
hand side of (10) is nonzero and of opposite sign com-

pared to the first term in the same expression. If one
ignores, for the moment, the presence of the resonant

7



Annexe 3

3542

protons associated with the second term, which are lim-
ited to the small region in velocity space |vy| < v/kj,
it appears that Jf, changes sign as vy exceeds some
critical velocity v crt. This critical velocity can thus
be determined by equating the magnitudes of the first
and the last term on the right-hand side of (10) to give

. ( Te )1/2
VL crit =
Lerit = UTL | T

with vpy = (2T /m,)'/? being the perpendicular ther-
mal velocity of the protons. Protons with v; > vy crit
are the circulating protons which, owing to the action
of the mirror force, are responsible for the character-
istic anticorrelation between 6B) and §N, [Southwood
and Kivelson, 1993]. Protons with vy < vy crit, on the
other hand, act in the opposite way in that they tend
to accumulate in regions of high parallel magnetic field
flux. A schematic picture of the forces acting on a non-
resonant proton in a mirror wave is shown in Figure
1, which illustrates the spatial variation of the longi-
tudinal electric and magnetic field fluctuations, as well
as the density fluctuations of the nonresonant particles
through one wavelength, and shows that the electro-
static force and the mirror force on a proton always act
against each other. However, as it will be shown later
(section 2.4), the combined effect of both forces on the
nonresonant protons (i.e., protons with |vy| > v/ky) is
such that the anticorrelation between dN and 6B is
always preserved even for large electron temperatures.

To understand the reason for the response 4§ f, of the
proton distribution to the longitudinal electric field be-
ing of opposite sign with respect to the response to the
mirror field, we consider the motion of protons, which
are initially (i.e. at t = —o0) on a contour of constant
phase space density (Figure 2, stippled thick contour).
We then use Liouville’s theorem, which states that the

(12)

——> mirror force : —uV(SB”)

wmP clectrostatic force : eSE”

Figure 1. Spatial dependence of § N, § B)| (solid curves)
and §E) (dashed curve) through one wavelength. All
curves are in arbitrary units. The arrows denote the
mirror and the electrostatic force acting on a proton, at
a minimum, as well as a maximum, of the parallel mag-
netic field strength. As shown the two forces act against
each other, and since the mirror force is proportional to
v?2, the electrostatic force can dominate the motion of
protons with a small v .
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V1=V crit

v
I
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Figure 2. Sketch of the distortion of a proton phase
space contour (thick solid line) in the linear mirror
instability at a maximum of the magnetic field flux.
The labeled arrows indicate the path, starting from the
initial equilibrium distribution (thick stippled line), of
three distinct types of protons (labeled A, B and C)
which exist in the case of a nonzero Tp.

phase space density is constant along a particle’s trajec-
tory, to determine the deformation of the contour in the
field of the growing wave. In Figure 2 we have chosen
the end position of the protons (at an arbitrary time) to
coincide with the position of a magnetic field maximum.
It is obvious that the trajectories of particles reaching
a magnetic field minimum are just the same but with a
reversed sign.

Let’s first consider a nonresonant proton with vy =0,
i.e., a proton which is not sensitive to the mirror force.
On its way to a region of high magnetic field flux such a
proton sees its parallel velocity being increased, owing
to the fact that the electrostatic potential has a mini-
mum there. Since the particle’s perpendicular velocity
is not changing, its trajectory in velocity space must
go along a path of increasing |v)|. For protons with a
nonzero initial perpendicular velocity, v) increases on
its way toward a maximum of the magnetic field flux ow-
ing to the conservation of the magnetic moment. How-
ever, for protons with a small v1 < vy cri¢ the mirror
force is still insignificant and the behavior is similar to
that of particles with v; = 0 (Figure 2, type A trajec-
tories). On the other hand, protons with vy > vy it
(Figure 2, type B trajectories) are dominated by the
mirror force, which doesn’t modify the particle’s energy,
and do therefore roughly move along circles (Figure 2,
dashed curves) although they still gain some energy in
the electrostatic field. For a proton with a final velocity
of vi = vy crit the combined action of both the electro-
static and the mirror force causes the particle to move
along a path of constant phase space density so that,
as shown in Figure 2, the initial distribution function
remains unchanged at that particular value of v, .
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Protons of type C are resonant (i.e., they do not cir-
culate) and can be thought to be immobile as the wave
grows. They mainly increase their vy, owing to be-
tatron acceleration in the steadily increasing magnetic
field intensity. Although the strength of the electro-
static force on a particle is independent of its velocity
(see (9)), the kinetic energy change of the particle, due
to the electrostatic potential, isn’t. In fact, from (2) it
appears that for a resonant particle the energy change,
due to the electric field, is significantly smaller than for
a nonresonant particle. In particular, at v = 0 the en-
ergy change, due to the electrostatic field, vanishes and
the particle behaves exactly as described by Southwood
and Kivelson [1993); that is, only v, changes (Figure 2,
path C). Equation (10) confirms that f, is unaffected
at vy = 0, anticipating that although many aspects of
the mirror instability which are connected with the cir-
culating protons are modified by a nonzero T, the basic
physics of the instability, which crucially depends on the
resonant protons, is preserved even for large values of
the electron temperature.

The dependence of (v crit/vT L)z on the electron
temperature is illustrated by the dashed curve in Fig-
ure 3. It is interesting to note that in the case of a
bi-Maxwellian proton distribution the same curve rep-
resents the ratio —6Np) /6 Nmir of the density of pro-
tons being dominated by the d B} field to the density of
protons being dominated by the mirror force (obtained
by integrating over velocity space the last and the first
term, respectively, on the left-hand side of (10)). This
ratio is always less than unity, so that the anticorrela-
tion between § N, and 6B} is preserved for all values of
Te. at least as long as neglecting the contribution from
the resonant protons to § N, is justified (see section 2.4).
This also follows from the perspective of the electrons

1 n PR

Te/ Tﬂ

Figure 3. Normalized square critical velocity
v} oit/V%, (dashed curve) and parallel compressibil-
ity C (solid curve) as a function of T /Tj for the case
By = 1and Ty /T = 1.8 (equations (12) and (24)). The
squares denote the normalized parallel compressibility
for the fastest growing mode calculated by numerically
solving the full Vlasov dispersion relation for three dif-
ferent values of T /Tj for the case Ty /Tj = 1.8 and
B) =1 (see section 3 in text and Table 1).
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being dragged by the protons, so that the sense of pro-
ton behavior can not be reversed by the longitudinal
electric field.

Since the electron temperature is isotropic, the ex-
pression for §f. in (11) contains only two terms which
are the counterparts of the last two in the expression
for f,. For all practical applications the contribution
from the resonant electrons can be neglected, as can
be understood from the following arguments. In the
case of T, # 0 the number of resonant electrons is less
than that of the protons by a factor ~ (Tjjme/Tem,)t/?
which is less than unity unless the electron tempera-
ture is O(1073Tj). Similarly, the relative energy densi-
ties of resonant warm electrons to protons is less than
unity unless the electron temperature exceeds that of
the protons by a factor O(my/me) ~ 103. We shall not
consider the case of very cold electrons such that they
all lie within the resonance. We note, however, that
we are considering the v — 0 limit here, for which the
resonance formally shrinks to zero. Thus we can re-
cover previous results which ignored the electron pres-
sure by taking the T, — 0 limit of our results without
contradicting the fluidlike electron behavior which cor-
responds, in fact, to consideration of only the nonreso-
nant electron population. Thus the perturbed electron
distribution is essentially described by the last term on
the right-hand side of (11) which simply compensates
for the circulating protons which correspond to the first
term on the right-hand side of (10). In this limit the
light electrons are passively carried around by the mas-
sive protons and thus can be interpreted as a massless
neutralizing fluid.

2.2. The Dispersion Relation

We now calculate the dispersion relation following
Southwood and Kivelson [1993] by imposing a pres-
sure balance condition which in the double-adiabatic (or
CGL) theory [e.g., Krall and Trivelpiece, 1973, chapter
3.10] reads

B?\ (B.V)B [pL—p| _
VL(“"'Q)" in (B2/81r+1 =0

(13)
from which the z component yields (remembering that

Opey +0p1 + E%‘—s%[l
k 2
+ (ki) (ﬂl~ﬁ,,+1)]=0 (14)
1

with By = B.Tj/TL. By consistently omitting the
contribution from the resonant electrons (electrons are
therefore treated in the fluid approximation) and by
finding the pressure perturbations in (14) by taking the
second moments of (10) and (11), one obtains the fol-
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lowing expression for the growth rate of the proton mir-
ror instability

ki\®
i ~ 1+<——;) (BL—B+1) |
kjory T_L[ _l( _ﬂ) T.
ﬁ“/?rT" -5 (-7 T

(15)

where we have supposed that |y/kjvr)| < 1, which is
to say that the ratio of resonant to nonresonant protons
is small, and where in the limit 7. — 0 and k) /kL < 1
the result of Southwood and Kivelson [1993] is recovered.
The first term on the right-hand side of (15), which
depends on T, is always positive and represents the
damping element of the mode, while the second term
provides the wave growth. It is obvious from (15) that
the k1 > k) limit yields a growing mode for the small-
est temperature anisotropy. However, since v o k)|, this
limit can only be obtained by letting k; tend to infin-
ity. In practice, finite Larmor radius effects determine
the k. at maximum growth rate. The nonzero electron
temperature increases the damping term essentially be-
cause as T, increases the contribution from nonresonant
particles (electrons and protons) to the pressure per-
turbation in (14) decreases (since it is proportional to
(Te+T1)/(Te +Tj)), so that the contribution from res-
onant protons, which, as discussed by Southwood and
Kivelson, is essentially proportional to 4 and of opposite
sign, must be smaller to ensure pressure balance.

According to (15) and for a fixed k, maximum growth
occurs at (ky/kL)2,, given by

@@L e

with

T, 1 Ti] Te —
(T—u‘l) -5 (-7) i)
3671 (BL — By +1) ‘

Near to the instability threshold, only modes satisfying
(kj/kL)%ax < 1 are unstable. Thus

ﬂ 2
kJ“ max

provides a good estimate of the k vector orientation
at maximum growth under weakly unstable conditions.
Equation (16) (or (17)) shows that a nonzero electron
temperature has the effect of making the wave vector
of the fastest growing mode more perpendicular. From
(15) it is also possible to obtain an estimate of the up-
per limit for the range of (kj/kL) above which unsta-

~A (17)
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ble modes can’t exist (the lower limit being, of course,
ky/k1 = 0). This limiting value (k) /k1)o is determined
by the vanishing of the right-hand side of (15) which oc-

curs at
2
(B’ ~ss
ki /,

which is close to the value found by Barnes [1966]. In
Figure 4 the functional dependence of fxp (which de-
notes the angle between the direction of the magnetic
field Bg and the wave vector of the fastest growing
mode) on the electron temperature is shown for the
case f = 1 and different values of 7' /Tj. As could
be deduced immediately by inspection of (16) (or (17)),
the dependence is rather strong for T, g 7j especially
as T, /Tj approaches the stability threshold. From
(16) (or (17)) it also appears that for T, /Tj > 1 the
ratio (k| /kL)max approaches a finite value for which,
given a sufficiently high anisotropy T /Tj,, the mode
may remain unstable. However, as stated earlier, for
T./Tj 2 O(mp/m,) the energy carried by the resonant
electrons exceeds that of the resonant protons, and the
approximations made in the present model are no longer
valid.

A further remark is in order here about the fact that
even though 0xp is assumed to be close to 90° (which is
the case just above the instability threshold), the the-
ory turns out to work well even for fairly oblique wave
vectors in which case, however, the term with (k/kL)?
in (15) is no longer negligible and the growth rate may
substantially depend on it. Also from (15) it follows
that maximum growth occurs for k,, k — co. This is
obviously wrong, and the reason is that the CGL pres-

(18)
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Figure 4. Curves showing the dependence of the angle
0B between the wave vector of the most unstable mode
and the background magnetic field By as a function
of T, /T|| for different values of T, /T" in the case of
B =1 (equation (16)). As in Figure 3, squares denote
values of fxp for the fastest growing mode found by
numerically solving the full Vlasov dispersion relation
for three different values of T, /T” in the case T / Ty =
1.8 and g = 1.
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sure balance condition is only a good approximation as
long as the Larmor radius of a protons is small com-
pared to the perpendicular scale length of the wave and
as long as in one gyroperiod a proton guiding center
sees a nearly uniform field, namely, .

vpy 1

Q, < N (19a)
vr| 1

o, < A (19Db)

with , = eB/mec being the proton cyclotron frequency.
Thus for k. (k) larger than some value, which is of or-
der Q,/vr1 (Qp/vr)), finite Larmor radius effects be-
come important, damping takes over, and the growth
rate isn’t well approximated by (15) any more.

The instability threshold for the proton mirror mode
in the presence of hot electrons can be deduced from
(15) and (16) and reads

-1 T_J_ _1 _ﬂ Te —
ﬂl+(1 7 1-z1-7 T =0

a result which has been obtained, in less explicit forms,
by Barnes [1966], Tajiri [1967], and Belmont et al.
[1992]. Curves of the instability threshold for three dif-
ferent values of f are shown in Figure 5. The curves
show that the sensitivity of the instability threshold on
the electron temperature is rather weak unless f is
small. Under such conditions, instability is only possi-
ble for high anisotropies T\t /T > 1 in which case the
last term in (20) eventually becomes important.
Although the instability threshold is only slightly
modified by the hot electrons, this is not true for the
growth rate. Figure 6 shows the growth rate of the
fastest growing mode as a function of T /Tj for § =1
and three different values of T\ /Tjj. The growth rate is

o 6,=0.5 -
I P I
};—1 f‘: 1.0 [

T 5.0 -
T T T ¥ ¥ ¥ T
] 5 10

Te/Ty

Figure 5. Instability threshold predicted by the model
(equation (20)) as a function of T¢ /Tj for three different
values of . The unstable regions are located above the
respective curves. Note the weakly stabilizing effect of
an increasing T, particularly visible at low §j.

N R ETTT BT S E R TTT B R T | P i

¥/ (k)

T/Ty

Figure 6. Growth rate of the most unstable mode for
three different values of proton temperature anisotropy
Ty /T (equation (15)). Unlike the instability thresh-
old, which is only weakly dependent on T, the growth
rate is seen to depend significantly on the electron tem-
perature for T, /Tjy = O(1). Again, squares indicate the
results for the fastest growing mode from the full Vlasov
dispersion relation for the case T /Tj = 1.8 and g = 1.

naturally seen to increase with increasing 7't /7], and
the curves are found to depend strongly on T, over a
rather broad range around T./Tjy = O(1). Note that
at some value of T /T|| the curves eventually cross the
~y = 0 axis, as the instability threshold, given by equa-
tion (20), depends on Te.

The reason for the squares in Figure 6, indicating
the results from the full Vlasov dispersion relation, be-
ing systematically below the T’ /Tj curve is mainly due
to finite Larmor radius effects. The discrepancies be-
tween the theory and the numerical results vanish in
the long-wavelength limit as the temperature anisotropy
approaches the stability threshold given by (20).

2.3. Polarization

Concerning the mirror mode’s polarization, we note
that combining Faraday’s equation ydB) = —ick 6 Ey
(with ki pointing in the  direction, and ¢ denoting
the speed of light) and (9) we can explicitly evaluate
¢ defined as

_ SEy [ 9
ba = E(km"n
_ kry (T -T)\ Te
- 2y T.+T /) Ty 1)

where v is given by (15). The quantity de; has the
advantage over the usual ratio §E)/dE, that it is in-
dependent of k; (which can’t be computed from the
model). The dependence of the effective polarization
8E)/8Ey on T, is obviously not the same as the depen-
dence of d¢) on T since k. itself is generally a function
of T,. However, as we will show below, the T, depen-
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dence of the polarization is extremely strong, while it is
heuristically clear that k& of the fastest growing modeis
roughly determined by the appearance of finite proton
Larmor radius effects so that ky ~ Qp,/vp, indepen-
dent of the electron temperature. In an example which
will be discussed in section 3 we show, by solving nu-
merically the full Vlasov dispersion relation (see Table
1), that increasing the electron temperature by a factor
of 1000 (from T /Tj; = 0.01 to 10) only reduces by 66%
the value of k; for the fastest growing mode. On the
other hand, (21) applied to the same example shows
that, taken over the same temperature range, de|| rises
by 2 orders of magnitude (see the lower solid line in
Figure 7).

As pointed out by Hasegawa [1969] in the cold elec-
tron limit, only the y component of the electric field
fluctuation is finite. In fact, (9) reveals that in the limit
T, — 0 one has that B — 0, and since no charge sepa-
ration can occur in this limit, Poisson’s equation reduces
to k10E, + kyd Ej = 0 which also implies d E; = 0. On
the other hand, the mirror mode must satisfy B, = 0
in order to prevent the mode from acquiring character-
istics associated with the transverse Alfvén mode (the
y component of the magnetic field fluctuation never ag-
pears in the model since for a given §B), only dB,
is fixed by the condition V -dB = 0). Thus we have
(VxdE), =0, ie,

0By _ ki

By Ry
which at maximum growth can be computed from (16).
Finally, combining (21) and (22), we obtain

_0E, Q, ko
=] (kJ_UT”) = B dey.

From (21) and (23) we deduce that both de; and
d¢ increase with T.. Thus the effect of increasing
the electron temperature is to switch the electric field
from the y direction into the plane perpendicular to it.
The quantities d¢)| and de; are reproduced in Figure 7
for the fastest growing mode, in the case § = 1 and
Ty /Ty = 1.8 (solid curves) and T\ /Tj = 1.85 (dashed

(22)

(23)

Table 1. Full Vlasov Dispersion Relation
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Figure 7. Normalized polarizations ¢ and de for the
case ) = 1 and T /7)) = 1.8 and 1.85 (solid and dashed
curves, respectively). Squares (denoting de;) and circles
(denoting de)|) correspond to the fastest growing mode

determined from the full Vlasov dispersion relation in
the case T /Tjj = 1.8 and g = 1.

curves). The dependence of the polarization on the elec-
tron temperature is very strong for T./T} < 1, while
both d¢; and d¢, saturate at some value as T, > T|
(note that one has always dez/d¢y = ki /kj). The dif-
ferences between the solid and dashed curves indicate
that as T /T“ is increased, the mirror component of
the electric field §E, is also increased relative to the
components in the (k,Bg) plane. Figure 7 also shows
that polarization measurements in linear mirror waves
are an extremely sensitive measure of the electron tem-
perature.

2.4. The Parallel Compressibility

In the case of a nonzero T, the accumulation of elec-
trons in regions of low parallel magnetic field density
increases the electron pressure there. As expressed by
(8) the electron pressure gradient between low and high
parallel magnetic field has to be compensated by a lon-
gitudinal electric field. How strongly T, through J By,
acts against the development of the characteristic mag-
netic field-density anticorrelation can be quantified by
computing the parallel compressibility C [cf. Lacombe

Case ,Be 7/QP kUTJ_/Qp ‘7/(k"UT") okB Re(C”) 66” 66,
A 0.01 2.99 x 107° 0.369 4.20 x 1072 75° —0.607 0.075 0.429
B 1 1.57 x 1073 0.313 3.11 x 1072 77.5° —0.340 5.49 25.0
C 10 5.34 x 10~* 0.243 1.88 x 1072 81° —0.067 17.8 112.4

Properties of the most unstable modes for three different values of the ratio of the electron pressure to the
magnetic field pressure 3. Listed quantities are v/Q,, the growth rate normalized to the proton cyclotron
frequency; kvry/SQp, the length of the wave vector normalized to the Larmor radius of a thermal proton;
v/(kyvry), the width of the resonance normalized to the parallel proton thermal velocity; 6x 5, the angle between
the wave vector and the magnetic field; Re(C)), the real component of the parallel compressibility. Both de
and d¢, are a measure of the the electric polarization of the mode (see section 2.3). The complete dispersion
relation has been solved using WHAMP [Rénnmark, 1983]. Other plasma parameters are T /T) = 1.8, B = 1

and wp/Qp = 3.3 x 10°.
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Table 2. Model of Section 2

Case Be ¥/ (kyory) (23] Re(C)) 3¢y dez VL erit/VTL
A 0.01 5.21 x 10~2 74.1° —0.80 0.078 0.275 0.099
B 1 3.72 x 1072 77.2° —0.40 6.15 27.0 0.707
C 10 2.19 x 1072 80.6° -0.073 21.0 126.4 0.953

Properties of the most unstable modes for the same cases as in Table 1. Listed quantities have same meaning
as in Table 1 with vy crit/vry denoting the temperature-dependent critical velocity given by equation (12).
All quantities have been calculated using the model presented in section 2. Note the good agreement with the

corresponding quantities listed in Table 1.

et al., 1992] explicitly. C) has a vanishing imaginary
part because § N, and dN, are out of phase by 180°
with respect to dB) and is easily found from (8) and
(9) to be given by

_ Ny Bo _ Ne Bo _Tj—Tu
=Ny 6B, ~ No 6B,  T.+1j

<0 (24

which goes to 0 as T — oo and to the cold electron
limit as 7, — 0. Also note that the cold electron limit
obtained by Hasegawa [1969] is identical to the result
found by Belmont et al. [1992] since near to the insta-
bility threshold, one has C) = ,BII = (1-TL/T}). From
(24) it appears that whenever Tt is of the same order
or larger than Tjj, the compressibility strongly differs
from the cold electron limit as illustrated by the solid
curve in Figure 3. This has to do with the fact that
as v crit becomes of the same order of vy, a signifi-
cant fraction of circulating (i.e., nonresonant) protons
are being dominated by the longitudinal electric field
rather than by the mirror force. The fact that even for
very hot electrons, one always has v crit < vryL ensures
that the mirror force always overcomes the electrostatic
force for protons with vy > v and thus C} < 0 even
for T, > Tj;. Other transport ratios can obviously be
calculated using (10) and (11).

It has to be pointed out at this stage that most of the
conclusions in the above model and, in particular, the
ones for C)|, are based on the critical assumption that
the contributions of the resonant protons to the mo-
ments is negligible except for determining the growth
rate (i.e., (15)). Taking the zeroth order moment of
(10), we find that the contribution to the density per-
turbation d N, from the resonant protons is small pro-
vided the following inequality holds

vl 1T -7
kjory VA Te+T0
This is a necessary condition for the above estimates of
Cj| to be valid. If (25) is violated, the contribution of
the resonant protons to § N, has then to be retained in
the theory in order to get the correct expressions.

3. Testing the Model

(25)

In order to test the validity of the model presented
in section 2, we compare its results with the results

from the full Vlasov dispersion relation. We use the
program WHAMP (Waves in Homogeneous Anisotropic
Multicomponent Plasmas) [Rénnmark, 1983] to solve
the dispersion relation for three different electron tem-
peratures such that Z. = 0.01,1,10 (cases A, B, and
C) with all other plasma parameters being the same for
the three cases. These are T\ /Tj = 1.8, § = 1, and
the ratio of the proton plasma frequency to the proton
cyclotron frequency w,/Q, = 3.3 x 108 which is of the
order of solar wind values. Note that the actual value
of wp /8 is irrelevant here as long as it is 3> 1 which
is an implicit assumption of the above nonrelativistic
model. The characteristics of the most unstable modes
in the three cases are given in Table 1. As required by
the model, the growth rates are small compared to the
proton cyclotron frequency €, and (ky/k1)? < 1. It
appears from Table 1 that the wavelength of the most
unstable mode only increases by a factor of about 1.5
between case A and C, while the absolute value of the
parallel compressibility drops by as much as 1 order of
magnitude. The values of Cj; from Table 1 are also re-
ported in Figure 3 (solid squares) showing a good agree-
ment with the curve from the model.

In Table 2 the results of the model applied to the
three above cases are shown. For all listed quantities
the agreement between the results from the full Vlasov
dispersion relation and the model is quite satisfactory.
Even the wave vector angle fxp and the polarization
computed in section 2 (see figures 4 and 7) agree well
with the corresponding quantities from WHAMP listed
in Table 1 suggesting that the model takes into ac-
count most of the relevant features of the instability
in a nonzero electron temperature plasma. The reason
why the model systematically overestimates the growth
rates from WHAMP stems from the fact that finite Lar-
mor radius effects, which have a damping effect on the
mirror mode, have not been retained in our calculations.
Finite Larmor radius effects are, of course, the reason
for the growth rate (k) computed from WHAMP, to
peak at values of k& which are of the order of Q,/vr .
(see Table 1).

Figure 8 shows the distribution function & f(v),vL)
for cases A, B, and C at a position corresponding to a
maximum of the parallel magnetic field flux |Bo 4 d By|.
The J f, has been obtained by numerically following pro-
ton phase space trajectories through the field of the
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Vi

Figure 8. The perturbation of the distribution func-
tion & f, (v, v1) calculated from complete linear theory
at a maximum of |By + §B)| for the (a) case A, (b)
case B, and (c) case C in Table 1. Solid (dashed) lines
denote positive (negative) equidistant contours. The
black stripes denote vy < vy crit, Where vy cpit is given
by equation (12). This figure should be compared with
the schematic picture in Figure 2.

growing linear waves given in Table 2 and by apply-
ing the Liouville theorem starting from the unperturbed
distribution function f,(v),v1) (details of the method
are given by Pantellini et al. [1994]). The results of
Figure 8, of course, depend on the final amplitude of
the wave. However, as long as §B)j/By < 1 (in figure 8
the final amplitudes are < 0.01), 6 f scales with 0 B)/Bo
apart from negligible small corrections proportional to
@B/ By)2. Since the wave field seen by a proton varies
slowly in space and time (see above), the drift equa-
tions [cf. Morozov and Solov’ev, 1966)] have been used
in place of the full equations of motion.

The thick solid bars in Figure 8 indicate the region
vy < Uy crit as given by (12) (compare Table 2). From
Figure 8 it appears that vy cri¢ gives an excellent esti-
mate of the position of sign reversal in f,, suggesting
that §f, as given by (10) is a good approximation to
the linear perturbation of the proton distribution func-
tion. Note that for Figure 8a the region vi < vy crig
is negligibly small; in this case the cold electron model
applies and only the circulating (dashed contours) as
well as the resonant protons (solid contours centered
around || < |v/ky| < vr)), are important. Figure 8b
shows that as T, becomes of the same order of T}, a non-
negligible number of protons with small perpendicular
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velocity (< v ,crit) become dominated by the longitu-
dinal electric field. For T, > Tj (Figure 8c), protons
dominated by longitudinal electric field cover nearly the
whole region with vy < vry. In this case the proton
distribution function bears little resemblance to the cold
electron limit distribution of panel Figure 8a. Owing to
the fact that the compressibilities calculated from the
model and from the full Vlasov dispersion relation are
in excellent agreement (compare Figure 3 and both Ta-
bles 1 and 2), it is not surprising that values for v cris,
estimated from (12), are a good estimate of the posi-
tion of sign reversal of §f, as shown in Figure 8 for all
three cases. A final comment on Figure 8 is that as the
spatial dependence of the linear response df, is given
by exp [i(kLz + kjz)], one has that at a minimum of
the parallel magnetic field flux, & f, is just the negative
of 6 f, at a maximum of the parallel magnetic field flux.

It should also be emphasized that the discrepan-
cies between the numerical solutions and the model
tend to shrink as one approaches the stability thresh-
old given by (20) and if one takes the long-wavelength
limit ¥ — 0. However, here we show that the model
gives good estimates of the characteristics, including
the T, dependencies, of the most unstable mode even
in the case of fairly oblique (i.e., relatively fast grow-
ing) instabilities. From this detailed comparison of the
analytical results derived in section 2 with the results
from WHAMP we conclude that the model presented in
section 2 gives a good description of the slowly growing
proton mirror instability in a proton-electron plasma
with T, # 0.

4. Conclusion

We have presented a model for the long-wavelength
proton mirror instability when a nonzero temperature
electron population is included. The model shows that
as expected, the nonzero temperature of the electrons
decreases the growth rate and modifies the instability
threshold, as well as 0 p, of the fastest growing mode.
Apart from causing a significant reduction in the val-
ues of the parallel compressibility Cj, the hot electrons
strongly modify the mode’s polarization causing the
electric field fluctuations to turn into the (k, Bg) plane.
All these effects are ultimately due to a longitudinal
field which arises because an electron pressure gradient
builds up as the electrons are dragged by the circulat-
ing protons from the high into the low parallel magnetic
field flux regions. The longitudinal electric field, which
for positively charged particles acts against the mirror
force, prevents protons with v; < vy crit from respond-
ing in the usual way to the magnetic field perturbations.

The effects of the nonzero electron temperature are
seen to be important whenever T /Tj| = O(1). Thisis a
value which is easily encountered in the solar wind and
even in magnetospheric plasmas where, as a result, the
cold electron model by Southwood and Kivelson [1993]
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may not be applicable. The effect of a nonzero electron
temperature on the proton distribution function at a
maximum of the parallel magnetic field flux is shown in
Figures 2 and 8. Figure 2 and Figures 8b and 8c differ
from Southwood and Kivelson [1993, Figure 2] in that
the density of protons with vy < vy ¢ is increasing
and not decreasing as the instability develops. The fact
that these protons are not mirror accelerated as are the
ones with vi > vy cit, added to the fact that their
number is a sensitive function of T /7], is the reason
most of the characteristics of the proton mirror mode
are strongly dependent on the electron temperature.
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A model of the formation of stable nonpropagating magnetic
structures in the solar wind based on the nonlinear

mirror instability

Filippo G. E. Pantellini

Département de Recherche Spatiale, Observatoire de Paris-Meudon, Meudon, France

Abstract. A simple model for the formation of stable nonpropagating structures in a
magnetized collisionless plasma is presented. The model describes the evolution of an
electron-proton plasma from an initially spatially uniform, but unstable, configuration

toward a final nonuniform and nonpropagating stable configuration. The model is based on
the following hypothesis: (1) one-dimensionality and spatial periodicity, (2) cold electrons,
(3) bi-Maxwellian protons as initial condition, (4) conservation of magnetic moment for
all protons, (5) conservation of energy for magnetically non trapped protons, (6) spatial
pressure balance, (7) evolved structure has a crenellated shape, (8) slow growth of the
structure. Given these assumptions all the macroscopic properties of the plasma (density,
pressure, and magnetic field) in the saturated state can be computed explicitly. The model
shows that a spatially uniform and homogeneous plasma that is unstable against the linear
mirror mode can form stable non propagating structures. Thus one can consider the model
as a model for the nonlinear mirror instability where the magnetic trapping of protons in the
low magnetic field region is the important saturation mechanism. A simple expression for
the magnetic field saturation amplitude is found. The pressure balance, between high and
low magnetic field regions, which is needed for the evolved structure to be a stable one, is
obtained solely through betatron cooling of the trapped protons. Modification of the trapped
protons energy due to the Fermi effect seems to be of secondary importance. The model
predicts that the evolved structures are characterized by narrow and deep magnetic wells
except in the case of very low magnetic pressure (ratio of thermal to magnetic pressure
B 2 10) where the opposite situation becomes possible. This enforces the idea according to
which the proton mirror instability is the driving mechanism for the formation of magnetic

holes in high § ( 2 1) plasmas.

1. Introduction

On a timescale of a minute or less, magnetic holes are the
most commonly observed stable and nonpropagating struc-
ture in the solar wind. Even though a rigorous definition of
magnetic hole has not yet been given, such structures are
generally identified as more or less deep dropouts of the
magnetic field. . The magnetic field intensity within a hole
can be as low as 10% of the out of hole magnetic field. Typ-
ical durations are in the interval ranging from a few seconds
up to 1 or 2 min [Winterhalter et al., 1994). Magnetic holes
have been observed in the Earth magnetosheath [e.g., Kauf-
mann et al., 1970; Tsurutani et al., 1982], in the free solar
wind [Turner et al., 1977; Fitzenreiter and Burlaga, 1978;
Klein and Burlaga, 1980; Winterhalter et al., 1994], mostly
in the vicinity of stream interfaces, and at comets [Russell
et al., 1987; Glassmeier et al., 1993]. The total pressure

Copyright 1998 by the American Geophysical Union.

Paper number 97JA02384.
0148-0227/98/97JA-032384$09.00

(particle + field) inside a magnetic hole is generally believed
to be balanced by the pressure of the surrounding plasma
even though observations do not seem to be very conclu-
sive on that point. However, it is clear that if the pressure
of a nonpropagating magnetic hole is not balanced by the
pressure of the surrounding plasma, it must be unstable and
either collapse or explode. As we are only concerned with
stable structures, we shall consider the case of nonpropa-
gating magnetic holes that are in pressure balance with the
surrounding plasma.

Magnetic holes are mainly observed in high 3 (the ra-
tio of thermal pressure to magnetic pressure) plasmas with
B 2 1. Thus, soon after the very first observations of mag-
netic holes, the proton mirror instability, which is driven
by an anisotropic thermal pressure of the protons such that
pi/p| > 1 (subscripts L and || refer to the local magnetic
field direction), has been proposed to be the basic mecha-
nism leading to their formation. In fact, in a high 8 plasma,
the proton temperature anisotropy required for instability is
rather weak, that is Ty /Ty > 1+ 1/8. [e.g., Southwood
and Kivelson, 1993]. The mirror instability has some other
particularities that make it a privileged candidate to fit into
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a scenario of magnetic holes formation, the nonpropagating
nature of the mode and the anticorrelation of density and
magnetic field being two other important reasons.

Since the late 1950s the theory of the linear proton mirror
instability has been discussed by a large number of authors
[see Pantellini and Schwartz, 1995, and references therein].
However, the underlying physical processes, implicit in the
early treatments of the instability [e.g., Barnes, 1966; Tajiri,
19671, have been elucidated only recently by Southwood and
Kivelson [1993]. The new important aspect which has been
pointed out in the Southwood and Kivelson [1993] theory
is that the mirror instability is one where the resonant par-
ticles, that is, particles with small velocities parallel to the
magnetic field, play an important role. This has been the
strongest demonstration of the fact that the mirror instabil-
ity is based on essential kinetic effects and that, as a conse-
quence, fluid theories do not lead to a correct understanding
of the instability.

The rather speculative hypothesis according to which the
mirror instability is responsible for the formation of mag-
netic holes has been consolidated after the identification of
mirror mode waves in planetary magnetosheaths [e.g., Tsu-
rutani et al., 1982; Hubert et al., 1989; Lacombe et al., 1992;
Anderson and Fuselier, 1993; Violante et al., 1995]. The hy-
pothesis has become even less speculative since Winterhalter
et al. [1994] could show that trains of closely spaced mag-
netic holes are often observed in marginally mirror mode sta-
ble plasmas and also that proton distribution functions ob-
served within holes are sometimes similar to distributions
seen in numerical simulations of mirror mode waves [e.g.,
McKean et al., 1993]. From the theoretical point of view the
most stringent proof of the causal relationship between mir-
ror instability and magnetic holes has been given recently in
a paper on the nonlinear mirror instability by Kivelson and
Southwood [1996]. The theory of Kivelson and Southwood
[1996] indicates that if one admits that particles trapped in
the magnetic wells, created by the instability, do undergo a
mixture of both betatron deceleration, due to the locally de-
creasing field intensity, and Fermi acceleration, due to the
relative motion of the mirror points, then the mirror insta-
bility may evolve toward a saturated state characterized by
deep and narrow holes in the magnetic field profile. The
Kivelson and Southwood [1996] theory is based on the fact
that the evolved structure must satisfy the pressure balance
condition. This is only possible if one allows for substan-
tial cooling of the trapped proton population. However, the
amount of cooling needed to saturate the instability depends
on the spatial and temporal evolution of the magnetic field.
Unfortunately, the spatial and temporal dependence of the
magnetic field is not given by the Kivelson and Southwood
[1996]theory.

Our approach is similar to the one of Kivelson and South-
wood [1996] with the important difference that we restrict
the analysis to a particularly simple profile of the evolved
spatial structure which we expect to be a rough approxima-
tion of the real structure of the saturated nonlinear mirror
instability (see Figure 1). Following Kivelson and South-
wood [1996], our model is based on a spatial pressure bal-
ance condition between the high and low magnetic field re-
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gions. The pressure balance condition includes the contri-
bution from both magnetically trapped and nontrapped (cir-
culating) protons. The advantage of restricting the evolved
magnetic field profile to the simple shape shown in Figure 1
is that the model can be calculated easily throughout. In par-
ticular, we will show that for one given initial plasma condi-
tion, which is fully specified by two parameters (the proton
pressure anisotropy and the plasma f3), there is at most one
final stable plasma configuration. This is completely differ-
ent than in the Kivelson and Southwood[1996] theory where
the emphasis is put on the qualitative description of the cool-
ing of the trapped proton population needed to reach a given
final state which may be taken from observations. The main
problem with that stems from the fact that it is extremely dif-
ficult, not to say impossible, to specify a plasma equilibrium
consistent with an observed non uniform magnetic field pro-
file. Given the strong uncertainties on the final state, it is
virtually hopeless to determine how such a state has been
obtained from an initially unstable (and a priori unknown)
configuration.

In our approach we start from an easy to define initial state
and compute the final state using a number of assumptions
that make the problem simpler than the one addressed by
Kivelson and Southwood [1996] at the expense of a loss of
generality. We shall see that even in the framework of this
simplified theory a final stable configuration can be obtained
in most cases. We shall argue that the detailed motion of
the trapped particles is unimportant in the saturation pro-
cess. We shall also show that the model leads naturally to
the formation of deep and narrow magnetic holes (observed)
rather than the opposite situation characterized by large and
shallow holes (rarely observed). In the latter case one would
no longer define these structures as magnetic holes but rather
as “magnetic monoliths’The qualitative agreement between
the results of our model and the observations suggests that
the former includes most of the important physics necessary
to generate the observed nonpropagating structures.

B(s)

hlgh B 1+6B+
I R —
1-6B" low B
E S
0 A 17
Figure 1. Magnetic field profile for ¢ > 0. At¢ = 0 the

field is a constant By = 1 over the whole domain s € [0, 1].
The model is spatially periodic with period 1. Together
with Faraday’s equation, periodicity implies that the aver-
age magnetic field is equal to By at any time. Thus A, § B~
and § B* are related through (2). Note that all other quanti-
ties appearing in the model (number density, pressure, etc.)
are always taken to be constant in the intervals [0, A] (low-B
field) and [, 1] (high-B field).
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We conclude by noting that the first attempt to describe
the nonlinear evolution of the mirror instability has been pro-
posed, long ago, by Shapiro and Shevchenko [1964]. Their
approach was based on quasi-linear theory. However, as
pointed out by Kivelson and Southwood [1996], quasi-linear
theory is most probably inappropriate in the treatment of the
mirror instability except in the case of very weak growth.
The main reason is that quasi-linear theory predicts a spa-
tially uniform final state while simulations [e.g., McKean et
al., 1992; McKean et al., 1993], as well as the above cited
observations, indicate that the evolved state of the mirror in-
stability is generally characterized by strong spatial varia-
tions.

2. Basic Assumptions of the Model

We start from the postulate that both the particle trapping
and a spatial pressure balance condition are the main ingre-
dients in a theory of the evolution of the nonlinear mirror
instability. Based on these two main assumptions, we con-
struct a simple model for the nonlinear evolution of the mir-
ror instability.

We consider a model where, at any given time ¢, all quan-
tities (e.g., density, pressure, magnetic field, ...) depend on
one spatial dimension only. As in linear theory, it is the mo-
tion of the particles along the magnetic field lines which con-
trols the evolution of the system [Kivelson and Southwood,
1996] so that the relevant spatial dimension is along the field
line. We restrict the model to a two species proton-electron
plasma. This restriction is a minor one as heavy ions, which
are present in the solar wind, do not affect significantly the
mirror instability [Price et al., 1986]. For simplicity we as-
sume that the electrons are cold so that they do not produce
any longitudinal electric field [cf. Pantellini and Schwartz,
1995]. Our purpose is to predict the final state of the plasma
given an unstable uniform initial equilibrium. Thus at ¢ = 0
the plasma is taken to be spatially uniform, the protons being
distributed according to a bi-Maxwellian

noﬂ_—3/2 [ vo| VoL ]
= o b e M
VLT Yy Yry

where vy, = (2kpTL/m)"/? and vy, = (2kpTj/m)'/?
designate the proton thermal velocity perpendicular and par-
allel to the uniform magnetic field By. Here m is the proton
mass, kp is the Boltzmann constant and ng is the proton
number density.

Hereinafter we adopt the following normalizations: ng =
1, Bo = 1 and vy = 1 the plasma at ¢ = 0 being
completely specified by the dimensionless parameters 3y =
2uokpnoT)/BE and the ratio R = Tj/T. We further as-
sume that the system is spatially periodic, with period 1, and
that at any time ¢ > 0 the magnetic field is constant in the
intervals [0, A] and [A, 1] (see Figure 1). We shall denote
quantities characterizing the high magnetic field region by a
plus superscript and quantities characterizing the low mag-
netic field region by a minus superscript. Subscript 0 denotes
time level ¢ = 0 whenever this indication is needed to avoid
ambiguity. We also note that the scale of length of the sys-
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tem does not need to be specified as only relative dimensions
will be used. Moreover, since the model is one dimensional
and periodic, from Faraday’s equation 0B/t = —V x E it
follows that the average magnetic field must be constant in
time. Thus from Figure 1 one deduces that A, § Bt and § B~
are related to each other through

(1=X)éB*t =X6B~. 2)

Hereinafter we will sometimes use the notation B¥ = 1 +
S§B=.

3. Density and Pressure in the High Magnetic
Field Region

In order to compute the number density nt and the per-
pendicular particle pressure pt in the high magnetic field
region, we note that in a slowly growing magnetic struc-
ture nearly all particles do conserve energy. Only a small
number of particles for which the time needed to cross the
whole system is longer than the typical growth time of the
magnetic structure do not conserve energy. These particles,
called resonant particles in linear theory, gain or lose energy
depending on whether the local field is growing or decreas-
ing (betatron effect) and have been described in detail by
Southwood and Kivelson [1993]. Using the fact that the par-
ticles’ energy m(v2 +vﬁ) /2 and the particles’ first adiabatic
invariant 4 = mv? /(2B) are both conserved one finds that
only particles satisfying the condition

vo/voL > VIB* 3

can reach the high magnetic field region corresponding to
the interval [\, 1]. Thus we call circulating particles those
particles which do satisfy to the inequality (3) and trapped
particles those which do not. The two populations are sep-
arated by the trapping boundary, or separatrix, defined by
vo/vor = VOB, It is obvious that trapped particles are
located in the interval [0, A], whereas the circulating particles
are distributed over the whole available space [0, 1].

Taking into account that f is constant along particle tra-
jectories and that energy and magnetic moment of the circu-
lating particles are both conserved, it is easy to compute the
number density n+ and the particle pressure p} in the high
magnetic field region. Thus for n* we have

nt = /f+('U”,’U_j_,t) dv® -
o}
nt = /f+(1)”,v_j_,t) Jt d’l)g
o}
n+ = /fo (vgn, 'U()_j_) J+ d’l)g (4)
Do
fe o)
nt = /27rvouivu / fo(voysvoL) -
0 lvoyl>voL VEBF
JH(BY, voy, voL) dvg
+ RBt
n = =T
R+ 6Bt
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where D} denotes the domain in velocity space occupied
by the circulating particles spatially located in the high mag-
netic field region at time ¢, while Dy denotes the domain
in velocity space occupied by the same particles at ¢ = 0.
J¥ represents the Jacobian giving the variation of the ve-
locity space volume element dvg = 2mvo1 dvo L dvg) during
the time interval ¢. The Jacobian can be computed from the
equations of conservation for energy and magnetic moment.
This leads to

[voy | Bt

J+(B+yUo JUOL) = Ty
! (”3" —v§ §BH)/?

®

Equation (4) shows that the density in the high-field region
is always smaller than the initial density value no = 1,
and that for small amplitudes § B* <« 1, the result n* =
1+6B*(1—1/R), known from the linear theory of the mir-
ror instability, is recovered [Southwood and Kivelson, 1993].
This makes clear that our model is effectively a model for the
nonlinear mirror instability.

The mappings of Dy resulting from the motion of the cir-
culating particles to both high and low magnetic field regions
are illustrated in Figure 2. As Dy extends to infinity, only
the mapping of a part of the distribution function f (shaded
region), delimited by an arbitrary contour level, is actually
shown in the figure. The fact that for Bt — oo one ob-
tains a nonvanishing asymptotic density value n* — R can
be easily understood from Figure 2b. Since by definition
the energy of the circulating particles is conserved, particles
do move on circles in velocity space when being mapped
from the initial contour, corresponding to the distribution
at t = 0 to the new contour at time ¢ > 0. Thus in the
limit § B — oo the major half-axis of the half-ellipse D;"
shrinks to the same values as the minor half-axis, that is D}
becomes a nonvanishing half circle. It is also clear from
the figure that in the same way f+ (v),v1,t) must tend to-
ward an isotropic Maxwellian distribution with temperature
T = Tj since it results from the mapping, along circles,
of the points fo(vg),0). The integration over the resulting
isotropic distribution leads to the above asymptotic result
nt = R.

The question mark in Figure 2c illustrates the fact that, as
we shall show below, the motion of the trapped particles in
velocity space does not have to be known in order to com-
pute the model throughout. The only assumption concern-
ing the trapped particles is that their magnetic moment is
conserved. However, the energy of a particle trapped near
the separatrix has to be conserved if one asks for the dis-
tribution f to be continuous there. We shall point out that
this has not to be true (and is certainly not true in general!)
for all other trapped particles. The complicated behavior
of the trapped particles, which is implicit in our model, is
schematically illustrated in Figure 3. The top panel (Figure
3a) shows that circulating particles are thought to be energy
conserving since the time these particles spend in the low,
or high, field region is assumed to be small compared to the
typical growth time of the magnetic structure. Similarly, a
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particle that has just been trapped, that is, a particle with
mirror points at a magnetic field strength close to B*, has
spent most of the time as circulating particle, so that its en-
ergy did not have time to depart significantly from the initial
value. Particles that have mirror points corresponding to a
field strength significantly less than B+ have been trapped
during a time which is comparable to the typical growth
time. Two effects can affect the energy of these particles.
(1) The particle loses energy due to fact that it sees a de-
creasing magnetic field (Figure 3b). This is the so-called be-

(a)

t>0 (high B)

7z,

t>0 (low B)

Figure 2. Mapping of the velocity distribution function of
circulating particles to both high- and low-B field regions.
(a) A particular contour level ¢; of the distribution function
fo(vo||; vo) is shown. The interior of the half-ellipse cor-
responds to the domain with fo > ¢;. The shadowed do-
main corresponds to the circulating particles for which the
inequality (3) is true, given a certain § B*. The remaining
sector of the ellipse corresponds to the particles which are
trapped for this same § B*. (b, ¢) Mapping of the circulating
particles to high- and low-field regions with the original con-
tour being represented by the dashed line. Obviously, there
are no trapped particles at magnetic field maximum (Fig-
ure 2b). As the model only requires that trapped particles
conserve magnetic moment g, but not energy, their velocity
distribution is not known for ¢ > 0, thus the question mark
in Figure 2c.
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[

(0)

energy conserving

(b)

betatron

(c)

1=

Fermi

Figure 3. Time dependence of the energy for particles in
the model. (a) A circulating and a freshly trapped particle
are shown. Both particles do approximately conserve energy
since the average magnetic field the particles see during the
typical growth time of the structure is roughly constant. A
particle that is trapped during a time which is comparable to
the time of evolution of the magnetic field may change its
energy due to two distinct mechanisms illustrated in Figures
3b and 3c. (b) The trapped particle loses energy at the rate
udB/ 8t as it experiences a constantly decreasing magnetic
field (betatron deceleration), while (c) the trapped particle
gains energy as the magnetic hole contracts and the magnetic
mirror points move toward each other (Fermi acceleration).

tatron deceleration. It affects the perpendicular velocity of
the particle. (2) The particle gains (loses) energy because of
the converging (diverging) mirror points (Figure 3c). This is
the so-called Fermi acceleration (deceleration). It affects the
particle’s parallel velocity. We shall show below that only
the betatron effect does play a role in our model and that the
Fermi effect is of secondary importance in the saturation of
the mirror instability.

As announced, we may now compute the particle pressure
pt at magnetic field maximum in the same way as we did
for the number density n*. Keeping in mind that v} =
vZ, Bt for the particles circulating in the high-field region,
we obtain :

4793
pi = /fo(vou,UoJ.) vo BT Jt dv}
Do
B+ \’
+
PL = R(R+JB+>' ©

It should be noted that n* and pi do not depend on B~
and ). This is a consequence of the fact that the equations
of motion for particles reaching the high-field region only
depends on §B*. This is not true for particles located in
the magnetic wells. For example, circulating particles in the
low-field region do satisfy to the same inequality (3) as do
the circulating particles in the high magnetic field region,
but their perpendicular velocity depends on B~ since v3 =
v2, B~. Thus their contribution to the density and pressure
depend on both B* and B~.

4. High-Field Saturation Level

In the previous section we have computed the density and
the particle pressure in the high magnetic field region for
a given magnetic field amplitude  B*. In this section we
shall compute the saturation amplitude § BY, in the case of
an unstable plasma.

Now from the previous section we already know that, for
a given value of the field perturbation B the total perpen-
dicular plasma pressure is given (in normalized units) by

+ 2 +)2
B ) (B)' o

+ —
p_L,tot =R (R+ §B+ ,6"

The important fact about this expression is that it does not
depend on the characteristics of the low magnetic field re-
gion. It is therefore clear that the saturation amplitude § BY,,
must depend on the initial plasma parameters § and R only.
Another important point about (7) is that for small values of
JB* the total pressure and the magnetic pressure vary in an-
tiphase provided R~! — 1 — R/ > 0, which is precisely
the instability condition for the linear mirror instability. In
fact, (7) is the finite amplitude equivalent of the magnetohy-
drodynamic response of a bi-Maxwellian plasma to a small,
and slowly varying, compressional perturbation § B*, which
reads

in,cot = 21’3].,;0:(1 - R™Y)éB*/Bo

and is the base of any theory of the linear mirror instabil-
ity [e.g., Hasegawa, 1969; Southwood and Kivelson, 1993].
We now postulate that even in the nonlinear regime the in-
stability keeps on growing as long as the total pressure and
the magnetic field pressure vary in antiphase. By setting
Bpim /BT = 0 one computes directly the limiting value
8B, beyond which the total pressure and the magnetic field
pressure are both growing. This leads to a simple expression
for the saturation amplitude

6B,

sat

—=2 = [ R(1 - R)]*/* - R. ®
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Figure 4. Contours of BJ,, computed from (8). The upper

thick contour corresponds to the stability threshold for the
linear mirror mode. The meaning of the shaded region will
be discussed in relation to Figure 5.

We note that (8) gives the saturation peak value for an ar-
bitrary magnetic field profile which may be different from
the one shown in Figure 1. This is a consequence of the fact
that no reference to the actual magnetic field profile has been
made in deriving equation (8). An example: for §; = 1 and
R = 0.5, (8) predicts a saturation amplitude § B}, = 0.13.
The same value has been obtained numerically by Kivelson
and Southwoo using a sinusoidal field profile (compare Fig-
ure 3 of Kivelson and Southwood [1996]).

A contour plot for B (8, R) is shown in Figure 4. The
thick curve corresponds to the value BY,, = 1 which sep-
arates the mirror stable (above the curve) from the mirror
unstable domain. The figure shows that for reasonably weak
anisotropies of the proton distribution the saturation ampli-
tude increases with 8 and 7', /Tj. For strong anisotropies
R — 0 we do not expect the model to be valid any longer
as the growth rate would then be so strong that most of the
circulating particles would not conserve energy which, of
course, is against one of the basic assumptions of the model.

5. Saturation in the Low-Field Region and
Overall Structure at Saturation

The explicit shape of the magnetic field profile has to be
considered in the derivation of the plasma conditions in the
low magnetic field region. Our purpose is to determine § B~
and ), which are defined in Figure 1, such that the resulting
structure is a stable equilibrium. Stability of the structure
requires that the total pressure is the same at field minimum
and field maximum [Kivelson and Southwood, 1996]. In this
section we shall use a pressure balance condition in order to
compute the complete macroscopic state of the plasma at
saturation.

The density ratio n = n~ /nt (where the density n™~ in-
cludes both trapped and circulating particles) is, besides the
magnetic field profile, one of the most easy to measure quan-
tity that characterizes a magnetic hole [e.g., Winterhalter et

DANTET T TNTT. OTADT T TOTICTRES IN THE SOLAR WIND

al., 1994]. Given nt from (4) and XA which will be deter-
mined later using the pressure balance condition (12), 7 must
necessarily satisfy to the following condition

n=n"/nt =[1-(1-A)nT]A/nt. )

In fact, this expression is consistent with the requirement
n~ A+ nt(1 — X) = 1 which ensures that the total number
of particles in the system is conserved. Let us now com-
pute the total number of particles that are trapped for a given
field strength § B*. This number, denoted Ny, includes all
particles that do not verify the inequality (3). Thus

Ntr _ /
No —

lvoyl<vorLVéB+

§B+ \'?
fo dvj = (W) (10)

where Nj is the total number of particles in the system. The
total number of circulating particles is then simply given by

Neire = No — Nir. (1)

Let us now come to the determination of A. We start by
writing the pressure balance condition for our system. Given
the simplicity of the configuration, we are considering here
the latter reduces to a balance between the pressure (particle
+ field) in the high magnetic field region and the pressure in
the low magnetic field region. Using the above normaliza-
tion, this can be written in the following way

pi,tot =p1,circ+pl,tr+(B_)2/ﬁ[| (12)
where p; ;.. and P . are the pressure of the circulating
and the trapped particles in the magnetic wells, respectively.
In reality, since B~ is related to A through (2), (12) is noth-
ing else but an equation for A. However, in order to solve
(12) we need to determine the dependence on A of P1 cire
and py .. For this purpose we observe that the contribution
to the pressure coming from one single particle is propor-
tional to B so that p] ;.. and p (. are both proportional to
B~. On the other hand, the pressure of a given population
changes proportionally to the spatial size of the domnrain oc-
cupied by the population. In order to make things simple we
suppose that all the populations we are going to consider be-
low are distributed uniformly at ¢ = 0. This is reasonable for
two reasons. First, at t = 0 the distribution of the sum of all
proton populations is given by the distribution function (1).
Second, the growth of the instability is slow compared to the
time it takes for a particle to cross the system. The latter
means that two particles with nearly the same velocity and
the same position at time ¢ originate, in general, from two
completely different positions at t = 0; that is, the mem-
ory of the initial position is lost. Stated differently, one can
say that a particle located near a given position at time ¢ was
with the same probability located in the vicinity of any of the
points in the interval [0, 1] at ¢ = 0. As a consequence, we



Une théorie pour la formation des trous magnétiques

PANTELLINI: STABLE STRUCTURES IN THE SOLAR WIND

may assume that the population of trapped particles covers
uniformly the whole domain [0, 1] at ¢ = 0 but that this same
population is confined to the domain [0, A] at time ¢. Sum-
marizing these considerations, we conclude that the pressure
contribution due to the trapped particles at time ¢ must be
given by

13)

where po L ¢ is the trapped particles’ pressure at ¢ = 0, that

18,
PoLtr = /

|voyl<vorVéB+

PLer = PoLer B7/A

2
Voo fg 27r'l)0J_ dv(u_d’uon

( 6B+ )1/2 3R+ 20B* %
R+ 6B+ 2R(R+6Bt)]"

An argument, similar to the one for trapped particles, ap-
plies to the circulating particles. Suppose that the circu-
lating particles, located in the low magnetic field region at
time ¢, cover a fraction a of the domain [0,1] at ¢t = 0.
According to the above discussion, o must be the same as
the ratio of the number of circulating particles located in the
magnetic well at time ¢ to the total number of circulating
particles. Since the total number of particles which are lo-
cated in the high-field region at time ¢ is n* (1 — )), one has
a = [Neire — (1 — A)]/Ncire which leads to

PoL tr

PoL circ QB—/)‘

1 aB~
R PoL tr 2 .

We can now express (12) as a function of the known quan-
tities 3, R, §BZ, and the remaining unknown parameter
A. This leads to a polynomial equation of degree three for
A. Physically acceptable solutions must be real and in the
interval [0, 1]. Only two solutions, shown in Figure 5, sat-
isfy these requirements -in the domain in parameter space
B> R) below the mirror instability threshold curve and out-
side the shaded domain. Elsewhere (above the mirror in-
stability threshold curve and in the shaded domain) the two
solutions are complex so that no equilibrium solution ex-
ists there. In the domain where the two roots are real their
value is generally smaller then 0.5, suggesting that the mirror
instability tends to form narrow low magnetic field regions
rather than the opposite. This is in qualitative agreement
with most observations [ Winterhalter et al., 1994]. However,
even though observations seem to indicate that the nonlinear
evolution of the mirror instability leads to narrow and deep
holes in the magnetic field, it sometimes happens that the
opposite situation is observed. One such case is illustrated
by Figure 2a in the Leckband et al. [1995] paper. The fig-
ure shows large nonlinear fluctuations of the magnetic field
observed in the Earth’s magnetosheath. The fluctuations can
be described as a more or less irregular sequence of narrow

pJ.,circ

p I ,cire ( 1 5)
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magnetic field spikes. Even this particular episode is consis-
tent with the results of the model. In fact, the plasma 3, mea-
sured by Leckband et al., was exceptionally large (8 ~ 30).
If we put the value § = 20 in our model we find that the
stable solution, shown in Figure 5a for the domain g < 10
predicts that X is larger than 0.5, provided the initial temper-
ature anisotropy is not too weak, thatis R < 0.5.

Let us come back to the discussion of (12). Even though
the two physically acceptable solutions of (12) correspond

to possible equilibrium solutions, only one is a stable solu-

tion (Figure 5a). Figure 5b corresponds to a solution with
0p7 4ot /0B~ < 0 (at saturation), that is, the total pressure
and the magnetic pressure vary in antiphase in the low-field
region. Thus only Figure 5a corresponds to a totally stable
equilibrium for the final configuration. We note, however,
that the two solutions become identical on the border of the
shaded region and that they become both vanishing small as
one approaches the instability threshold from below.

Figure 6 is a contour plot of the density ratio 5 of the
low to high magnetic field region densities (equation (9)).
The figure shows that for reasonable anisotropies R 2 0.4
the values for 7 do not exceed 2.5 which is consistent with

T T T

- (a) stable

0.2

0.0

0 2 4 8 8
B

Figure 5. Contours for the two positive solutions X
of (12). The solutions become complex conjugate above
the mirror mode stability threshold and in the shaded re-
gion where no stable solutions exist. (a) Stable solu-
tion with dp] /0B~ < 0. (b) Unstable solution with

0P 40t/0B~ > 0.

10
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Figure 6. Contours of the density ratio n~ /n* computed
using (9) for the case where A is the stable solution of Figure
Sa.

the typical values observed in the solar wind by Winterhal-
ter et al. [1994]. Concerning the fact that observed values
for 7 seem to be closer to unity than what may eventually
suggest our model, it should be pointed out here that all the
above results are valid in the case of a cold electron popu-
lation such that its temperature T, is much smaller than the
parallel proton temperature, that is, Te < Tj). Electron tem-
perature effects have been shown to play an important role in
the linear mirror instability [Pantellini and Schwartz, 1995].
In particular, a hot electron population significantly reduces
the absolute value of the parallel compressibility (a measure
of the density fluctuations compared to the magnetic field
fluctuations) in a plasma with T, 2 T”. ‘We therefore ex-
pect the electron temperature effects to act in the sense of
reducing the value of 7 shown in Figure 6. Still, it should be
noted that even in the cold electrons framework it is possible
to obtain relatively small values of 7 associated with narrow
and deep holes. For example, the case ,H" =2and R = 0.65
(weakly unstable) leads to the stable asymptotic state char-
acterized by Aga; = 0.17,6BL, = 0.12 and § B, = 0.59,
which represents a noticeable magnetic hole, while the asso-
ciated density ratio n = 1.34 is rather small.

Let us conclude this section with a comment concerning
the validity of the presented model. The most important re-
striction comes from the fact that the circulating particles
are supposed to conserve energy. As already stated above,
this cannot be true for particles located near the velocity
space trapping boundary. Thus in cases where the num-
ber of circulating particles that do not conserve energy is
large (e.g., in the case of fast growth of the instability), the
model is certainly inappropriate. In order to estimate the do-
main of validity of the model, let us suppose that during the
time of growth of the instability the maximum growth rate is
v = 27r/tgmwch. This growth rate is likely to be the growth
rate predicted by linear theory, as in the nonlinear phase of
the instability growth tends to become smaller as the insta-
bility saturates. On the other hand, at saturation, in the high-
field region, a circulating particle that conserves energy has

PANTELLINI: STABLE STRUCTURES IN THE SOLAR WIND

a field-aligned velocity given by v = ,/vgu — v, 6B,

If v is large enough, so that the time it takes for the parti-
cles to cross the high-field region is shorter than the typical
growth time fg owtn, the assumption of energy conservation
is a good approximation. This leads immediately to the con-
dition vy > (1 — A)/(27). Since linear theory provides a
value for +, but not for A, we may use the more restrictive
VU~ v2,0BE, > v/(27) which states that
only particles with an initial parallel velocity within y/(27)
from the separatrix do not conserve energy. Note that for
small § B, the above condition is the same condition that
distinguishes circulating from resonant particles in the lin-
ear mirror instability [Southwood and Kivelson, 1993].

condition

6. Discussion

We have presented a model for the formation of stable
nonpropagating structures in a collisionless magnetized pla-
sma. The model is based on the fact that in a plasma with
cold electrons and a bi-Maxwellian proton distribution with
Ty > Tj the total pressure responds in antiphase to a low-
frequency compressional perturbation of the magnetic field
provided the criterion for the mirror instability is satisfied.
Saturation is assumed to occur when the magnetic pressure
and the total pressure of the plasma start varying in phase.
The model is in fact a model of the nonlinear mirror instabil-
ity where saturation is the consequence of particle trapping
in the low magnetic field regions of the evolved structure.

The model is similar to the one proposed by Kivelson and
Southwood [1996] in that the saturated state is one where the
total pressure is the same for both the high and the low mag-
netic field region. The main difference stems from the fact
that in our model a particular magnetic field profile, shown
in Figure 1, has been chosen. Compared to the more general,
but essentially qualitative, model of Kivelson and South-
wood, our model has the advantage of providing quantita-
tive estimates of the characteristics of the evolved structure
(Figures 4 to 6).

The basic conclusion of the Kivelson and Southwood anai-
ysis is that cooling of the trapped particles, which is needed
to reach pressure equilibrium, is likely to result from a mix-
ture of betatron and Fermi deceleration. A quantitative es-
timate of the final state is not possible in their case-as the
evolution of the instability does in general depend on the un-
known temporal and spatial variations of the magnetic field
profile. The simplifications in our model are such that the
temporal evolution of the field becomes unimportant and the
final structure can in general be computed unambiguously as
a function of the initial plasma conditions only. Moreover,
the detailed behavior of the trapped particles, which may be
rather complicated, does not need to be known.

The main results can be summarized as follows. First of
all, a simple expression for the saturation level of the nonlin-
ear mirror instability is found. As shown in Figure 4, the sat-
uration level generally increases with both 3 and the tem-
perature anisotropy 7' /7j. We also observe that a stable
final solution can nearly always be found in the linearly un-



Une théorie pour la formation des trous magnétiques

PANTELLINI: STABLE STRUCTURES IN THE SOLAR WIND

stable domain except in the narrow shadowed domain shown
in Figures 4-6. A more general treatment of the instability
(allowing for structures other than the one shown in Figure
1) as the one discussed by Kivelson and Southwood [1996]
may probably lead to a stable final state even in the shad-
owed domain shown in our figures. We have argued that fi-
nite electron temperature effects, that have been shown to be
important in linear theory, may also significantly modify the
final equilibrium configuration. As suggested by Kivelson
and Southwood [1996], we observe that substantial cooling
of the particles in the magnetic wells is generally necessary
in order to reach the final equilibrium solution. Thus the
evolved structure tends to be one where the low magnetic
field regions are narrower than the high magnetic field re-
gions unless the plasma /3 is very high (i.e., § & 10). Narrow
wells also mean deep wells which seems to agree with the
majority of the observed magnetic holes wherein magnetic
field intensities as low as 10% of the out of hole value are not
unusual [e.g., Winterhalter et al., 1994]. The model suggests
that the holes are narrowest in plasma that are marginally un-
stable and predicts that the particle density is always higher
in the magnetic holes than in surrounding plasma, which is
consistent with observation. Finally, since our results are
independent of the amount of Fermi acceleration (or decel-
eration) that affects the trapped particles, we conclude that
the most important mechanism leading to saturation is the
betatron cooling of the trapped protons.

Further improvements of the model may be obtained ra-
ther easily by including electron temperature effects. The
treatment of more general field profiles, compared to the one
used here, may not be possible without making the model
considerably more complicated. Particle simulations of the
type published by McKean et al. [1992, 1993] may help in
better understanding the details of the formation of magnetic
holes whereas full particle simulations (including the elec-
tron dynamics) would be extremely useful in order to deter-
mine whether or not the high-frequency waves (for example,
the so-called lion roars [Tsurutani et al., 1982]), frequently
observed in magnetic holes, are effectively due to the elec-
tron cyclotron instability as suggested by Lee et al. [1987].
Particle simulations will also be needed to understand the
effects on the formation of stable structure due to finite Lar-
mor radius effects. Our model as well as the Kivelson and
Southwood [1996] one are both based on the hypothesis of
magnetic moment conservation for all particles. It is clear
that such an approximation will fail in the case of strong in-
stabilities where the most unstable wavelength becomes of
the order of the proton Larmor radius with a typical growth
rate comparable to the Larmor frequency. The complexity
of the particles’ motion in a field where the typical spatial
and temporal scales are of the order of the Larmor scales is
such that only numerical simulations may help farther under
these conditions.
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A simple numerical model to simulate a gas in a constant
gravitational field
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The equilibrium pressure of a perfect gas in a constant gravitational field decreases exponentially
with height. This result, known as the barometric formula, can be observed in a one-dimensional
numerical simulation where the gas molecules are represented by colliding massive poiateo ©
American Association of Physics Teachers.

I. INTRODUCTION ian with zero mean velocity which, for a local number den-
sity n(z)=¢(z)/m, reads
It was in 1686 that the English astronomer Edmund
Halley! first recognized that the pressupeof the Earth’s 32 mv?
atmosphere decreases exponentially with height good f(z,v):n(z)(m) ex;{ TokT
agreement with the so-called barometric formula

: @)

7 i.e., the atmosphere must be static. The requirement that the

p(z)=p(0)exr{ _f)’ (1 mean velocity be zero is easily justified since a nonzero

H mean velocity implies a mass flux that cannot be compatible

where the constart is the scale height of the atmosphere. A With a stationary solution. For example, the density near the
number of derivations of the barometric formula and its9round would be increasing or decreasing depending on
amazing history, from antiquity to the twentieth century, Whether a downward or an upward net flow is present in the
have already been discussed in another Pomed shall not atmosphere. As we will show below, if the distribution is
be repeated here. Still, a short discussion of the main ingrd¥@xwellian at a given height, it must be Maxwellian, with
dients that go into most derivations of the barometric for-N€ Same temperature, at any other height, provided the at-
mula may be welcome here. The standard derivations basdfOSPhere is a static one. This is the justification of the iso-
on fluid theoried postulate the existence of a particular equa-t1€'Mal hypothesis from the kinetic point of view.

tion of state relating the pressusend the mass density of From a fluid point of view, one can justify the choice of a
the fluid atmosphere. For gaseous atmospheres it is quifgPStant temperature by noting that if there were a tempera-
natural to invoke the perfect gas equation, ture gradient somewhere in the atmosphere, there yvould in-
evitably be an energy fluxor heat fluy from the higher
kT temperature to the lower temperature region and the system
pP=e (2 could neither be static nor stationary. However, this explana-

) tion does not seem to be consistent with our everyday expe-
wherem is the mass of the gas moleculésthe Boltzmann  rience of the Earth atmosphere, which is essentially static but
constant, andr the temperature. This equation on its OWn peyer, not even nearly, isothermal.
still doesn't allow the derivation of the barometric formula,  |f we accept the isothermal hypothesis as a plausible one,
as one needs a second equation in order to fully specify thg js easy to derive the barometric formula using a fluid ap-
thermodynamic state of the system. In the absence of anyroach. In a static atmosphere, subject to a constant gravita-
external energy source, the second equation that imposes {jong fieldg>0, the pressurp at a given height is just the
self quite naturally is force exerted by the mass of gas above that height per square

T=constant, €) unit, i.e.,

which states that the temperature is the same everywhere in *

the atmosphere. But why should a stratified fluid, say a per- P(2)= *QL e(z)dz, ®)
fect gas for simplicity, be isothermal whereas the pressure,

the density, and even the entropy dependzdifror instance where the minus sign comes from the fact that gravity is
itis extremely well known that Eq3) is not true for the low  taken to be oriented toward the negatidirection. It then
Earth atmospheréthe troposphejewhere the temperature follows that the pressure differencep(z) between two
typically decreases with height at a rate of #&/m. Of points at height andz+dz is simply given by

course, the temperature gradients in the Earth atmosphere are

a consequence of the fact that the system is not a closed one dp(z)=p(z)—p(z+dz)=—-ge(2)dz (6)
due to the energy input through radiation from both the Sun o ) )
and the Earth surface. It is possible to maRga plausible which clearly indicates that pressure cannot be uniform in
assumption at least in the case where the collisional meaifie system unlesg=0. From the perfect gas equation of
free path of the moleculefi.e., the average distance that State(2) and Eq.(3), the barometric formulél) with a scale
particles travel between two successive collisjoisssmall  height

compared to the scale of variation of the macroscopic quan-

tities such as the density or the pressure. In this case the local H= E @)
particle velocity distribution must be very nearly a Maxwell- mg
61 Am. J. Phys68 (1), January 2000 © 2000 American Association of Physics Teachers 61
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is readily obtained by integrating the differential equation m \12 mgz+ mv§/2

(6) F(Z,VZ): Ng m) exp{ - T) y (14)
Besides the fluid derivations of the barometric formula, ™

there are a number of derivations called kinetic. The lattewheren, is the particle number density z& 0. As expected,

are characterized by the fact that the physical state of thitegration in velocity space dfl4) leads to the exponen-
system(the atmosphejes specified by the distribution func- tially decreasing density profile

tion f(t,r,v) of the gas moleculesy=(x,y,z) and v

- . ) : - mgz

=(Vvx,Vy,V;) being the three-dimensional position and ve- n(z)=n, ex;{ _ 7) (15)

locity vectors, respectively. In a kinetic descriptidit,r,v) kT

d*rd3v=f(t,r,v)dx dy dz d,dv, dv, represents the num- which is nothing else but the barometric formula for an iso-
ber of particles that at time are located in the six- thermal perfect gas. The main assumption of this derivation
dimensional phase space volurdérd®v centered on the of the barometric formula is that the particles’ velocity dis-
phase space poift, v). An elegant kinetic derivation of the tribution is Maxwellian at some height. As already stated,
barometric formula, which has not been discussed byhis is a reasonable assumption for a static atmosphere, at
Berberan-Santogt al.> has been given by Becker in his least as long as the mean free path is small compared to the
classical book on thermodynamitdhe derivation is based scale height.

on the fact that the number of particles in a voludiegdv,

at timetg is the same as the number of particles in the samél. THE NUMERICAL MODEL

volume (transported along particles’ trajectories in phase
space d3rd3v at a later timet>t,, formally

Numerical simulations do often offer the best illustration
of the behavior of a physical system. The aim of Sec. Il is
f(tg,ro,Vo)d3rgd3ve="f(t,r,v)d3rd5v. (8)  precisely the description and the discussion of a simple nu-
tinerical model describing the evolution of a sort of hard
0 A o
sphere gas under the influence of a constant gravitational
field. As we will see below, the model allows for an “ex-
perimental” derivation of the barometric formula thus com-

In the case of a constant gravitational field, the equations
motion,dz/dt=v, anddv,/dt= —g, can be integrated for a
small time intervalr leading to

=279+ Vo, T (9)  pleting the discussion of Sec. I.
Again we consider the case of a constant gravitational
Vz=Vo,—gT. (10 field pointing toward the negativedirection. We model the

These equations show that the infinitesimal phase space voitatic atmosphere by considering the statistical properties of
umesdz dv, anddz, dvo, are identical. On the other hand, N |dent|ca| _free falling massive point partlcles._ We use a

since gravity doesn't affect the velocity components perpen€-dimensional approximation so that the position of each
dicular to the z axis, one has dxdy dv,dv, particle is fully specified by its height above the ground

— dx, dyo dvoy dvo,, meaning that the phase space volumelevel located ar=0. Two particles are supposed to interact

d3rd is not modified during its motion along particles’ via an elastic collision if they are simultaneously located at
v 9 9P the same height. A particle hitting the ground simply re-

trajectories 't?] [mﬁse sptace. AIS 2 consdequence, anc}t beca%nds elastically. Despite the fact that the particles’ motion
we assume that the system only depends, ave can write & ¢ yastricted to one spatial dimension and in order to intro-

linearized form of Eq(8), for small time intervalsr, duce ergodicity in the systefsee beloy, we allow the par-

F(t,z,v,)=F(tg+ 7,29+ V(,7,Vo,—97) ticles to have three-dimensional velocities. One can regard
the system as being spatially three dimensional with periodic
~F(tg,29,Vo,) + f " fv - i x andy directions, the periodicity length being vanishingly
=20, Vo) T e 7T 7 Vo T 5 0T small.

11) _Simi_lar numerical _models, involving colliding spheres or
discs instead of points, have already been used some 20

whereF represents the reduced distribution that is obtainegears ago, though not in the case of a gas in a gravitational

after integration off over both velocity components, and  field.>~®

vy. Since, according td8) and the ensuing discussion

h ' A. Ergodicity
F(t,z,v,) andF(tq,z,vo,) Must be equal and since we are ]
Seeking Stationary solutions, such th#/dt=0, Eq (11) In 1887 |,_1l.0 Boltzmann ,formulated .hls famOUS “Ergoden-
reduces to a simple differential equation involving partial NyPothese.”" Boltzmann's hypothesis, which has been put
derivatives ofz andv, only into a mathematically rigorous form by P. and T. Ehrenfést,
z ' states that the phase space trajectory of a closed thermody-
JF oF namical system covers densely and uniformly the subspace
oz VT Tvzg—O. 12 (a hypersurface in phase spadefined by the condition that

. o . o _the energ)E of the system is constant. A classical dynamical
The general solution of this differential equation is an arbl-systemy e.g., a system Nfparticles governed by Hamilton’s
trary function of energy(gravitational energykinetic en-  equations of motiorwhich is generally called a thermody-
ergy), i.e., namical system in the limiN— ), that has this property is
F(zv, =F(gz+ %v% ) 13 said to be grgodic. Later, starting in :_L922, G. D. Birkﬁ%)_ff_

) ] ] ~ proved the important theorem according to which ergodicity
This solution clearly shows that if the velocity distribution implies that the long time average over an arbitrary function
function is Maxwellian at a given heighap, it must be Max-  of the phase space coordinates is equal to the average of the
wellian, with the same temperature, at any other height, i.esame function taken over all possible, aad can be showfi
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equally probable, states that the system can go through. Pos-
sible functions of the phase space coordinates one may want
to take averages of are the number dens(tg), the pressure
p(z), or any other macroscopic quantity. The average over
the collection of all states on the energy hypersurface is
called the average over the microcanonical ensefhlile.
should be noted that the time average and the average over
the microcanonical ensemble may be considered to be equal
for practical purposes only if the time of averaging is long
enough for the system'’s trajectory to cover densely the hy-
persurface of constant ener@y In practice, one has just to
wait long enough for the functions that describe the macro-
scopic state of the systefve are not interested in the tra-
jectories of individual particlesto become independent of
the time interval used in the averaging process. One may
then say that the system has reached equilibrium.

In general, one can estimate the minimum time of averag-
ing needed for the system to cover uniformly the surface of
constant energy to be of the order of a macroscopic relaxgig. 1. System of hard balls in an infinitely long tube under the influence of
ation time. For example, in the case of a large nunib@f  gravity. (a) The balls’ diameter and the tube diameter are identical: The
molecules with mean energyk3/2 restricted to a three- Z_YS“«‘“: is noTﬁf?ﬁg“ﬂg Ihe balls’ diametﬁr ifh|ess tzafc‘a:ag;c: :]li)brszmal

. . . . . . - lameter so al e Dalls can pass each other an
dlmensmngl cubic box of dlmenSIdr?' the relaxation time velocities: The system is ergodic gnd is analogous to the model presented in
can be estimated to be of the order of the box scale leigth gec .
divided by the sound velocitg~ VkT/m.

The justification of Boltzmann's “Ergodenhypothese”
may now become clear if one asks what happens to a system
that is nonergodic. By definition in such a case the system’s
phase space trajectory does not cover the whole hypersurfadean the 2N —1 dimensions of the hypersurface of constant
of constant energy. This means that for two different initialenergy. The conclusion is that not all points of the latter can
conditions the system’s trajectory generally covers differenbe approached by the system’s trajectory in phase space so
parts of the energy surface leading to different temporal avthat the ergodic condition cannot be satisfied.
erages even if one lets the time of averaging become infi- |n the case of three-dimensional velocities, it is no longer
nitely long. In such a system there is no longer a uniqueyossible to consider that each particle in the system sepa-
equilibrium state since different initial conditions will lead to rately conserves energy. This situation is similar to Fig),1
different equilibrium states. It is now intuitively clear that a where the balls are contained in a tube of cross section large
nonergodic dynamical system is not a good model for a therenough for the balls to pass each other and where the balls
modynamic system, as the latter should evolve toward @&an therefore have nonzero velocity components in the hori-
unique equilibrium that is independent of the initial condi- zontal directiont* The only integral of motion in that case is
tions. This is of course what we expect a thermodynamighe energyE, and the system is reminiscent of the hard
system to do based on the second principle according tgphere Boltzmann gas that has been shown to be ergodic, and
which the system must evolve toward a unique state thakpproaching equilibrium, for as few as two particleghe
maximizes entropy.” fact that the system is already ergodic for two particles

Let's come back to our model of the atmosphere and let'shows that one does not need to approach the thermody-
suppose first that the trajectory of theparticles is strictly  hamic limit N— o in order to model a gas in a box. This is
one-dimensional, i.e., position and velocity are both oney,e main reason for choosing a small number of particles in
dimensional vectors. In this case the time evolution of they,, example in Sec. IIE. A convincing illustration of the
system is represented by a curve infd-@imensional phase grgqdicity of a low dimensional dynamical system, which is
space. Now, in the case of one-dimensional velocities, thgimjlar to the one presented in this paper, is the case of the
result of an elastic collision between two particjeandk is  motion of disks in a stadium-shaped billiard table.
nothing else but the exchange of velocitieg—v;. This We shall conclude this section by noting that the noner-
configuration is of the type depicted in Figal, where the  godicity of the system depicted in Fig(al is primarily due
balls, within an infinite vertical tube of the same diameter asg the fact that all the balls in the system are of equal mass.
the balls, are not allowed to have a velocity component in therhys, as pointed out by Saufeit is possible to make the
horizontal direc@ion. In this case the net result of a collisionsystem in Fig. {a) ergodic by simply choosing the mass to
is the same as if the particles would simply go through eaclhe different for neighboring balls and for a number of balls
other without any interaction. One may consider the systenarger than twd® The consequence is that collisions no
as being made oN noninteracting particles just bouncing |onger reduce to a simple interchange of velocities and one
periodically off the grOUnd. In that partiCUIar case each parmay no |onger consider the system as being made odn-
ticle conserves energy separately and the system is therefojigeracting particles just going through each other and indi-
characterized byl constantgor integralg of motion, mean-  vidually conserving energy. Again there is only ditiee total
ing that its trajectory in phase space is bounded toNa 2 energy and notN integrals of the motion and the system is
—N=N-dimensional subspace. ThusN#> 1, the dimension  ergodic.
of the subspace covered by the system’s trajectory is smaller The interested reader may find the historical bibliography

(b)

oay
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along with the proofs of the major theorems on the subject of
this section in the review article by D. Ter HAdmnd in
Becker's coursé.

B. Equations of motion

During the time interval between collisioisee Sec. || €
the particles are free falling. Their trajectories are thus deter-
mined by the integrated equations of motion for a particle in
a constant gravitational field,

z(t) =29+ vt —gt?/2, (16)

V(1) =vo,—at, (17 Fig. 2. Energy and momentum conserving collision of two particles of equal
)= tant 18 mass in the center-of-mass frame. Arrows denote velocities béfolle

Vi ( )= constant, ( ) arrow bodieg and after(dashed arrow bodigghe collision. Post-collision

wheret indicates the time interval since the last collision andduantities are primed. Note that because of the axial symmetry of the model,

wherev, is the velocity of the particle perpendicular to the thle.chou:e of the po;t—colllsmn longitudinal angté is arbitrary. The angle
axis ¢’ is chosen according to Eq4).

C. Collisions must rebound vertically and the post-collision angle is there-
) ) fore #’ =0. On the other hand, if the same two balls are not
In order to make the model as simple at possible, we CONzligned vertically,§' can take any value-0 and</2 de-

sider the atmosphere to be made of particles of equal Mmaginging on the relative initial horizontal displacement of the
m.”® Two particles are supposed to interdcollide) when two balls.

their respective world lines in space—time intersect each” tjq important point is that neither in the experiment de-
other. The collisions are elastic, i.e., both energy and MOpicted in Fig. 1b) nor in our model are we actually inter-
m%“t“”.‘ of tr:e ttV\ao_f-Tparncle Ey?tem are consderlvedr.] hasested in the kinematics of individual collisions. For this rea-
ne Important difierence between our model, Where phasg,, \ye shall base our strategy for choos#igon statistical
space has one spatial and t’r]ree velocity dimensions, and t Bnsiderations only. For example, we shall suppose that un-
T i e der th sffect of & large number of colsons, ur system
p I Y relaxes toward a stationary state, i.e., toward a thermody-

in the former they are not. _The_ reason that the CO"'S'.OnS hamic equilibrium. Given that such a state is by definition
our model are nondeterministic is that there are six un-

knowns (the velocity components of the two particles aﬂerlnvariant ur_l_der t_img re\_/ersal, we conclude_that the c_iif_feren-
the collision and only four equationghe energy conserva- “E_il P”’bab'“‘Y Q|str|but|onq P(6) of observing a collision
tion equation plus the three components of the momenturﬁ"'th a pre-collision angle?_ln the angular far_‘.geﬁ’?*?‘a]_
conservation equationThus, we need two more equations MUSt be equal to the differential probability distribution
in order to fully specify the post-collision trajectories of the dP(6") of observing a collision with a post-collision angle
particles. 0' in the same angular range.

It is simplest to represent the collision using a spherical Let us suppose that after some time the system has be-
coordinate system in velocity space centered on center ¢fome stationary under the effect of collisions and let us con-
mass velocitw, n,=(v1+V;)/2, wherev, andv, are the ve- centrate on a small interval on tlzeaxis. Letfg(v) be the
locities of the two colliding particles in the frame of refer- particles’ velocity distribution function within that interval.
ence of the static atmosphere. We defiheo be the angle Now, since in our one-dimensional modey(v) depends on
with respect to the vertical directioithe z axis), ¢ the lon-  the (not yet specifiefl angular distributiondP, we may
gitudinal angle(in the horizontal plang andu=|v;— V¢ ) choosefg in order to constraindP. Quite naturally we
=|v,— V.| the particles’ speed with respect to the center ofchoosefr to be an isotropic function of velocity in the
mass. Figure 2 illustrates how the velocities ,=v,, center-of-mass frame of reference. Because this assumption
— Ve m. of two colliding particles must change during the col- implies that there are no privileged directions in velocity
lision in order to preserve energy and momentum. Two paSPace, it follows that the distribution of the particles’ relative

rameters remain undetermined: the post-collision angles Velocity s given by

and#’. Since the model is rotationally invariant with respect ~ _ 1

to the vertical direction, we choos¢’ at random in the fR(ﬂ):ﬁj fr(V) fr(v—m)dv, (19
interval [0, 2] so that the only parameter one really has to o

care about ig’. is also isotropic, i.e.fr=Tfg(x), with x=|u|. Now that we

In order to get a physical insight into the problem of have choserig we can compute the associated angular dis-
wisely choosingf’ in our model, let us come back to Fig. tribution dP(#6). In order to do so, we make the experiment
1(b) and let us suppose that at any time both the heigintd  of following a particle during a sufficiently long time that we
the velocityv, but not the horizontal position, are known for can draw a complete histogram in the anglef the number
all the balls in the tube. Given such an hypothesis, the posif collisions experienced by the particle. Of course this his-
collision angled’ is undetermined exactly as in our model. togram is nothing but the representation of the distribution
For example, if we take the balls to be initially aligned ver-dP(6#) we are seeking. Strictly speaking we can't perform
tically and having no horizontal velocity component, theythis experiment since the scattering law has not yet been
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specified. However, if after each collision we select the postD. The algorithm
collision velocity of the test particle according to the distri-
bution fg, as if we were following a different particle after We have now assembled all Fhe elements that enter the
each collision, we ensure that its trajectory in velocity spacé"“gor'thm’ which goes as fOiIIOWS' - i

is statistically representative of the trajectories of all other (L) Initiate the velocitieg vy} and the position$zy} of N
particles, i.e., its motion is ergodic and the relative velocitie§3a"t'clles-20"der ”}\‘e particles according to their height such
of all other particles are distributed according (). that zp<zp<---<zp . . . . ) )
Now, since particles have to move relative to each other (2) Determine for each pair of neilghporlng particles, with
along thez axis in order to collide, it follows that the average 'ndicesi andi—1, the time intervat' until their next colli-
number of collisions per time unit, experienced by the test SioN: i-€.,[according to(17)]

particle is given by the sum of the downward and the upward ) Zio— zi0*1
fluxes measured in the frame of reference of the test particle, t'=————, i>1,
ie. Voz ~Voz
where one should better sétto a very large number if the
Vo= f?R(M)|#Z|d3,u_ (20 denominatqr Iqecomes too small ftBrt_o be pomput_eo_l cor-
rectly. Particlei=1 is special in that its neighbor is in fact
If we write Eq. (20) in spherical coordinates, the ground level az=0. That particle hits the ground after a
. 2 time
Ve 47-rf0 frlp)p d,ujo cosésinfda, (21 t1_vflJZ+ vi)Z+297
it appears that the average number of collisidng(6) ex- ) 9 ) ) ) )
perienced by the test particle in the angular rafiged (3) Find the shortest time interval,, in the set{t'>0}
+d] is given by (i.e., the time interval until the next collision in the sysjem
and store the indek=i of the particle corresponding to that

minimum.

(4) Advance all particles in the system using the equations
) of motion (16)—(18) through the time interval=t,,,.
= constank cosfsing d6. (22) (5) Perform the collision between particleand particle

The important conclusion one draws from E2Q) is that the | —1 according to Eqs25—(27). After the collision, choose
condition of isotropy forfe(x) implies that the angular partlclel to be the one that has an upward dlrgcted ve!ocnty
probability distributiondP c?f observing a collision in the in the center-of-mass frame, so that the spatial ordering of
interval[ 6,0+d@] is given by the relatively simple expres- theN particles remains unchanged. The_casé. means that
sion ’ particle number 1 hits the ground. In this case we choose to
make the particle rebound and simply change the sign of its
dP(6)xcosfsingdé. (23 vertical velocity component, i.ev,,— —v,.
) ) . ~ (6) Repeat step&2)—(5) using the newly computed posi-
We shall remember that this result is quite general as it igions and velocities of thdl particles until a given number of
based on only two assumptiord) the system has one spa- cojlisions or a given time level has been reached.
tial and three velocity dimensions a(@) the relaxed veloc-  Thjs algorithm corresponds to the simulations of an er-
ity distribution is isotropic. _ o ~ godic system similar to the one shown in Figb\ It is a
~ The probabilityP(6) of observing a collision with an ini- - simple ‘and instructive matter to simulate the nonergodic
tial angle_wnh respect to the v_ertlcal dlrectlez_le is easily equivalent of the system shown in Figallby choosing the
found by integrating Eq(23). With the appropriate normal- initial particle velocities to have vanishing horizontal com-
izations one obtains ponents and by performing strictly one-dimensional interpar-
_1_ ticle collisions, such that particles simply exchange their ve-
P(6)=1—cos 6. @49 locity as if they were going through each other. This system
Since in the relaxed state the probability distributions dor does not lead to a static atmosphere stratified according to
and ¢’ have to be identical, Eq24) provides the rule for the barometric formula unless very special initial conditions
choosingé’. Thus, choose a random numtiein the range ~ are selected for the particlés.
[0,1] and determined’ e[0,7/2] from Eq. (24) using this
sameP. _ o _ _E. The choice of the number of particles
The essence of the whole discussion in this section resides
in the conclusion that for the particles’ velocity distribution ~ The choice of the numbe of particles that one wants to
function to relax toward an isotropic distribution, one has toput in the system is a crucial one and is dictated by the fact
choose the post-collision velocity of two interacting particlesthat an arbitrary initial distribution of particles will evolve

dve(0)= ( 47TJ. ?R(,u),uﬁd,u) cosésinfddo
0

according to toward a static atmospheteharacterized by a scale height
, H) in a time that is much longer than the characteristic free
[ug ) =|us 4, (25 fall time t;=(H/g)2 In order to keep the computation time

. at a reasonable level, one must requiréo be not too large
"=ar P h P=random num 1 ; ' - .
6" =arccog VP wit ando umbe [0, ](,26) a number of times,,,, the latter being roughly the interval
between two collisions in the most dense region of the sys-
¢’ =random numbet [0,27]. (27)  tem, i.e., close to the ground levelzt 0. An estimate of the
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typical collision timet,;, is easily found by first noting that 0 WWHHHH T T ,
the total number of particles in the system is directly related 10 H HJ ‘ ‘ 7
to the number densityi(z) given by Eq.(15) via 10- 1L ‘ i
N=f n(z)dz=ngH, (28 o 1072k B
0 ~
N 19”3k
which means that the average distance between particles ne: & '° 7
the ground, az=0, is |(0)=H/N. Given that the average 10~4k i
velocity of particles in a Maxwellian gas can be estimated to
be of order kT/m)*?2, it follows thatt,,, is of the order of 1075k i
H/[N(kT/m)*?] and thus 106
b (H)ENGTmT 29 o 2 4 8 8 10 12
tmin g H ' z/H

which means that computation time is roughly proPortmnalFig. 3. The solid line corresponds to the density profile from a simulation of

to N for a given total physical simulation time. Frof@9)
one also learns that even though aftecollisions a physical

an atmosphere usirg= 50 particles that have been allowed to collide some
10 times. The dashed line corresponds to the prediction based on the virial

time of ordert; can be reached, the system may still be fartheorem. The density has been obtained by counting all particles’ positions

from thermodynamic equilibriuntif it was out of equilib-

every 50 collisions. Bin size iAz=0.245. The vertical lines in the upper

. . . N part inform on the theoretical average position of the 50 particles in the
rium at the beginning of the simulatiprsince on average the system. For example, the lowest 49 particles are located most of the time

par_t'des in the sys_tem ha\_/e experlenced Only On,e COIIISIorBelow levelz=3.9 while the lowest 48 particles are mostly located below
during that same time period. Experiments in uniform Sys-—3 2 etc. One can also say that the average position of pairticl® lies
tems show that five collisions per particle are needed fosomewhere between=3.2 andz=3.9, etc. The separation between the
thermalization to be practically compléfeso that one may vertical lines also gives a measure of the local mean free path.

estimate that after 10 collisions the system will generally

be thermalized. However, one should remember that in our

nonuniform system the collision frequency of the uppermoswhere overlining means that the temporal average of the cor-
particle (particle i=N) is much smaller than the collision responding quantity must be taken. If collisions are frequent

frequency of the particle close to the grougparticlei=1)
so that 10 collisions may not be enough in some cases.

Ill. THE VIRIAL THEOREM

It is easy to compute the statistical relation between th

mean kinetic and the mean potential energy per particle in

our one-dimensional system.
From the identity

d ..,
qi(Z9=72+2, (30

where the dot represents the usual total time derivatidk,
and the equation of motion

vV,=2=—¢g, (3D

enough and if the numbét of particles is large enouglsee
below), the velocity distribution is Maxwellian with a tem-
peratureT, which is independent of heiglisee the discus-
sion leading to Eq(14)]. The mean kinetic energy per par-
ticle (Eyy,) is therefore independent of height and can be
computed easily by weightinmv?/2 with the Maxwell ve-
éocity distribution (4):

<Ex> = <Ey> = < E)= %< Ekin> = %kT- (35

We can thus conclude that if the numtépf particles in the
system is large enough and if one lets the system evolve long
enough, it will reach a stationary state where the mean total
energy per particle=E/N is related to the temperatuie

via

5:<Ekin>+<Epot>=%kT+ kT= %kT, (36)

where the time averages that appear in 84) have been
evaluated using the velocity distribution function weighted

it follows that the average of the squared vertical velocity ofqyantities in(35). Using the same procedure, one shows that

all particles in the system,
N
(VA=< (v
z N “ z)
is given by

2 d .
<vz>=<a<zz>>+<zg>.

(32

(33

It is easy to convince oneself that in a static system the tim

average of the first term on the right in E§3) must vanish
as the time interval used in the averaging process goes
infinity. This leads to the following relation for the mean
kinetic and the mean potential energy per particle:

(Ep)=1m(v?)=m(zg)=XEpo, (34)
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in a system withs spatial dimensions the average potential
energy per particle must kT

IV. AN EXAMPLE

We start a simulation by distributing a set Nfparticles
uniformly between the ground level and an arbitrary height
h. The particles have zero initial velocity, so that the average
éotal energy per particle is simpk=mh/2. Using Eq.(36)

Wwe can immediately predict that the scale height of the at-
{@osphere will beH=kT/(mg)=h/5. Figure 3 shows the
density profile of a simulated atmosphere ushg 50 par-
ticles that have been let collide somée’ tiines during a total
simulation timetgne=1.43< 10%;. The density profile has
been obtained by counting the particles’ positions every 50
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collisions within bins of size\z=0.2454. However, no po-

sitions have been retained during the first 80* collisions, ﬂk (a) ﬂi\ (b)
to ensure that the memory of the initial condition is I55t. "

Thus the density profile results from averaging over the dif- 1.5x10 s

ferent possible states visited by the syst@subset of the
microcanonical ensembleHowever, the averaging can also
be interpreted as the time average over the density profiles 5 5xq103|
recorded at different times. Note that since the system is™
ergodic, the entire microcanonical ensemble will be visited
by the system within a lapse of time that depends on how

densely one requires the energy surface to be covered by th Ot
system’s phase space trajectory. In practice we expect tha 0.0 05 y 1.0 150 4 ” 8 2
time to be longer than the longest correlation time in the z/ z

system. _The Ia'tt'er is most likely the time_ separat'ing t\_NOFig. 4. Time and position for two different particles registered every 1000
successive collisions of the uppermost particle, that is, a timeoliisions, i.e., roughly every 1t¢: (a) corresponds to particie= 25 and(b)

of the order Of(v§>1/2/g=tf . As already stated, the total to particlei=N=50. Note the different spatial scales used for the two plots.
physical simulation time leading to the density profile in Fig. The vertical lines through the clouds of dots are the ones discussed in Fig. 3

b . even though only the ones that are of interest for the given particle are
3 s 1.4% 104tf’ so that we may consider that temporal plotted here. The histograms thus represent the observed probability of find-

averages are already a good approximation of the microcang the associated particle at a given height, with the vertical line going
nonical averages. through the histogram indicating the average measured position of the cor-
Figure 3 shows that the simulation is in good agreementesponding particle.
with the prediction of the virial theorem up to level5H
=h. Above that level, the measured curve departs more and L . . N )
more from the theoretical prediction based on the virial theo-mos.t particle in the S|mulat|9n shown in F_Ig(bél. I_:or th.'s
rem. However, even with only 50 particles in the system, th?21iCIe the mean free path is strongly anisolropic, being of
: - ' . '~ _order H in the downward direction aned in the upwar
Egiromectgﬁefsorgnnlﬂ% 'Stoe;t;gwoﬂyof\'\;ﬁg &Z‘:}g?uﬁi’h urgstoegdirection. Of course, the large and anisotropic mean free path
9 p 9 Y PEClS the reason for the strong asymmetry in the probability
to the ground level, by more than three orders of magnltude.istribution However. despite the fact that the dorrziH
Of course the fact that the simulated density profile departg . - ' P SO
from the barometric formula for highvalues is not an arti- ~> 1S €ssentially explored by the uppermost particle in the

fact. Indeed, besides the statistical departures due to tmulation alone and despite the strong asymmetry of its

small count rates at large altitudésount rate is of the order probability distribution, the barometric formula is reasonably

107 per bin atz/H=10), the differences between the mea- Well @pproximated up to a leve/H~10, which is a clear
gmonstration of théwell known? fact that in the case of

sured and the barometric density profile are a consequence > h h 0 of the local ¢ h
the fact that the total energy is finite so that the phase spa e static atmosphere the ratio of the local mean free path to
e scale heightl is not a critical parameter of the problem,

domain that is accessible for the particle trajectories shrink - h . S
as the collision time is always small compared to the infi-

with increasing height, until it vanishes completely above & itely long time scale of a static system. This is generally not

critical height that depends on the total energy of the systenﬂ

Naturally, the difference of the measured density profileso in the case of nonstatic atmospheres, like stationary stellar

from the barometric formula is also due to the finite integra-W'ndS‘ since in that case the relevant time scale, which is the
tion time. If a region in phase space is “visited” on a typical
time scale that is much larger than the integration time and
the contribution of that region to the barometric distribution
function (14) is important, the measured density profile will
of course differ from the barometric formula. V. CONCLUSION

Figure 4 shows two things. The first noticeable thing is \ve have presented a simple one-dimensional kinetic
that the clouds of dots representing the positions of two pargjmylation that shows the formation of a gaseous atmosphere
ticles in a space—time plot clearly show that, as expectedyratified according to the barometric formula. The interest of
there is no temporal correlation between the subsequent pgne model resides essentially in its coding simplicity and in
sitions of a given particle after a time interval of the order ofjis didactical aspects, as it addresses various subjects at a
the total simulations time=2x10%;, consistent with the time, including interparticle collisions, phase space trajecto-
fact that the longest expected correlation time is of oftger ries, the problem of ergodicity, and the virial theorem. It is
only. Thus the two probability histograms shown on top ofpossible, though much more complicated, to generalize the
both scatter plots in Fig. 4 won't change significantly aftermodel to the astrophysically interesting case of a spherical
further increasing the simulation time. The second strikingbody of massv and radiusk, surrounded by a gas. It is well
aspect in Fig. 4 is that the probability distribution of a par-knowr? that in such case a static equilibrium is not possible
ticle in the highly collisional domain of the atmosphere, de-because of the finite value of the escape velocity from the
fined as the domain where the mean free path is such thlody surface, which allows for the high energy particles in
I(z)<H, is roughly symmetric about the particles’ averagethe Maxwellian distributior(4) to escape to large radial dis-
height. This is the case for partidle- 25 shown in panela) tances causing the body to lose its atmosphere sooner or
for which the mean free path is roughly given by the sepalater®* However, if one compensates for the escaping par-
ration between the two vertical lines going through the cloudicles by injecting new particles coming from below the sur-
of dots. The situation is completely different for the upper-faceR,, it is possible to sustain a stationary fléDepend-

typical time it takes for the flow to travel one scale height, is
i{irnite and may not be long compared to the collision time.
his is precisely the case of the solar wind probfm.
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ing on the number density and the temperatur&kat the niscent of the thermal velocity2k T/m for a Maxwellian gas. If we as-
flow can become supersonic at some distance alfvin sume that the system is ergodic we can easily compute the probability
very much the same way as in Parker's fluid theory of the “(") ©f 0PServing exacthn particles with a speed,= v

X N! 1
solar wind?° - -
W= SN 2 @7
where 2! is the total number of possible states adtd[n!(N—n)!] the
ACKNOWLEDGMENTS number of possibilities of selectingparticles out olN. For large values of

. . N, n, andN—n one can use Stirling’s formuld! ~ 27N NN e N in Eq.
I'would like to thank the referees and many CO”eag@mS (37). Thus, for small departures=n—N/2 of n from the mean value

parti_CU[t’glf F. Cametti, R. Grappin, S. Lan_di: F. Leblanc, and (ny=N/2, and after some calculatiorisee Sec. 23 in Becker's book—

F. Lignieres for useful comments, especially on Sec. IIC.  Ref. 4—for the details Eq.(37) can be transformed into
1 Ve

1E. Halley, “A Discourse of the Rule of the Decrease of the Height of the W)= VN2 xR~ M) 9

Mercury in the Barometer, According as Places are Elevated above theThe probability for the system’s average velocity,)|=v+ v/N to be
Surface of the Earth, with an Attempt to Discover the True Reason of the smaller than an arbitrary fractiom is readily obtained by integrating Eq.
Rising and Falling of the Mercury, upon Change of Weather,” Philos. (3g),

Trans. R. Soc. Londo6, 104—116(1686—1692 1 aN (2
2M. N. Berberan-Santos, E. N. Bodunov, and L. Pogliani, “On the baro- W(|<Vx>|<0[VT):(jJ- eXF{*M dv

metric formula,” Am. J. Phys65 (5), 404—412(1997). VN2 J o

3In fluid theories the thermodynamic state of a system is specified by the W

spatial distribution of at least two macroscopic quantities like the pressure, — i ’ e ¥ dx= erf(ay2N). (39
the density, etc. NEN

‘R. ?ecrergﬂeoriezdser;Iganed(zplringger%erlagl, Belrlin, 19382Fdhed. In fThis equation shows that there is a .70 2 probability for the mean
particular Chaps. 25-28 an —33. There is also an English version o velocity |(v,)| to be larger tharvy2IN. The probabil 3

. e - TV2/N. probability falls to an al
the book: R. Becker, and G. Leibfrietheory of HeatSpringer-Verlag, ready ridiculously small 1.8 10# for [(v,)> v VBN, which shows how

ﬁl?\/er\l;\?’vl\/?)iz “Computer studies on fluid systems of hard-core particles.” insignificant the departures from the average behavior are. This is the
= ! P Y P ' justification for ignoring such departures in our model.

in Fundamental Problems in Statistical Mechanics (North-Holland, 1 - A X - .

Amsterdam, 1975 pp. 331-388. 5;31 fé786|na|,lntroductlon to Ergodic TheoryPrinceton U.P., Princeton,

5G. Sauer, “Teaching classical statistical mechanics: A simulationls_l_hé casé of only two balls of different mass, and m, in a one
1 2 .

approach,” Am. J. Phys49 (1), 13—-19(1981. . ) . A S 2 -
M. Eger and M. Kress, “Simulation of the Boltzmann Process: An Energy d|men§|ona| closgd system is not ergodic. The numerical integration of the
equations of motion on a computer shows that the momemtwheach

Space Model,” Am. J. Phys50 (2), 120—124(1982. : .

8R. P. Bonomo and F. Riggi, “The evolution of the speed distribution for a Eartlc:e can Or?tl))ll talieta f";'te nucrinber T)f v;lluss. Althoug; the ezacr: num-

two-dimensional ideal gas: A computer simulation,” Am. J. PH§&(1), ber of accessible states depends on both the massmatio, and the
initial conditions, it is clear that the ellipse of constant enerfgy

54-55(1984. an
°R. M. Sperandeo-Mineo and A. Falsone, “Computer simulation of ergod- — (Pf/my +p3/m,)/2 cannot be densely covered. Thus a minimum of three

icity and mixing in dynamical systems,” Am. J. Phy&8 (11), 1073-1078 particles and two species is probably needed for such a system to be an
(1990. ergodic one. ) o )
19 Boltzmann, “Uber die mechanische Analogien des zweiten Hauptsatzes D: Ter Haar, “Foundations of Statistical Mechanics,” Rev. Mod. Phys.
der Thermodynamik,” J. fureine und angew. Mathematik00, 201 1827' 289-338(1955. . . . o
(1887. If there were two, or more, different species of particles, collisions would
p_ Ehrenfest and T. Ehrenfest, “Begriffliche Grundlagen der statistischen thermalize all species to the same temperafur8ince in our model the
Auffassung in der Mechanik,” Encyclopaedie der mathematischen Wis- Particles can pass each other, every speciesuld separately produce a
senschaften, Vol. 4, Part 3Teubner Verlag, Leipzig, 1921 pressure profile of the barometric typef. Eq. (1)] with scale heightd;
12G. D. Birkhoff, “Proof of a Recurrence Theorem for Strongly Transitive = KkT/m;g. The result is that the relative concentration of light to heavy
systems,” Proceedings of the National Academy of Sciences of the USA Particles increases with height. In Sauer's model—Refcf6 Fig. 1(a)],
17, 650 (1931); “Proof of the Ergodic Theorem,” Proceedings of the where particles cannot pass each other, things are quite different. In that
National Academy of Sciences of the USW, 656 (1931). It may be case a sequence of particles, alternatively of nmsandm,, lead to an
easier to find the two volumes with Birkhoff's collected works: G. D. ~atmosphere profile of the type given in Hd) with an intermediate scale
Birkhoff, Collected WorkgAmerican Mathematical Society, Providence, heightH=kT/(mg) with m=(m;+m;)/2. It is therefore clear that Sau-
1960). er's model does not provide a good description of a real atmosphere where
3. Boltzmann, “Weitere Studieriher das Wemegleichgewicht unter Gas- species are distributed independently from each other following their re-
molekilen (H-Theorem,” Wien. Ber. 66, 275(1972. The article where spective scale heightd; . On the other hand, Sauer’'s model provides a
Boltzmann proves his famoud-theorem. good description of ionized atmosphei@sg., stars’ atmosphenewhere
Lpespite the analogy between our model and the physical representation ofthe Coulomb force prevents positive and negative charged partides
Fig. 1(b) it should be noted that our model is not ergodic on the whole example, protons and electrorfeom separating.
hypersurface of constant energy. The reason is that there are no verticklAccording to the discussion at the end of Sec. Il E a number of collisions
walls in our model so that the total horizontal momentum is necessarily larger than 18=500 generally suffice for the system to become thermal-
conserved. The system’s phase space trajectory is therefore restricted to dzed.
subspace of the energy surface defined by the conservation of the twiE. N. Parker, “Dynamics of interplanetary gas and magnetic field,” As-
components of the total horizontal momentum. Thus, the dimension of the trophys. J.128 664—676(1958.
subspace is equal to the dimension of the energy surface minus two. OrféSee J. H. Jeanghe Dynamical Theory of Gas¢Sambridge U.P., Cam-
could make the model fully ergodic by stochastically reversing the par- bridge, 192§, in particular the chapter on planetary atmospheres. There
ticles’ horizontal velocity in order to mimic the effect of the walls of the  are numerous editions and translations of this classical book(@oger,
tube in Fig. 1b). However, in a stationary system with a large number of New York, 1954.
particles the total horizontal momentum is approximately constant with?in stars there is not a well-defined surfdg, as in the case of nongaseous
strong departures from the average being extremely rare and thereforeplanets like the Earth, separating the planet's body from the atmosphere.
statistically insignificant. In order to appreciate quantitatively the con- Of course, in the case of a star like the Sun, which is entirely made of gas,

stancy of total horizontal momentum, let us consider a systeid pér- the choice of the reference levi}, is arbitrary. In a stationary situation
ticles and let us suppose, for simplicity, that thg component of the the net amount of gas crossing the spherical suRe®, per time unit is
particles’ velocity can only take two valueg= *=v. The velocityv the same as the mass loss rate of the star. In the case of the Sun the loss
represents a typical velocity of the particles in théirection and is remi- rate is of the order of 10" solar mass/yr only.

68 Am. J. Phys., Vol. 68, No. 1, January 2000 Filippo G. E. Pantellini 68

103



Annexe 6

6 Une méthode de simulation originale pour les plas-
mas faiblement collisionnels
Ap&SS 277,149-152 (2001)

104



Une méthode de simulation originale pour les plasmas faiblement collisionnels

A Simulation Method for Semicollisional Plasmas

Filippo Pantellini and Simone Landi

Observatoire de Paris, France

May 25, 2000

Abstract. We present a one dimensional kinetic simulation model which can be
used to simulate the stationary state of a semicollisional plasma. Results of a simple
simulation are presented and compared to Fokker-Planck calculations. The model
is particularly well suited for the diluted solar atmosphere.

Keywords: Simulation, collisions, plasma, kinetic

1. Introduction

It is sometimes impossible to conveniently simulate a plasma using
either fluid (i.e. fully collisional) or collisionless model. The solar at-
mosphere beyond the upper chromosphere and out to heliocentric dis-
tances of the order of an astronomical unit is an example of such a
plasma. The method we present in this paper is suited for stationary
configurations where the collisional mean free path for a thermal par-
ticle is not too small compared to the typical gradients of macroscopic
quantities (e.g. temperature, density, etc.) and can be seen as alterna-
tive to Fokker—Planck and Monte Carlo simulations. Most basic aspects
of the model have been discussed elsewhere (Pantellini, 2000) for the
case of identical particles undergoing hard—sphere type collisions and
shall not be repeated here. Only the extension of the model to the
case of charged particles undergoing Coulomb type collisions is briefly
discussed here.

2. The model

A qualitative sketch of the model is shown in Figure 1. The model
is based on the numerical integration of the one dimensional motion
(along the z axis) of N protons and N electrons plunged in a z aligned
gravitational field g and an external self-consistent charge neutralizing
constant electric field F/ which is determined experimentally by trying a
number of different values. Particles are vanishing small, have non zero
mass and three dimensional velocities. Whenever the world lines of any
two particles encounter they may make an elastic collision according to
a prescribed velocity dependent probability distribution P. The choice

% © 2000 Kluwer Academic Publishers. Printed in the Netherlands.
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z=L : T=T,
O €lectrons
[ protonS
E
z=0 T=T,
Figure 1. Schematic illustration of the model for a proton—electron plasma. Note

that the particles’ velocity is 3D even though the model is spatially 1D.

of P specifies the character of the interaction. A probability distribution
P o u™*, where u is the relative velocity of the two particles, mimics
a Coulomb type collision whereas a velocity independent P mimics a
hard sphere type collision. Given the low velocity divergency of the
probability distribution for Coulomb collisions we set P(u) = 1 for
relative velocities u < ug where uq is typically of the order, or smaller,
than half the typical relative velocities between the colliding particles.
A particle hitting one of the boundaries at z =0 or z = L is instantly
reinjected into simulation domain following a not yet specified velocity
distribution function.

3. An example: the thermoelectric field

We simulate a plasma in a ¢ = 0 gravitational field using 80 elec-
trons and 80 protons. A proton to electron mass ratio of 100 has been
used to speed—up the simulation. Particles reaching the boundaries are
reinjected into the simulation domain according to Maxwellian velocity
distribution functions with temperatures T'(0) = Ty and T'(L) = T7,, re-
spectively. For moderate temperature gradients a constant electric field
is generally good enough to ensure local charge neutrality everywhere
in the system. Now, if the plasma is sufficiently collisional such that the
electron temperature 7,(z) and the proton temperature T,(z) are equal
we expect the electric field to be related to the temperature gradient

paper.tex; 25/05/2000; 12:14; p.2
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A Simulation Method for Semicollisional Plasmas 3

via (e.g. Chapter 7.9 in Golant, Zhilinsky and Sakharov (1980))

0
-«

0z
where k is the Boltzmann constant and e the proton charge. This field
is called the thermoelectric field as it is solely due to the temperature
gradient in the plasma slab. It is reminiscent of the Seebeck effect in
metals (first described by Seebeck in the early 1820s) which makes the
familiar thermocouple thermometer to work. The field is ultimately
due to the unbalanced frictional force exerted by the heavy protons
on the electrons flowing from the hot to the cold boundary and vice

versa so that the appearance of the numerical constant « is primarily
an effect of proton—electron collisions. Figure 2 shows electron num-

¢F = (KT (1)

0.95
0.90 PR I T R SR N 1.0
0.00 0.25 0.50 0.75 1.00
z/L
Figure 2. Simulation of a plasma slab with imposed temperature gradient. The

electron temperature (dashed profile) and the electron density have been obtained
by periodically sampling the position and the velocity of all electrons in the system.

ber density n. (normalized to the average electrons density (n.)) and
electron temperature 7, (in units of Tg) profiles for a simulation based
on our model. The reason for the normalized temperature profile to
differ from the theoretical profile T.(z) = 1+0.2 z/L one would expect
based on the imposed temperatures at the boundaries is due to the
fact that the typical collisional mean free path is finite. As expected
both the proton and electron pressures are equal and constant so that
the only contribution to the charge neutralizing electric field is the
thermoelectric field which we find to be ' = —0.0895 (in units of
kTo/eL). On the other hand the temperature gradient, which can be
measured on the figure, is d7./0z = 0.116/L. Using Eq. (1) we find
Osim = 0.77 which compares quite well with the Fokker—Planck result
app = 0.71 found by Spitzer and Harm(1953).
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Unlike the thermoelectric field, which depends on the electron—proton
collisions, the electron heat flux is mainly supported by electron—electron
collisions. Accurate Fokker Planck calculations lead to the following
expression for the total electron heat flux (e.g. Chapter 7.10 in Golant,
Zhilinsky and Sakharov (1980))

nkT. OkT,
cp=—-3.16 —2 < 2
qrp Vepie 0z ( )

where v, is the collision frequency of an electron with the protons in
system. Replacing the collision frequency measured in the simulation
and the temperature gradient of Fig. 2 into Eq. (2) one obtains a
heat flux ¢, = —0.075 (in units of (n.ym.(kTy/m.)*/?) which, again,
compares quite well with the heat flux ¢5,,, = —0.087 measured in
the simulation. This value differs substantially from hard sphere type
collisional heat flux, which for the observed temperature gradient can
be estimated (cf. most books on statistical physics) to be ¢f, ¢ = —0.027.
Even though a collisionless plasma is unable to support a temperature
gradient it can support a strong heat flux. The latter is due to the fact
that the upward and downward traveling particles have different tem-
peratures given by the injection temperature Ty and 17, respectively.
In that case the temperature is constant T.(z) = /ToTr, but the heat
flux is roughly twice the Fokker-Planck value, i.e. g5 = —0.167. We
conclude by noting that the Fokker Planck results Eqs. (1) and (2)
are valid in the limit of small values of the thermal Knudsen number
Ky = (0T./0z)Ae/T. where A is the average collisional mean free
path for an electron—electron collision. In the simulation of Fig. 2 we
find Aee = 0.19 L and K7 =~ 0.02 which justifies comparing our sim-
ulation with results from Fokker Planck calculations. We note that
increasing the number of particles by roughly a factor 10 leads to
K1 = O(1073) which is a typical value in the solar corona or the solar
transition region. Simulations in this regime of the Knudsen number,
including gravitational effects, will be published elsewhere.
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Abstract. In the solar corona the collisional mean free path X for a thermal particle (electrons or protons) is of
the order of 1072 to 10™* times the typical scale of variation H of macroscopic quantities like the density or the
temperature. Despite the relative smallness of the ratio \/H, an increasingly large number of authors have become
convinced that the heat flux in such a plasma cannot be described satisfactorily by theories which suppose that
the local particle velocity distribution functions are close to Maxwellian. We address this question through kinetic
simulations of the low solar corona by assuming that non thermal velocity distribution functions are present at
the base of the corona. In particular, we show that if one assumes that the electron velocity distribution functions
at the base of the corona have sufficiently strong suprathermal power law tails, the heat flux may flow upwards,
i.e. in the direction of increasing temperature. Using kappa velocity distribution functions as prototypes for non
thermal velocity distributions, we find that the heat conduction can be properly described by the classical Spitzer
& Harm (1953) law provided the kappa index is 2 5. This value is much smaller than the value previously found
by Dorelli & Scudder (1999). In addition we show that, unless extremely strong power law tails are assumed near
the base of the corona (i.e. K < 4), a local heating mechanism (e.g. waves) is needed to sustain the temperature

gradient between the base of the corona and the coronal temperature maximum.

Key words. Sun: corona — methods: numerical — plasmas — conduction

1. Introduction

In this paper we present results from a one dimensional
kinetic model of a semicollisional electron—proton plasma
plunged in a gravitational field. The model is especially
suited for stationary (not necessarily static) flows and for
Knudsen numbers K = A\/H2 10™%, where H is a typical
scale of variation of a macroscopic quantity, such as the
density or the temperature and A the distance between two
successive collisions of a typical particle in the system. A
simplified version of the model has previously been used
by Pantellini (2000) to simulate a one-species atmosphere
in a constant gravitational field. As expected, the result
was the formation of a stratified isothermal atmosphere
with an exponentially decreasing density known as the
barometric law. The fact that the barometric law could
be recovered was the first confirmation of the fact that,
despite being one dimensional, the model could correctly
reproduce known results. More recently, we implemented
a more sophisticated version of the model to simulate an
electron—proton plasma confined to the space between two
conducting plates held at different temperatures and not
subject to any external force (Pantellini & Landi 2000).

Send offprint requests to: F. G. E. Pantellini,
e-mail: landi@despace.obspm.fr

We could show that the thermoelectric field needed to
ensure quasi-neutrality in our simulation compares quite
well with results of Fokker-Planck calculations with all
possible interspecies collisions included (Spitzer & Hérm
1953). These encouraging results motivated us to use the
model to address the question of the heat flux in the solar
corona.

The motivation for applying the model to the solar
corona stems from the fact that observations suggest that
above the transition region the typical thermal Knudsen
number K1 = A dInT/8z is of the order 1072 or larger
(e.g. Dupree 1972; Ko et al. 1997; David et al. 1998;
Fludra et al. 1999). It has been demonstrated that such
a value, despite being much smaller than unity, is large
enough for the classical transport coefficients (obtained by
applying the Chapmann-Enskog formalism to the Fokker-
Planck equation) to become substantially modified be-
cause of the presence of high non thermal energy tails
in the electron velocity distribution functions (e.g. Shoub
1983; Scudder 1992b). Whence the necessity of using a nu-
merical model appropriate for the solar atmosphere above
the chromosphere-corona transition region where high val-
ues of the thermal Knudsen number 2 1072 are com-
monplace. The difficulty with the coronal plasma (and
even for the solar wind plasma out to distances of the
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order of astronomical units) is that neither a collisionless
model based on the Vlasov equation nor a fluid model with
Spitzer-Harm transport coeflicients provide a convenient
framework for investigation. Unfortunately, acceptance of
the postulate of the existence of non thermal electron ve-
locity distributions in the solar corona introduces an in-
finite number of additional free parameters required to
define the distributions at the boundaries of the system.
However, it is common practice to generalize the standard
Maxwell-Boltzmann velocity distribution function using
kappa distributions (see Eq. (18) below) which have the
substantial advantage of requiring one additional free pa-
rameter only (the x index). Depending on the value of the
parameter x the distribution departs more or less signifi-
cantly from a Maxwell-Boltzmann distribution due to the
presence of a more or less large excess of high energy par-
ticles. At least two studies have already discussed the fate
of electron kappa distributions in the solar corona under
the action of collisions. Anderson (1994) shows that colli-
sions do strongly affect density and temperature profiles
obtained using Scudder’s (1992b) collisionless approach.
After assuming that collisions do merely introduce first
order perturbations to the collisionless distribution func-
tion he finds that the actual perturbations are of order
unity or larger showing that collisions need to be treated
self-consistently. To a certain extent this has been done
by Dorelli & Scudder (1999) who let collisions affect the
first order term of the Legendre polynomial expansion of
the electron distribution function without assuming that
this term was small but with the assumption of all higher
order terms being zero. However, as we shall demonstrate
below, higher order Legendre terms cannot be neglected.
For example we find that collisions substantially mod-
ify the collisionless temperature profile (this has been
observed by Anderson 1994, as well) indicating that at
least the second order Legendre term must be retained
in the expansion. The approach of Lie-Svendsen et al.
(1999) is not substantially different from that of Dorelli &
Scudder (1999) since they also use a first order truncated
Legendre expansions for the electron distribution function.
According to Chapman & Cowling (1970), such a trunca-
tion is valid for Kt < 1 (weak inhomogeneity assump-
tion) but, as pointed out by Shoub (1983) and Anderson
(1994), Kt < 1073 is probably a more appropriate con-
dition for the first order truncated Legendre expansion to
remain a justified approximation, especially in the case
of non-thermal boundary conditions. Unfortunately, 10~3
is a typical value for the thermal Knudsen number K
in the corona and the weak inhomogeneity assumption
may be regarded as questionable. Assuming much stronger
temperature gradients than the ones assumed in both the
Dorelli & Scudder (1999) paper and in the present work,
Lie-Svendsen et al. (1999) argue that the classical Spitzer
& Hérm (1953) heat flux adequately describes the heat
flux in the lower solar corona if Maxwellian boundary con-
ditions are chosen at both ends of the simulated plasma
slab. All these Fokker-Planck based models eventually are
affected by additional limitations. For example, Dorelli &

Scudder (1999) use the standard hydrostatic equilibrium
equation as a closure whereas, following Shoub (1983),
Lie-Svendsen et al. (1999) use a contestable zero-gravity
pressure equilibrium condition. We do not need such a
fluid closure equation nor do we require the velocity dis-
tribution functions to be of any particular form. However,
the principal advantage of our model stems from the fact
that collisions are included self-consistently, even though
their treatment is strongly simplified with respect to the
complexity of collisions in a real plasma. We are unable to
evaluate precisely the importance of the simplified treat-
ment of the collisions on our results. However, the very
fact that the transport properties measured in test simula-
tions compare well with those predicted by Fokker-Planck
calculations suggests that our simplified way of handling
collisions allows us to retain most of the essential physics
occurring in a non-magnetized plasma.

Since the simulation model we use has never been de-
scribed in full, we shall devote the next section to doing
so. Non-essential details of the algorithm are presented
in Appendix A. A brief discussion of the differences and
similarities between our model and conventional Fokker—
Planck models is given in Appendix B. The derivation of
some relevant quantities (density, temperature and heat
flux) for a collisionless plasma is given in Appendix C.

2. The model

A qualitative sketch of the model is shown in Fig. 1. The
model is based on the numerical integration of the one
dimensional motion (one space and three velocity compo-
nents) of N protons and N electrons plunged in a constant
gravitational field and an electric field which is generally
needed to ensure quasi-neutrality everywhere in the sys-
tem. Particles are confined to the interval z € [0, L] by
two conducting plates. Each time a particle hits one of the
plates, it is instantly reinjected into the system according
to a user defined prescription (e.g. elastic reflection, con-
tact with a heat bath, etc.). Whenever the world lines of
any two particles meet they may (or not) make an elas-
tic collision depending on the magnitude of their relative
velocity. The functional form of the velocity-dependent
collision probability strongly influences the macroscopic
behavior of the plasma (cf. 2.3).

2.1. Equation of motion

Both the gravitational field acceleration g and the electric
field E(z) = [Eo + dE(2)]2 are directed along the z axis
so that the equation of motion for a particle of species «
can be written as

dv./dt = =g + o E(2)/ma (1)

v, =dz/dt, v, = const., v, = const. (2)
where g, and m,, are the charge and the mass of the parti-
cles of species a (electrons or protons). As can be seen on

the left hand side of Fig. 1, we assume that the electric field
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Fig. 1. Schematic illustration of the model for a proton-
electron plasma plunged in a z aligned constant gravitational
field. The particles’ velocities are 3D even though the model
is spatially 1D. Ey is a z aligned external electric field which
is generally needed to ensure local quasi-neutrality. In some
cases a constant electric field does not suffice for the system to
be neutral everywhere. In this case an additional small inter-
particle electric field is introduced (as shown on the left hand
side of the figure) to compensate for these polarization effects.
When two particles encounter each other, they may collide as
described in Sect. 2.3. If a particle of species « hits one of the
two boundaries at z = 0, L it is injected back into the system
according to prescribed velocity distributions fo'(v.,v1) (cf.
Sect. 2.4) where v, is the particle’s velocity along the z axis
and v the absolute value of the particle’s velocity in a plane
perpendicular to z.

between adjacent particles is constant, eventually increas-
ing (decreasing) discontinuously by an arbitrary amount e
at the position of each proton (electron) in the system as if
the particles where a succession of condensator plates at-
tracting or repulsing each other depending on the charges
on each plate. We then take the electrostatic field felt by
a given particle (or condensator plate) to be the mean of
the electrostatic field on either side of the particle. Thus,
if we number all the particles in the system from 1 (bot-
tom particle) to 2V (top particle) it follows that particle
i feels the electrostatic field E = E; = (F; + F;41)/2 dur-
ing the whole time interval 0t; until the earliest of the
three possible collisions between 7 and 7 & 1 and between
i — 1 and 7 — 2. Note that only a collision between parti-
cles of different charges may modify the topology of the
electrostatic field in the system, provided the interacting
particles exchange their relative position during the colli-

S. Landi and F. G. E. Pantellini: Temperature and heat flux in the solar corona

sion. Since the electrostatic field is piecewise constant, we
always integrate Eq. (1) using a constant E field.

2.2. The electric field

It is often possible to ensure a satisfactory charge neu-
trality in the system without the need for an interparticle
electrostatic field e. In these cases, the same constant ex-
ternal electric field Ey can be used for all particles in the
system. Particles do not feel each other. However, in the
general case, a constant electric field is not good enough,
as the plasma may behave like a dielectric medium, where
polarization effects are no longer negligible. In that case,
the Poisson equation must be written in the form
%—?E%(EOE+P>ip (3)
where p is the charge density, ¢ the permittivity of the
vacuum, D the electric displacement and P the polariza-
tion. If P is negligible or (and) independent of z Eq. (3)
implies that the electric field E needed to ensure charge
neutrality (p = 0) is a constant E = Ep2. This may be
the case when the density or temperature gradients in the
system are small (Pantellini & Landi 2000). In cases where
polarization effects are not negligible, a better charge neu-
trality can be obtained by introducing a moderately strong
interparticle electric field € as shown in Fig. 1. Let F; de-
note the electric field between particles ¢ and i — 1 and
let Ey be an external electric field, for example the gravi-
toelectric field (Rosseland 1924). Let us suppose that the
boundaries at z = 0 and z = L are conducting. It is well
known that in this case a charged particle is attracted by
the boundary as if there was a particle of opposite charge
in the symmetric position behind the conductor. In this
case, it is easy to see that the electric field E; between the
conducting wall at z = 0 and particle number 1 as well as
the field E;4; above particle ¢ must be given by

E; = Eo+ (gan — q1)€/2
Ein E; + g€, 1€{1,2,..,2N}.

(4)
(5)
We emphasize that to simulate a plasma, € should be taken
to be small enough for the electrostatic energy between
neighboring particles |¢;qi—1 €dz| (02 is a typical interpar-
ticle distance) to be much smaller than the typical kinetic
energy of the particles. Otherwise particles of opposite
charge become bounded and form atoms.

2.3. Collisions

A particle of the system shown in Fig. 1 can either collide
with another particle or with one of the two conducting
walls at z = 0, L. The former is elastic, i.e. both total mo-
mentum and total energy of the colliding particles are con-
served while the latter is not, as the walls reflect particles
according to a prescribed velocity distribution function re-
gardless of the particles’ velocities before the collision. Let
us discuss the case of a particle-particle collision first; we
shall come back to the particle-wall collision in Sect. 2.4.
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Two particles may collide if they simultaneously oc-
cupy the same position along the z-axis. During an elastic
collision between two particles (labeled 1 and 2) the veloc-
ity changes according to the well-known rules (e.g. Landau
& Lifshitz 1960)

miv1 + mov m
v = 1l 272 4 2 umn(u) (6)
my + me my + me
miv1 + mav m
v = 1V1 + Mev2 1 un(u) )
mi + ma my + me

where primed and unprimed velocities represent pre- and
post-collision velocities, respectively and u = |[vy—wv1|. We
note that the orientation of the unity vector n in velocity
space is not specified by the requirement of the total en-
ergy (1 equation) and total momentum (3 equations) to be
conserved during the collision, as the number of unknowns
is 6 (the three velocity components for both particles). Let
us use spherical coordinates to define the orientation of n
in velocity space with 6" being the angle between n and
the z-axis and ¢’ the angle between the projection of n in
the (z,y) plane and the x axis. The question is: how shall
we choose the angles 8" and ¢’ for any given collision in
the system? Given the rotational symmetry of our system
around the z axis, it is quite natural to choose ¢’ according
to a uniform probability distribution in the interval [0, 27].
The answer is not as obvious concerning the angle 6 since
the system is not spherically symmetric. In the case of
particles of equal mass (Pantellini 2000) the probability
distribution for 6’ is specified by the requirement that the
system (in its most simple configuration, e.g. without ex-
ternal forces and with elastic boundary conditions) must
relax towards a stationary state where the particle velocity
distribution function is isotropic. This condition implies
the post-collision angle 6’ should be chosen according to
(see Sect. ITC in Pantellini 2000)

0" = arccos(V/P), with P = random number € [—1,1]. (8)

It is straightforward to convince oneself that the same
result holds in the case of particles of unequal mass.

Now, even though the orientation of the n in Egs. (6)
and (7) must be chosen according to the above probability
distributions if one requires the relaxed particle velocities
to become distribute isotropically, one is still free to decide
whether or not two particles which encounter each other
effectively make a collision. If one decides that there isn’t
a collision, the two particles just go through each other
without changing their velocities. If one decides that there
is a collision, we compute the new velocities of the parti-
cles using Eqs. (6)—(8) to determine n. In general, one is
allowed to decide if two encountering particles collide de-
pending on the magnitude u of their relative velocity only.
The collision probability cannot depend on the orientation
of n as the relaxed state would no longer be characterized
by an isotropic velocity distribution.

Figure 2 shows two choices for the velocity depen-
dence of the collision probability R on the relative veloc-
ity u. One may interpret R as the collisional cross-section.

R(u)

hard spheres

VA (Coulomb)

Y
\
\

\
~

0 bR u
0 Ugg

Fig. 2. Collision probability R for hard sphere type collisions
(solid line) and for Coulomb type collisions (dashed line) as a
function of the relative velocity wu.

Accordingly, we call the case R = 1, where particles collide
at each encounter, the “hard spheres” case and

1 if u < uq
Rop(u) = { (tap/u)? othcrwisoﬁ (9)
the “Coulomb” case. In Eq. (9) the indices o and § indi-
cate that one is considering collisions between a particle of
species « and a particle of species 3 (e.g. electron-electron,
proton-electron, proton-proton).

A detailed comparison of the present model with other
numerical models based on the Fokker-Planck or the
Boltzmann equation (e.g. Shoub 1992) is beyond the scope
of the present paper. Qualitatively speaking, the justifica-
tion of the model stems from the fact that the scattering
cross-section due to the cumulated effect of distant en-
counters in a near-equilibrium plasma is proportional to
o u~* (e.g. Chandrasekhar 1943). Accordingly, one may
interpret one collision in our model as representing the
cumulated effect of a large number of distant encounters
in a real plasma. Given that the most widely used (and
best justified) numerical model to simulate distant en-
counter dominated plasma are Fokker-Planck models, we
discuss more thoroughly the relation between our model
and Fokker-Planck models in Appendix B. In the paper
by Pantellini & Landi (2000) we show that using cut-off
velocities uqg of the order of, or smaller than, the typical
relative velocity between « particles and ( particles, our
model gives results that compare well with results from
Fokker-Planck calculations.

2.4. Boundary conditions

There are several ways of treating the problem of a par-
ticle hitting one of the boundaries at z = 0 and z = L.
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One may, for example, let the particle rebound elastically
by simply changing the sign of the z component of its
velocity. In this case, total energy is exactly conserved.
However, neither temperature gradients nor non-Max-
wellian distribution functions can be simulated in such
a system. Given that we are interested in situations where
both temperature gradients and non-Maxwellian distribu-
tions are present, we shall use more sophisticated bound-
ary conditions allowing the injection of an arbitrary ve-
locity distribution function. The prescription is as follows.
Each time a particle of species « hits one of the bound-
aries, it is reinjected into the system following a specified
velocity distribution function fO:“(v). This implies that in
a stationary state, and apart from statistical fluctuations,
the bulk velocity along z must be zero everywhere. We fur-
ther assume that particles are injected following isotropic
velocity distribution functions, i.e. fOt(v) = fo%(v),
where v = |v| is the magnitude of the velocity of the
injected particle. Accordingly, the theoretical flux of par-
ticles coming from the boundary with velocity v in the
magnitude interval [v, v+dv] and orientation with respect
to the z axis in the range [0, 6 + d6] is given by

dF%L(v,0) = vcosd fOL(v) 27 v? sinfdf dv.

This expression can be integrated separately for both the
velocity v and the angle 6, leading to the probability dis-
tributions P, and Py of observing a particle entering the
system from the boundary at z = 0 with velocity V < v
and 6 in in the range [0, 0]

0
Py(0) = Ay / cos® sin 9 dv) = sin? 0 (10)
Jo

v
Po(v) :Av/ O VEAY (11)
0
where we have suppressed the species index « for readabil-
ity and where A, and Ay are normalization constants such
that Py(m/2) = P,(c0) = 1. Thus, each time a particle hits
the boundary at z = 0 it is reinjected following the prob-
ability distributions (10) and (11). This requires that the
expressions (10) and (11) be solved for 6 and v . For exam-
ple, the angle 6 is obtained by computing § = arccos(\/l_’)
where P is a random number in the range [0, 1]. Similarly
v = P;1(P) where P is again a random number in the
range [0,1] and where the function P, ! is obtained by
inverting (in most cases numerically) Eq. (11). Of course
this procedure applies for both boundaries and all species.

3. Results

In the present simulations we consider a thin layer of a
fully ionized electron-proton plasma plunged in a uniform
gravitational field g = GMg/R% where Mg and R are
the solar mass and the solar radius, respectively while G
is the universal constant of gravitation.

Following the reference paper by Dorelli & Scudder
(1999), we assume typical temperatures and densities
at the 2 = 0 boundary to be TM! = 5 x 10° K and
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ne(0) = ndt = 108 cm ™2 (we shall use these quantities for
normalization in the remaining of the paper). The typical
temperature gradient between the two boundaries at z = 0
and z = L is of the order of 1.4 x 108 K/Rg,. For a system
length L = 0.1 R this leads to an upper boundary tem-
perature 71, = 6.4 x 10° K. These parameters correspond
to a thermal Knundsen number Kt = Ao (07/02)/T (T is
the temperature and Aee the mean free path for electron-
electron collisions) of the order 10™% to 1073, which is
typical for the low solar corona in coronal holes (e.g.
Ko et al. 1997; David et al. 1998; Fludra et al. 1999).
The Fokker-Planck electron-proton collision frequency for
such a plasma is given by Eq. (B.11). The same collision
frequency is obtained in our simulation model if the num-
ber of electrons (or protons) N is of the order N ~ 1000
(cf. Appendix B), which is therefore a typical value for all
the simulations presented in the paper.

In order to reduce computational time a proton-to-
electron mass ratio mp/me = 100 has been chosen for
all simulations. This can be done provided the relevant
dimensionless parameter

g(myp +me)Ro ~ gmpRe
2kgT 2kpT!

7= (12)
is chosen to be the same as in the real world, i.e. v & 23.
We note that v is the length Rq expressed in units of the
isothermal scale height of the atmosphere. Thus if one as-
sumes protons to be less massive than in the real world,
one has to assume gravity ¢ to be stronger than in the
real world (i.e. a fictitious Sun more massive then the real
Sun), so as to ensure 7 remains unchanged. On the other
hand, as we shall see below, a thermoelectric field E is
needed to ensure quasi-neutrality in a plasma with an im-
posed temperature gradient (cf. Eq. (17)). Since Et does
not depend on the mass of the particles, at least as long
as me/mp < 1, there is no reason to use the real mass
ratio in the simulation, the only requirement being the
condition me/mp < 1.

In simulations it is generally convenient to suitably
normalize all physical quantities. Thus, throughout the
remainder of the paper, we shall assume that velocities
are normalized to vyl = /2kgT ' /me, distances to the
slab thickness L, time intervals to tjl = L/v})!, electric
fields to B} = me(v)")?/(eL) and heat fluxes to ¢! =
mendt(vhh)3.

Distribution functions and moments are constructed
by regularly sampling positions and velocities of the parti-
cles in the system. In practice, we sample positions in bins
of width 0.03125L and velocities in bins of width of the
order of 0.4 times the thermal velocity of the given popula-
tion. In a typical simulation, 10° particles encounter some
101 times and the distribution functions are obtained by
sampling positions and velocities every 10% encounters.
This sampling interval is roughly the time it takes for a
thermal proton to cross the plasma slab, which is also an
estimate of the time memory of the system.

The just described procedure allows the construc-
tion of density or heat flux profiles which are not yet
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normalized. In order to do so one has to determine the
“real” number density (in cm~?) somewhere in the system,
for example at z = 0. This is impossible in a collisionless
stationnary and quasi-neutral system where the absolute
density is an arbitrary parameter which can be eliminated
from the equations (e.g. from the Vlasov equation). In
a collisional system, however, the number density is no
longer an arbitrary parameter given its intimate (roughly
linear) connection with, for example, the electron-proton
collision frequency. Thus, by recording the electron-proton
collision frequency somewhere in the system (in units of
1/t3" and thus in s71), say at z = 0, one can determine the
absolute density there, provided a relationship between
density and collision frequency has been previously estab-
lished in some way. Such a relationship may have been
established experimentally by measuring the collision fre-
quency in a real Maxwellian plasma as a function of tem-
perature and density. As we shall discuss below, and in
Appendix B, we much more pragmatically adopt the rela-
tionship provided by a Fokker-Planck model. In brief, our
strategy goes as follows: we choose a number of simulation
particles IV such that the recorded collision frequency near
z = 0 corresponds to a typical Fokker-Planck collision fre-
quency for a plasma with an electron (or proton) number
density n(0) of about n}! = 108 cm~3. In practice we just
ensure that the Knudsen number in our simulation and
in the solar corona are the same, despite the fact that
the number of particles N in our system is ridiculously
small compared to the number of particles which popu-
late the solar corona. Fortunately, only 103 to 10* particles
are required to simulate the corona. A number N ~ 10°
would already require a computational power well beyond
present day computer capabilities.

In the following subsections we shall discuss the be-
havior of a slab of solar corona for three different kinds of
boundary conditions. The thickness of the slab L is taken
to be either 0.1 Rg or 0.2 Rg. The temperatures (based
on the second moment of the velocity distribution func-
tion) of the boundaries are adjusted to make the mean
temperature and the temperature gradient of the system
compatible with the previously prescribed plasma condi-
tions. No energy sources or sinks are present in the system.
Energy is injected at the boundaries in the form of kinetic
energy of the particles. The only way of transporting en-
ergy in the system is through a collisional (or collisionless)
heat flux which means that all other means (e.g. radiation,
waves, internal energy of the particles) are excluded.

The first subsection is devoted to the simulation of the
“classical” case with thermalized (Maxwellian) boundary
conditions. We shall see that even in this case the Spitzer
and Hérm heat flux (Spitzer & Hérm 1953) is not able
to sustain the prescribed temperature gradient over a dis-
tance larger than 0.1 R, or so. In the second subsection we
shall discuss the case of non thermal velocity distribution
functions at the lower boundary. These simulations show
that the prescribed temperature gradient can be sustained
without local heating provided the number of suprather-
mal particles is high enough. This number turns out to be
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Fig. 3. Maxwell-Maxwell boundaries: in the top panel the elec-
tron density (solid line) and the temperature (dashed line) pro-
files are plotted. The dotted profile in the top panel represents
the Spitzer-Harm temperature profile assuming a spatially con-
stant electron heat flux. The dark square on the right indicates
the temperature of the upper thermostat, i.e. the tempera-
ture of the boundary at z = 0.1 Re. The bottom panel shows
the proton and electron heat flux. As expected, their relative
strength is of the order y/mp/me. The Spitzer labeled profile
in the bottom panel has been computed via Eq. (14) using the
measured electron temperature and density profiles.

much higher than suggested in previous works (e.g. Dorelli
& Scudder 1999). In the last subsection we briefly discuss
the case of both boundary conditions being non thermal.
We consider this case as rather unphysical as it supposes
a source of suprathermal particles somewhere above the
base depending on the position of the upper boundary. We
discuss this case mainly because in the collisionless studies
(e.g. Scudder 1992b) and in the reference paper by Dorelli
& Scudder (1999) the nonthermal distributions “survive”,
by construction, across the entire slab of plasma.

3.1. Maxwell-Maxwell boundaries

For the simulations in this section we impose Maxwellian
distribution functions at the boundaries, i.e.

3/2 g o?
Ma > e’ 2ETo L | (13)

0,L
O () o (—MBTO,L
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The normalized temperature and density profiles as well as
both the electron and proton heat flux profiles are shown
in Fig. 3. As expected, the electron to proton heat flux
ratio is roughly equal to \/myp/me, which means that the
energy is predominantly transported by the electrons. The
dotted temperature profile in the upper panel has been ob-
tained by assuming that the electron heat flux ¢, between
the two boundaries is constant and that the heat flux is
given by the Spitzer & Hérm formula (Spitzer & Harm
1953), which under the above conditions can be approxi-
mated by ge T:/ZQTC/(?Z (cf. Eq. (14) and Appendix B).
From the figure, it appears that if the upper thermostat
is located at a distance of 0.1 Ry from the surface, the
measured profiles are in good agreement with the Spitzer-
Hérm predicted profiles, which seems to indicate that a
classical Spitzer-Harm heat flux can sustain the given tem-
perature profile up to a height of 0.1 R without the need
for some sort of local heating mechanism (e.g. dissipation
of MHD waves). However, before accepting this statement
as definitive, we have to ensure that the simulated plasma
has the characteristics of the coronal plasma. In order to
do so, we have to compute the “real” density of the sim-
ulated plasma and compare it to the density of the lower
solar corona.

In a collisional plasma, the collision frequencies depend
on the density (the higher the density the higher is the rate
at which a particle undergoes collisions). On the other
hand, the gravitational timescale \/L/g does not depend
on density, which means that density is not just a free
parameter as in the collisionless case (cf. Appendix C).
We may then estimate the “real” demnsity of the sim-
ulated system from the measured electron-proton colli-
sion frequency. The measured electron-proton collision fre-
quency in the simulation is approximately ve, = 717/t
near the bottom at z = 0. This means that in the av-
erage an electron collides 717 times with a proton dur-
ing the time interval ¢)!. Based on the measured collision
frequency we may now determine the (unknown) num-
ber density n of the simulated plasma. In order to do
so we make a slight detour in the field of Fokker-Planck
models by observing that in Fokker-Planck models of a
close to equilibrium plasma, with temperature 7', col-
lision frequency ﬁgf and density n are intimately con-
nected through Eq. (B.11) (cf. Appendix B). Thus, by us-
ing Eq. (B.10) with ve, = 717/th! and setting 757 = v,
in Eq. (B.11) we can estimate the density at the bottom
of our simulation region to be ny = 1.01nd! ~ 108 cm™3
which is an acceptable value for the low solar corona.

Similarly, we may compare the electron heat flux ob-
served in our simulation with the Fokker-Planck heat flux
for a fully ionized electron-proton plasma (e.g. Spitzer &
Hérm 1953)

nekdT

meﬁflf

gsu = —3.19 x 1073 VT (SI units). (14)

Assuming, as above, that 7Y = T, with v, given by
Eq. (B.10) and taking the temperature gradient measured
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in Fig. 3, one finds gsg = —1.0 x 1073¢}!, which is in
good agreement with the heat flux gops = —0.9 x 107 3¢})!
measured in the simulation.

‘We emphasize that even in the collisionless case there is
a heat flux flowing from the hot (upper) to the cold (lower)
boundary. The collisionless heat flux gne can be computed
analytically by applying Liouville’s theorem (e.g. Landau
& Lifshitz 1960) to the electron and proton distributions
in constant gravitational and electric fields and subject to
the above-specified boundary conditions, i.e. 11, = 1.28T}
with Ty = T!. Given that the net particle flux is zero,
the neutralizing electric field is nothing but the familiar
gravitoelectric field (Rosseland 1924)

(15)

In general, for Maxwell-Maxwell boundaries the collision-
less electron heat flux is given by (see Appendix C)

[T
gNC = ; mé /2
where the electron density at the upper boundary mnr,
is a complicated function of all other parameters, which
turns out to be ny, = 0.085ng for the present case. In
the particular case shown in Fig. 3 we have ny, =~ 0.1ng
from which we obtain a theoretical collisionless heat flux
gne = —8.9 x 1073¢)! which is much stronger a flux than
either gsy or gobs. The collisionless heat flux is an upper
limit for the electron transported energy flux.

As already stated, in the collisionless regime E; is the
charge neutralizing field. However, in the collisional regime
the total electric field is generally made of the sum of Eg
and the thermoelectric field (see e.g. Golant et al. 1980;
Hinton 1983)

(n1? — 11y?) (16)

(17)

where « is a constant of order unity. In our simulations,
« lies in the range 0.7 to 0.9 when ung in Eq. (9) is
smaller than the typical relative velocity between parti-
cles of species v and particles of species § (Pantellini &
Landi 2000). Fokker-Planck models including all kind of
collisions (electron-electron, electron-proton and proton-
proton) predict o = 0.71 (Spitzer & Hérm 1953). The
thermoelectric field required to ensure quasi-neutrality in
the simulation of Fig. 3 is Er = —0.11, which is small
(but not negligible) compared to the gravitoelectric field
Eg; = 1.17. The question one may now ask is whether the
above results depend on the position of the upper bound-
ary or not. Even if the exact position of the temperature
maximum is unknown it is likewise located somewhere be-
tween 0.2 and 1 Rg above the solar surface (e.g. Ko et al.
1997; David et al. 1998). Without going up to such heights
where the zero mass flux hypothesis may no longer be
valid, we may just ask the question of what happens if
the upper boundary is located at twice the distance, i.e.
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Fig. 4. Maxwell-Maxwell boundaries: Same format as Fig. 3.

L = 0.2 Rg. For coherence, the temperature of the up-
per thermostat has been chosen to be such that the tem-
perature difference between the two thermostats is twice
the value in the first simulation. The results are shown in
Fig. 4. Interestingly enough, they are not quite the same
as for the smaller system of Fig. 3. One observes that
the electron temperature gradient is too weak to smoothly
connect to the temperature of the upper thermostat (dark
square). The heat that flows from the upper to the lower
boundary is simply too weak to sustain the prescribed
temperature profile: a local heating mechanism (waves?)
is required in this case. The lower panel also shows that the
observed electron heat flux is rather badly approximated
by the Spitzer-Héarm heat flux formula Eq. (14), suggest-
ing that even in the most favorable case of Maxwellian
boundary conditions, Eq. (14) does not provide a suffi-
ciently reliable estimate of the thermal heat flux in the
lower solar corona.

3.2. Kappa—Maxwell boundaries

In this section we discuss a run with Maxwellian boundary
conditions at z = L (as in the previous section) and kappa
velocity distribution functions

22 —k—1
) 18)

fn(’”) = An |:1 + m

Fig. 5. Kappa-Maxwell boundaries with x = 4. The top panel
shows the density (solid line) and the temperature (dashed
line). Note that the temperature of the left boundary is only
0.49T3" (instead of Ty! used in the Maxwellian case of Fig. 3)
to compensate for the strong collisional heating of the plasma
with height. The dashed line reproduces the temperature pro-
file of the thermal boundaries case shown in Fig. 3. The lower
panel shows the heat flux profiles for electrons and protons
as well as the total heat flux (protons + electrons). The colli-
sionless electron heat flux has been computed using Eq. (20).
Note that while the proton heat flows down the temperature
gradient (the “classical” behavior), the opposite is true for the
electrons.

with
_ no T'(k+1)
" on(r—3/22u3 T(3/2)T (k—1/2)

as boundary condition at z = 0. In order to ensure energy
equipartition among species, we use the same « index for
both protons and electrons and a velocity vy (reminis-
cent of the thermal velocity in a Maxwellian distribution)
/Mp/me smaller for protons than for electrons. The den-
sity and temperature profiles as well the v, distribution
profiles for electron and protons are shown in Fig. 5 for
the case k = 4. The upper panel shows that the temper-
ature profile increases very rapidly away from the lower
boundary. The rapid rise in temperature is not the man-
ifestation of the collisionless gravitational velocity filtra-
tion mechanism first described by Scudder (1992a) but is
essentially due to collisional effects. This can be demon-
strated easily by estimating the temperature gradient due
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to the velocity filtration mechanism. According to Scudder
(1992a) the latter is given by

¥(2) }
(k—3/2)knTy

gz/v3 mp +me
K—3/2 me

T(2)

To {1-"-

T {1 + (19)

where ¥(2) = mpgz + edg(2) = megz — edy(z) is the total
potential energy of a particle with edg (2) = (me—mp)gz/2
being the gravitoelectric potential energy (cf. Eq. (15)).
According to Eq. (19), the temperature rises linearly
with height provided 3/2 < k < oo. For k = 4 and
To = 0.49T2" one has T*(z) = Tp(1+1.95z) and at z = 0.3
the temperature should be 7%0.3) = 1.59T, = 0.78731
only. Such a temperature is well below the temperature
T(0.3) ~ 1.1TM observed in the simulation (see Fig. 5)
from where we conclude that velocity filtration is not the
principal reason for the rapid rise of the temperature pro-
file inward from the z = 0 boundary. Indeed, the strong
inward heating of the plasma is neither due to the gravi-
tational field nor to the temperature gradient imposed by
the boundary conditions. The heating is essentially due
to the effect of collisions on the x velocity distribution in-
jected from the z = 0 boundary. Of course the heating
effect decreases with increasing x and in the limit k — oo
(the Maxwellian case) it disappears completely, as shown
in Fig. 5. Let us give a qualitative physical interpretation
of the strong temperature gradient near the kappa bound-
ary. If there were no collisions in the system, a collisionless
electron heat flux would flow from the lower to the upper
boundary (see Eq. (20)). However, the system is collisional
and collisions do always act in the sense of a reduction of
the heat flux. This is clearly visible in Fig. 5, where the
electron heat flux is seen to decreases inwards from the
right hand boundary over a distance of the order of 0.3L,
inducing a strong heating of the plasma over this very
same distance. Since protons become thermalized much
more rapidly than electrons, the former carry energy in a
“classical” way, i.e. protons transport heat down the tem-
perature gradient against the electron heat flux. We note
that the total (proton + electron) heat flux is constant
despite the fact that this is not so for individual species.
Thus energy is transferred from electrons to protons and
vice versa.

This peculiar behavior of the plasma near a kappa
boundary does not show on the temperature profiles in
Fig. 2 of Dorelli & Scudder (1999). The difference is due
to the restrictions imposed upon the general shape of
the electron velocity distribution functions by Dorelli and
Scudder. In their paper, the general form of the electron
velocity distribution function is a first order truncated
Legendre polynomial expansion. Thus, at any given height
z, the electron velocity distribution is a superposition of an
isotropic kappa distribution function and an odd function
of v, (the first order correction) which does not affect the
even moments of the velocity distribution function so that
the temperature is by construction determined by the zero

S. Landi and F. G. E. Pantellini: Temperature and heat flux in the solar corona

order distribution only, i.e. by the isotropic kappa distribu-
tion. Our simulation shows that restricting the Legendre
expansion to the first order term only does not allow for a
correct description of the temperature profiles especially
for boundary conditions with low x indices. However, as
we shall see in the remainder of this section, and in the
next section, the unusual behavior of the heat flux (un-
usual from a fluid point of view) described by Dorelli &
Scudder (1999), remains qualitatively valid for small val-
ues of k.

The average total heat flux observed in our simulation
iS Gobs ~ 1.6 x 1073¢)! and is mainly carried by the elec-
trons (cf. Fig. 5). The very fact that gons > 0 means that
energy flows upwards, i.e. from the cold to the hot thermo-
stat. This may appear to be a surprising result as it seems
to contradict the second law of thermodynamics (cf. the
Introduction in Scudder 1992b). However, the behavior of
our system can be described by the Boltzmann equation
with a particular scattering operator, defined by the rules
outlined in Sect. 2.3, and must therefore obey Boltzmann’s
H-theorem (Boltzmann 1872) and all fundamental laws of
thermodynamics.

As a guiding reference for future discussion, we com-
pute the collisionless electron heat flux gnc by applying
Liouville’s theorem to the proton and electron velocity dis-
tribution functions imposed by the boundary conditions at
z = 0, L and the constraint of zero bulk velocity. Under
these conditions, the charge-neutralizing electric field is
precisely the gravitoelectric field E, given by Eq. (15).
Straightforward application of Liouville’s theorem then
leads to

. \/§ nki? TPy
NC = —
T ml? VI + BoVIL

K”;_?’f)ﬁfn}

where the density ny, = n(L) is a complicated function
of the other parameters of the problem (cf. Appendix C),
T =T*(L) and B, is a x dependent constant

(20)

I (k—1/2)

B (r—3/2)°T (k1)

(21)

With the parameters of the present simulation (i.e. k = 4,
Ty, = 1.28TM) one finds nr, = 0.1nd!, and gne = 5.4 x
1073¢3! which, as expected, is stronger than the observed
collisional electron heat flux observed in the simulation
(Fig. 5). However, the general behavior of the system is
neither that of a strongly collisional plasma with a Spitzer
& Hérm heat flux (1953) nor that of a collisionless plasma
since the electron heat flux intensity is both spatially vari-
able and substantially smaller than the collisionless value
gNC-

The v, velocity distributions for both electrons and
protons at z = 0.5L are shown in Fig. 6. From the figure
it appears that while the proton distribution is essentially
Maxwellian, the electron distribution has still substantial
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Fig. 6. Velocity distribution functions for kappa-Maxwell
boundary conditions (k = 4) at height z = 0.5L for the case
L = 0.1 Re shown in Fig. 5. Velocities have been normalized
to the local thermal velocity vr = \/2ksT/m of the relevant
species. The dotted curves are Maxwellians normalized to the
local temperature and density. The dashed curves are kappa
distributions with x = 4 where no and vy are determined by
the local density and temperature (cf. Eq. (18)).

suprathermal tails, particularly for large positive veloci-
ties v, 2.5. The obvious reason is that the collisional
cross section for a suprathermal proton vs. thermal elec-
tron collision is only weakly velocity dependent given that
the relative velocity is always approximately v, indepen-
dent of the proton’s velocity. Thus suprathermal protons
are efficiently thermalized by collisions with thermal elec-
trons. This is not so for a suprathermal electron since its
velocity with respect to either a thermal proton or a ther-
mal electron is, by definition, larger than v.. Given that
the collisional cross section decreases as the forth power
of the relative velocity it then follows that the thermal-
ization of the suprathermal electrons is much less efficient
than the thermalization of the suprathermal protons.

Let us conclude this section with a short discussion
of the simulation in the light of the Dorelli & Scudder

(1999) model (we shall call it the DS model). As already
stated, there are some qualitative similarities between the
behavior of the plasma observed in our simulations and
the behavior of the plasma in their model. However, the
very particular form of the distribution function in the
DS model implies that their temperature profiles do dif-
fer significantly from ours. As already stated, the differ-
ence stems from the fact that in the DS model the just
described collisional heating near a kappa boundary is
missing, essentially because by construction the tempera-
ture in the DS model is that of a x distribution function
with the same  index throughout the whole plasma slab.
The reason for the DS temperature profile not being the
collisionless temperature profile is due to the fact that
their electric field (which has not been computed explic-
itly by the authors) is not Rosseland’s gravitoelectric field
(cf. Eq. (15)), which happens to be charge neutralizing in
the collisionless case only. Despite these substantial differ-
ences, we do observe an upward-directed heat flux for the
K = 4 in accordance with the DS model which predicts an
upward directed heat flux for k< 10.

How sensitive are the above results on the rather arbi-
trary position of the upper boundary? Figure 7 shows that
doubling the size of the system and changing the tempera-
ture of the upper thermostat accordingly does not change
the conclusions in a very substantial way. The main differ-
ence is that the average temperature gradient is slightly
reduced with respect to the shorter system. As a conse-
quence, the temperature of the plasma near the upper
boundary is clearly below the prescribed temperature of
the boundary (dark square on the figure). Thus, even with
a kappa index as small as k = 4 one has to invoke a lo-
cal heating mechanism to sustain the prescribed temper-
ature gradient up to the z = 0.2 level. For comparison, if
the system was entirely collisionless, the temperature near
the upper boundary would be as high as 1.77p4, i.e. above
the temperature of the boundary.

The temperature profiles for different kappa indices of
the z = 0 boundary distribution functions are plotted in
Figs. 8 and 9. For each run the temperature of the z = 0
boundary has been adjusted to obtain equal mid-box tem-
peratures and temperature gradients. The collisional heat-
ing near the z = 0 boundary is clearly visible on all plot-
ted profiles except the Kk = oo case. Figure 8 shows that
if the upper boundary (the source of energy) is located at
z = 0.1 R the system is able to sustain the prescribed
temperature profile independently of the x index. On the
other hand, Fig. 9 shows that if the upper boundary is
located at a height z = 0.2 Rg the system is no longer
able to sustain the 1.4 x 10¢ K/Ry temperature gradient
unless some local heating is at work. Indeed, all tempera-
ture profiles reach the z = 0.2 R level with a temperature
which is clearly below the value imposed by the boundary.
‘We note in passing that the steepening of the temperature
profiles above z = 0.17 R, is not due solely to the vicinity
of the hot boundary but also to the collisionless gravita-
tional velocity filtration. The reason for the collisionless
filtration to become more efficient above z ~ 0.17 Ry, is
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Fig. 7. Kappa-Maxwell boundaries with x = 4. The format
of the figure is the same as in Fig. 5. Note that the upper
boundary is located at z = 0.2 R and the temperature of the
upper thermostat is the same as for the Maxwell-Maxwell case
of Fig. 4. Again, the temperature of the lower thermostat is
0.4973", as in Fig. 5. The dashed line in the top panel repro-
duces the temperature profile for the thermal boundary case
of Fig. 4. As in the shorter system of Fig. 5, heat flows upward
in the temperature gradient.

that at such heights the density has become extremely
low (of the order 102 times the density at z = 0) and
collisions much less effective in thermalizing the electron
distribution function which still have suprathermal tails
at a non negligible level (cf. Fig. 6) going into the heating
via the collisionless gravitational velocity filtration mech-
anism. Of course gravitational filtration does not work in
the Maxwellian case, which is the reason for the tempera-
ture to grow more slowly for z 2 1.7 R in the Maxwellian
case than in the k = 4 case (cf. Fig. 7).

Even though the temperature and density profiles ap-
pear to be quite similar over the major part of the sim-
ulation domain for all cases shown in Figs. 8 and 9, the
transport properties are different. This is particularly ev-
ident for the heat flux. In Fig. 10 are plotted the values
of the total heat flux observed in the simulations for dif-
ferent values of the kappa index. The horizontal solid line
represents the total heat flux for the Maxwell-Maxwell
boundaries case, i.e. the classical Spitzer & Hérm (1953)
heat flux for the given temperature gradient and plasma
parameters. For the kappa—Maxwell simulations, the en-

S. Landi and F. G. E. Pantellini: Temperature and heat flux in the solar corona

1.75 T T T

1.50

4
5
6
8
o

&
LI O T TR

1.00 (525

0.75

1.25

1.00
=50.75
£
~

[J)
€ 0.50

0.25

OOO 1 1 1 1 I 1 1 1 1
0.0

0.1

Fig. 8. Temperature and density profiles for kappa-Maxwell
boundary conditions. Each profile corresponds to a different
kappa index ranging from k = 4 (dotted line) to kK = oo (solid
line). The heat flux associated with each profile are shown in
Fig. 10.

ergy flows depend sensitively on k; for k< 4 the heat flux
is positive and flows from the cold to the hot boundary.
For k = 5 the heat flux is negative but its intensity is
still significantly smaller than the classical Spitzer-Harm
value. For k2 6 the heat flux is essentially Spitzer-Harm.
The index k., below which the energy flows in the upward
direction can be determined in the collisionless limit us-
ing Eq. (20) and the condition gnc > 0 from where one
obtains

_1 n
2T, —To

YL
1+2
< + kT,

Plugging the parameters of the above simulations into
Eq. (22) one finds s, ~ 12 which is significantly larger
than the value we find in Fig. 10. We conclude by noting
that in the DS model, reversal occurs for x a2 10 which is
also the value for which the collisionless heat flux reverses
in the kappa-kappa case (see Eq. (24) below). Our simula-
tions indicate that the effect of collisions on both the heat
flux and the temperature profile is much stronger than
suggested by the DS model.

Kk < Ko +3

T TO) . (22)

T
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Fig.10. Heat flux measured in the simulations for kappa-
Maxwell boundaries shown in Fig. 8. Solid line represents the
Spitzer-Hérm value for the Maxwell-Maxwell case (cf. Fig. 3).

3.3. Kappa—kappa boundaries

In this section we briefly discuss the case where the veloc-
ity distribution functions are kappa at both boundaries
z =0 and z = L. The collisionless electron heat flux gnc
can be computed analytically using the general expres-

sions given in Appendix C
3 \/@Lki‘;/?iﬁfs/z
aNc = P mé/z B, k—2
VIETL <\/TL* - \/TL) . (23)

As for the kappa-Maxwell case, one can determine the
limiting value k, below which heat flows in the direction
of the temperature gradient by setting gne > 0in Eq. (23).
The result is

)
Kk < Ky Yy

3
S (T T @)

For the parameters we use (which are the same as in the
Dorelli & Scudder 1999, paper) one finds &, ~ 10 which, of
course, is precisely the value predicted by the DS model.
Indeed, the main effect of collisions in the DS model is
to reduce the intensity of the heat flux, not its sign. We
note that k, is always smaller than the heat flux reversal
value k, found in the kappa-Maxwell case by an amount
T1./2(TL, — Tp). This difference is due to the fact that heat
flows more easily up the temperature gradient if there is
no downward-directed suprathermal tail due to the kappa
boundary condition at z = L.

We have opted not to present simulations with kappa-
kappa boundary conditions for two reasons. The main rea-
son is that from a conceptual point of view it does not
make much sense to suppose that there is a generator of
kappa distributions located at an arbitrary height L above
the coronal base. How shall one choose this point? What is
the most appropriate value of the kappa index there? Our
approach consists of assuming that there is a mechanism
(e.g. shocks) capable of generating suprathermal tails at
the base of the corona, i.e. at a natural boundary of the
solar atmosphere. This is not so for the fictitious upper
boundary we suppose to be located at 0.1 Rg (following
Dorelli & Scudder 1999) or 0.2 Rg, given that the solar
corona extends out to distances of the order of many tens
of AU. Also, given the strong collisionality of the system,
we found the choice of the Maxwellian distribution to be
the most natural one (or the less artificial one).

Simulations with a kappa boundary located at much
larger distances, where the wind is supersonic and essen-
tially collisionless, may be realistic as non thermal distri-
butions are systematically observed there. Such simula-
tions may become possible in the near future.

We conclude this section by noting that in the DS
model the lower and the upper boundary conditions are
not independent of each other, as the zero order distribu-
tion function is supposed to be a kappa distribution, with
the same index &, in all points of the system. The constant
kappa index assumption in the DS model finds its justifi-
cation in the fact that the kappa index is known to remain
unchanged in the collisionless case (Scudder 1992a). As a
consequence, the above discussion on the choice of the up-
per boundary condition for our simulation is irrelevant in
the DS model where the two boundaries cannot be treated
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separately due to the constant constant kappa index as-
sumption.

4. Conclusion

There we summarize the most important aspects arising
from our simulations. First of all, as already suggested by
other authors, it appears that due to their rapid thermal-
ization, on a scale much shorter than the density or tem-
perature scale of height, proton velocity distributions are
close to Maxwellian in the solar corona. Unless some non-
thermal local ion acceleration mechanism (e.g. some kind
of magnetic turbulence) is at work, the Spitzer & Hirm
(1953) theory provides a good description of the proton
transport properties in the corona. This seems not to be
the case for the electron velocity distributions which, if
not Maxwellian at a given height (at z = 0 in the simula-
tion), remain non Maxwellian over distances greater than
the scale of height of macroscopic quantities. More specifi-
cally, if the electron velocity distributions have suprather-
mal tails, there is no hope for the Spitzer-Héarm theory
to provide the correct value of the electron heat flux. On
the other hand, heat flux density and temperature pro-
files cannot be described by Scudder’s collisionless model
either (Scudder 1992a). This has been demonstrated by
Anderson (1994), who also showed that the effect of colli-
sions on the velocity filtration model is not a minor effect,
which means that linearized collisional operators are in-
adequate for the description of the transport properties
in the corona. Dorelli & Scudder (1999) tried to overcome
this difficulty by expanding kappa distributions in terms
of Legendre polynomials. This approach has the advan-
tage of not requiring the first order Legendre term f; to
be small compared to the zero order term fy. However,
the limitation of the development to the first order term
only turns out to be too restrictive because of the strong
up-down anisotropy of the problem. In particular, the
temperature profiles cannot be conveniently described us-
ing a Legendre expansion truncated after the first order
term, given that the latter does not directly contribute
to the temperature. This is not very surprising. Anderson
(1994) already suggested that the collisionless tempera-
ture profile is strongly modified by collisions (see Fig. 4 in
his paper). Here we show that the collisionless tempera-
ture profiles of kappa distributions are strongly modified
by collisions and that the effect is strongest close to the
boundaries where the kappa distributions are artificially
maintained (the z = 0 boundary in our simulations). The
simulations show that the collisional heating of the plasma
near a kappa boundary increases with decreasing kappa
index. The scale height of the collisional heating is deter-
mined by the relaxation length of the electron velocity dis-
tribution function, which for coronal plasma conditions is
much shorter than the assumed temperature scale height
[(0T/02)/T)~! ~ 0.4 Rg. The heating of a plasma near
a kappa boundary could not be observed by Dorelli &
Scudder (1999) due to the limited impact on the temper-
ature that collisions are allowed to have in their model.
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One of the key points of the DS model was to show that
the predictions of the collisionless gravitational velocity
filtration model (Scudder 1992a) for the corona are only
weakly modified by collisions. For example, for a given
coronal temperature gradient, heat flux reversal occurs at
the same kappa value whether collisions are included or
not, the only effect of collisions being a reduction of the
heat flux intensity. In reality, the effect of collisions on the
collisionless results happens to be much more destructive
than suggested by the DS model. We find that in the coro-
nal plasma, heat flux reversal already occurs at k ~ 4. For
k = 5, the heat flux is already of the Spitzer-Harm type
whereas the DS model predicts strong departures from the
classical heat conduction even for x = 10. Our simulations
also suggest that velocity filtration alone is not capable of
sustaining the assumed coronal temperature gradient of
1.4 x 105 K/Rg unless £ < 4. This means that unless
some extremely intense source of suprathermal electrons
exists near the base of the corona some local heating mech-
anism (e.g. waves) has to be at work between the base of
the corona and the coronal temperature maximum, which
we assume to be at a height z2 0.2 Rg. Thus, gravita-
tional velocity filtration may be capable of sustaining the
observed temperature gradient without substantial heat-
ing, provided electron distributions near the coronal base
have strong suprathermal tails. Even if present observa-
tions of the corona do not allow us to exclude the presence
of strongly non thermal electron distributions at low alti-
tudes, it seems hard to imagine a mechanism (e.g. Fermi
acceleration, Fermi 1954) capable of sustaining such dis-
tributions given the high collisionality of the plasma. The
conclusion would eventually be different if kappa distribu-
tions were injected into the system from the top, i.e. from
the solar wind where non thermal electron velocity dis-
tributions are commonplace. However, this is much more
general problem which cannot be treated in zero mass flux
and plane parallel approximation used in this paper.

Appendix A: The algorithm

The structure of the algorithm for advancing the particles
of the system of Fig. 1 during a given time interval is
very similar to the algorithm described in Pantellini (2000)
for the case of hard sphere particles of equal mass and
no charge. The main difference is that the presence of
an electric field makes the integration of the equations of
motion slightly more complicated (not all particles feel the
same acceleration). In addition, a non negligible fraction
of the simulation time must be spent in computing the
charge-neutralizing electric field.
The algorithm can be summarized as follows:

1. Initialize the velocities {v;(t = 0)} and the positions
{zi(t = 0)} of N protons and N electrons. Order the
particles based on their height such that 0 < z; < 29 <
... < zon < L. Make an initial guess for the external
electric field Ey and eventually choose a non zero value
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for the variable € (cf. Egs. (4) and (5)) if polarization
effects are expected to be important;

2. Determine for each pair of neighboring particles, with
indices ¢ and i — 1 and for i = 2,3,...2N, the time
interval §t; until their next collision. If particle ¢ and
i — 1 do not collide in the future, we shall set §t; =
00. Also compute the time d¢; and dtany1 until the
next collision of the first and last particle with one of
the boundaries. The equations of motion to be solved
are Egs. (1) and (2) with the electric field felt by the
particle i being E;+q; €/2, where E; is recursively given
by Egs. (4) and (5);

3. Determine the time interval 0t i, = min{dt;} until the
next collision in the system. Let I € {1,2,...,2N + 1}
be the index of the particle making this collision;

4. Advance all particles through the time interval dtuin;

5. Make the collision between particle I and particle I —1
if I € {2,3,...,2N} according to the prescriptions given
in Sect. 2.3. If I = 1 or I = 2N + 1 (particle-wall
collision), draw a new velocity vector for the particle
using, in particular, Egs. (10) and (11);

6. If the system’s charge neutrality is not satisfactory, in-
crease or decrease Ey in order to reduce departures
from neutrality. Fy should not be corrected too often.
Ideally one should not update Ey before the system
has become stationary. This can be a very long time
since it is of the order of the longest macroscopic relax-
ation time. For a Maxwellian plasma, the characteristic
timescales could be y/L/g or L/c, where ¢ is the sound
speed. This step is rarely performed;

7. Repeat steps 2-5 until a given time level has been
reached.

The computational time needed to go through one cycle
is proportional to N. A more sophisticated version of the
algorithm allows us to make the computational time be
proportional to v/N instead.

Appendix B: Comparison with Fokker—Planck
model

Let’s consider a relaxed system where N particles of
species « and N particles of species [ are uniformly dis-
tributed in a box of dimension L. Let’s consider particles
which have relative velocities in the spherically geomet-
ric velocity-space element 2ru?dudy, where ;1 = cosf (0
being the angle between u and the z direction). The num-
ber of collisions per time unit experienced by a particle of
species a with particles of species 3 with relative velocities
near u is then given by

dvap = u || Rap () fapl, ) 2mududp (B.1)
where Rqgs is the collision probability function defined in
Eq. (9) and fag is the distribution function for the relative
velocities between a and [ particles. If the distribution
functions for both species are Maxwellians with thermal

velocities v = \/2kpTa/mq and vg = \/2kpTp/mg, re-

spectively, one has

2 2
vl Ee_u /Ua[?
m23, L
af

fap(u) = (B2)

with v2 5 = v2 4+v3. Integration of Eq. (B.1) over all veloc-
ities and directions then gives the total collision frequency

4 N1 ! oo 5 —u?/v?
o = e X aBdu (B.
Vag NG Uig/oudu/o R.p(u)u’e du (B.3)

ie.

Vag = %%chﬁq’(ﬂiﬁ) (B.4)
where 425 = uZ5/v25 and W is the function

Yz)=[1— (1+z)e™ + 22T (0, )] (B.5)

with
(o]
HO,x):/ et tdt

being the incomplete gamma function of order 0. Sample
values for the function ¥(xz) are given in Table B.1.

Table B.1. Sample values for the function defined in Eq. (B.5);
x = oo correspond to hard spheres collision.

T 0.125 0.25 0.5 1 00
Y(z) | 0.03256 0.0918 0.230 0.484 1

Let us now consider the case of a thermalized and fully
ionized electron-proton plasma and let’s choose uqg in
Eq. (9) by setting

Uap = Vap/V2 (B.6)

so that the dependency on W is the same for all kind
of collisions (i.e. proton-proton, electron-proton, electron-
electron). For m, > m., we then have vee = V2ve,
Vep = Ve and vp, = 1/Me/Mpvee which leads to the fa-
miliar relationship between the collision frequencies
Veo = \/iuep = ﬂypp. (B.7)
Me
It is common practice to define the collision frequency
Uap as the rate of momentum exchange between particles
of species « and particles of species 3. For isotropic dis-

tribution functions and elastic collisions one has (Golant
et al. 1980)

T — <a%[ukugﬁ(u)}>

where (...) means averaging over the relative velocities dis-
tribution Eq. (B.2) and v;5 = (N/L)ulu|Rap(u) is the
collision frequency for the particles in the velocity-space

(B8)
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element 27ududp. Carring out the integration, using the
collision frequency Eq. (B.4), leads to

2 N . L
Tag = —=pvenll = (L+T5g)e o) (B.9)
2 2
= Vap—r [1 — (14 2)e " Tas (B.10)
“ ‘I’(uig) s
On the other hand, the Fokker-Planck electron-proton

transport collision frequency for a plasma with an elec-
tron density n and temperature T is known to be (e.g.
Golant et al. 1980)

_FP Tl€4
Vep = m—ln[\ (B.11)
3edme’ " (2mkpT)3/?
where
IQTF(E()]CBT)3/2
InA =1In [W

is the Coulomb logarithm. We emphasize that the colli-
sion rate given in Eq. (B.11) is based on the time inter-
val it takes for a thermal electron’s trajectory to become
strongly deflected by the protons in the system. After set-
ting Vgpp = T4p we find the number of electrons N needed
to simulate a plasma with a given Fokker-Planck collision
frequency vElf to be

1 netlnA L
:E52k2T2 S . (B.12)
oB {17(1+uep)e cv]
For typical coronal conditions, e.g. n = 10% cm™ and

T = 5x 10° K one has 75} = 20.4 s~'. Thus, in order
to simulate a plasma slab of thickness L = 0.1 R some
N =~ 4000 particles are required. We note that the number
of particles needed to simulate a given plasma strongly
depends on the choice of uqg in Eq. (B.6): the smaller
the ratio uag/vep the larger N and the heavier the sim-
ulation. One should therefore choose uag/vag as large as
possible remembering that when wag/vas= 1 the macro-
scopic characteristics of the plasma (e.g. heat conduction,
thermoelectric coefficient, etc.) are no longer those of a
Coulomb collision dominated plasma because of the large
number of hard-sphere type collisions involving all parti-
cles moving at relative velocities u < uqg. The properties
of such a plasma may differ substantially from the prop-
erties of a real electron-proton plasmal

Appendix C: The collisionless limit

Let us consider a collisionless electron-proton plasma
plunged in a gravitational field g(z) = —d¢g/dz, which
is not necessarily constant. At the boundaries, z = 0 and
z = L, particles are injected with kappa type velocity dis-
tributions with temperatures Tp and 71, and kappa indices
ko and kr,, respectively. Due to the unequal mass of elec-
trons and protons, an electric field E(z) = —0¢g/0z is
needed to ensure local charge neutrality. The stationary
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distribution function f(v,z) for particles of mass m and
charge ¢ with a monotonical potential energy

Y(z) = mda(z) + qu(z) (€1
can be computed using Liouville’s theorem, viz.
S folwz)  wve>—w
fv,2)= { f% (v,2) v, < —w (C.2)
where w? = 2 b, — ¢ ()] /m and
= ( m )3/2 AoI(ko+1)
* 7 \2rksTo)  (ro—3/2)3D(ko—1/2)
mu? + 2 R0l
[ (K0— 3/2)2kBT0:| (©.8)
= ( m )3/2 AL(kL+1)
0 2mkp Ty (kL—3/2)3(kr,—1/2)
mu? + 21 —r—l
[ (HL*3/2)2]€BTS:| ©4

and where we have set ¢(0) = 0 and ¥(L) = . In
Eq. (C.4) Tj is the temperature of the downward-traveling
kappa distribution at z = 0 which is linked to the temper-
ature T1, = T'(z) via (Scudder 1992a)

YL ]
(HL—3/2) kBTL ’

The problem has two unknown parameters, Ay and Ay,
which are determined by the condition of zero bulk veloc-
ity and ng, = n(L). The electric field profile is obtained
by imposing local charge neutrality. We shall show that
this field corresponds to the field required to make the
potential energy of protons and electrons to be equal (cf.
Eq. (C.14)).

Let x (v, ) be an arbitrary function of the absolute
velocity v and p = cos 6, where 6 is the angle between z
direction and the velocity. The mean value of this function
is then given by

w 1
(x) = 27r/ / dpvidox fo
0o J-1

oo 1
+ 27r/ / dpv?dox fo
Jw J—w/v

oo p—w/v
+ 27r/ / dpv*dux fi.
w -1

For example, the density is obtained by integrating of
Eq. (C.6) with x = 1:

T; =Ty {1 - (C.5)

(C6)

_ AO 1/} —ko+1/2
"0 = 3 [ )
1+ K(rko—1,&)]
AL w —KL+1/2
T2 {1 Ty (nL—m)}
1 - K(k—1,&)] (C.7)
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where
2 I'(k+1) ¢ da
K (Hag) = FF (I{ + 1/2) /0 (1 +.1'2)H+1 (CS)
and
= YL — P
©= \/(“03/2) (ksTo + ) (C.9)
= YL — P
o \/(HL3/2) (ksTy + ) (C.10)

In the limit & — oo we have & — +/(¢¥r, —¢)/kgT and

K — G, the standard error function

2 [
ng/ e * dx.
VT Jo

On the other hand the zero bulk velocity condition (v,) =
0 leads to

(C.11)

(I{Ofl) Iior(ﬁofl/Q)
| (o—3/2)* D(ko+1)
[ YL rofl
L (1{073/2) kBTQ
_(I{Lfl) I{LF(:‘{Lfl/Q):|
| (kL—3/2)2D(kL+1)

( w1 1/2
| (2]
| (kL—3/2) ksT Tg

All the above calculations indicate that the density n(z)
only depends on the charge and mass of the particles via
the potential energy 1(z) . Thus, if we use the same x and
same boundary temperatures Ty and 77, for both electrons
and protons the charge neutrality condition reduces to
(C.14)
which arises from where one easily computes the classical
gravitoelectric field (Rosseland 1924)
1
B = 2 (mp — me) ¢a-

The constant parameter A in Egs. (C.12) and (C.13) is
determined by the condition n(L) = ny, i.e.

A0:A

1+ (C.12)

(C.13)

mpda + ePr = MePa — ePE

(C.15)

o 1
AT VR B VD) + (B /VEE) (€10
with
By, = F('{O—Tl/g) (C.17)
(/{073/2)51_‘(/{071)
I (k1 —1/2)

= : (C.18)
(k1,—3/2)2 T (k,—1)

and where the quantity

YL
(H(] — 3/2)k‘BTg
has been introduced.

We can now compute explicitly the higher moments for
the velocity distribution function Eq. (C.2). For example,

Ty =Ty |1+ (C.19)

the parallel pressure (with respect to z) turns out to be

AOkBTO 'l/) (Z)
P(z) = 1
(2) 2 (ro—3/2) ks To
[1+ K(ko — 2,%)]
AL]{?BTJ n w (Z)
2 (r1—3/2) k1]
1—K(kL —2,&0)].
If we impose ki, = ko and T§ = Tp, using Eq. (C.7)
and Eq. (C.20), we obtain the well known result (Scudder
1992a)

:| —ro+3/2

:| —kL+3/2

(C.20)

THz) = Tp {1 P (C) } .

(KZ— 3/2) k‘BT(]
Similarly we find the collisionless heat flux by setting x =
0.5mv3p in Eq. (C.6), whence

(C.21)

i TR
™ mé/z on\/TL+BKL\/TL

Ko—3/2 ” KL—3/2
T — T . .22
(=)m-()n] o=
The heat flux for the Maxwellian case given in Eq. (16)
can be obtained in the limit k9 — oo and sk, — oo.
Equation (20) is obtained in the limit x, — oo and
Eq. (23) by imposing o = kL.
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Abstract. We present and discuss a completely self-consistent kinetic simulation of a steady state transonic solar type wind.
The equations of motion of an equal number of protons and electrons plunged in a central gravitational field and a self-
consistent electric field are integrated numerically. Particles are allowed to make binary collisions with a Coulombian scattering
cross-section. The velocity distributions of the particles injected at the boundaries of the simulation domain are taken to be
Maxwellian. As anticipated by previous authors we find that the transonic solution implies the existence of a peak in the proton
equivalent potential at some distance above the sonic critical point. Collisions appear to be the fundamental ingredient in the
process of accelerating the wind to supersonic velocities. For a given temperature at the base of the simulation domain
the acceleration efficiency decreases with decreasing density. The reason is that the plasma has to be sufficiently collisional
for the heat flux to be converted efficiently into plasma bulk velocity. Concerning the heat flux we find that even when in the
vicinity of the sonic point the collisional mean free path of a thermal particle is significantly smaller than the typical scales
of variation of the density or the temperature, the electron heat flux cannot be described conveniently by the classical Spitzer-
Hirm conduction law; not even in most of the subsonic region. Indeed, in the simulations where a transonic wind forms the heat
flux has been found to strongly exceed the Spitzer-Hérm flux, in opposition to recently published results from multi-moment
models. We emphasize that given the high coronal temperatures we use in our simulations (3 times the typical solar values) we
do not expect the results presented in this report to be uncritically transposable to the case of the “real” solar wind. In particular,
the quantitative aspects of our results must be handled with some care.

Key words. Sun: solar wind — stars: winds, outflows — plasmas — conduction — methods: numerical

1. Introduction

At all heights, from the bottom of the corona up into the in-
terplanetary space, the solar atmosphere is a permanently ex-
panding, out of thermodynamic equilibrium and fully ionized
plasma. During the 1950’s the recognition of the weak colli-
sionality of the solar wind conveyed some doubts concerning
the ability of fluid models to describe the solar atmosphere
conveniently. As a consequence Chamberlain (1960), largely
influenced by the theories on gas evaporation from planetary at-
mospheres, published the first kinetic model of the solar wind.
In Chamberlain’s evaporation model the wind is subsonic at
the Earth’s orbit in clear opposition with the supersonic so-
lution of the fluid equations proposed a few years earlier by
Parker (1958). During the early 1960’s in situ measurements
confirmed the supersonic nature of the solar wind and kinetic
models just fell in disuse for some time. In the early 1970’s it
became clear that Chamberlain’s erroneous prediction of a sub-
sonic wind was the consequence of having mistakenly assumed

Send offprint requests to: F. Pantellini,
e-mail: Filippo.Pantellini@obspm. fr

that the charge neutralizing electric field was the Pannekoek-
Rosseland field (e.g., Rosseland 1924). The latter is based on
the assumption of a static solar atmosphere which has been a
privileged working hypothesis since Laplace’s Traité de mé-
canique céleste, published in the early years of the nineteenth
century, but has been shown to be completely at odds with ob-
servations. After the definitive relaxation of the static approx-
imation for the electric field, kinetic models of the solar wind
were back on stage again (Jockers 1970).

The simplest, and most widely used kinetic models are the
so called exospheric models (e.g., Lemaire & Sherer 1971). In
these models the solar atmosphere is assumed to change from
fully collisional to collisionless at a sharply defined level called
the exobase. Above the exobase, conventional exospheric mod-
els assume a monotonically decreasing equivalent proton po-
tential ¥, (cf. Eq. (4)) and no protons coming into the sys-
tem from infinity, so that, by construction, all protons have
anti sunward directed velocities. For non pathological distri-
bution functions this means that the plasma bulk velocity at
the exobase is of the order of the proton thermal velocity, i.e.
of the order of the sound velocity. For example, (v) = vy/ V7
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is the mean velocity of a proton population with Maxwellian
velocity distribution fir = ng(ro3)~/ exp[(vﬁ +v7)/vp] trun-
cated for v < O (subscripts || and L refer to the radial direction
with respect to the center of the Sun). Since the typical veloc-
ity of a proton at the exobase is by construction of the order of
the radial bulk velocity, it follows that the exobase is located
at a heliocentric distance comparable to the distance r,. where
the subsonic-supersonic transition is located (the sonic criti-
cal point). However, as demonstrated graphically by Jockers
(1970), the proton potential cannot be monotonic from deep
inside the corona, where the bulk velocity is supposed to be
small compared to sound speed and where static approxima-
tion may apply, out to infinity, where the wind is supersonic.
Jockers anticipated that on its way from the corona to infin-
ity a transonic wind must overcome a maximum in the proton
potential ¥, such that Wp(ry) > W¥p(c0), where ry is the loca-
tion of the maximum. In two recent papers Scudder (Scudder
1996a,b) pushes a step farther by identifying the critical point
of Parker’s fluid model with the location of the maximum of
the proton potential energy ¥;. Based on that assumption he
derives a number of constraints on the possible radial varia-
tions of both the proton and the electron temperatures near the
sonic point. However, even though the existence of a transonic
wind seems to be intimately related to the existence of a peak
of the potential ¥, there is no reason for r, to coincide with the
sonic point of fluid theories unless very special, and therefore
unlikely, conditions are met there. For example, in the simula-
tions presented in this paper we do always find ry, > r.. It can
be shown analytically that this is indeed the normal case for
radially decreasing temperature profiles provided 7' decreases
more slowly than r~' (Meyer-Vernet et al. 2002).

In this paper we present self-consistent kinetic simulations
of a stationary solar type wind, where we concentrate on those
aspects which cannot be addressed by fluid theories such as
the electric field, the heat flux and the collisionality of the
plasma. We deliberately treat only the most simple case of
Maxwellian boundary conditions for the particles’ velocity dis-
tribution function. The effects of plasma instabilities and waves
are also not included in the model. Such additional “complica-
tions” may hide part of the fundamental physics of the accel-
eration process and shall be discussed elsewhere. In this re-
spect we do merely mention that the effect of resonant waves
on a hybrid (fluid + kinetic) solar wind model has been dis-
cussed by Tam & Chang (1999) who conclude that ions may
well be accelerated more efficiently by resonant waves rather
than by the radial electric field. A similar model has been
used by Lie-Svendsen & Leer (2000) to show that the two
temperature electron velocity distribution functions often ob-
served in the solar wind can be generated by Coulomb col-
lisions without the need of assuming the presence of non-
Maxwellain distribution in the corona. Olsen & Leer (1999)
and Li (1999) use a closed system of transport equations based
on an anisotropic bi-Maxwellian approximation for the velocity
distribution functions to simulate the solar wind from the lower
corona outward. Lie-Svendsen et al. (2001) extend the model
down to the chromosphere based on the argument that chro-
mosphere, transition region, corona and solar wind constitute
a coupled system. The system of equations used by these
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authors is known as the 16-moment approximation (e.g.,
Demars & Schunk 1979) is a fluid-type model including trans-
port effects such as heat flow and viscosity and even Coulomb
collisions between interacting species. The main purpose of the
above authors was to reproduce as good as possible the char-
acteristics of the coronal plasma by including ad-hoc heating
functions supposed to mimic the local deposit of energy due
to plasma waves. If suitably chosen the heating functions can
reproduce the temperature profile and temperature anisotropies
which observations suggest to prevail in the solar corona (e.g.,
Esser et al. 1999). In many respects, our model is much more
limited than the above multi-moment models which include
most of the ingredients (e.g. radiation, plasma heating through
waves, collisions, etc.). However, these models are fundamen-
tally fluid models and many ingredients are not self-consistent.
Our model is kinetic and fully self-consistent, but neither waves
nor radiation and not even the lower layers of the corona are
taken into account. In addition, because of computational limi-
tations, we use an artificially low proton to electron mass ratio,
and an exceedingly high coronal temperature, so that transpo-
sition of our results to the case of the real Sun must be done
critically. One substantial difference between our results and
the results from the mentioned multi-moment models is that
we find that the electron heat flux in the corona is one or-
der of magnitude larger than the classical value predicted by
the Spitzer-Hdarm formula (Spitzer & Hiarm 1953), whereas the
multi-moment models find it to be of the same order. Of course,
both models are subject to their own limitations so that the
question of whether the heat flux in the solar wind is classical
or not appears to remain an open question.

Even though the physical parameters characterizing the
wind simulated in the following section do not correspond ex-
actly to those observed for the Sun, we shall refer to the simu-
lated wind as the solar wind and to the central star as the Sun.

2. The model

Details of the simulation model have been given in two previ-
ous papers (Pantellini 2000; Landi & Pantellini 2001) and shall
not be repeated here to full extent. The model is spatially one
dimensional, i.e. all fields depend on the heliocentric distance r
only. An equal number of protons and electrons are allowed to
move freely in the domain ry < r < ryax, Where ry is the solar
radius and r,x is the outer boundary of the system located sev-
eral solar radii beyond the sonic point. The equations of motion
are those of a particle of mass m and charge ¢ in a central grav-
itational field produced by a star of mass M and a radial, charge
neutralizing electric field, &(r), i.e.

&  GM I?
@ et
L = mr X v, = constant

9 5.

m

(€]
(@)

where G is gravitational constant, L the angular momentum of
the particle and v, its velocity component perpendicular to the
radial direction. Two particles finding themselves simultane-
ously at the same radial distance r do either make an isotropic
elastic collision with a probability o« u~*~2 or just go through
each other as if they were transparent. The u™* dependence
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of the collision probability mimics velocity dependence of the
scattering cross section for Coulomb collisions whereas the r~2
dependence accounts for the spherical geometry of the prob-
lem. The transport properties of such a plasma have been shown
to be very much the same as those of a Fokker-Planck plasma
(Pantellini & Landi 2001; Landi & Pantellini 2001).

3. Defining the simulation

The physical state of the solar corona at heliocentric distance
ro (the lower boundary of our simulation domain) is charac-
terized by the dimensionless parameter y defined as (kg is the
Boltzmann constant)
_GMmy+me GM my
V= ro ZkBTo - ro ZkBT()
The parameter vy is half the ratio of the escape velocity squared
to the protons thermal velocity squared Uﬁo = 2kgTo/my. For

=p: 3)

a typical solar coronal temperature To = 10° K one has y =
11.6. The fact that 7y is larger than unity means that a typical
coronal proton is too slow to escape to infinity. On the other
hand, for coronal electrons at the same temperature one has
Ye = 6.3 X 107 < 1, meaning that the vast majority of the
electrons would easily escape to infinity if gravity was the only
force field. The solar corona is thus characterized by y > 1
and y. < 1. In order to reduce the required computational time
to an acceptable level we choose y, = 4 and y. = 1072, instead
of the above values of the real Sun. This, means that we adopt a
rather high coronal temperature of 2.9x10° K and an artificially
low proton to electron mass ratio m,/m. = 400. However, since
the two important constraints for a solar type atmosphere y, 2
1, ve < 1 are satisfied we expect the simulations to provide a
fair approximation of the solar case.

The equations of motion Egs. (1) and (2) are integrated for
N protons, and an N electrons in the radial distance range be-
tween r = ry and r = riop = 51r9. The number N is determined
by the requirement of the collision frequency of an electron in
the system (near r = ry) being roughly equal to the Fokker-
Planck collision frequency of a plasma with an electron num-
ber density . ~ 108 cm™3, which is a typical figure in the solar
corona. The so calculated number N turns out to be of the or-
der 10° (Landi & Pantellini 2001). Each time a proton or an
electron hits the boundary at r = ry it is injected back into the
system according to a non drifting isotropic Maxwellian veloc-
ity distributions with a temperature 7. Given that the protons
reaching the top boundary at r = ry,, are generally either su-
personic or nearly supersonic most of it must be re-injected
into the system at r = ry. On the other hand, electrons reaching
the r = ri,p boundary are injected back into the system either
at r = ro or at r = ry,p depending on what is needed to make the
electron flux to be equal to the proton flux (zero charge current
condition). The injection method ensures that there are always
N protons and N electrons in the system. The velocity distri-
bution of the electrons injected at the top boundary is chosen
to be a drifting bi-Maxwellian with radial and perpendicular
temperatures equal to the radial and perpendicular temperature
of the outgoing electrons. Finally, the drift velocity of the elec-
trons at r = ryop is taken to be equal to the drift velocity of the

protons measured at r = ryop. In case of a supersonic wind this
is just the average velocity of the protons escaping from the top
of the system. In a subsonic wind some protons have to be re-
injected into the system from the top. The temperature and the
number of the re-injected protons is then adjusted iteratively
until a coherent solution is obtained, in a manner similar to the
one used by Landi & Pantellini (2001) to simulate the static
corona. The electric field profile is adjusted iteratively, during
an initialization phase, until zero charge flux and local charge
neutrality is achieved in all points of the system.

4. Results
4.1. Effect of varying the coronal density

The number density n and the collisionality of the simulated
plasma is dependent on the number of particles N used in
the model. Figure 1 shows the results of 4 simulations which
only differ in the number N of simulated particles, i.e. N =
400, 784, 1600, 6400, the N = 400 run being the one with
the most tenuous (i.e. less collisional) atmosphere. The cor-
responding number densities at the base of the system are
no[108 em™3] = 0.8,1.5,3.6 and 13.4, respectively. The dif-
ferences between the 4 simulations are substantial in many
respects. The most evident difference is that the wind accel-
eration is much more efficient in the high density case, even
though the thermal Knudsen number K7 = ﬁepwln Tey(r)/0r]
(where Lp = 0e/Vep is the electron-proton collisional mean
free path based on the electron-proton rate of momentum ex-
change V., (Landi & Pantellini 2001, Appendix B), and where
ve| = (2kpTe/me)'/? is the radial thermal electron velocity) is
much smaller than unity for all runs, ranging from 1073, for the
densest case, to 1072 for the most tenuous case. From the fig-
ure it appears that the two more tenuous cases do not even be-
come supersonic with respect to radial proton thermal velocity
vl = (2kgTpy/mp)'/? (which coincides with the fluid isother-
mal sound speed when T, = T¢). The curves on the bottom
panel of Fig. 1 illustrate the effect of collisions on the proton
potential energy ¥p. The latter results from the sum of the grav-
itational potential and a charge neutralizing electrostatic poten-
tial ¢:

GMm,

Y =
P 7o

(2= 1)+ e @)
where e is the absolute value of the electron charge and where,
because of the finite extent of the simulation domain we choose
the level r = ry to be the reference level for both the grav-
itational potential and the electrostatic potential, rather than
r = oo. Thus ¥;(rp) = 0 by construction. The decreasing
height of the potential barrier the protons have to overcome
as the plasma collisionality increases is evident. In the least
collisional case (dash-dot profiles in Fig. 1) the potential ‘¥,
is a monotonically growing function of r. However, increasing
the system’s collisionality beyond a given threshold makes the
potential ¥, become non monotonic, with the peculiar forma-
tion of a maximum a few solar radii above the bottom bound-
ary at r = ry. As already stated in the introduction the exis-
tence of a maximum in the proton potential has been suggested
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Fig. 1. Flow velocity, Mach number and proton potential energy pro-
files for four different values of the number of particles N in the
system. From bottom to top the velocity profiles correspond to N =
400, 784, 1600, 6400, respectively. In all runs y = 4 and m,,/m, = 400.
The normalizing velocity vy is the proton thermal velocity v, (7). The
Mach number is defined as the ratio of the radial bulk velocity of
the plasma divided by the proton thermal speed vy = (2kg Ty /m1,)' /2.
The normalizing energy Wy is given by Wy = GMm,/ry. Thus, as a
reference, if the charge and current neutralizing electric field was the
Pannekoek-Rosseland potential ¥, /¥y ~ 0.5 for r > r.

1 10 20

some time ago by Jockers (1970). Scudder (1996a) pushed a
step farther by postulating ry to coincide with the position of
the isothermal sonic point of Parker’s fluid theory. Figure 1
shows that when a maximum of ¥}, exists, it is located above
the sonic point, in agreement with the theoretical predictions
(Meyer-Vernet et al. 2002). Figure 1 also shows that the low
density cases do neither produce a maximum in the proton po-
tential nor a supersonic wind, at least if terms of the parallel
temperature based Mach number. One may suspect that if the
Mach number was defined with respect to the mean temper-
ature 7 = (T + 2T.)/3 the flow would more easily become
supersonic at large distances because of the T, o r~2 depen-
dence implied by the conservation of angular momentum in a
collisionless plasma with negligible heat flux. In the end, how-
ever, given that in the collisionless limit and for r — oo, one
has Tj — const. (e.g., Meyer-Vernet & Issautier 1998), so that
T — Ty, asymptotically. As a consequence, the distant Mach
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number does not depend on which of the two above definitions
has been used.

In summary, the main consequence of increasing the
plasma density beyond some threshold appears to be a reduc-
tion of the potential barrier the protons have to overcome in
order to escape to infinity, accompanied by the formation of
a local maximum in the ¥, (r) profile. As we shall see below
the formation of the maximum in the proton potential energy is
intimately related to the existence of both an outward directed,
and radially decreasing heat flux, and a radially decreasing tem-
perature profile. Both contribute in strengthening the outward
directed electric field & = —d¢/dr, thus facilitating the extrac-
tion of the protons. In this context we shall remember that if the
plasma was static (impermeable boundaries) with equal elec-
tron and proton temperatures, the charge neutralizing potential
¢ would be the celebrated Pannekoek-Rosseland potential (e.g.,

Rosseland 1924)
my Me (m )
—|1-—{=-1
2e ( mp) r

and the total potential energy of a proton would be a monoton-
ically increasing function of r

1+

asymptotically reaching the value GMmy,,/(2ry) which is much
higher than the values observed in the simulations (cf. bottom
panel of Fig. 1).

GM
P(r) = ¢pr(r) = — (%)
o

GM m,

Y, =
P T 2

m—) (@ - 1) (static limit)
mp r

4.2. Wind acceleration

Let us now address the question of the wind acceleration mech-
anism. In order to do so we write the energy equation for
the species j for the case of a steady state and purely radial
wind. Indeed, the second moment of Boltzmann’s equation
(e.g., Endeve & Leer 2001) leads to the following expression
4

1
Ej= smv} +hi(r)+¥; + -

i=3 ©

Vi

where g, nj, v; are the heat flux, density and bulk velocity of
the corresponding species and where we have defined the en-
thalpy per particle of the species j

3

hj(r) = EkBTj“ + kBTjL- (7)
We note in passing that the first moment of Boltzmann’s equa-
tion leads to Jockers’s Eq. (1.1) (Jockers 1970)

v,

(Tju - T,l) s

A, 10(nksTy) 2k
TSR .

MGy T TR ar
When applied to the electrons one may neglect the small terms

proportional to the electron mass m. in Eq. (8) which then re-
duces to the usual expression for the electric field &

14 2
€8 = ——— (nckgTe)) — —kp (Te) — Tev) - )
ne or r
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Fig. 2. Proton and electron energy profiles obtained by evaluating
Eq. (6) for the N = 6400 simulation. Note how both, E. and E, are E
separately constant over most of the simulation domain. The electro- = 4E
static profile —e¢ is plotted as a reference. E-m E grav
]
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But let us come back to Eq. (6). In all simulations E, and E, 2
are separately approximately constant over the whole simula- é 2 E, .
tion domain (excepted for a small region near the r = ry bound-
ary). This is shown in Fig. 2 for the N = 6400 case. At first,
this seems to indicate that the net energy exchanges between 1
protons and electrons are quantitatively small. This is not nec-
essarily correct. Indeed, it appears that the system does merely 0
1 10 20 30 4050

organize itself in order to ensure a spatially constant proton to
electron energy density ratio throughout the system. The ratio
can be constant even if interspecies energy exchanges via colli-
sions are strong. A simple example of such a system consists of
a collisional proton-electron plasma under the effect a constant
gravitational acceleration field g. In this case the temperatures
of both, electrons and protons, must be equal, isotropic and spa-
tially constant. Further, the heat flux must vanish and the charge
neutralizing electric field is just the Pannekoek-Rosseland field
g(mp — me)/(2e) so that E, = E. = (5/2)ksT + g(mp, + me)z/2,
i.e. Ep/E. = 1, independently of the height z. On the other
hand, as we shall see below, in the spherically symmetric case
the heat flux (mainly conveyed by the electrons) is the domi-
nant source of energy for the acceleration of the wind. In order
to proof this affirmation it is useful to evaluate the mean energy
per particle (E) as a function of r. Averaging the contribution
of electrons and protons according to Eq. (6) leads to

@)+ 1} (10)

1 GMm,
(EY = = | zmpv +h(r)+—(1—
2 o r no

2
where the enthalpy term A(r) includes the temperature terms
from all species (electrons and protons). In order to obtain
Eq. (10) we made use of the fact that m, > m, and that the pro-
ton and electron number fluxes are equal, i.e. nyvp = neve = nv.
As a reference, the number flux nv has been found to be of the
order 10 2veonp in all runs. In particular for the N = 6400 case
we find nv = 1.2 X 1072 ngveo. The energy flux F conveyed by
the wind through the spherical shell located at a distance r is
the product of the particles mean energy at that distance (after

/7,

Fig. 3. Relative importance of each term in Eq. (10) for the most dense
case N = 6400 (top panel) and the most tenuous case N = 400 (lower
panel). The dense case supports a transonic wind (the vertical line in
the top panel gives the position of the sonic point r,) while the tenuous
case does not. From the comparison of the two figures it appears that
the wind acceleration is primarily driven by the heat flux term g/(nv).

deduction of their gravitational energy) times the number of
particles crossing the shell per time unit. Since the total number
density is equal to twice the number density of either species
the particle flux is a constant given by 87r’nv and the energy
flux becomes

Fr(r) = 8ﬂr2nv[(E)—%r:1P(l —%0)] (an

Figure 3 illustrates the relative importance of each of
the 4 terms in Eq. (10) as a function of the radial distance r
for the N = 6400 (top) and the N = 400 (bottom) run. Since
the gravity term vanishes at r = ry and the bulk velocity v
is much smaller than the sound speed, only the enthalpy and
the heat flux term contribute to the total energy there. The rea-
son for the total energy being slightly larger in the low den-
sity case arises from the heat flux term g/(nv) being stronger
in that case. This is because at r = ry we do not have control
over this term as we do for the enthalpy, which only depends
on the temperature imposed at the boundary. Interestingly the
run characterized by the largest heat flux term ¢/(nv) (which
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Fig. 4. Radial and perpendicular temperature profiles for 4 different
values of the N. Note the log-log axis of the top two panels.
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does not necessarily mean that the heat flux g, or the specific
heat flux g/n are largest) is precisely the one where the wind
remains subsonic. This is particularly surprising in the light of
the fact that the velocity of the wind is clearly boosted by the
heat flux term given that the enthalpy profile is seemingly iden-
tical for the two cases. However, a strong heat flux term near
the bottom does not guarantee that the wind will be accelerated
to supersonic velocities. A sufficient amount of collisions is
needed to efficiently transform the energy transported outward
by the electron heat flux into bulk plasma kinetic energy.

Figure 4 shows that the radial electron temperature pro-
file T is essentially insensitive to the density while T, is not.
Indeed, in the collisionless limit the parallel and perpendicu-
lar temperatures are independent of each other and one should
observe T, o r2 in order to satisfy to the angular momen-
tum conservation law of individual particles (cf. Eq. (2)). As a
consequence, in the rigorously collisionless case, T, should
decrease by a factor 50% from bottom to top of the simula-
tion domain. Collisions do significantly contribute in limiting
this bottom to top perpendicular electron temperature gradient
which ranges from 10 to 30 depending on the value of N. On
the other hand, for all four cases the parallel temperature only
drops by a factor 3 from bottom to top, leading to strong tem-
perature anisotropies T¢/Te, (bottom panel in Fig. 4). This is
not particularly surprising as in the collisionless limit the par-
allel temperature of a plasma plunged in a potential field is
constant as long as the velocity distribution function is close
to Maxwellian.

We can now summarize the wind acceleration scenario
from a kinetic point of view. The natural decrease of the
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temperature with distance (essentially due to the fact that in
the collisionless limit 7, o r72) implies the existence of a ra-
dial heat flux predominantly conveyed by the electrons. The
heat flux is transfered from the electrons to the protons which
become accelerated in the outward direction. Since the momen-
tum of the wind is mainly carried by the heavy protons (rather
than by the light electrons) the plasma as a whole becomes ac-
celerated in this way. This mechanism must be particularly ef-
ficient in the region located inside the spherical shell » = ry
(location of the maximum of ¥,) where the protons have to
climb uphill in order to escape from the potential energy well
(cf. Fig. 1). As already stated above, collisions contribute in
increasing the electric field strength. Since the electric field is
directed outward, increasing the electric field favors the extrac-
tion of the protons from the gravitational well by reducing the
height of the maximum in the proton potential ‘¥',. The fluid es-
timate of the macroscopic electric field & for a spherically sym-
metric electro-proton plasma can be obtained by differentiating
Eq. (6) for the electrons. Neglecting the small terms propor-
tional to m, and taking advantage of the fact that E. is approx-
imately constant (in particular if one compares it to the ¢(r)
profile shown in Fig. 2) we then obtain

&~ —kB%(%Te” +Tu)—%(%)- (12)
This estimate is not as rigorous as the standard estimate based
on Eq. (8) since it is based on the assumption of a con-
stant E.(r) profile. The equation has the advantage of high-
lighting the role of the heat flux in the shaping of the elec-
tric field profile. For radially decreasing temperature profiles
the first two terms on the right hand side of Eq. (12) are pos-
itive and favor the outward acceleration of the protons. They
are reminiscent of the thermoelectric effect (e.g., Pantellini &
Landi 2001). Given that g/nv has been seen to decrease with
distance for the two extreme cases shown in Fig. 3 it follows
that the third term on the right hand side of Eq. (12) is also
positive for all simulation. However, the contribution of the lat-
ter to the acceleration is significantly stronger in the N = 6400
case than in the N = 400 case, where the radial dependence
of g/nv is seemingly weak.

It is instructive to apply Eq. (12) to a a weakly collisional
system. In such a case the parallel temperature T is roughly
constant and the perpendicular temperature T., o r~2. This
leads to the collisionless approximation

constant @ ( q )
o« —=_ 2 (4
r or

13)
nv

where the constant is positive. From Eq. (13) it appears that
when the heat flux term is constant, or only weakly spatially
dependent, such that the first term on the right hand side of the
equation dominates over the second term, the electric field de-
creases faster than the gravitational field (i.e. & o 7~3). This is
the reason for the proton potential energy ‘¥, to be a monotoni-
cally growing function of distance r in the N = 400 case shown
in Fig. 1. Increasing the number of particles in the system
makes the plasma more collisional and forces the perpendicu-
lar temperature T, to fall off more slowly than =2 (see Fig. 4)
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Fig. 5. Parallel electron velocity distribution functions (solid lines) in
arbitrary units at two different positions in the system, near the base
and in the supersonic region. Shown are results of the N = 6400 simu-
lation. The dashed lines represent Maxwellian distributions for which
the first three moments (density, mean velocity and temperature) are
those of the measured distributions. Velocities are normalized to the
electron thermal velocity vey = ve(rp).

making it harder for the gravitational force acting on a pro-
ton to overcome the electric force. Eventually, if 7., decreases
more slowly than r~!, there must be a minimum distance be-
yond which the electric force on a proton overcomes the grav-
itational force and ¥, has a maximum. This is clearly the case
for the N = 6400 case shown in Fig. 4 where T,, o r~%°. For
the N = 400 case the temperature profile is steeper, with an
average radial dependence given by T., o r*°. Thus, even
though all profiles can be described by a power law which de-
creases more slowly than 7~! (on average over the simulation
domain) all profiles tend to steepen at large distances because
of the plasma tendency to become less collisional. Eventually
beyond some N-dependent threshold distance the T, profiles
becomes steeper than ! so that the formation of a maximum
of ¥, becomes impossible beyond this point. This is the case
for the N = 400 run. In the other three runs a maximum forms
below the point where the T, profile becomes steeper than r L
‘We can now reexamine Fig. 3 in the light of Eq. (12). Figure 3
already told us that the enthalpy profile is not very sensitive
on the plasma collisionality even though it contributes signifi-
cantly in strengthening the electric field according to Eq. (12).
The determinant contribution in accelerating the wind to super-
sonic velocities comes from the heat flux term ¢/(nv) which has
been seen to be much more sensitive on the plasma collisional-
ity. As demonstrated by Eq. (12), the heat flux term contributes
to the strengthening of the outward directed electric field, pro-
vided it decrease with distance. Figure 3 shows that the heat
flux term decreases for both simulations represented on the fig-
ure with the steepest profile being associated with the high den-
sity case which therefore produces the strongest electric field,
according to the last term on the right-hand side of Eq. (12).
For the N = 6400 simulation the parallel electron veloc-
ity distribution functions at the base of the system at r = ry,

number Ky = zeplﬁln T (r)/0r| (dashed line) for the most strongly
collisional case N = 6400 normalized to gy = nomcugl), where v is
the electron thermal velocity at the base of the system at r = ry. The
triangle on the heat flux axis indicates the heat flux expected near the
base of the system using the Spitzer-Hirm formula (Spitzer & Hiarm
1953). The dot-dash line shows the —T7/*0T¢/dr law normalized to
the measured flux at r = ry.

and in the supersonic region at r = 45 ry are shown in Fig. 5.
Since the collisional mean free path A is proportional to v* high
energy electrons are nearly unaffected by collisions on their
journey through the system. Thus, the velocity distribution of
the high energy electrons flowing downward is the imprint of
the upper boundary condition whereas the velocity distribution
of the high energy electrons flowing upward is the imprint of
the lower boundary at » = ry. On the other hand, the low en-
ergy electrons, which populate the core of the velocity distri-
bution function, are strongly affected by collisions. As a conse-
quence, at low velocities, the electron velocity distributions are
approximately isotropic Maxwellians which do not carry any
heat flux. Instead, the heat flux is carried by the high energy
electrons which are responsible for the asymmetry of the distri-
bution function. As illustrated by the profiles in Fig. 5 the heat
flux is due to a deficiency of downward flowing high energy
electrons near the lower boundary and to an excess of upward
flowing particles in the supersonic region.

4.3. Comments on the electron heat flux

Figure 6 shows the heat flux and the thermal Knudsen num-
ber K7y measured in the N = 6400 run. One observes that
while it remains approximately constant in the supersonic re-
gion above the r ~ 10r) level, K7 grows steeply in the sub-
sonic region, where it increases from 10~ to 1072. Since
Kr < 2 x 1072 in whole simulation domain, it is not particu-
larly surprising that the heat flux closely follows a T:H/ZBTeH/Br
dependence (dot-dash curve) as in the case of the classical
Spitzer-Harm heat conduction formula (Spitzer & Hdrm 1953).
This conclusion is misleading, since, despite the smallness of
the Knudsen number, the heat flux is strongly non classical. As
already pointed out by several authors in the past the classi-
cal heat conduction formulation breaks down either because
the heat flux intensity exceeds a value of the order 1072gq
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(Gray & Kilkenny 1980), or because the Knudsen number is
larger than 1073 (Shoub 1983), or because the flow velocity
is a significant fraction of the sound speed (Hollweg 1974;
Alexander 1993), or even because the electric field in the sys-
tem is of the order of the Dreicer field Ep = kT./ (ezep)
(Scudder 1996b). Indeed, in the N = 6400 simulation the elec-
tric field at the sonic point is & ~ &p, reaching an intensity
& =~ 8&p in the N = 1600 case. Concerning the heat flux in-
tensity, Fig. 6 shows that it is small enough for the the low heat
flux intensity condition established by Gray & Kilkenny (1980)
to be satisfied. One can therefore conclude that the heat flux in-
tensity is low enough for the plasma to be capable to support a
Spitzer-Harm flux. Let us now address the problem of the heat
flux in a flowing, and weakly collisional plasma. As discussed
by Hollweg (1974) and Alexander (1993) a non negligible frac-
tion of the of the energy is carried by a collisionless term of the
form gne = (3/2)anvkgT. where « is a positive numerical fac-
tor of order unity (note that the electron temperature has been
supposed to be isotropic by these authors). Given that colli-
sions are still relatively important in our simulations we make
the ansatz that the observed electron heat flux is made of the
sum of a classical (collisional) term (e.g., Braginskii 1965) gsu
and a collisionless term gnc

qsH T gnc

nkiTe 0T, 3
B e + — a nvkg T,
MeVep Or 2

qe

-3.16 (14)

where «@ is a positive constant of order unity whose numeri-
cal value depends on the assumptions of the specific heat flux
model (Hollweg 1974; Alexander 1993). As a guide, Hollweg’s
estimate of @ for the solar wind are in the range 2.0 to 7.0
(Hollweg 1974). Equation (14) shows that the two heat con-
duction terms have an extremely different dependence on the
macroscopic moments of the plasma. The Spitzer-Harm heat
conduction does only depend on the temperature, and its radial
variation, while the collisionless term gnc depends on both the
electron number flux and the temperature (but not on the tem-
perature gradient). This situation is reminiscent of the heat con-
duction in a plasma confined to the space between two parallel
plates separated by a distance L at temperatures Ty and Ty,
respectively (Landi & Pantellini 2001). If the plasma is domi-
nated by collisions the heat conduction between the two plates
just equal to gsy. However, if the plasma is sufficiently diluted
for a non negligible number of electrons to be able to pro-
ceed from one plate to the other without colliding with other
particles in the system, the heat flux is best described by the
collisionless approximation gnc o n(ToTi/ 2_ TLT(;/ 2) which
(unlike gsp) is a function of the number density n. Figure 7
compares the Spitzer-Hidrm estimate and the collisionless esti-
mates of the electron heat flux with the observed heat flux for
the four simulations. All profiles in the figure have been ob-
tained using T in place of the temperature 7. which appears
in Eq. (14). Even though Hollweg’s collisionless approxima-
tion is not expected to provide an accurate approximation of the
heat flux in the simulated systems, it appears that the measured
heat flux varies significantly from one simulation to the other,
in good qualitative agreement with the non collisional flux gnc
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obtained using Alexander’s model (Alexander 1993) to com-
pute a in Eq. (14) after replacing T by T¢. The Spitzer-Harm
prediction of an equal heat flux intensity for all four simulations
(based on the fact that the radial profiles of T are very similar
cf. Fig. 4) is completely at odds with the measured intensities.
But why is this so, despite the smallness of the Knudsen num-
ber? The answer is hidden in Eq. (14). Indeed, from Eq. (14),
after replacing T, by Ty, it follows that the ratio of the two
contributions to the total heat flux is given by

3 1
ne _ 0@ V2 (15)

4qsH 3.16 De|| KT

From Eq. (15) it follows that the condition for the heat flux in
the system to be dominated by the classical term gsy one must
have Kr > av/v. For example, at the sonic point one has
v/ve) = (mc/mp)l/2 = 1/20 and K7 ~ 1072 from where one can
estimate gne/gsu = Sa, which is substantially larger that unity
for any reasonable value of @. Thus, for the heat flux to be of
the Spitzer-Hérm type in the vicinity the sonic point requires
the thermal Knudsen number to be larger than (m./ mp)'/ 2 The
simulations suggest that this is not easily achievable because
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the driving of the wind to supersonic velocities does precisely
requires the plasma to be sufficiently collisional at the sonic
point. As already stated, the way around this restriction may be
the presence of an additional scattering mechanism (e.g. waves)
in the plasma. However, in that case the Spitzer-Hérm formula-
tion of the heat transport would not be the relevant one anyway.
As already pointed out in the introduction recent multi-moment
simulations of the solar wind yield a close to classical elec-
tron heat flux (e.g. Olsen & Leer 1999; Li 1999; Lie-Svendsen
et al. 2001). The discrepancy may be due to the fact that physi-
cal conditions of the wind we simulate are quite different from
those used in these multi-moment simulations or, eventually, to
the fact that the heat flow equations in the multi-moment mod-
els are affected by the closure scheme. The simplified version
of the Coulomb collision operator used in our model or even the
one-dimensionality of the model may also contribute to the ob-
served discrepancy. The reason for the radial dependence of the
heat flux measured in the simulation (cf. Fig. 6) to be roughly
of the Spitzer-Harm type stems from the fact that the radial de-
pendences of both terms in Eq. (14) are quite similar for the
given temperature profiles. Indeed, if we replace 7. by T in
Eq. (14) and use the fair approximation T, oc r~%4 (from Fig. 4)
it follows that both gs and gnc vary approximately as =24,

4.4. Effects of varying the proton to electron mass ratio

Given the artificially low mass ratio in our simulations there
is a concern about the sensitivity of the results on the value
of my/me. In order to address this question we show the same
simulation for two different values of m,/m. in Fig. 8. The
other parameters are identical for both simulations , i.e. y, = 4
and N = 6400. In both cases the formation of a transonic wind
occurs, in association with the formation of a maximum in the
proton potential. However, the maximum’s amplitude is sub-
stantially higher, and less peaked, in the low mass ratio simu-
lation. The discrepancy is likely due to the fact that in the high
mass ratio case the scattering of the electrons in velocity space
by the protons is more efficient than in the low mass ratio case.
Indeed, the temperature ratio T¢/Te. reaches a value of 3 at
the upper boundary in the m,/m. = 400 case (cf. Fig. 4) and
a value of 4 in the m,/m. = 100 case. As a result the absolute
value of second term on the right hand side of Eq. (9) is signif-
icantly smaller in the high mass ratio case than in the low mass
ratio case. Since the sign of this term is negative it contributes
in reducing the the strength of the overall positive electric field.
From Fig. 4 one may argue that a similar argument applies to
the observation that the electric field strength increases with in-
creasing plasma density (i.e. with increasing collisionality) as
does effectively show Fig. 1.

Extrapolating these observations to m,/m. = 1836 and N =
6400 one therefore expects the maximum of the proton poten-
tial to drop to an even lower level. The peak is expected to be
at least as marked as for the m,/m. = 400 case.

5. Conclusion

From self-consistent kinetic simulation of a solar type wind we
find that, unless an efficient isotropization mechanism for the
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Fig. 8. Dependence of the Mach number and the proton potential en-
ergy on the proton to electron mass ratio for the simulation with N =
6400. Even though the qualitative behavior is similar it appears that a
high mass ratio is in favor of a stronger acceleration of the wind. The
definitions for the Mach number and the normalizing energy ¥, are
the same as in Fig. 1.

electron velocity distribution (e.g. wave-particle interaction), or
some source of suprathermal electron distributions are invoked
(e.g. shock produced), the formation of a transonic wind is only
compatible with a sufficiently high collisionality in the vicinity
of the sonic point r = r,. In oder words, the coronal density
must exceed a threshold density for the wind acceleration to be
sufficiently strong to become supersonic. Given the admittedly
oversimplifications in our model, combined with the fact that
the parameters we use are rather unrealistic (excessively high
coronal temperature and low m,,/m. ratio) makes it impossible
for us to specify an upper limit for the thermal Knudsen num-
ber at the sonic point r.. We do merely show that the number
cannot be arbitrarily large, the limiting value most likely being
of the order unity, or less. As already stated, non Maxwellian
boundary conditions, feeding an excess of suprathermal par-
ticles into the system (e.g. kappa distributions) may help over-
coming the low Knudsen number condition. However, the exis-
tence of non thermal particle distributions rises the question of
their origin. We chose not to address this question and assume
Maxwellian boundary conditions which have the advantage of
not requiring the introduction of additional ad hoc parameters
into the model. Thus, in the absence of any electron scattering
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mechanism (apart from collisions), and unless special bound-
ary conditions are imposed at the base of the simulation do-
main, collisions appear to be the essential ingredient for the
wind to become accelerated to supersonic velocities, mainly
because collisions are necessary to convert the electron heat
flux into bulk energy of the plasma. The enthalpy gradient does
also contribute to the acceleration of the wind. However, the
acceleration associated with the radially decreasing enthalpy is
found to be weakly dependent on the plasma collisionality and
doesn’t seem to be the discriminating factor in the acceleration
of the wind to supersonic velocities.

In simulations where a transonic wind forms we find that
the proton potential has a maximum near (but above) the
sonic point. Typical values of the electric field near the sonic
point r, are found to be of the order of Dreicer’s field, or
larger. The presence of such strong electric field intensities
may contribute in making the electron heat flux depart from
the classical Spitzer-Harm formula (which requires the electric
field being much weaker than Dreicer) but the main reason
for the observed heat flux to depart from the Spitzer-Harm
prediction is due to the presence of a strong “non collisional”
heat flux gne o muT.. The latter appears to contribute sig-
nificantly to the total electron heat flux, even in the region
where the wind velocity is much smaller than the sound speed.
We are aware of the fact that extrapolating the above results
to the “real” Sun is a perilous exercise. However, we do not
expect the qualitative behavior of a system with real coronal
temperature and real proton to electron mass-ratio to behave
in a substantially different way from the high density case
discussed in this paper. In particular, increasing the proton
to electron mass ratio from 400 to 1836 implies a factor two
increase in the electron thermal velocity, only. Given that
the electron thermal velocity at the base of the system is
already one order of magnitude larger than the escape velocity
for the m,/m. = 400 case, not much difference is expected
in a system with twice this thermal velocity. The skeptical
reader may also argue that using a realistic mass ratio would
substantially modify the transport properties of the plasma.
This is certainly true, but we expect the modifications to be
small, essentially because neither the classical electron heat
flux gsg nor the collisionless heat flux gnc depend on the
mass ratio, at least as long as mp,/m. > 1. We expect the
excessively high coronal temperature used in our simulations
to be a more crucial limitation in the process of transposing
the above results to the solar case just because the pro-
ton thermal velocity and the escape velocity are of the same

S. Landi and F. Pantellini: Kinetic simulations of the solar wind

order, i.e. V9 = O(1). Indeed, the coronal temperature of the
real Sun is roughly 3 times smaller that the value we use here.
This implies a factor V3 difference for the order unity quan-
tity yp. The impact is certainly non negligible from a quantita-
tive point of view but there aren’t any reasons for us to believe
that the qualitative aspects of our results do not apply to the
solar case. For instance, whether or not the collisionless heat
flux near the solar sonic point is really one order of magnitude
stronger that the classical Spitzer-Harm flux remains an open
question since this finding discords with recent results from
multi-moment models.

Acknowledgements. We thank the referee for the detailed comments
which very much helped us during the revision of the paper.
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Abstract. We present one dimensional molecular dynamics simulations of a two species, initially uniform,
freely evolving granular system. Colliding particles swap their relative position with a 50% probability
allowing for the initial spatial ordering of the particles to evolve in time and frictional forces to operate.
Unlike one dimensional systems of identical particles, two species one dimensional systems of quasi-elastic
particles are ergodic and the particles’ velocity distributions tend to evolve towards Maxwell-Boltzmann
distributions. Under such conditions, standard fluid equations with merely an additional sink term in the
energy equation, reflecting the non elasticity of the interparticle collisions, provide an excellent means to
investigate the system’s evolution. According to the predictions of fluid theory we find that the clustering
instability is dominated by a non propagating mode at a wavelength of the order 10rL/Ne, where N is
the total number of particles, L the spatial extent of the system and ¢ the inelasticity coefficient. The
typical fluid velocities at the time of inelastic collapse are seen to be supersonic, unless Ne < 107. Species
segregation, driven by the frictional force occurs as a result of the strong temperature gradients within
clusters which pushes the light particles towards the clusters’ edges and the heavy particles towards the
center. Segregation within clusters is complete at the time of inelastic collapse.

PACS. 45.70.Mg Granular flow: mixing, segregation and stratification — 45.50.Tn Collisions — 02.70.Ns

Molecular dynamics and particle methods

1 Introduction

Granular materials are ubiquitous in the macroscopic world
[1]. The consequence of the inelasticity of the collisions be-
tween grains is that the standard fluid equations used to
describe a gas of atoms or molecules need to be modified.
Even for the simplest systems, the mathematical expres-
sions for the transport coefficients turn out to be much
more involved than the expressions for a system of elastic
particles. In addition, granular materials are often polydis-
perse. For example sand grains are generally characterized
by a broad range of particle sizes and shapes. Thus, the-
oretical models and numerical simulations based on gran-
ular systems of identical particles may be too limited to
describe a real system, even on a purely qualitative level.
On the other hand, systems of identical particles have the
non negligible advantage of being mathematically simple
while retaining many important features of real dissipative
systems.

One of the most spectacular consequences of the in-
elastic nature of collisions in a granular system is the so
called inelastic collapse. In the absence of energy injection
statistical fluctuations in an initially uniform system can
lead some regions to cool faster than others producing lin-
early growing density fluctuations which can be described
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in the frame of continuum model theories [2, 3, 4]. In the
non linear regime the high density regions collapse produc-
ing clumps of particles where the collision frequency grows
to infinity[5, 6]. The instability is a long wavelength insta-
bility which is hardly avoidable in freely evolving systems
provided the number of particles in the system exceeds
some minimum value which very much depends on the
system’s characteristics [6, 3]

It is often acceptable to describe granular systems by
means of fluid equations derived from the inelastic Boltz-
mann equation using the Chapman-Enskog procedure (7,
8, 9]. Hydrodynamic models have been applied to the
case of inelastic particles in a constant gravitational field
(10, 11, 12]. These systems often behave non intuitively.
Hence, it is shown in [12] that a collection of inelastic par-
ticles confined to a vertical box with permanent injection
of energy from the base (e.g. by shaking the base of the
box vertically) the granular temperature profile is a non
monotonic function of height. The temperature decreases
near the bottom, goes through a minimum, and finally
rises indefinitely with height above the minimum.

It has been recently shown in [13] that during the
homogeneous regime of the temporal evolution of a one
dimensional system of identical particles the spatial or-
dering of the particles appears to play a crucial role in
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shaping the particles’ velocity distribution. Thus, works
[14], based on the so-called pseudo-Maxwell model, a ho-
mogeneous model where no spatial ordering is assumed by
construction, have been found to be unable to describe the
evolution of a system of inelastically interacting particles,
even during the homogeneous regime. The late evolution
of systems of identically spatially ordered particles has
been shown to be strongly affected by the development of
spatial correlations between the particles’” velocities even-
tually leading to an inelastic collapse [e.g. 2, 13].

One dimensional systems of identical particles behave
in a very peculiar way. Thus, in the elastic limit, the over-
all velocity distribution of the particles’ is not modified by
collisions. Colliding particles do merely exchange their ve-
locities and the system is not ergodic. Adjunction of just
one anomalous particle forces the velocity distribution to
relax towards a Maxwell-Boltzmann distribution.

In this paper we use molecular dynamics (MD) simu-
lations to investigate the evolution of a two species one-
dimensional, periodic, system of N point particles. N/2
particles have mass m; = 1 (species 1) and N/2 particles
have mass my = 4 (species 2). The system is a proto-
type for more complex systems with broader mass distri-
butions. One important ingredient of the model is that
colliding particles swap their relative position with a 50%
probability allowing for the initial spatial ordering of the
particles to evolve in time. This introduces the possibil-
ity of species to stream with respect to eachother giving
frictional forces the opportunity to operate.

The restitution coefficient r, appearing in the collision
rules (12) and (13), is close to elastic such that the ther-
malization time is always much shorter than the cooling
time. As a consequence, the velocity distribution function
of both species are always close to Maxwellian, at least
as long as the species do not segregate. Such dissipative
systems are always linearly unstable with respect to the
so-called clustering instability. In one dimension the clus-
tering instability is a fluid instability which is found to
triggers the formation of non propagating spatial density
inhomogeneities at scales of the order 10mL/Ne, where
e =1—17r2 and L is the size of the system. The clusters of
particles which form due to the clustering instability are
characterized by a temperature profile which increases ex-
ponentially as a function of the particle index [ away from
the center of the cluster (cf e.g. Figure 6). These strong
temperature gradients within clusters drive the light par-
ticles away from their centers towards the edges of the
clusters while the opposite happens to the heavy parti-
cles which tend to become concentrated in a very small
region near the center of the cluster. (cf Figures 4 and 5).
The species segregation is driven by the frictional force (7)
which points in opposite directions for the light and heavy
particles. At the time of inelastic collapse, fluid motions
may or may not be supersonic depending on whether or
not the number of particles N exceeds a critical number
of order 107 /e. In order to avoid confusion, we do loosely
define the time of inelastic collapse in our simulations as
the time for which the molecular dynamic simulation is
essentially ”frozen”. By ”frozen” we mean that the total

energy and, consequently the fluid velocity profiles of the
system do not change significantly by doubling the num-
ber of collisions.

The paper is organized as follows. In Section 2 we in-
troduce the set of fluid equations whereon we base our
analysis of the simulation results. The numerical model is
presented in Section 3. Simulations with N = 19600 par-
ticles and 3 different values of the restitution coefficient
r are presented in Section 4, In Appendix A we develop
the linear theory of the clustering instability for a two-
species, one dimensional system. The collision frequency
for such a system in the homogeneous limit and close to
the thermodynamic equilibrium, is given in Appendix B.

2 Fluid equations for a mixture of two species

In the general case [see e.g. 15], the expressions for the
hydrodynamic transport coefficients describing a granular
gas with two species of inelastically interacting particles
are so involved that they are of little practical use to de-
scribe real systems. It is not even clear under which condi-
tions fluid equations are relevant for real granular systems.
However, over the years it has been shown that fluid equa-
tions are extremely useful to help understand results from
granular system simulations. Over the few last decades,
explicit expressions for the transport coefficients in 2 and
3 spatial dimensions have been published by various au-
thors. To our knowledge, expressions for the 1d case have
not been published until now, certainly because of the
non-ergodicity of most 1d systems. Yet, in the case of a
mixture of unequal particles, collisions among particles of
different mass do inevitably drive the velocity distribution
functions for all species towards Maxwell-Boltzmann. The
tendency to thermalization in such one dimensional mix-
tures indicates that ”standard” fluid equations may apply
to such systems as well.

The fluid equations of this section all stem from a
Chapman-Enskog type treatment of the Boltzmann equa-
tion by various authors [7, 8, 15, 9] which implies that
their validity is at best limited by the assumptions on
which the Chapman-Enskog procedure is based on. One
of the most stringent conditions, in a system characterized
by a mean free path [, and a spatially varying temper-
ature T'(z), is the requirement of the Knudsen number
K = I, 01og T/0x being much smaller than unity. The
K < 1 condition means that the particles’ distribution
functions do not vary substantially over distances of the
order of the mean free path l,,g, and that the velocity dis-
tributions are close to Maxwellian. A related condition is
that fluid time scales must be long compared to the colli-
sional time scale, i.e. the time between successive collisions
of a thermal particle.

We write the continuity equation for two species o =
1,2 in terms of the species mean velocities u, and mass
densities g, = MaNa:

D0a d _
2 92 (0atta) = 0. 1)
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Defining the total density 0 = g1 + 02 and the center of
mass flow velocity u = (u101+u202)/0 one can add the two
continuity equations (1) and write a one fluid continuity
equation:

do 0O

= + 5 2

TRl 2)
According to [16] we write the momentum equation for
both species in the form

0
O« <ﬁ +U(1u_a) = -
€T

where ¢, represents the frictional force on the species «
due to the collisions with the other species in the system
and where K, is the contribution to the pressure tensor
from collisions with all species (shear and bulk viscosity).
Momentum conservation implies ¢; = —¢@2. The sign dif-
ference between ¢; and ¢ indicates that if the frictional
force is dominant, it can act as a species filter. The par-
tial pressures p, in equation (3) are defined with respect
to the center of mass flow velocity wu, i.e.

u) = 0.

a[pa(l + ch)]

3)

Do = /ma(v - u)zfn(v)dv =nagTn 4)
For the remaining of this section, and throughout the pa-
per, we assume that collisions are efficient enough to en-
sure energy equipartition among species, i.e. T'=T; = T5.
This restriction implies the characteristic cooling time for
each species being long with respect to the thermalization
time. The energy equation for the mixture in the one-
dimensional case is then given by [15]

du dqg 8 [0Ou 27
() =-o ©

where p = p;+p2 is the total pressure, ¢ the total heat flux,
7 the shear viscosity and ¢ the cooling rate due to inelastic
collisions. The bulk viscosity is zero by construction [see
9]. Similarly, the momentum equation for the mixture can
be written in the conventional form [15]

4 Ou
379z )
We note that this equation is equivalent to equations (3)
up to terms which are quadratic in the species relative
drift velocity du; = (ug — u).
In the quasi-elastic limit, for small relative drift veloci-
ties, and assuming energy equipartition among species the
following relations do conveniently close the above set of

fluid equations. According to [16] the frictional force may
be cast into the form

du au__m( ©

o tor T oom

_ ning i ﬂ miz
¢1 = a(ni,ng) 2T B {ln <n2 T )} )

with mia = (ma—mq)/m, m = mi+mg and n = ny +no.
In equation (7) a is a dimensionless function of n; and no
which takes into account the species volume fraction and

140

the radial distribution function of the contacting pairs.
Explicit forms have been given for the 2 and 3 dimensional
case [16]. In this paper we do not care about the exact form
of equation 7. We are just interested in the qualitative
dependence of ¢ on the temperature T' and on the relative
species concentration nq /ng. Following [9, 15] we write the
constitutive relation for the heat flux as
nT ng m
1/0\/ (')x { \/ \/ Mo

where we have defined the frequency vy = Vigno and
the characteristic velocity Vi3 = 2T'm/(mima), which, for
species with Maxwellian distributions, is just the thermal
velocity for the relative velocities between the two species
(cf Appendix B). Again, both, by and b, are rather in-
volved functions of ny/n, my, ms and even Vja, which
we do not need to care about in this paper. In the above
equation ¢ has the dimension of a surface and may be
interpreted as a collisional cross section. Formally, we ex-
press o in terms of the total number of particles N, the
box length L and the mean number density 7:

N
=—. 9
7L ©)
With this definition, in a uniform system one has vy =
V12 N/ L. Starting from equation (27) of Jenkins and Mancini
[7] we find that ¢ must depend on the species densities via
an expression of the kind

[ma nn
C=ewp {011* Con2 2 M e,™ 2} (10)

where the numerical coefficients ¢11, ¢12, and co9 are un-
known for the 1d case and where ¢ is the fractional energy
loss per collision (see Section 3). Equation (10) is correct
up to terms of order two in the gradients of hydrodynamic
quantities[8, 15]. Following Garzo et al [15] we write the
shear viscosity coefficient 7 as

- oy

where, once more, d;, and ds are order unity coefficients
for which we do not care about the exact form. As a final
remark, we note that in the set of fluid equations (2),(5)
and (6) the inelasticity coefficient & does only appear in
the energy equation (5) through the cooling rate ¢ o evp.
In particular, neither the friction ¢;, nor the heat flux ¢
depend on ¢, which is only acceptable in the quasi-elastic
limit e < 1 [15].

(11)

3 Simulation model

‘We use a one-dimensional model which is close to the tra-
ditional point-like hard particles on a ring model [13] with
the notable difference that N/2 particles have mass my
and N/2 particles have mass mz. In the strict one dimen-
sional case the post collision velocities v} and v; for two
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Table 1. Basic parameters for the 3 simulations discussed in
the paper. The total number of particles in each simulation is
N = 19600 with half of the particles with mass m; = 1 and
the other half with mass mo = 4.

Run | ¢ r? Ne
1 5x107* | 0.9995 | 9.8
2 2x107% | 0.998 | 39.2
3 2x1072 | 0.98 392

colliding particles ¢ and j =4 + 1 of mass m; and m; and
center of mass velocity v;; = (m;v; + mjv;)/(m; +m;)
are given by

/ m,vij
v; = £———— 1+ Vp;; 12
! m; +m; 04 (12)
’ mi’UM
v = F———— 1+ vg;5 13
J m; +m; 0ij (13)
where r is the restitution coefficient (r = 1 for elastic

collisions), vg the velocity of particle k = i,j before the
collision and v;; = v; —v; < 0 (we implicitly suppose a one
dimensional axis x with coordinates increasing from left
to right ; < x;). With this definition of the restitution
coefficient r the kinetic energy of two colliding particles
is reduced by a factor ¢ = 1 — 72 in the center of mass
frame. The + sign in (12) and the — sign in (13) corre-
spond to the normal case where particle ¢ and j do not
exchange their relative positions during collision. The —
sign in (12) and the + sign in (13) correspond to the case
where particles ¢ and j swap their relative positions dur-
ing collision. In the latter case, taking » = 1, one has
v; = v; and vj = vy, i.e. particles just ignore each other.
In principle one should reject this possibility as it is a non
physical event for the case of a system of beads on a ring.
We shall take advantage of this possibility as it allows for
the different particles to become distributed spatially in-
dependently of the initial ordering with the possibility of
species segregation to operate as in 2 and 3 dimensional
systems.

4 Simulation results

In all simulations N particles are initially distributed uni-
formly over the spatial domain [0, L[. We consider a simple
two species system of N/2 particles with mass m; = 1 and
N/2 particles with mass mg = 4. Particles of both species
are initially disposed in alternating order. The initial ve-
locity of a particle with mass m, is randomly selected in
the interval [—0.5,0.5]/ ma/? following a uniform probabil-
ity distribution as in the [13] where the reference case of
N identical particles is discussed. The mean energy per
particle is therefore the same for all species. Bulk veloc-
ities of all species are initially set to zero. The parame-
ters for the 3 runs which will be discussed in the paper
are listed in Table 1. The somewhat arbitrary mass ratio
ma/my1 = 4, which will be used throughout the paper,
is sufficiently small to ensure efficient interspecies energy

thermalization, so that we can assume 77 = T, and suffi-
ciently large for the frictional force ¢1 (see equation (7))
to play a non negligible role.

4.1 Homogeneous phase

The evolution of a one-dimensional system with not all
particles having the same mass is very different from that
of a one dimensional system of identical particles [e.g 6,
2, 13]. The difference is substantial, even in the elastic
limit 7 = 1. Indeed, while in the case of elastically in-
teracting identical particles the velocity distribution does
not change in time, the asymptotic velocity distribution is
a Maxwell-Boltzmann velocity distribution when different
species coexist in the system. The global thermalization
rate strongly depends on the particles’ mass distribution,
each species a thermalizing at different rates depending on
the species number density N, and on the mass m,, of the
species particles. For example in the case of a system with
N > 1 and just one anomalous particle, the evolution to-
wards a Maxwell-Boltzmann distribution is much slower
than in the case of a two species system with N/2 parti-
cles for each species, since only collisions among unequal
particles can modify the velocity distribution functions in
one dimensional systems.

In Figure 1 a snapshot of the velocity distribution func-
tion of both species are shown for Run 1 after a total
number of 8 x 107 collisions . The distribution for both,
light and heavy particles, which should be compared to
the double peaked distribution of Figure 1 in [13] for the
one species case, do closely follow a Maxwell-Boltzmann
distribution disregarding of the fact that the initial distri-
bution was strongly non thermal. This tendency of the ve-
locity distributions to evolve towards Maxwell-Boltzmann

f(v)

—m=1

Arbitrary units

0 == T T
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

Fig. 1. Homogeneous regime for the case of r*> = 0.9995 and
N = 19600 particles half of which have mass mi1 = 1 and
the other half ma = 4 (Run 1). Shown are the velocity dis-
tribution histograms for both species after 8 x 107 collisions.
The solid line represents the Maxwell-Boltzmann distribution
corresponding to the measured particles’ mean energy.
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E(I)/E(0)

— Run1
—————— E(I) = E(0) exp(~1/2107)

10 T T T
10 10 10 10 10 10

Fig. 2. Energy versus collision index I for Run 1. The exponen-
tial part of the profile closely follows the E = Egexp(—1I/2 x
107) profile of the fluid theory.

allows the use of standard fluid theories [7, 8, 15, 9] to
analyze the system’s behavior.

Figure 2 shows the evolution of the energy in Run 1.
The energy decreases exponentially as a function of the
number of collisions I during the first 5 108 collisions. We
shall define this phase as the homogeneous phase as it is
perfectly well described by the homogeneous version of the
fluid energy equation (5) (see equation (A.7) together with
the relation (B.7)) which predicts a per collision energy
loss of =

E €

== 2% (14)
Specifically, for 7> = 0.9995 and N = 19600 one has
SE/E = 5.1 x 1078 which corresponds to the value 2 x 107
observed in Figure 2.

4.2 Inhomogeneous phase

After the initial homogeneous phase the system enter a
new, inhomogeneous, regime where cluster formation be-
comes the dominant effect. The transition between the
homogeneous and the inhomogeneous regime is clearly vis-
ible as a departure from the exponential energy decay in
Figure 2. In this section we discuss the cluster structures
observed in the simulations in the light of the fluid equa-
tions exposed in Section 2.

4.2.1 Species segregation

As in the one species case, the inhomogeneous regime in
the multi species case is characterized by the presence of
clusters of particles. Given the smallness of the inelastic-
ity coefficient € and the initial homogeneity of the system,
one expects the pressure to be spatially uniform for both
species, except near the center of the collapsing cluster
where the cooling rate ¢ goes to infinity. Indeed, the tem-
perature and density profiles, plotted for the light particles
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Light particles (m=1)

103 __ Temperature T(x)/To
3 ¢ Density ni(x)/ <y >

T
000 01 02 03 04 05 06 07 08 09 10

Fig. 3. Run 1: Temperature and density profiles for the light
particles (i.e. m = 1) normalized to their average value at the
end of the simulation. Note the high concentration and low
temperature within the cluster near = 0.416. Also note the
presence of a second cluster forming near = 0.8.

at the end of Run 1 are seen to vary in antiphase (cf Figure
3) ensuring an approximate pressure balance.

However, light and heavy particles are not evenly dis-
tributed within the cluster. The relative concentration of
light particles as a function of the particle index [ is shown
in Figure 4 which clearly shows that the heavy particles
are concentrated in the central part of the cluster, leav-
ing an excess of light particles in the wings of the 6000
particles cluster.

In order to appreciate the spatial scales associated with
the concentrations of light and heavy particles in the clus-
ter we compute the integrated heavy particles excess func-

Concentration of light (m=1) particles
1 1 1 1

1
M Runl
(inhomogeneous regime)
0.5 r
0 iy T T T T
0 4000 8000 12000 16000 20000
Particleindex |

Fig. 4. Light particles histogram (m=1) at the end of Run
1. Bin values represent the fractional number of light parti-
cles n1/n. Each bin contains 400 particles. The main cluster
includes all particles with index ! in the range 5000 to 11000.
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10°°

1000 r

-1000

X

Fig. 5. Function Y (z) (see equation (15)) for Run 1. The slope
of the function Y is a measure of the heavy (positive slope) or
light (negative slope) particle excess.

tion Y defined as

Contribution to the integral is -1 for light particles (m; =
1) and +1 for heavy particle (m; = 4).

The function Y (z) is plotted in Figure 5 and illustrates
how disparate the spatial repartition of light and heavy
particles are in the system. The core of the cluster con-
tains some 3 x 10 heavy particles concentrated in a region
of size 1078, From Figure 4 we know that the 3 x 10° light
particles of the cluster are largely excluded from this small
central region dominated by the heavy particles but Fig-
ure 5 shows that the light particles dominate over a much
larger region of size 1072, the characteristic size of the
cluster at the end of the simulation. The species segrega-
tion is the visible effect of the frictional force ¢1 (cf equa-
tion (7)) of the two fluid momentum equations (6). In case
of equal densities n; = ny and a spatially varying tempera-
ture profile T'(x) the frictional force ¢ o (mo—m1)0T/dx
points up the temperature gradient for the light species m;
and down the temperature gradient for the heavy species
mg. Segregation appears as a ineluctable consequence of
the temperature gradients within clusters.

4.2.2 Temperature profiles in clusters

Figure 3 shows that the temperature in a cluster strongly
decreases towards its center. Figure 6 shows the tempera-
ture profiles in the inhomogeneous regime for Run 1 and 2.
The figure illustrates the fact that the temperature drops
exponentially as a function of the particles index [ towards
the center of the cluster. In these particular cases the tem-
perature decreases by several order of magnitudes from
edge to center. As expected, the thermalization time being

Temperature profiles in clusters

Run 1

4 + m=1

ul
— exp([1-7900]/170)
r

——exp(|1-7200]/85)

T T T
8000 12000 16000

Particle index |

T
o 4000 20000

Fig. 6. Fluid temperature (circles) and light particles’ tem-
perature (plus) as function of the particle index for Run 1 (top
panel) and Run 2 (bottom panel) during the inhomogeneous
regime. In both simulations the temperature is found to de-
crease exponentially towards the center of the cluster according
to a characteristic scale of order e~1/2,

much shorter than the cooling time, the fluid and light par-
ticle temperature profiles closely follow each other. The in-
teresting point is that the granular temperature decreases
exponentially towards the center of the cluster with a scale
which seems to be of order e~1/2. Again, the e=1/2 scaling
of the temperature profile in Fig. 6 can be deduced eas-
ily from the fluid equations. In order to do so, we evaluate
the temperature profiles within clusters in the static limit.
Using the energy equation (5) we can write

0
92 _
Ox
Let us suppose that in a given region of the system species

1 is the dominating one, i.e. n & 11 > no. In this case the
heat flux reads (cf equation (8))

—Cp (16)

_ (T \"or an
= o \ 2my ox
whereas the right hand side of Eq. (16) becomes
o7\ 1/2
—(p = —ec110 (—) T n? (18)
my

143



Annexe 9

Filippo Pantellini, Simone Landi: Species segregation in one-dimensional granular system simulations 7

and the static energy equation (16) writes

19}
%(T

where we have used the static limit p = py = const of the
momentum equation (6). In order to compute the temper-
ature profile as a function of the particle index [ we have to
introduce the transformation from the spatial coordinate
x to the particle index [.

aT
1/27> = S p2p-1/z)2 (19)

ox bl

o)~ 4 [ " n(e)de (20)

where A is a surface such that An(€)d¢ is the number of
particles in the interval [¢, £ + d€]. Using the transforma-
tion (20) we write the energy equation (19) in terms of
the particle index [

9 (10T
az(T ol

€ Aipiy2

1% (21)

where we have used the fact that the particles’ cross sec-
tion o is equal to A/2 given the 50% swap probability for
colliding particles. The solution of (21) is

(22)

If ¢17 and b; are numerical constants of order unity, it
follows, as already suggested by Figure 6, that the typical

scale of variation for the temperature profile is of order
—1/2
€ .

4.3 Cluster formation and linear fluid theory

As in one species simulations [6], Figure 7 shows that at
the time of inelastic collapse, the number of clusters is
an increasing function of the Ne. Even the Mach number
of the fluid motions is seen to depend on Neg, the simu-
lation with the smallest value of Ne being characterized
by subsonic motions and the two other simulations be-
ing characterized by supersonic motions with the evident
formation of shocks. As pointed out by Ben-Naim et al
[17] the piecewise linear velocity profiles observed in Fig-
ure 7 are a direct consequence of the momentum equation
(6). Indeed, as already discussed in the context of Figure
3, the pressure in the system is essentially constant ev-
erywhere except within clusters (shocks in the supersonic
regime). In this case the momentum equation reduces to
0(0u/0t +udu/0x) = 0.75n0%u/dx? with solutions of the
type u(z,t) = ug + (x — xo)/t, where ug and zo are inte-
gration constants.

The difference between the velocity profiles at the time
of inelastic collapse for the three runs shown in Figure
7 can be explained on the basis of a linear analysis of
the fluid equations of Section 2 developed in Appendix A.
The linearized system of equations has three eigenmodes,
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m=4 particles

00000017 Rup 1: 7 =1.510%, £ = 0.0005

~0.000001 o H

Run 2: [ =10° ¢ =
0.002 L

Run 3: 7 =1.510% ¢ =0.02

Fig. 7. Inhomogeneous regime: scatter plot for the m = 4
particles for all runs at the time of inelastic collapse.

two of which correspond to the right and left propagat-
ing sound wave and the non propagating (zero real fre-
quency) entropy mode. The main difference with respect
to classical gas dynamics is that all modes are unstable
at long wave length. The other important prediction of
linear theory is that in general, but more specifically for
wave vectors k such that k = kL/(Ne) < 1, the non prop-
agating entropy mode grows substantially faster than the
sound mode. Indeed, the growth rate of the entropy mode
always peaks at k = 0 whereas the sound mode’s growth
rate vanishes as k — 0. A careful analysis of the growth
rates does actually shows that the entropy mode is always
the fastest growing mode (see Appendix A).

4.3.1 The dominant mode

What determines the number of clusters in a one dimen-
sional system at the time of inelastic collapse? Knowledge
of the initial conditions for the velocity fluctuations of all
modes makes it possible to estimate different character-
istic time scales in terms of the dimensionless (pseudo)
time variable 7 (defined in A.5) using the approximations
of linear theory.

Initially, in all systems, particles are distributed uni-
formly in the spatial interval [0, 1] with N/2 particles of
mass m; = 1 and N/2 particles of mass mo = 4. The ve-
locity of a particle of mass m is sorted randomly in the ve-
locity interval [-0.5,0.5]/m"/? so that the average kinetic
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energy per particle is the same for all species correspond-
ing (formally) to an initial temperature Ty = 1/12 and
thermal velocity v3 = 2/(6m) = 1/15. Thermalization of
such a system takes only a few collisions per particle so
that all species can be assumed to be initially distributed
according to a Maxwellian distribution at temperature
To = 1/12, € being much smaller than unity. The initial
amplitudes of the velocity fluctuations can be evaluated
using the Wiener-Khintchine theorem which states that
the power spectrum of the fluid velocity field for a set par-
ticles with uncorrelated velocities is flat (white noise). The
immediate consequence of the Wiener-Khintchine theo-
rem is that energy is evenly distributed among all Fourier
modes, i.e. all modes have equal amplitude |dug|. Requir-
ing the total kinetic energy of all particles in the system
being NT'/2 one must have
T4,
mN N
In all simulations, at t = 0, we have T = 1/12, N = 19600,
my = 1 and mo = 4. The initial amplitude of the velocity
fluctuations are therefore of order dug = 2.6 x 10~% with
vo = 0.258, which corresponds to dUp = (2/N)'/? = 1.01x
1072

From linear theory we know that at small values of
the wave vector k < 1/2 the growth rate is approximately
given by YN/ = 1 — k?/2 indicating that the mode with
the longest possible wavelength is always the fastest grow-
ing mode. It is then expected that clustering always oc-
curs at the largest possible scale allowed by the system
with only one cluster growing in the system. This is ef-
fectively the case in Run 1 only but not in Run 2 (with
2 clusters) and particularly in Run 3 where several clus-
ters occur. This can be understood by noting that linear
theory predicts that the density fluctuation of the entropy
mode is proportional to the wave vector k:

Sud = (23)

M _ ik

(24)
where Uy, = duy/vo is essentially the fluctuation’s Mach
number. Thus, for two modes k1 and ks with equal ini-
tial velocity fluctuation amplitude Uiy = dUke, the one
with the largest wave vector is the one with the largest
associated density fluctuation and therefore a more likely
candidate for triggering the inelastic collapse, provided the
growth rate of the two modes are not too dissimilar. For
example, in Run 3, there are some 10 visible density clus-
ters corresponding to an average distance between clusters
of the order A = L/10. Therefore, the mode which triggers
the inelastic collapse has k = 0.16 and a linear growth rate
which is only roughly 1% less than the growth rate of the
smallest possible wave vector kmin = 27/Ne, but, accord-
ing to equation 24, with a 10 times larger density fluctu-
ation. Thus, as long as the velocity fluctuation amplitude
of the mode k = 0.16 is not much smaller than the veloc-
ity fluctuation amplitude of the fastest growing mode, i.e.
potentially during the first 100y7~! ~ 100N /e = 9.8 x 107
collisions, the strongest density fluctuations in the sys-
tem are due to the mode with k& = 0.16. Indeed, in Run

Table 2. Characteristic time scales of the entropy mode for
the smallest possible wave vector k = kmin = 27/Ne. The
column labelled Supersonic indicates whether or not the fluid
motions are supersonic at the time of inelastic collapse. v refers
is the linear growth rate of the mode, 75 and 7, are defined in
equations (25) and (26), respectively. The parameters of the
runs are given in Table 1.

Run | Supersonic Eumin vy~ ! Ts Tn
1 no 0.64 | 49x107 | 2.3 x10% | 2.5 x 10®
2 yes 0.160 | 1.0 x 107 | 4.6 x 107 | 6.4 x 107
yes 0.016 | 1.0 x 10° | 4.5 x 10° | 8.6 x 10°

3 particle clustering and supersonic motions are already
present after I ~ 4 x 10% collisions, which, using the defi-
nition for 7 given by (B.7) in Appendix B corresponds to
T = 2.06] =~ 8 x 10°. This time is too short by more than
one order of magnitude for the fastest growing mode to
become dominant in terms of density fluctuations.

We conclude that, for quasi elastic restitution coef-
ficients ¢ < 1, the mode which dominates the inelastic
collapse has a wave vector k ~ 1/5 corresponding to a
wavelength A\ ~ 10w L/Ne. If such a long wavelength does
not fit into the system, the dominant mode is simply the
one with the longest possible wavelength, i.e. A = L.

4.3.2 Supersonic fluid motions

Let us now address the question of the magnitude of the
characteristic fluid velocities at the time of the inelastic
collapse. Velocities are subsonic in Run 1 and supersonic
in Runs 2 and 3.

We introduce the sonic time scale 75, defined as the
time for the amplitude of the velocity fluctuation dU to
reach unity assuming linear growth, i.e.

. In(6Uy)
Ts(k) = ————. 5
s(k) ) (25)

For a system of uniformly distributed particles with un-
correlated velocities, the initial fluctuation amplitude is
SUy ~ (2/N)'/2. Similarly, using equation (24) we define
T as the time for the density fluctuation dn(k)/n to reach
an amplitude of order unity, i.e.

~ In(k 6U)
y(k)

Both, 74 and 7, are list~ed in Table 2 for the mode with
the longest wavelength Kpin.

In Run 1 the motions remain subsonic at the time of
the inelastic collapse despite the simulation lasting signif-
icantly longer than 7, meaning that supersonic motions
had enough time to develop. We conclude that an inelas-
tic collapse is not necessarily associated with supersonic
motions. The explanation at hand can be found in Table
2 which shows that in Run 1 the characteristic times 7

(26)

Th =
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and 7, are very much the same for the dominant mode
k = kmin = 27/Ne while the sonic time scale 7 is sig-
nificantly shorter than 7, for the dominant mode in Runs
2 and 3. From Table 2 it follows that supersonic motions
develop before the occurrence of an inelastic collapse pro-
vided kmin S 1/5, i.e. 10 < Ne.

5 Conclusions

‘We have performed simulations of a one dimensional two
species periodic system of N point particles undergoing
inelastic collisions. In order to keep the possibility for the
system to arrange particles independently of the initial
configuration, particles are allowed to change their rel-
ative positions during collisions with a 50% probability.
Initial velocities for particles of species a are selected ran-
domly according to a constant distribution in the range
[-0.5,0.5]/ m&/?. Unlike one dimensional systems of iden-
tical particles, where the homogeneous regime is charac-
terized by double peaked velocity distributions [13, 18],
one dimensional multi-species systems tend to evolve to-
wards a Maxwell-Boltzmann distribution. This tendency
justifies the use of “standard” fluid equations to describe
such systems. As for one dimensional systems of identi-
cal particles, the inhomogeneous regime is characterized
by the formation of clusters which eventually make an in-
elastic collapse. It has been shown in [2] that clustering
in one species systems is driven by a beam instability. We
show that in a two species system clustering is triggered by
a fluid instability of the non propagating entropy mode,
for which density and temperature fluctuations vary in
antiphase ensuring spatial pressure balance. The sound
mode is also found to be unstable but its growth rate is
always substantially smaller than the growth rate of the
entropy mode. Because of the non propagating nature of
the entropy mode, the one dimensional system does evolve
naturally towards a series of clusters with symmetric tem-
perature and density profiles and antisymmetric velocity
profiles.

The number of particles in the clusters is determined
by the number of particles in one wavelength of the domi-
nant mode of the clustering instability, i.e. the mode which
first reaches a relative density fluctuation of order unity.
The typical wavelength of this mode has been found to be
of the order A ~ 10wL/Ne corresponding to 107/e par-
ticles per cluster. Clustering is generally characterized by
supersonic fluid motions unless the total number of parti-
cles N < 107/e.

A peculiar aspect of the late evolution of a multi-
species systems is the appearance of species segregation
within the collapsing clusters, heavy particles becoming
concentrated in an extremely small region around the cen-
ter of the cluster and the light particles filling the space
between the central region and the edges of the cluster.
Segregation is driven by the temperature gradient inside
the cluster [19] via the frictional force ¢ in the one-species
fluid momentum equation (3).
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A Linear theory for a one-dimensional system

In this appendix we develop the linear theory for the clus-
tering instability in a one-dimensional and spatially uni-
form system of inelastically colliding particles using the
set of fluid equations of Section 2. Assuming particles of
mean mass 7, we write the set of equations pertinent to
the one-dimensional one-fluid case as

% +u% +ng—z =0 (A1)

() o -0
%(nT) +uc%(nT) +37LT%

+2§—z - gn <%>2 +c€%voTn =0 (A.3)

where ¢ is a constant of order unity, which will be com-
puted explicitly for a two species system in Appendix B.
The other quantities in equation (A.3) are defined as

<2T)1/2
Vo = | —
m

_.nT nT L

n=dr=di N

oy iT O boLor
vom Ox 2 N Ox

with b and d being two more constants of order unity.
‘We note that for a two species system the normalization
velocity vg is related to the thermal velocity Vi of the
species relative velocity of Section 2 via

m

Vi =2——j. (A4)

mimsz

The linear analysis of the system is easier if performed in
terms of the dimensionless variables 7 and U:

dr = Nz%dt (A.5)
U= % (A.6)

where d7/dt is a measure of the number of collisions per
time unit in the system during the homogeneous phase
and U is essentially the flow’s Mach number.

We assume a static equilibrium w(z,7) = 0 with a
uniform density n = ng, and temperature T'(z, 7) = To(7)
decreasing according to equation (A.3), i.e.

oT,
0 —Ciﬂ) N 710(7_) e efca'r/N.

52 = e (A7)
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During the linear phase of the instability ¢ is a constant
which only depends on the species relative densities and
on the species particle mass (see Appendix B). For exam-
ple, if N/2 particles have mass m; = 1 and N/2 particles
mo = 4, one has ¢ = 0.97. Thus, ¢ = 0.97 must be used
for all runs discussed in the paper except Run 1, where
all particles are identical and for which the linear theory
presented here is not applicable.

Let us now investigate the response of the equilibrium
characterized by n = ng and T = Ty(7) to small pertur-
bations on, 06 and 6U by setting

n=mng+on (A.8)
T = To(1 +49) (A.9)
U = sU. (A.10)

The coefficients of the resulting linear system are inde-
pendent of 7 and x so that we can solve it using standard
Fourier techniques. We therefore assume perturbations of
the type on, 00, 8U o exp[i(kx—wT)] which, when plugged
into the linearized system, lead to

on/ng
(A.11)

60
where M is the 3 x 3 matrix given by

—iw ik 0

<
i

ik 2Dk —2i5 -2 ik (A.12)

2o 3ik Bk? —i&

with k = kL/(Ne), @ = wN/e, B = eb and D = ed. Non
trivial solutions of the system correspond to a vanishing
determinant of the matrix M. Splitting the complex fre-
quency w = w, + 7 into real and imaginary parts w, and
v, and assuming real wave vectors k leads to two equa-
tions for the real and the imaginary part of the condition
det M = 0 (in the remaining of this appendix we drop the
tildes to ease readability):

2 <1 — BE* - §Dk2 - 37) w?

+BE* + 3yk? — 292 4 2+° — 2k% — 2Byk?
4 4

+2B+2k% + gm%ﬂ + gDBW1 =0 (A.13)

and either

2 2 k2 2 2 2
wi=3 (1 +5 ) -2 (1-BK — Dk

2
— BE* + gBDk‘*. (A.14)
for the modified sound wave, or

wr =0 (A.15)

for the modified, non propagating, entropy wave. The dis-
persion relation for sound waves, w? = 3k2/2, is imme-
diately obtained by setting v = B = D = 0 in equa-
tion (A.14) (we shall remember that frequencies are mea-
sured in terms of the pseudo time 7 and not the real time
t). Switching back to real time using equation (A.5), the
dispersion relation reduces to the more familiar relation
w2 = 3Tk?/m for a one dimensional system. The growth
rate y(k) for both, sound and entropy mode, can be ob-
tained by substituting w? from equation (A.14) or (A.15),
respectively, into (A.13). After some juggling one ends up
with

2
fs(v: k. B,D) = 167° — 16 <1 - 3Dk - Bk2> 42
- <123k2 —8BDk* — 4B%k* — %D%‘*
+ ?DkQ - 6k% — 4) v

4
— 2B%k + gB2Dk6 + SBD%G — gBDk“
+ 2Bk* + 2BK? + 2Dk* — k* =0 (A.16)

for the sound mode, and
fe(v, k ,B,D) =2v* + <QBk2 + ngQ — 2) 52
2 2 4 4
+ <3k — 2Bk’ + 2 BDk )'y

+ BE'—2k* =0 (A.17)
for the entropy mode. For small values of B and D, i.e.
at sufficiently large spatial scales such that both thermal
conduction time scale 1/Bk? and the viscous time scale
1/Dk? both exceed the linear time scale 1/w, one may use
the asymptotic expressions for the imaginary part of both
the sound wave and the entropy wave, viz.

fs(7,%,0,0) = 167° — 169°

+ (6k* +4)y —k*=0.  (A.18)
and
fe(7,k,0,0) = 2¢% —29°
+3k%y —2k% = 0. (A.19)

We note that f,.(0,%,0,0) < 0 for all values of k. Since
fs,e(y — o0) = o0, a positive real solutions v > 0 must
exist for both equations (A.18) and (A.19). Thus, both
the sound and the entropy mode are always unstable for
kE — 0. There is indeed, only one real solution of (A.18)
which goes as k2 for |[k| — 0 and tends towards the asymp-
totic value 1/6 for |k| — oo. Similarly, for |k| — oo,
the entropy mode’s growth rate tends towards 2/3. Of
course, for sufficiently large values of £ both modes must
be damped by diffusive effects. However, unlike the en-
tropy mode, which is always unstable for |k| — 0, the
sound mode is completely stabilized for thermal diffusiv-
ity values B > 1/2.
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that 1 N
. . ™ _ _ — 28 —u?/ V:[i
Clustering instability, B'-0.02, D—'0.0Z fap(u) = VP L " (B.2)
— 7(K): entropy wave where V5 is the thermal velocity defined as
+—- ~(k): sound wave ||
— = w,(Kk): sound wave T T
—— 23,16 V2, =V24V2=2-2 122 (B.3)
“ 1 i k Me mg
2
3 J Integration of equation (B.1), assuming the Maxwellian
% distribution (B.2), gives the collision frequency of a parti-
< ] cle a with the particles of species 3:
0 Ny Vg
«
] Vap = [OO ‘U"faﬁ(u)du - T orl/2° (B4)
'\.‘\' .
3 2 5 The total collision frequency v in the system is obtained
KL/Ne by adding the contributions from all kinds of collisions,

Fig. 8. Growth rate for the both the sound mode and the en-
tropy mode for a particular value of the thermal diffusion co-
efficient B and the shear viscosity coefficient D. Plotted is also
the real frequency of the sound mode w(k) and the asymptotic
values of the growth rates for both modes in the limit k£ > 1,
and D =B =0.

The fact that the entropy mode is a non propagating
mode implies that density and temperature fluctuations
vary spatially in antiphase, ensuring pressure balance. In-
deed, for k — 0, one has —iw = 1 — k?/2 (see Figure 8)
from where, using the second line of the matrix in equa-
tion (A.11), one immediately deduces the linear pressure
equilibrium condition dn/ng = —4d6 which is valid up to
order one in k. To same order in k, the first equation in
(A.11) implies the én/ng = —ikdéU. This latter relation
shows that in the entropy mode density and velocity fluc-
tuations are out of phase by /2 corresponding to the fluid
flowing from the low density to the high density parts of
the wave. These linear motions, eventually enforced by
non linear effects (i.e. velocity profile steepening) at late
times, ineluctably drive the system toward the final in-
elastic collapse.

B Collision frequency for Maxwellian
distributions

The number of collisions per time unit of a particle of
species a with the particles of species [ for relative veloc-
ities in the range [u, u + du] is given by
Avag = |ulfap(u)du, u <0. (B.1)
In equation (B.1) fus(u) denotes the distribution of the
relative velocities. If one assumes Maxwellian distributions
for both species, the distribution of the relative velocities
is also Maxwellian. In one dimensions, with Ng particles
uniformly distributed in a system of length L it must be
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ie.

v = Na Vap + Ngvga + NaVaa + Npvss =
NuNg Vag | N2 Vaa N3 Vg

2 o ot L anet T guptBh)

Assuming energy equipartition 7' = Ti,, = T3 and an equal
number of particles for both species N, = N3 = N/2, one

ends up with
N2 g m o om )\ Y2
— s |l—+—=) +
4L 72 |\ma = mg

() "+ () ] o

where m = (mq + mg)/2 and v§ = 2T/m. Using the
expression for the collision frequency given by (B.6) it be-
comes possible to specify the constant ¢ which establishes
a relation between the time variable ¢ and the collision
index I (cf equations (A.3) and (A.7)). Of course, given
the above assumptions, the relation between ¢ and I only
holds as long as the inhomogeneities in the system are
weak. By comparing (A.7) and (14) one obtains the fol-
lowing relation between the pseudo time variable 7 and
the collision index I:

v(ma,mg,T,N) =

201 = cor. (B.7)

Given the relation between 7 and the time variable ¢ (see

equation (A.5)) and using the fact that the collision fre-
quency is just v = 61/8t it follows that

oy L 1 mm 1/2
c=W—m—=—— | —+ —
N2yy 2712 |\mq mg

+ (22)1/2* (%)1/1 (B.3)

We note that ¢ does not depend on the temperature, as
long as energy equipartition is a valid approximation.
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Abstract. We use ab initio numerical simulations of a moderately coupled (Coulomb logarithm A = 3.8), classical,
electron-proton plasma to investigate the electron heat flux in a steep temperature gradient. The temperature gradient
is forced by confining the plasma within a cylinder with “thermal” walls at both ends. The thermal Knudsen number
K., defined as the ratio of the electron mean free path to the characteristic scale of variation of the temperature, is in
the range 1073 < K.t < 107'. We show that under such circumstances the electron heat flux is approximately 3/4 of
the canonical Spitzer&Hirm value for K.+ < 5 1072, For K.+ 2 5 1072 the non local contribution to the heat flux from
the thermal walls is no longer negligible and the heat flux saturates at roughly 10~! times the free streaming value. The
simulations are based on N—body techniques which are widely used in the context of gravitationally interacting bodies
but rarely in the context of interacting charges. Such simulations have the advantage of not relying on any particular

choice of the collision operator in Boltzmann’s equation.

PACS. 52.25.Fi Transport properties —45.50.Tn Collisions —44.10.+i Heat conduction

1 introduction

‘We adapted the FalcON code, originally developed by W. Dehnen
[1] for system of gravitationally interacting bodies, to the case
of a system of a large number of interacting positive and nega-
tive charges.

More specifically, in this paper we apply the N-body tech-
nique to the study of the heat flux in an, overall neutral, and
moderately coupled electron-proton plasma characterized by
a Coulomb logarithm in the range 2 < A < 10 (cf. equation
(1)). The Coulomb logarithm A for an electron-proton plasma
at temperature 7 and electron density 7. is a dimensionless pa-
rameter usually defined as

/lzln(/l—D).
Ts

where Ap = (kgTey/n.e?)/? is the Debye length, kg the Boltz-
mann constant, 7 = e*/12n€kgT the strong interaction radius,
e the absolute value of the electron charge and ¢ the elec-
trical permittivity of free space. The Debye length Ap is the
typical spatial scale required by the plasma to screen a local
charge excess. Indeed, despite the electrostatic interaction be-
ing a long distance interaction, any two charged particles in
the plasma do not interact if their separation exceeds the De-
bye length. Thus, at a given time, any particle in the plasma
interacts simultaneously with all particles within a distance of
order Ap. Most of these interactions have little influence on the
particle’s trajectory unless the interacting distance is not much
larger than the strong interaction radius r;. The latter corre-
sponds to the distance between two electrons such that their

1

interaction energy e?/4neyr, is twice their individual charac-
teristic kinetic energy %kBT . The strong interaction radius r
corresponds to the impact parameter for a 90° deflection of a
thermal electron interacting with a stationary positive ion of
charge e. In extremely hot plasmas the strong interaction radius
eventually becomes shorter than the mean electron De Broglie
length A, = 7i/m.(v*)'/? (where (v*) = 3kgT /m., h = h/2m and
h is the Planck constant) and quantum effects can no longer be
neglected in the treatment of close encounters. In such an event
our model, which is based on classical electrostatics, fails as
most close encounters will be dominated by quantum mechan-
ical effects, and the Coulomb logarithm definition of Equation
(1) is no longer the pertinent dimensionless parameter charac-
terizing the plasma. The requirement rg > 1 for the validity of
the classical approach requires temperatures 7 < 10°K .

A plasma is said to be weakly coupled if 4 > 10 and strongly
coupled if A < 1. In this paper we consider a moderately cou-
pled plasma with 2 = 3.8, which corresponds to a Coulomb
coupling parameter I" = 0.11. The coupling parameter /" is the
average ratio of the electrostatic to kinetic energy of neighbor
electrons in the plasma, i.e.

e2

= ——
dregakg T

@

where a = (3/4nn.)'? is the Wigner-Seitz radius. We note
that the coupling parameter /" and the Coulomb logarithm A
are equivalent parameters as they are linked by the relation

1= 1n(£) = In(9Np)

i 3)
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From equation 3 it follows that the number of electrons Np en-
closed by a sphere of radius Ap is larger than unity when A > 2.
Consequently, a moderately coupled plasma, unlike the weakly
coupled ones, does not necessarily have much more than one
electron in this sphere. In this particular case, the use of sta-
tistical means (i.e. particle distribution functions) to compute
the plasma’s spatial and temporal behavior may be inappropri-
ate. Another difference between weakly and moderately cou-
pled plasmas is that, with A > 10, the number of particles mak-
ing distant collisions is so much larger than the number of par-
ticles making close collisions, that the latter’s contribution to
the transport coefficients can be neglected. Under such condi-
tions, relatively simple collision operators, including only the
first moment of the distribution function, can satisfactorily be
used in the Boltzmann equation in transport coefficient compu-
tations [see e.g. 2]. Whereas in moderately coupled plasmas,
when A is reduced below ~ 10, the relative importance of close
encounters becomes increasingly large and the collision opera-
tors, required to increase accuracy to better than ~ 17!, become
increasingly complicated and unpractical [3, 2]. On the other
hand, the 1 < 10 regime appears to be particularly well suited
for, ab initio N-body simulations where all kind of collisions
are naturally included. In such numerical models, the limita-
tions are merely computational, as in N-body simulations the
spatial resolution of the particles’ trajectories must be of the
order of the strong interaction radius r; < Ap while the typi-
cal system size must extend over several times Ap in order to
account for the effects of distant encounters. In practice classi-
cal N-body simulations are limited to classical plasmas in the
moderately coupled regime 2 < A < 10.

Laser plasmas and inertially confined fusion plasmas are
sometimes in the moderately coupled regime (see [4] and [5]
for references). The solar interior is also in the moderately cou-
pled regime, with the upper 70,000 km of the convection zone
being in the classical regime with rg > 2.

The problem of the heat conduction in a strong tempera-
ture gradient has been investigated theoretically a few decades
ago in the case of weakly coupled plasmas [6, 7, 8]. Using the
physically justified technique of forcing the anisotropic por-
tion of the electron distribution function f(v) to be smaller
than the isotropic portion fy(v) such that the total distribution
f remains positive in the Legendre development f = fy + wfi
used in the standard Spitzer and Haim procedure. Bell et al
[6] and Shvarts et al [7] suggest that the electron heat flux g.
is always substantially smaller than the free streaming limit
q0 = ne(kBT)yz/mé/2 confirming the experimental findings of
[9]. Shvarts et al [7] do also indicate that g. falls below the
canonical Spitzer and Haim value ¢. s for K. > 2. 1073. Lu-
ciani et al [8] use a non local extension of the classical Spitzer-
Haim expression of the electron heat flux which includes the
contributions from the temperature profile up to a distance of
the order of the mean free path from the point of observation.
The Luciani et al expression only depends on the temperature
and density profile in the vicinity of the observation point and
not on a manipulation of fi(v). Despite being quite different
from the approach of [6, 7] Luciani et al [8] do also find that
the maximum heat flux is limited to about 0.1¢, a value which
is consistent with our results (see Figure 3).
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In this paper we show that in a moderately coupled plasma
the electron heat flux is substantially smaller than the Spitzer
flux ges over the entire investigated range 107 > K1 2 107!,
if the classical estimate of the mean free path (presumably valid
in the A > 10 regime) is used in the definition of the Knudsen
number K.t. The electron heat flux is shown to peak at g. =~
107! g for the Ke1 ~ 5 1072. We note that in the collisionless
limit the Knudsen number is undefined but not the heat flux
which can be calculated analytically [10]

32
8 neky 12 12
qne = \/j nT,” -T.T
T m? ( 2 1 )

In the numerical set-up, the non collisional (non local) contri-
bution to the heat flux gnc due to the free streaming of electrons
from the thermostats only becomes relevant for K.t > 5. 1072
when g/gne 2 0.35 (see Table 1). One possible interpreta-
tion is that the classical collision frequency resulting from the
Spitzer and Hérm treatment for weakly coupled plasmas un-
derestimates the real collision frequency in moderately coupled
plasmas.

“)

2 The model

We simulate the stationary state of N mutually interacting charged
particles (N/2 protons and N/2 electrons) confined within a
cylinder of height L and radius R. Values of L and R for all
runs are given in Table 1. The basic setup for the simulations
is shown in figure 1. Particles reaching one of the two bound-
aries of the cylinder at z = 0 and z = L are re-injected follow-
ing resting Maxwellian velocity distributions at temperatures
T, and T, > T}, respectively. Particles hitting the curved wall
of the cylinder are reflected back elastically into the cylinder’s
interior. Because of the upper thermostat being hotter than the
lower thermostat a heat flux ¢ is expected to flow down the
temperature gradient. The heat flux intensity in the cylinder is
a function of the plasma parameters. We note that this exper-
imental set-up is similar to the set-up in the heat front simu-
lations of Luciani et al [8] where a hot and a cold region are
connected by steep temperature and density profiles. The main
parameters which affect the heat flux intensity are the Coulomb
logarithm A and the thermal Knudsen number Kt , defined as

lﬂ/
KTA,H = LT (5>
where [, is the collisional mean free path for a typical particle
of species @ and Lt = d(InT)/dz is the characteristic scale of
variation of the temperature profile along the z direction.

The definition of the collisional mean free path [, in terms
of fluid quantities, such as the density, the temperature and
A is model dependent as the definition depends on the actual
choice of the collision operator [see e.g. 3]. In order to facil-
itate comparisons with other authors, we adopt the canonical
collision times for both electrons and protons in a quasi neutral
and weakly coupled plasma [3, 2],

_ 3m (ke Te)*?
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T2

® Electrons e ©

O Protons

T1
Fig. 1. Schematic illustration of the simulated system: a collection of
N/2 electrons and N/2 protons confined within a cylinder of length L
and radius R. The temperature gradient imposed by the thermostat at
both ends of the cylinder at temperature 7'} (at z = 0) and 7> > T (at
z = L) drive a heat flux g.

3my (ke Tp)?

o 4~/ niet ™
where n = n. = n, is either the proton or the electron number
density. These collision times are pertinent to plasmas with 4 2
10. In a moderately coupled plasma where 10 > A, the above
collision times may merely represent a zero order estimate of
the effective collision times. However, the advantage of using
the collision times (6) and (7) for all values of A permits the
unambiguous definition of the Knudsen number which is the
crucial parameter which determines the heat flux intensity in
a plasma (see below). The mean free path [, for a particle of
species « is a function of the collision times (6) and (7) and the
species characteristic velocity v, (thermal velocity)

2%kpT,\"?
Vg = (ﬂ) ) (8)
mLY
The mean free path is then simply given by
ly = To Vo 9

T/<T> 1.10
or

n/<n>
1.05+

1. 00
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Fig. 2. Run 5: Electron density and temperature (top panel) and elec-
tron heat flux (bottom panel) from ten bins along the cylinder axis. All
quantities are normalized to their average value in the cylinder.

which we use to characterize the plasma’s collisionality inde-
pendently of whether or not the collision times (6) and (7) rep-
resent good estimates of the effective collision times.

Concerning the temperature length scale Ly in the simula-
tions, we note that when the temperature difference between
the two thermostats is small, such that (T, — T,)/T, < 1, Lt
can be assumed to be constant:

)| L Th+Ty
0z _2T2—T14

Lr= [ (10)

We restrict our simulations to the limit of small temperature
variations in the system such that the Lt can effectively be as-
sumed to be spatially constant. As an example, Figure 2 shows
the density, temperature and heat flux as a function of z for
Run 5. Apart from the statistical fluctuations, the temperature
is seen to increase linearly with z, by about 10%, between the
thermostats. The density decreases linearly by the same amount
ensuring a constant pressure. The electron heat flux has a clearly
defined mean value but is not completely constant over the
whole simulation domain, indicating that the system is still re-
laxating.

3 Simulation parameters

We show results from eight runs. In all runs the plasma is char-
acterized by the same Coulomb logarithm A = 3.8 while the
thermal Knudsen number Kt ranges approximately from 1073
to 107!, As already stated, there are five free parameters: the
cylinder length L, the cylinder radius R, the total number of
particles N, and the temperatures 7'; and 7, of the thermostats
at both ends of the cylinder. We are interested in the role of
the collisions in the transport properties of the plasma so it is
essential that a thermal particle makes at least a few collisions
on its way from one thermostat to the other. This requirement,
which is also a necessary condition for a temperature gradient
to exist, can be expressed as [./L < 1.
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Run| Kr. |L/Ap|R/Ab|q/gnc|le/L
1 [1.25107%] 280 5.2 | 0.15]0.07
2 2501073 198 6.2 | 0.19]0.10 o1
3 [3.07107% 161| 6 |0.22]0.13 !
4 (533107 140| 7 |023]0.15 e
5 [1.701072 443| 6 | 0.25/0.13 L
6 (2901073 161| 10 | 0.32]0.23
7 14981072 90 | 11 | 0.34]0.30
8 [7.401072 70 | 24 | 0.67 | 2.1 0014
Table 1. All parameters listed are computed using the temperature and
densities at the center of the cylinder, at z = L/2. Proton to electron
mass ratio is m,/m. = 50 for all runs.
@ Simulation
0.001 T
0.001 0.01 0.1

The cylinder radius R is typically of the order of a few > Ap
and L/Ap > 1. All simulations are performed with a proton to
electron mass ratio my/m. = 50. This helps reducing computa-
tional times considerably without any significant impact on the
numerical values of the transport properties as the condition
my, > m is still holding.

The relevant parameters for the eight runs are shown in Ta-
ble 1.

4 Results

In all runs, particles are initially uniformly distributed inside
the cylinder, following a Maxwellian distribution at tempera-
ture %(Tl +T7). The system then freely evolves under the effect
of the sole electrostatic forces towards a stationary state, with
stable temperature and density profiles and approximately con-
stant proton and electron heat fluxes. Asymptotically the sys-
tem reaches a state of energy equipartition between species (i.e.
Te = Tp) and quasi neutrality n. = n, except near the bound-
aries overs scales of the order of the Debye length Ap <« L.
Figure 3 shows the electron heat flux g., normalized to the free
streaming flux go = ne(ksT)¥?/mi/?, for the eight runs of Ta-
ble 1 once a stationary state with an approximately spatially
and temporally constant electron heat flux has been reached.
The temperature used to determine ¢ is the initial tempera-
ture %(Tl + T») which is also the temperature in the middle of
the cylinder once the stationary state is reached. The heat flux
values and the associated error bars in Figure 3 represent the
average and the standard deviation obtained by measuring the
heat flux in 10 equally spaced bins along the z axis as illus-
trated in Figure 2. We note that the Spitzer&Hidrm flux given
by [11, 12]
kgT
me

Ges =32 net.V(ksT) (11)
only depends on the Knudsen number and the free streaming

flux go. In normalized units we then write

des

=226 Kre.
q0

Ges = 12)

Figure 3 shows that the measured heat flux systematically lies
below the Spitzer&Hérm flux, even at low Knudsen numbers.
The normalized heat flux appears to depend linearly on the
Knudsen numbers, exactly as g.s, provided the temperature
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Knudsen number (K_T.e)

Fig. 3. Circles show the normalized electron heat flux measured in the
8 runs listed in Table 1 as a function of the Knudsen number Kr.
The normalized Spitzer&Hidrm electron heat flux is shown as a refer-
ence. The linear fit, based on the 6 points to the left corresponds to a
heat flux which is only 3/4 of the Spitzer&Harm flux. The Coulomb
logarithm is A = 3.8 for all runs.

gradient is not too steep, i.e. Kt <5 1072, A linear fit (exclud-
ing the two points corresponding to the steepest temperature
gradients) gives

13)

Finding an electron flux which is systematically smaller than
de,s is not necessarily surprising as the computation of g, is
based on a collision operator which neglects terms in 2! and
the moments of the velocity distribution function of order > 2
(see [2, 3] for a discussion on this point). Corrections of or-
der A~! may be neglected in the weakly coupled plasma regime
A 2 10 but not for A = 3.8. In [5], Li and Petrasso use a modi-
fied collision operator including A~! terms which are shown to
effectively reduce the conventional Spitzer&Hérm flux. How-
ever, the modification of the heat flux predicted by Li and Pe-
trasso [5] is only of order 1/64 which is much smaller than
observed in our simulations. The Li and Petrasso correction is
clearly insufficient to explain the result of Figure 3.

When the temperature gradients are as steep as in the simu-
lations shown in this paper, non local contributions to the heat
flux may not be negligible. In order to evaluate the non local
contributions to the heat flux, we have computed the collision-
less electron heat flux gne (see equation (4)) for all runs, i.e.
the heat flux generated by the thermostats if the electrons were
allowed to stream freely (with no velocity variations) from one
thermostat to the other. Table 1 shows that the collisionless flux
gnc is always substantially larger than the measured flux ¢ ex-
cepted for Run 8. We conclude, that, at least in the case of
Maxwellian boundaries, the non local contribution to the heat
flux is not dominant as long as K.t < 51072 In the high Knud-
sen number domain (Kt 2 0.05), the heat flux appears to sat-
urate at a level < 107! ¢, as already mentioned in [9] and [7]
for the A > 10 case.
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5 Conclusion

Numerical simulations of a moderately coupled electron-proton
plasma in the classical regime (Coulomb logarithm A = 3.8)
have been used to quantify the strength of the electron heat flux
in a steep temperature gradient. The simulations are based on
N-body techniques which are particularly well suited for mod-
erately coupled plasmas and have the enormous advantage of
producing results which do not depend on a particular choice
of the collision operator in the Boltzmann equation.

As expected for the highest Knudsen numbers (Kt 2 5 1072),
when non local (collisionless) contributions to the heat flux be-
come dominant, the electron heat flux g, is seen to saturate at
~ 107! times the free streaming flux go. For K1, < 5 1072 the
normalized flux g./qo linearly depends on the Knudsen num-
ber K. However, the intensity of the flux is found to be only
about 75% of the classical Spitzer & Hérm flux.
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Abstract. We present a self similar three dimensional and spherically symmetric
fluid model of the expansion of an either globally neutral or globally charged
collisionless plasma into vacuum. As in previous works by other authors the key
parameter of the model is the ratio of the electron Debye length to the radius R of the
expanding ion sphere. The main difference with respect to the recently published model
of Murakami and Basko [1] is that the electron temperature is spatially non uniform.
The major consequence of the spatial variability is that the self-similar solution is
characterized by the presence of a sharp electron front at some finite distance ahead of
the ion front. Explicit analytic expressions for the self-similar profiles of the ion and
electron densities, the electron temperature and the heat flux are given for the region
inside the ion front. The model is shown to be in good qualitative agreement with
results from ab initio plasma simulations.
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Spherical expansion of a collisionless plasma into vacuum 2

1. Introduction

Plasmas freely expanding into vacuum are commonly observed in the astrophysical
context. Examples are the negatively charged dust particles in cometary tails expanding
into the interplanetary space [2, 3] or the expansion of the solar wind plasma into the
wake region of inert objects such as asteroids or the moon [4]. Besides the astrophysical
studies, most of the material on freely expanding plasmas has been published in the
context of laser-matter generated plasmas [5, 6, 7, 8] or discharge generated plasmas
[9]. During the last decade, the particular case of the collisionless spherical expansion
has focused attention after the experimental confirmation that the irradiation of small
cluster of deuterium atoms with high intensity laser pulses can produce a sufficiently
large number of up to MeV ions for efficient fusion reactions to occur [10]. In a typical
laser-cluster fusion experiment all, or just a fraction of the electrons are instantly
stripped from the cluster atoms or molecules and heated to up to keV energies by
the laser field [11, 10, 6]. The heated electrons depart from the cluster leaving a
clump of positively charged ions which become accelerated under the action of their
mutual electrostatic repulsion. To lowest order, the spatial structure of the expanding
plasma consists in two distinct regions. An inner region (the ion sphere), surrounding
the expansion centre, where both ions and electrons are present, and an outer region,
populated by electrons only [12, 1, 13]. The detailed structure is generally more complex,
especially in the case of large clusters where the initial heating is spatially non uniform.
In this case a two-component electron distribution and intricate spatial and temporal
structures of the expanding plasma are expectd [14, 15]. As shown in [6, 16] the minimum
cluster size for a two-component electron distribution to form is a function of the cluster’s
chemical composition and of the lasers’ characteristics.

Numerical studies have shown that even in the most simple case with only one single
Maxwellian electron population the initial evolution of the system is characterized by
wave steepening of the ion fluid velocity profile with associated formation of a peaked ion
front and development of plasma microinstabilities as the ion velocity becomes multi-
valued [17, 18]. Thus, as first pointed out on theoretical grounds in [17] and subsequently
observed in plasma discharge experiments [9], the late time (self-similar) ion density
profile is sometimes expected to be smoothed out by the microinstabilities at the ion
front. Recent two and three-dimensional kinetic simulations [14, 13] have also pointed
out how critically the expanding plasma depends on the characteristics of the laser
pulses used to heat the electrons. However, a model is only useful if it is simple and if
it contains all of the fundamantal ingredients of the problem. We therefore restrict our
model to the case of one single, not necessarily isothermal electron fluid, and an infinitely
steep ion front. The model describes the self-similar expansion of one single, spherically
symetric plasma plunged in an infinite empty volume. As already pointed out in [17] it
is expected that the expansion is self-similar when the radius of the expanding plasma
bubble largely exceeds the initial radius of the bubble, i.e. after a time long enough
for the memory of the initial conditions to be lost. Ions are assumed to be cold with
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a discontinuous ion-front while the electrons’ density and temperature are related to
each other by a simple polytropic law. The ion and electron fluid velocities are assumed
to be shear-free, meaning that they vary linearly with the distance from the expansion
centre [19]. The linear variation of the fluid velocity with respect to the radial distance
is necessary condition for the solution to be self-similar unless some special conditions
are assumed near the expansion centre [20].

The self-similar solution we propose differs from previously published self-similar
solutions [1, 8] in that the electrons are not assumed to be spatially isothermal, in
accordance with results from two dimensional PIC simulations [14] and our N-body
simulation of Section 3. The implications of a spatially varying electron temperature is
that the electron heat flux is finite with energy flowing towards the expansion centre.
In addition, the electron density drops to zero at some distance ahead of the ion front
while it extends to infinity in the Murakami and Basko model. For completeness, we
note that self-similar isothermal solutions similar to the one discussed in [1, 8] but with
a moving inner boundary, have been published in [21, 22, 20].

The paper is divided into two main sections. In section 2 we present the complete
theory of the self-similar model. In section 3 we compare the model with results from a
numerical N-body simulation.

2. Self-similar two fluid model

We describe the self-similar expansion of a plasma into vacuum within the context of a
two species (ions and electrons) spherically symmetric fluid model. The main difference
with respect to the self-similar model of Murakami and Basko [1] is that the electron
temperature is not assumed to be spatially uniform. The spatial dependence of the
electron temperature being confirmed by the case simulation presented in section 3. As
in the Murakami and Basko model we do consider the limit where the thermal energy
of the electron fluid is much larger that the thermal energy of the ion fluid (cold ion
limit).

2.1. Basic assumptions and equations

In this section, for the sake of completeness and to avoid ambiguities, we do briefly
present the definitions and assumptions whereon our model is based.

2.1.1. Definition of the plasma We consider a non magnetized two species collisionless
electron-ion plasma with an electron to ion mass ratio me/m; < 1. For simplicity
we assume single ionized ions with charge ¢ = e (e is the elementary charge) the
generalization to higher ionization levels being a trivial extension of the model.

2.1.2. Fluid equations The collisionless hypothesis allows the systematic construction
of fluid equations by computing the velocity moments of Vlasov’s equation [23].
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Assuming spherical symmetry, and postulating isotropic velocity distribution functions,
the order zero and order one velocity moments of the non relativistic Vlasov equation
for species j = i, e (ions and electrons) lead to the continuity and momentum equations
in the form

on 10

761‘] 55(7’2%‘%‘) =0 (1)
o, v, Ip;

0 <8_f] + Uja—;> = =5, T (2)

where n;, o; = m;n;, v; and p; are the number density, the mass density, the fluid
velocity and the pressure for species j. As usual, the electric field £ appearing in the
momentum equation is implicitly determined by the spatial distribution of ions and
electrons via Poisson’s equation
10
2 r

The system of fluid equations is closed with a barotropic equation of state for the

(r28) = 4me(n; — ne). (3)

electrons

Pe = pe(0c) = Agy.- (4)
and p; = 0 for the ions. As already pointed out in [1] the only choice for the polytropic
index which is compatible with a self-similar solution of the equations is vy = %, unless the
plasma is quasi-neutral in all points of space, as for the self-similar solutions proposed
n [18]. We discuss this point in more details in section 2.2.

2.1.3. Shear-free flow In addition to the spherical symmetry of the flow we postulate it
to be shear-free. As shown in [19] the shear-free hypothesis implies that the fluid velocity
v; must be a linear function of the radial coordinate r multiplied by an arbitrary function
of time H,(t), i.e. v; = rH;(t). Of course shear-free flows are a rather restrictive class
of spherically symmetric flows. For example, it has been first pointed out in [17] for
the quasi-neutral planar case and more recently in [24, 13] for the so-called Coulomb
explosion, the case where the totality of the electrons can escape from the cluster, that
for non uniform initial ion densities the ion velocity profile inevitably steepens until
it becomes multiple-valued and potentially unstable to plasma microinstabilities. The
shear-free assumption may still be pertinent for the late time evolution of the system
when the volume occupied by the expanding plasma greatly exceeds the initial volume,
and all wave activity has been damped out through wave-particle interactions.
The consequence of the shear-free flow assumption is that the continuity equation
(1) reduces to
% + rHj% =0, with 7; = n;r® (5)
whose general solution is 7, = 7,;(r/R;) where the spatial scale R; is a function of
time such that H; = R]- /R;, where overdots represent the time derivative d/dt. Thus,
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assuming flow velocities of the type
v = Tﬁj = ijj (6)

ensures both, that the flow is shear-free, and that the continuity equation (1) is
identically satisfied for any density profile ii; = 71;(§;) where §; = r/R; is the self-similar
coordinate for species j. We conclude this section by noting that velocity profiles that
are not linear in 7 can lead to self-similar solutions in a limited region of space. For
example, in [20] the fluid velocity is assumed to be zero at an inner boundary r = ro > 0.

2.1.4. Zero electron-ion drift velocity In the previous section we did not put any
constraints on the temporal evolution of the scaling lengths R;. However, because
of the electrostatic coupling between species, we do not expect ions and electrons to
evolve on different scales. We then postulate the same scaling length R(t) = R; = R.
for both species, which is equivalent to assuming equal fluid velocities v = v, = v;. The
overall fluid motion for both ions and electrons is therefore a function of just one single
scaling length R:

v=¢ER. (7)

For example, the zero drift assumption implies that the density ratio n;/n. at the self-
similar position £ = r/R does not change in time.

2.1.5. Cold ions approximation Given the zero drift hypothesis v, = v; and assuming
that the ion pressure term g, Lop; /Or is small compared to the electron pressure term
0. '9pe/0r, it follows from (2) that the electric field within the ion sphere, where both
electrons and ions coexist, only depends on the spatial variation of the electron pressure:

g o m; lape ~ lape (8)

Using the above expression for the electric field, instead of Poisson’s equation (3), does

Me 7me +m; 0. Or - 0 Or

considerably simplify the electron momentum equation within the ion sphere leading to
simple analytic expressions for the density and temperature profiles in that particular
region.

2.2. Plasma structure inside of the ion sphere

We chose the ion front to be located at r = R(t), or, in terms of the self-similarity
variable £, at £ = 1. All of the ions are therefore located within the spherical volume
& < 1 where the electric field is given by equation (8). Substituting this expression for
the electric field in the momentum equation for the electrons (2) leads to the simpler

v, O, Ope
Qe(v + Ve U>:_ap (9)

form

ot or or
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where we have defined the small, dimensionless variable « = me/(me + mi) = me/m;.
Using the barotropic closure (4) and the shear-free flow (7) one can write (9) in terms
of a differential equation for the dimensionless electron density N, = n.R> = 7. /&%

N.£ERR? = —ayA(Neme)HR*““aa—]ze. (10)
The general solution of this equation is not self-similar as it depends explicitly on the
spatial scale R. However, one can make the left-hand side of equation (10) independent
of R by setting RR? = k;. The meaning of the constant k; becomes clear immediately
by noting that in a self-similar solution the net charge of the plasma within an arbitrary
sphere of radius £ must be constant in time. Thus, if Q(&) is the net charge within a

sphere of radius £ we can write the momentum equation (2) for the ions as

%. (11)

and consequently k1 = eQq/m; is just a measure of the net charge Q1 = Q(1) of the ion
sphere ¢ < 1. The explicit dependence on the spatial scale R in the right-hand side of

mIERRQ =€

equation (10) is then easily eliminated by setting v = % leading to the simple equation

where Ny = N, (1) is a reference density which we chose to be the electron density at the
edge of the ion sphere and where ks is a dimensionless parameter denoting the relative
importance of electrostatic and kinetic energy of an electron at £ = 1

3 et 1

4 R kgT(1)
In (13) kg is the Boltzmann constant and 7'(1) the electron temperature at £ = 1. As

ks

. (13)

ko is not allowed to vary in time we deduce that in the self-similar solution the electron
temperature goes as T'(§) = To(§)Ro/R and where the index 0 refers to time ¢ = 0 (also
see [1]).

2.2.1. FElectron density profile inside of the ion sphere The solution of equation (12) is
a simple polynomial

N [1 - %(1 +a) (&~ 1)}3

N

%

- e 1)]3. (14)

The smaller ko, i.e. the hotter the plasmas, the flatter the electron density profile. A
schematic representation of the electron density profile in the inner region is shown in
figure 1.
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Figure 1. Dependence of the ion and electron density profiles on the parameters a
and k2. The departure from charge neutrality in the inner region is specified by the
parameter a = [N;j(1) — No(1)]/Ne(1) and the curvature of the density profiles near
r =0 by k2. As shown in section 2.3, the parameters a and ks are not independent of
each other.

2.2.2. Electric field and ion density profiles inside the ion sphere The electric field in
the inner region is given by equation (8), together with the polytropic approximation
Po X 93/ % and the equation for the electron density (14). Not considering the constant
factors one then easily finds that the 72€ o £3. With @, being the net charge of the
ion sphere, the electric field at & = 1 is just £(1) = eQ;/R? and the electric field in the
inner region must be

Qs
s (15)

We note that the electric field always peaks at the edge of the ion sphere ensuring that
any given ion is always less accelerated that all ions ahead of it. Thus, as it must

E(€<1t)=

necessarily be, no ion overtaking occurs during the self-similar phase of the expansion.
Ion overtaking is nevertheless a common event during the early, non self-similar phase
of the expansion, unless very special initial conditions are chosen such that the electric
field increases monotonically from r = 0 to r = R [24, 13].

In order to compute the ion density we multiply Poisson’s equation (3) by R3 and
rewrite it in terms of the self-similar variable &

% (r’€) = 4me®(N; — N.). (16)
Since 72€ o &3 it follows that NV; — IV, is a constant:
Ni(§) _ Ne(§)
AT ALI\T <
N, N, +a, for £ <1 (17)

where, as before, N; = N,(1) and where the constant a = 3Q);/(4meN;) is settled by
the constraint that the net charge in the ion sphere is @1 = fol dz 4wz*(N; — N,). The
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dimensionless constant a can therefore be interpreted as the relative departure from
charge neutrality at £ = 1, i.e. a = [N;(1) — Ne(1)]/Ne(1) (see figure 1).

2.3. Structure of the plasma outside of the ion sphere

The region £ > 1 is populated by electrons only. The electric field for this region is
obtained by integration of the Poisson equation (16) with N; =0
1 $
ER? = & (Q1 - 47T€/1 dzx ac2Ne(x)) . (18)
Plugging this expression for the electric field into the electron momentum equation (2)
for 7 = e conducts to the integro-differential equation for the electron density in the

region ahead of the ion sphere

1 N 1 305,
N7 W = —ky {aer & <1 TN /1 dz x Ne(x)ﬂ (19)

where the prime symbol ’ stands for the derivative with respect to the self-similar variable

0/0€. Equation (19) must be integrated numerically. We used a standard adaptive
Runge-Kutta solver for all figures of the paper. However, even without performing
the integration, the equation tells us that the electrons extends to a maximum radial
distance &. For example, in the particular case of overall neutral plasma, for £ — oo
the second term on the right-hand side of (19), which is essentially the electric field,
must vanish. In this case, sooner or later, it must be that the electron density decreases
as N, o< —¢5 which necessarily implies N, = 0 for a finite value of £. Knowing that
both the density and the electric field vanish at some finite distance & = & (the electron
front) we conclude that at that particular distance Nfl/gNé/Ng/3 = —koa&; and that
therefore in the vicinity of & the density rapidly falls off as N, oc (& — £). This is an
important difference with respect to the infinite electron precursor of the Murakami and
Basko model [1].

Equation (19) is a function of two constants a and k; which are apparently
independent of each other. However, if one assumes that the electron density is
not discontinuous in & = 1 so that N.(17)/N; = 1 can be used as a boundary
condition, the two constants a and ko are constraint by the requirement that the
electric field and the density both vanish at & = &. The former condition implies
that 3(a Ny)~! ff‘ dz 2 Ny(x) = 1. The ky(a) dependence for an overall neutral plasma
and an electron to ion mass ratio a = 1/50 is graphically illustrated in figure 2. The fact
that a and k5 are not independent shows that for a given choice of the charge separation
parameter a there is only one possible choice of the parameter ky such that the electron
density and the electric field both vanish at exactly the same position &. Thus, the
behaviour of the system depends on the value of one single dimensionless parameter.
For coherence with previous works on the subject [1, 13] we use a combination of a and
ko to define the key parameter

=i [
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a and k; values for given A? and a = 1/50
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Figure 2. Relation between the parameters a, ko and A? = (Ap1/R)? for an overall
neutral plasma and « = 1/50 obtained by numerically solving the differential equation
for the electron density ahead of the ion front (19).

where Ap; = [KT(1)/4me*n.(1)]"/? is the electron Debye length at the ion front £ = 1.
An additional parameter is required if the plasma of the self-similar solution is not
globally neutral (see section 2.3.1).

Two examples illustrating a moderate and a strong charge separation, respectively,
are shown in figure 3. As the charge separation grows with growing temperature we
may class the two examples as mild and hot, respectively. Not surprisingly, the electrons
being less coupled to the ions in the hot case (right panels) the electron precursor extends
to a significantly larger distance ahead of the ion front with an overall flatter density
profile. In figure 4 the profiles for 4 different values of A% are shown starting form a
quasi-neutral (mild) case with A% = 0.02 where electrons hardly detach from the ion
sphere up to the hot case with A2 = 3 which already resembles to a Coulomb explosion
[13].

2.3.1. Owerall charged plasma In the previous section we considered the case of an
overall neutral plasma, i.e. a plasma where the total number of ions N equals the total
number of electrons N,. However, in some experiments (real or numerical), as in the
numerical simulation presented in the Section 3, a non negligible fraction of electrons
may be sufficiently energetic to become completely decoupled from the ion sphere. These
electrons do essentially conserve their original speed and their evolution is trivial. Only
the electrons which remain coupled to the ions do then participate to the self-similar
evolution of the remnant which is not necessarily globally neutral.

If we assume that the plasma remnant’s global charge is @ = e(N, — No),
one has to integrate equation (19) under the condition that the electric field at the
electron front is just E(ry) = Q¢/r? which corresponds to let (...) — Qf/Q; for
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Figure 3. Electron and ion density profiles (top panels) and electric field profiles for
two different values of A%2. The left panels correspond to a quasi-neutral (mild) case
with A2 = 0.02. The right panels correspond to a strongly non neutral (hot) case with

A% =0.5.
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Figure 4. Electron density profiles for an overall neutral plasma and various values
of A%. The electron to ion mass ratio is a = 1/50 for this figure and for all figures in
the paper.

& — & in (19). Near the electron front, the differential equation (19) reduces to
NYENI NG = —kyJadi+€72Qr /@] while the electric field is E(&;)/E(1) = &72Q1/ Q1.
Thus, in the charged case, as in the neutral case discussed in the previous section, the
electron density decreases as N, ox (§—¢&)? for € — &. In figure 5 the self-similar profiles
for a neutral plasma (left panels) and a charged plasma (right panels) are shown. Both
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Figure 5. Electron and ion density profiles (top panels) and electric field profiles for
two different values of the total charge Q¢/Q; and A2. The total number of electrons in
the charged system is only 67% of the total number of ions so that the electric field is
not zero at the electron front. In the neutral case A2 = 0.02 with (a, k2) = (0.73,9.16)
(left panels) while for the charged case A% = 0.08 with (a, k2) = (3.6, 11) (right panels).
The electron front is much closer to the ion front in the charged case, despite being
characterized by a larger value of A. These two particular examples are discussed
further in connection with the numerical simulation of section 3.

cases are rather mild with (A% = 0.02 and A? = 0.08 respectively. In the charged case,
the total number of electrons is only 2/3 of the total number of ions. Not surprisingly,
the electron front is substantially closer to the ion front in the charged case compared
to the neutral case because of the missing electrons. The ky parameter being larger in
the charged case, both the ion and electron densities decrease faster in the charged case
than in the neutral case, even though the latter is the coldest of the two. The plasma
parameters for the two examples in figure 5 have been chosen for the ion density profiles
to fit the density profile of the case simulation presented in section 3.

2.4. Ion front motion

The position of the ion front R(t) can be computed explicitly from the equation of motion
by integrating the condition RR? = k; = eQ;/m; which expresses the conservation in
time of the net charge of the ion sphere. Thus, the differential equation for R(t) can be

written in the form

. k
2 ok e 21
B2+ V2 (21)
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where V, is to the asymptotic velocity of the ion front. If we assume that the ion front
is initially at rest, then V2 = 2k; /Ry and therefore

R2=V2 (1 - ];0) . (22)

1/2 is the electron

Multiplying equation (22) by (Rowe1) !, where we; = [4me?ne(1)/m)
plasma frequency at & = 1, leads to the differential equation in the normalized time

variable { = twe 1 and the normalized ion front position R= R/Ry

dl:?_ 200\ /2 1 1\2 (23)
i\ 3 R

whose solution is
~ [ 2ax 12 o 1/2 = =
(%) - [RR-1)] " +m (VR+VRE-1). (24)

We note that for a > 1 one has we1v/aa ~ wi; (see (17)) and (24) reduces to the
expression given in [13] for the case of a pure Coulomb explosion. The solution (24)
shows that the characteristic time scale for approaching the asymptotic velocity is of
order of (we1y/aa)™! indicating that acceleration time and wave period of Langmuir
oscillations near the ion front are of the same order for \/aa of order unity.

2.5. Ion energy distribution

Using (15) the total (kinetic + electrostatic) energy of an ion at any position £ < 1 can
be written as

1 e@Q)
B} ffz (25)

From the ion front equation of motion (21) and the equation for the electric field (15)

1 .
E= imifQRz -

one finds that the energy of an ion at position £ grows in time as

Bt = |5mVa =5 o | € (26)

approaching the asymptotic value E(&) =~ %migz\/fo for t — oo. Given that the ion

density profile N;(¢) is known through equations (17) and (14) the number of ions in
the interval [¢, € + d€] (normalized to the total number N;) is explicitly given by

ANi([€, € + de]) = 4m&? Ni(€7)d€. (27)

Using the energy-position relation (25) and the density distribution (27), one obtains
the number of ions in the energy interval [E, E + dE]:

dN\([E, E + dE)) = 2r EY2N,(E)dE. (28)
where E = E/E(1) = €2 is the energy of an ion at position ¢ normalized to the energy
of an ion at £ = 1. The distribution dN;/dFE of the ions kinetic energy in the system is
shown in figure 6 for various values of A%

We note that for A2 > 0.2 the distribution peaks at the maximum energy,
corresponding to the contribution of the ions at £ = 1. For A2 < 0.2 the contribution
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Figure 6. Ion energy distribution for a = 1/50 and various values of A2. The figure
is qualitatively similar to results from numerical simulations shown in figure 9 of [13].

from the ions near the front £ = 1 is no longer dominant since their relative number
decreases with decreasing A? as shown by equations (14) and (17) or even figure 4. The
structure of the ion energy spectrum and its dependence on A? is qualitatively similar
to the spectra in [25, 13].

2.6. Electron heat flux

In order to compute the heat flux ¢ carried by the electrons we write the energy equation
in Lagrangian form, derived from the collisionless Boltzmann equation, for a spherically
symmetric flow and isotropic electron temperature [26]:

3(or  ar\ T O, , 1 0, .,
(5 %) = e 0 ey @) @)

The first term on the right corresponds to the cooling of the fluid element du to the

expansion, the second term to the cooling (or heating) of the fluid element collisionless
heat conduction. For a polytropic fluid with T' o< n7™! equation (29) can be written in

3/(y-2 DT 10
5 (7_i> neks 5 =~ 13, (47°) (30)

where D/Dt = 0/t + vd/0r is the convective derivative. As expected, equation (30)
shows that the electron heat flux vanishes when the polytropic index equals the adiabatic

the form:

value v,q = % and infinity for the isothermal index v = 1. Since the spatial profiles of
both density and temperature are flat near the expansion centre we find that the heat
flux near the expansion centre is given by ¢(r) ~ %nck’B r dT /0t < 0, indicating that
energy is transported in the direction of decreasing r, i.e. in the direction of increasing
temperature. The reason for this non intuitive behaviour is that the energy flux goes
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from high to low entropy regions but not necessarily from regions of high to regions of low
temperature. In general, in a collisional gaz or in a fluid, temperature and entropy vary
together and energy effectively flows down the temperature gradient. In the polytropic
approximation entropy variations ds and temperature variations dT are related via [27]
ds 3 (y—3\dT _ 3dT
R 2 (v - 1)

R 2
where R is the gaz constant and where v = % has been set. The entropy-temperature

T AT (31)
relation indicates that spatial and temporal variations of the electron temperature are
opposite with respect to the spatial and temporal variations of the entropy. Thus, in the
self-similar solution of the expansion problem, entropy increases spatially away from the
expansion centre with a logarithmic divergence s o« —1In(& — &) for & — &. Similarly,
in the central region, near r = 0, one has ds/dt = —%Ra InT/0t > 0. Entropy grows
in time because the reduction of entropy due to cooling is more than compensated by
the entropy increase due to the fluid expansion.

Specialising to shear-free flows v = £R with the self-similar polytropic index v = %,
the energy equation (30) simplifies to

3 R 10

ZkgTN,— = —— —(&2 32
The left-hand side of this expression is strictly positive indicating that the heat flux is
directed towards the expansion centre, against the temperature gradient, in all parts of

the fluid. Equation (32) can be solved for the heat flux which after some rearrangements

R 1 /¢ N.(z 4/3
q(ﬁ,t):—GWGQNfAQﬁg/O { ]\51)] 22dz. (33)

This equation shows that at any given time ¢ the energy |4m&?R?q(€,t)| which flows

becomes

towards the centre through the sphere of radius £ increases monotonically with the
distance &, reaching a maximum at the electron front £ = &. The heat flux at any
position € varies in time as —R/R*. Thus, according to (33), the heat flux, which is
initially zero if the initial expansion velocity is assumed to be zero, first grows in time
until it reaches a maximum intensity at the time when R = %RO. At later times the
heat flux intensity decreases everywhere monotonically and, in particular for R > 1,
the expansion velocity can be assumed to be constant and g oc R™* oc ¢~

3. Ab initio simulation

In this section we present a numerical case simulation of a two species collisionless
plasma expanding into vacuum. We use a slightly modified version of Walter Dehnen’s
non relativistic N-body code [28], initially conceived for gravitational problems. N-
body simulations have the advantage of not resting on simplyfing assumptions being
merely based on Newton’s second law of motion and Coulomb’s law to compute the
self-consistent evolution of a system of point charges. The major disadvantage of
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N-body simulations, compared to either fluid [29, 30], semi-kinetic [13] or even fully
kinetic simulations [31, 14, 4] resides in the computational difficulty to follow the plasma
evolution over a sufficiently long physical time for the system to enter into a clean self-
similar phase. The choice of an artificially small mass ratio m;/m,, necessary to keep
the computational time within reasonable limits, is another drawback of the N-body
simulations. On the other hand, N-body simulations are more realistic representations of
collisionless systems with a small number of particles than ideal, noise-free, simulations
based on the Vlasov-Poisson system. Strictly speaking the Vlasov-Poisson equations are
only applicable to plasmas where the number of electrons within the Debye sphere tends
to infinity. However, in real plasma-cluster experiments the number of atoms in a cluster
is rather small, ranging between 10 [32] and 107 [6]. Accordingly, in the simulation of
this section a total number of 1.5 10° ions and an equal number of electrons have been
chosen. The parameter A having been selected in the the most interesting regime for
numerical simulations A = O(0.1) (see Section 3.1), the expected number of electrons in
Debye sphere is of order 102. As explained in [33], the applicability of a Vlasov-Poisson
model for a system with such a small number of particles is questionable since a non
negligible fraction of orbits are expected to become chaotic, i.e. non reversible, during
the time of the simulation. Thus, contrary to the prediction of the Vlasov-Poisson
model, in the N-body and in the corresponding real system, the total Gibbs entropy is
not constant but a growing function of time.

3.1. Plasma parameters and initial conditions

We simulate a total of 1.5 10° single ionized ions and an equal number of electrons. The
ion to electron mass ratio is m;/m, = 50. Such a mass ratio is sufficiently large for the
two fluid model of Section 2 to be applicable.

At t = 0 ions and electrons are distributed uniformly within a sphere of radius Rj.
Initially, all ions are motionless whereas the electrons’s velocities are drawn following a
Maxwell-Boltzmann distribution at temperature Ty and zero bulk velocity.

The initial temperature Ty and density nio = mne.o = no are selected for the
expansion to be in the mild regime with A = O(0.1), the hot case A > 1 corresponding
to the Coulomb explosion and the cold case A < 1 to the quasi-neutral case.

The strong interaction radius 7, = €2/3kgT, representing the characteristic distance
for binary collisions, is taken to be much smaller than the ion sphere R and even much

/3. The mean free path for a

smaller that the average distance between electrons ne !
binary collisions of a test electron with another electron in the system can be estimated
to be Aeepin = 1/nednr? = 9(kpT)?/4me*n,.. Using the definition of the key parameter
A2 = kgTR™2/4mn.e?, and the polytropic relation T oc N/, the normalized mean free

path for binary collisions becomes
)‘cc7bin(£) Nb(f) e
R Ne(1)

which shows explicitly that in the self-similar model the collisionality does not evolve

= 36mA*N,(1) { (34)
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in time as the right-hand side of (34) is constant. In weakly coupled plasmas where
the Coulomb logarithm In(Ap/rs) 2 5, binary collisions are unimportant compared to
the cumulative effect of long distant interactions with impact parameters of the order
Ap > 1. The mean free path can then be obtained in the Fokker-Planck approximation
which is given, within a constant factor of order unity, by Aeerp ~ Acopin N (An/7s)
[34].

In the simulation the Coulomb logarithm is larger than unity, the density at the ion
front Ny ~ 2 x 10% and the key parameter A% > 0.02 (see figure 7). We can then make
an estimate of the mean free path at the ion front Aeepp(1l) ~ Aeerp(1) 2 90R > R.
which confirms that the plasma is collisionless and that it can be treated in the frame
of the collisionless fluid model of section 2.

3.2. Density and temperature profiles inside of the ion sphere

Figure 7 shows that the simulated ion density profile can be fairly well approximated
using the self-similar density from (17) with A2 = 0.02 and an overall neutral plasma.
On the other hand, the electron density predicted by the model are substantially higher
than the density observed in the simulation everywhere within the ion sphere. A much
better agreement for both ion and electron densities can be obtained by assuming that
the plasma is not globally neutral as shown in the right panel of figure 7 where the total
number of electrons is only 2/3 of the total number of ions and A? = 0.08. The fact
that the non neutral model provides a better approximation is the consequence of a non
negligible fraction of electrons having a sufficiently high initial energy to escape from
the system keeping the memory of the initial condition which is not compatible with the
self-similar solution. The flattening of the electron density profile from the simulation
for £ 2 1.6 is a trace of these escaping electrons which are even better visible in figure 9.
Figure 9 also shows that some of the electrons located ahead of the ion front are falling
back towards the ion sphere on time scales which are of the order of the simulation
time. These slowly falling electrons do still carry the memory of the initial conditions
and may not yet be entirely compatible with the asymptotic solution.

The small ion excess observed in the simulation when approaching the ion front
is due to ion overtaking which has been shown to occur whenever the electric field
maximum occurs in a region of decreasing ion density [24, 13].

In figure 8 the electron temperature profile at the end of the simulation is compared
to the model predictions based on the same two sets of parameter used for figure 7.
As already announced, the electron temperature measured in the simulation is strongly
dependent on the spatial variable & despite having been uniform at t = 0. The agreement
between simulation and model prediction is rather satisfactory for & < 0.8 for both the
overall neutral and the overall charged case. In particular the convex shape of the
temperature profile predicted by the theory is apparent in the simulated profile. The
spike in the temperature near £ = 0.9 is a transient feature due to the presence of
counterstreaming electron beams. Indeed, as shown in figure 9, electron beams are
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Figure 7. Rescaled density profiles for both ions and electrons from the simulation
compared to model profiles. The model profiles in the left panel correspond to those
of an overall neutral plasma and A? = 0.02. The model profiles in the right panel
correspond to those of a globally charged plasma with A? = 0.08. and a total number
of electrons A, which is only 67% of the total number of ions A;. The experimental
profiles have been obtained by averaging the densities from the simulation during the
time interval 7 < twep < 41 (see figure 9). The model densities have been normalized
as to make the total number of ions in the simulation to be equal to the total number
of ions in the model. All densities have been normalized to the model electron density
Ne(1) (see equation (14)).

sporadically expelled from the ion sphere. Most of these beams, except the very first
one, are not energetic enough to escape and fall back into the ion sphere where they first
appear as inward propagating beams and later, passed the pericentre, again as outward
propagating beams.

3.3. Ion front expansion and electron density fluctuations

Figure 9 shows the electron density in arbitrary units and the position of the ion front
as a function of time. Given the difficulty of predicting the value of A% based on the
initial choice of the electron temperature we fit the ion front position using equation
(24). The fit produces an estimate of the parameter a and, from which, using figure 2,
one deduces the value of the key parameter A2 = 0.08 and the scaling of the time axis
in terms of the electron plasma frequency.

The figure shows that regardless of the strong electron density fluctuations around
the ion front, the latter closely follows the temporal evolution of equation (24). The
time period of the electron density fluctuations near the ion are compatible with a
period of the order 27 /w.(1). The slowing down of the oscillation frequency with time
is a consequence of the decreasing plasma frequency we(t) ne/? oc R=%2. Individual
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Figure 8. Electron temperature profiles at the end of the simulation compared to
model profiles for an overall neutral model with A2 = 0.02 (left pannel) and for a

globally charged plasma with A2 = 0.08. and a total number of electrons which is only
0.67% of the total number of ions (right panels).

Electron density

twe,l

Figure 9. Logarithm of the electron density and ion front position measured in
the simulation (diamonds). The R(t) curve has been obtained by forcing the self-

similar solution (24) to pass through the latest position of the ion front observed in
the simulation with A2 = 0.08 and a = 1/50.

electron trajectories are visible in the upper part of the figure. Some electrons are

clearly "falling” back onto the expanding ion sphere. However, a non negligible fraction
of electrons, of the order of % the total number, have a sufficiently high initial kinetic

energy to freely escape from the system. In the long run, once the not bounded electrons



Expansion d’un plasma dans le vide

Spherical expansion of a collisionless plasma into vacuum 19

have escaped, the system does more likely evolve according to the self-similar solution
of a charged plasma with Q¢/Q1 = 0.33 as suggested by the good agreement between
the profile from the simulation and the manual fit in the right panel of figure 7.

3.4. Ion energy distribution

lon energy distribution

Normalized energy distribution
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Figure 10. Ion energy distribution at the end of the simulation compared to the
energy distributions from the self-similar model for the neutral case with A% = 0.02
and the charged case with A2 = 0.08 and Q/Q; = 0.93 corresponding to a plasma
where the total number of electrons is 67% of the total number of ions.

The energy spectrum of the ions in the simulation is shown in figure 10 at the
end of the simulation when the ion front velocity can be assumed to be constant and
the electrostatic energy stored in the ions negligible. Also shown are the model energy
distributions for the two sets of plasma parameters used for the two panels in figure 7.
Both the charged and the neutral case do qualitatively agree with the distribution from
the simulation. The main difference between simulation and model is the existence of
a secondary peak in the ion energy distribution from the simulation. This secondary
peak at the ion front is a remnant of the initial condition, due, at least in part, to
ion overtaking as described in [17, 18] for the quasi-neutral case and in [24, 13] for the
Coulomb explosion case. Ion overtaking does also manifest itself with the formation of
a peak in the ion density profile which is visible on the ion density profiles near £ = 1
in figure 7. However, as shown in [20], a spike near the maximum energy can also be
part of a self-similar solution by relaxing the zero velocity condition at £ = 0.

4. Conclusions

We have presented a new spherically symmetric self-similar solution for the problem
of the expansion of a collisionless, either globally neutral or globally charged plasma,
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into vacuum. The model is based on a two fluid system of equations derived from
the collisionless Boltzmann equation with a polytropic closure for the electrons and
a zero temperature closure for the ions. The model is similar to the one recently
published in [1] with the notable difference that electrons are non isothermal. The
consequence is the appearance of a sharp electron front at some distance ahead of
the ion front and an inwards directed heat flux. Analytic expressions for the ion and
electron densities as well as for the electron heat flux and the ion energy distribution
are given for the region inside the ion sphere. The self-similar solution has been found
to be in good qualitative agreement with results from an ab initio numerical simulation.
Longer simulations than the one presented are needed to establish if the self-similar
solution is effectively an “attractor” for the late evolution of the system, when the
memory of the initial conditions are lost. We note that the fluid model is based on the
restrictive assumption that the radial and tangential temperatures of the electron fluid
are equal. This condition is not necessarily satisfied in the collisionless limit where the
pressure tensor can be anisotropic. Thus, an even better agreement between model and
numerical simulations may be obtained by assuming a non isotropic pressure tensor for
the electron fluid which is a current assumption in the context of solar wind modelling
[26] possibly with a different equation of state for the radial and tangential directions.
However, allowing for the pressure to be anisotropic does only make sense if some
physical mechanism (e.g. plasma instability) triggering the degree of anisotropy has
been previously identified.

We conclude by observing that the presented self-similar solution is expected to
apply to the late expansion of a plasma resulting from the irradiation of small clusters
of atoms where the totality of the electrons are heated to high energies independently
of their original location within the cluster. The case of an expanding plasma with
two distinct electron populations is certainly a more realistic representation of the case
of large clusters [16, 15, 1] worth being addressed in a future publication. In this
repect, we note that the two populations case with a mild, cluster bounded population,
and a hot, escaping population, has already been discussed implicitly in Section 2.3.1
where we have treated the case of an overall charged plasma. The generalization of the
solution to the case of two or more populations of electrons with different temperatures
and densities should be straightforward and much easier to carry out than the more
ambitious generalization to an anisotropic electron pressure tensor.
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1 Introduction

FalcON is a hierarchical O(N) force calculation code for the approximate
computation between N mutually interacting bodies. The underlying al-
gorithm, mainly intended for gravitationally interacting bodies, has been
extensively described in the reference article by the author of the code W.
Dehnen (1) (hereafter D2002). This note is about a possible extensions of
the basic algorithm to make it applicable to plasma simulations, i.e. with
the possibility of having both attractive and repulsive forces in the sys-
tem, while keeping the O(N) computational complexity of the algorithm.
Even though, both electrostatic and gravitational force fields are governed
by the Poisson equation, non exact methods (like the falcON algorithm) to
solve Poisson’s equation in the gravitational case may not be uncritically
transposed to the electrostatic case. For example, the electrostatic field due
to a system of positive and negative charged particles can vanish exactly,
whereas any system of gravitationally interacting bodies induces a non van-
ishing gravitational field. Concerning falcON, the most important difference
arises because in a globally neutral plasma of N particles the monopole con-
tribution to the electrostatic field is zero, whereas in the gravitational case
the monopole term is proportional to the sum of all masses in the system
which is always positive. In addition, given that in the original version of
falcON the multipole expansion of the field is barycentric, the dipole term
is zero by construction. In a plasma, the dipole term is often dominant, the
monopole term being generally small or zero.

Details on the falcON algorithm can be found in Dehnen’s article ((1)).
In section 2 we propose a better suited definition of the expansion center for
the approximate and in section 3 the associated expansion coeflicients.
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2 DModifying the definition of the expansion center

cell A
® electron
® proton

Figure 1: Two interacting cells (boxes). The stars indicate the position of the
”center of mass” based on the sum of the absolute value of the charges p; in the
corresponding cell according to equation (1). The figure has been adapted from Fig
1 in reference (1).

The algorithm is based on a multipole expansion of the electrostatic force
acting on the bodies in cell A due to all bodies in cell B for well separated
cells (see figure 1). The key point is a convenient definition of the expansion
center zgbased on the position and on the electric charge u; of all charges i
in cell B. It is reasonable to set

_ i lmilyi
L AP @

This new definition of the expansion center has the advantage of being iden-
tical to the original definition in Dehnen’s paper when all p; in the system
are positive. In the case of two charges of equal strength and opposite sign
(e.g. an electron and a proton) zgis locate at half the distance between the
two charges, which is a convenient location for a multipole expansion. With
the old definition in D2002 one has y; instead of ;] in (1). In this case
the expansion center would be located at zg— oo because of the vanishing
denominator !

z
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3 The new version of the field tensors

The potential at every position x in cell A generated by all charges in cell
B is given by the expansion

P
Ppoa(e) ==Y (o —2) " O CRL 4 Ry(®poa) ()
m=0

where z(™) indicates the n-fold outer product of the vector  with itself, ®
the tensor inner product and R, the Taylor reminder due to multipole terms
of order higher than p. Given the definition (1) of the expansion center zp,
the field tensors Cj” , in equation (2) do now depend on the dipole moment
M', which vanishes by construction in the gravitational case. The general
expression for the field tensors in (2) is

p—m
m -" n+m n
cpry = Y CLweemgm) o my Q
n=0 ’
My = > pilyi—zs)" (4)
Y €EB

where R = 24 — 25 and g(R) = 1/|R|| is the spherical Green function. As
in the D2002 we limit the expansion to the order p = 3. Using the following
definition for the operator D™

m_ (1 O™
0= (1 5) o0, -y )
so that, for example, D? writes
10 (10g(r)
2 —_—— — —_——
b= ror (T or ‘T = |R| (6)

The explicit form of the relevant coefficients (using Einstein’s sum conven-
tion), including contributions proportional to the non vanishing dipole M*,



Modification de I'algorithme FalcON pour la simulation d’un plasma

can the be written as (assuming Einstein’s summation convention)
03 00 Laapr 1 2 12

R+ o "

, 1 1 ‘
Cyla; = Ri (MODl + 5 M D + 2RijMka3) + R;Mj;D?

—M}D' — R;R; M} D? (®)

2,3
Cilay = M°(6;D'+ RiR;D?)

‘ —M;; [(0 Ry, + 0kiRj + 0;uRi) D + Ri R; Ry, D] ‘ (9)
CHaur = MO[(0ijRi + 0kiR; + 0jxRi)D? + RiR; R, D?] . (10)

Box surrounded terms are new with respect to D2002. Note that the oc-
topole term M? only appears in the C%’i A- Following D2002 we ignore this
contribution since it does not affect the force field V®.
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