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Abstract. Using time dependent MHD simulations, we study the nature of three-dimensional mag-
netic reconnection in thin quasi-separatrix layers (QSLs), in the absence of null points. This process is
believed to take place in the solar atmosphere, in many solar flares and possibly in coronal heating. We
consider magnetic field configurations which have previously been weakly stressed by asymmetric
line-tied twisting motions and whose potential fields already possessed thin QSLs. When the line-tied
driving is suppressed, magnetic reconnection is solely due to the self-pinching and dissipation of nar-
row current layers previously formed along the QSLs. A generic property of this reconnection process
is the continuous slippage of magnetic field lines along each other, while they pass through the current
layers. This is contrary to standard null point reconnection, in which field lines clearly reconnect
by pair and abruptly exchange their connectivities. For sufficiently thin QSLs and high resistivities,
the field line footpoints slip-run at super-Alfvénic speeds along the intersection of the QSLs with
the line-tied boundary, even though the plasma velocity and resistivity are there fixed to zero. The
slip-running velocities of a given footpoint have a well-defined maximum when the field line crosses
the thinnest regions of the QSLs. QSLs can then physically behave as true separatrices on MHD time
scales, since magnetic field lines can change their connections on time scales far shorter than the
travel-time of Alfvén waves along them. Since particles accelerated in the diffusive regions travel
along the field much faster than the Alfvén speed, slip-running reconnection may also naturally ac-
count for the fast motion of hard X-ray sources along chromospheric ribbons, as observed during solar
flares.

1. Introduction

Due to its low plasma β, the solar corona is a medium which is governed by
magnetic fields. The energy which is needed to power intense flares and to sus-
tain quasi-steady coronal heating is there stored in non-potential magnetic fields. In
plasmas with a high Reynolds number, MHD theory states that magnetic energy can
only be released in localized regions where magnetic fields have small-scale gradi-
ents, i.e. in narrow current layers. The diffusion of magnetic fields in such current
layers naturally leads to magnetic reconnection (Sweet, 1958). During confined and
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eruptive solarflares, this process is believed to occur in magnetic configurations that
have a complex topology (see the reviews of Longcope, 2005; Démoulin, 2006).
The same physics is also invoked to model coronal heating when the photospheric
distribution of flux shows multiple concentrations (e.g. Démoulin and Priest, 1997;
Wang et al., 2000; Fletcher et al., 2001; Priest, Heyvaerts, and Title, 2002; Priest,
Longcope, and Heyvaerts, 2005).

Complex topologies can be separated into two classes: first, the ones defined by
separatrix surfaces and second, the ones defined by quasi-separatrix layers. Sep-
aratrices are formed by the ensemble of magnetic field lines which pass either
through a null point (NP, see Lau, 1993) or through a bald patch (BP, see Titov,
Priest, and Démoulin, 1993), and the connectivity of magnetic field lines is dis-
continuous across them. In this case, separators are singular field lines defined
by the intersection of two separatrices. Quasi-separatrix layers (QSLs) are narrow
volumes across which the magnetic field connectivity remains continuous, though
it has strong variations (Priest and Démoulin, 1995; Démoulin, Priest, and Lonie,
1996; Démoulin et al., 1996). In a bounded physical domain, this occurs for ex-
ample when the domain boundaries are placed so as to exclude all NPs from the
domain interior and BPs from its boundary (see Démoulin et al., 1996). A QSL is a
purely three-dimensional object. In a given QSL, the connectivity gradients are the
largest in the sub-region where the squashing degree Q (defined by Titov, Hornig,
and Démoulin, 2002) peaks to its maximum value, which is known as the hyper-
bolic flux tube (HFT, see Titov, Gaslgaard, and Neukirch, 2003). In 3D magnetic
configurations defined by several flux concentrations, QSLs (and HFTs) become
separatrices (and separators) as their width (resp. squashing degree) asymptotically
tend to zero (resp. infinity).

In the case of NP separatrices, the spontaneous formation of current sheets for
any line-tied motion has been shown analytically (Low and Wolfson, 1988; Aly,
1990; Lau, 1993) and numerically (e.g. Yokoyama and Shibata, 1994; Ma et al.,
1995; Karpen et al., 1998, Longcope and Magara, 2004). The same conclusions
were obtained for BP separatrices (e.g. Low and Wolfson, 1988; Billinghurst, Craig,
and Sneyd, 1993), but they are still debated because of the issue of the efficiency of
line-tying in BPs (Karpen, Antiochos, and DeVore, 1991; Delannée and Aulanier,
1999).

There have been numerous studies about magnetic reconnection occuring in
separatrices. One of the main objectives, especially in local 2D and 2.5D (invariant
by translation) NP configurations, has been thefinding of fast reconnection regimes,
either in the frame of resistive MHD (see e.g. Petschek, 1964; Strauss, 1986; Priest
and Forbes, 1992a; Craig and McClymont, 1993; Baty, Priest, and Forbes, 2006)
or of Hall MHD, which supports reconnection through collisionless processes (see
e.g. Ma and Bhattacharjee, 2001; Bhattacharjee, Ma, and Wang, 2003). Another
objective has been the identification of all existing classes of reconnections in local
3D NP configurations (as reviewed in Priest and Forbes, 2000). Global models
involving the NP and the surrounding arcades, taking into account the geometry
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and the line-tied boundary conditions, have been calculated so as to mimic solar
observed phenomena (e.g. Yokoyama and Shibata, 1994; Karpen et al., 1998). One
natural result of these models is that NP reconnection involves two field lines at a
time, whose footpoints exchange their connectivity abruptly when they reconnect,
whatever the reconnection rate. This is a natural consequence of the discontinuous
connectivity across separatrices.

The case of QSLs (and HFTs) has been more difficult to address, mostly because
of mathematical and conceptual difficulties. Démoulin et al. (1996) first proposed
some analytical arguments in favor of current sheet formation in narrow QSLs
already existing in any magnetic configuration (even in a potential field) whatever
the footpoint motions are. This conjecture was strongly debated by the analytical
calculations of Inverarity and Titov (1997) and by the numerical experiments of
Galsgaard (2000) and Galsgaard, Titov, and Neukirch (2003). They all argued that
specific footpoint motions are required to generate intense current layers in a QSL,
through the pinching of its HFT. This approach was also used by de Moortel and
Galsgaard (2006) to set MHD calculations of current sheet formation in pre-existing
separatrices and dynamically formed QSLs. In Aulanier, Pariat, and Démoulin
(2005, hereafter Paper I), we performed new numerical experiments to address this
issue. We modeled more realistic solar magnetic configurations (i.e. with one single
line-tied plane, closed magnetic field lines and magnetic field decreasing away from
well-defined flux concentrations). We partly explored the parameter space, both for
the magnetic models and for the prescribed footpoint motions. We found that,
as conjectured by Démoulin et al. (1996), narrow current layers spontaneously
develop all along the QSLs, for any smooth and large-scale footpoint motion. We
also found that the strongest currents always develop in the vicinity of the HFT,
though their detailed shape and magnitude still depend on the boundary driving. In a
completely independent but similar study, Büchner (2005, 2006) also calculated the
natural formation of current sheets along QSLs, in an MHD model of an observed
X-ray bright point starting from a magnetic field extrapolation of an observed
magnetogram.

Following Paper I, thus considering that current sheets do naturally form along
QSLs in a similar way as they do in separatrices, a question which then arises is,
what is the nature of magnetic reconnection in QSLs (and HFTs)? This is the topic
of the present paper.

The question of separatrix-less reconnection was first addressed by Hesse and
Schindler (1988). They demonstrated that the existence of parallel electric and
magnetic fields was the condition for general 3D reconnection. To the authors’
knowledge, Priest and Forbes (1992b) were the first to envision that, when recon-
nection occurs without true separatrices in 3D, magnetic field lines must slip along
each other within so-called magnetic flipping layers. These layers are the remnants
of 2D X-shaped separatrices in 2.5D configuration invariant by translation. Priest
and Démoulin (1995) further developed this concept in 3D, by introducing the
QSLs. Under the assumption that field lines simply exchange their connectivity
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with that of their neighbors, as one of their footpoints is displaced in time across a
QSL, they proposed that magnetic flipping occurs in a QSL when the sub-Alfvénic
displacement of one field line footpoint across the QSL results in a super-Alfvénic
displacement of the other footpoint. Such mechanism, though, is hardly justified in
the frame of MHD. So, using the straight and thick HFT configuration developed
by Titov, Galsgaard, and Neukirch (2003), having a clear X-type configuration
in an extended region located between two facing line-tied plates, Priest, Hornig,
and Pontin (2003) developed a kinematic model of 3D reconnection, driven by
long-duration, continuous and symmetric footpoint motions. They showed that the
prescribed driving must lead to field line slippage when the HFT gets sufficiently
pinched.

Using space and time varying resistivities and following the simulations of
Galsgaard, Titov, and Neukirch (2003), full MHD experiments of this kinematic
model were performed by Pontin et al. (2005). These 3D simulations were con-
sistent with earlier findings (Hesse and Schindler, 1988; Priest and Forbes, 1992b;
Priest, Hornig, and Pontin, 2003) and they further showed that the reconnection
jets emanating from the diffusion region had little relation with the velocities of
the slipping field lines. Field line slippage was also recently reported in MHD sim-
ulations of prominence merging in 3D (DeVore, Antiochos, and Aulanier, 2005;
Aulanier, DeVore, and Antiochos, 2006). There, magnetic reconnection was driven
by the progressive shearing of two initially potential dipoles located next to each
other along a shared inversion line.

There are still questions unaddressed by the simulations of Pontin et al. (2005)
and DeVore, Antiochos, and Aulanier (2005), regarding the nature of 3D mag-
netic reconnection in narrow QSLs. Firstly, the studied magnetic field configu-
rations had very broad initial HFTs: the initial squashing degree was Q ∼ 40 in
Pontin et al. (2005) and Q ∼ 2 in DeVore, Antiochos, and Aulanier (2005), re-
spectively. We argue that the reconnecting current layers in these calculations were
therefore not due to any initial complex topology. They are probably rather due
to the progressive development of shear layers thanks to the boundary driving,
very much like in flux braiding experiments (see e.g. Longbottom et al., 1998).
Secondly, (nearly) continuous and relatively fast line-tied driving velocities were
applied in both calculations. They were of the order of 10% of the Alfvén speed
around the reconnecting layers within the domain. Such drivings preclude the pre-
cise derivation of slippage velocities when they are sub-Alfvénic, since field line
footpoints are also evolved by the line-tied motions. So the relation between the
topology (i.e. the thickness of pre-existing QSLs) and the slippage velocities of
reconnecting field lines could not be, and therefore was not addressed in these
experiments.

In this paper, we explicitly study this issue. We find in particular that for suffi-
ciently thin QSLs and for high enough resistivities, field line footpoints can shift
super-Alfvénically along the arc-shaped intersection of the QSLs with the line-tied
plane. The speed of this process leads us to call it slip-running reconnection, in
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opposition to mild and slow diffusive slippage. The absence of artificial symme-
tries in our models also permits us to reveal reconnections in opposite senses at
the same time in different locations in the QSLs, and allows us to derive observa-
tional consequences for the evolution of EUV and hard X-ray emission along flare
ribbons.

2. Numerical Experiments

2.1. PREVIOUSLY STRESSED MAGNETIC CONFIGURATIONS

In Paper I, we considered two magnetic field configurations. Even though they
were strictly speaking bipolar, they were formed by two bipolar flux concentra-
tions, with non-zero magnetic flux away from the center of the four main polarity
concentrations. Both configurations were labeled by the angle � made by the inner
and the outer bipole (i.e. � = 150◦ and 120◦). The size of the inner bipole was
L = 0.2, and the size of the outer bipole was 1. The maximum vertical field in the
inner bipole was b◦ = 35. The magnetic energies of the associated potential field
were E0

b = 5.99 and 6.96 for � = 150◦ and 120◦, respectively. Both corresponding
potential fields possessed very thin QSLs and a HFT, though their thicknesses were
much smaller for � = 150◦ than for 120◦. The maximum squashing degrees in the
center of the HFT for the potential fields were Q = 6 × 108 and Q = 4 × 104 for
� = 150◦ and 120◦, respectively.

We performed zero-β resistive MHD simulations of the development of electric
currents in both initially potential configurations. To do so, we applied smooth and
extended line-tied sub-Alfvénic translational and twisting motions, of one polarity
of the inner bipole only. Thus, the prescribed motions and the evolving magnetic
fields were asymmetric. In this paper, we analyze magnetic reconnection in the
configurations evolved by the twisting motions only.

Since the initial Alfvén speed was homogeneous, being cA = 0.2 in our non-
dimensionalized units, the time unit tA was then defined as the travel-time of Alfvén
waves from one magnetic polarity to the other in the inner bipole. The plasma
resistivity was low and uniform: η = 1.5×10−6. This value will further be referred
to as η� throughout the paper.

While narrow electric layers always spontaneously developed within the QSLs,
the strongest of these currents developed in the vicinity of the HFTs. There, the
current layers progressively got thinner during the driven evolution, until they even-
tually reached the scale of the mesh at t = t◦, thus halting the calculations. Us-
ing the twisting motions, we reached t◦ = 39.2 tA (resp. 102.5 tA) for � = 150◦

(resp. 120◦). These different times were due to the differences in QSL thick-
ness. We showed that more free magnetic energy could be injected in con-
figurations having broader QSLs, before the currents reached the dissipative
scale.
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Figure 1. Projection views of the two stressed magnetic field configurations, labeled � = 150◦ (left
panel) and � = 120◦ (right panel), used as initial conditions for resistive relaxations. The (pink; blue)
contours at z = 0 stand for (positive; negative) values of bz(z = 0) and the yellow line shows the
inversion line bz(z = 0) = 0. The colored lines are magnetic field lines. The configuration � = 150◦
(resp. 120◦) was previously evolved from its potential field at t = 0, up to t = t� = 34 (resp. t� = 90),
using sub-Alfvénic twisting motions within the positive polarity of the inner bipole. The whole
numerical domain is shown.

2.2. MHD RELAXATIONS

In this paper, we consider as initial magnetic fields the configurations shown in
Figure 1. Each of them correspond to one � value, and both have previously been
evolved by twisting motions as described above, up to the time t� = 34 tA (resp.
90 tA) for � = 150◦ (resp. 120◦). These times were chosen to ensure that the
current layers were sufficiently developed in the QSLs, while they still remained
resolved over several mesh points, and so as to consider two comparable models,
having approximately the same thicknesses for the current layer in their HFT. Their
free magnetic energy δEb, defined as the excess to the potential field energy, is
δEb/E0

b = 0.25% (resp. 2%) for � = 150◦ (resp. 120◦).
We perform numerical calculations in cartesian geometry of zero-β resistive

MHD relaxations of both initial stressed magnetic field configurations. The x axis
is parallel to the orientation of the outer bipole and the z axis is the altitude. The
two following equations are used for the time integration, from t = t�:

∂u
∂t

= −(u · ∇)u + ρ−1 j × b + Du, (1)

∂b
∂t

= ∇ × (u × b) + η	b, (2)

ρ being the mass density, u the plasma velocity, b the magnetic field, j the electric
current density and η the magnetic resistivity. Equations (1) and (2) are solved
using:

ρ(t) = ρ(t = 0) = 25 b2(t = 0) (3)
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∇ × b = j , (4)
∇ · b = 0. (5)

We use line-tied conditions at z = 0 to simulate the solar photosphere and open
conditions at the five other domain boundaries. Three relaxations are performed for
each configuration, using three values for the uniform resistivities η = η�, 3η� and
10η�. At the scale of L , the corresponding Lundquist numbers are Lu ∼ 27000,
9000 and 2700. At t = t�, all velocities are reset to zero. During these relax-
ations, the resistivity and the velocities at the line-tied boundary are η = 0 and
u(z = 0) = 0.

Apart from the resistive parameter and the suppression of the boundary driving,
the relaxations are calculated with the same exact conditions as in the continuously
driven calculations reported in Paper I. The viscous filter Du is adapted to the local
cell size in the domain. It is set up to give a minimum characteristic viscous speed
of 0.15 cA. This amplitude is required to ensure numerical stability in the HFT for
the high-Lu regimes considered in the relaxations. The calculations are performed
with nx × ny × nz = 191 × 161 × 170 mesh points, distributed non uniformly in
the domain. The smallest cell has a size of d = 1.5 × 10−3 and is located at the
center of the inner bipole at z = 0.

Non-zero velocities naturally develop in the domain. The origin and effects of the
residual Lorentz forces which generate these velocities are respectively discussed
in Section 3 and in Section 4.

3. Magnetic Reconnection Trigger

3.1. CO-EXISTENCE OF TWO CURRENT LAYERS IN THE QSLS

At t = t�, the QSLs are slightly deformed from their original shape (when the
field was potential). Narrow current layers are present all along the 3D thin vol-
ume defined by the QSLs (see Paper I). More specifically, two well developed
narrow current layers appear within the QSLs, where their 3D deformations are the
strongest. Figure 2 shows these layers for � = 150◦, at t = t�+2 in the early stages
of a relaxation. In its middle row, the signed quantity α is plotted, being defined as:

α = j · b/b2. (6)

It has the dimension of the inverse of a length. It indicates both the sign of j · b
and the scale-length of the magnetic field gradients, i.e. the approximate thickness
of the current layers at FWHM. This quantity thus permits to focus on the QSL-
related narrow current sheets. It minimizes the visibility of strong, but extended and
therefore less diffusive, force-free volume currents. For y > 0 one current layer is
roughly horizontal (i.e. orthogonal to the z axis), while for y < 0 another layer is
roughly vertical (i.e. parallel to the z axis). Figure 2 shows that the horizontal current
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Figure 2. Magnetic field lines, electric currents and QSLs during the resistive relaxation of the con-
figuration � = 150◦, at t = t� + 2, using η = 15 × 10−6. Top row: 3D projection views of four
magnetic field lines, passing in the vicinity of the two narrowest current layers that are present in
the QSLs at y = 0.07 and y = −0.12. Two projections are shown, along the y axis (left panel) and
along the z axis, i.e. as viewed from above (right panel). The contours of bz(z = 0) are the same as
in Figure 1. Middle row: 2D maps of α = j · b/b2, drawn at y = 0.07 (left panel) and at y = −0.12
(right panel). The color coding is saturated, so that (black; white) stand for α = (−36; 36). Bottom
row: 2D maps of the squashing degree Q in the QSLs in the same y = constant planes. The (red ;
yellow; green; cyan; blue; pink) colors stand for Q = (108; 3 106; 105; 5 103; 50; 2). The central part
of the HFT is thus drawn in red.

layer has α > 0 whereas the vertical current layer has α < 0. Analogous currents
are present for � = 120◦, but there the vertical current layer is less pronounced.

This system of so-called “direct” and “return” currents finds its origin in the
early slow and confined counter-clockwise twisting of the initially potential fields.
The azimuthal velocity profile in the vortex had a sine-like profile (see Paper I for
its exact expression). The direct currents are there approximately located in the
ensemble of field lines which are rooted in the area where the previous twisting
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velocities increased away from the vortex center, i.e. in the inner part of the vortex.
Oppositely, the return currents are located in the outer part of the vortex, where the
twisting velocities decreased toward the external untwisted regions. In the region
of direct currents, the electric current j‖ projected onto the magnetic field b is
antiparallel to the magnetic field, so that α < 0. In the region of return currents, j‖
is parallel to b, so that α > 0. It follows that the horizontal current layer is located
in the region of return currents, whereas the vertical current layer is located in the
region of direct currents.

Vertical cuts of the squashing degree Q, which highlight the QSLs and the HFT,
are shown in the lower row of Figure 2 for comparison. Q was calculated following
the procedure extensively described in Paper I. This comparison reveals that both
current layers are clearly located along the QSLs, and not very far from the central
axis of the HFT (defined as the narrow volume where Q is close to its maximum,
shown in red in Figure 2). The horizontal layer is slightly shifted from the HFT
toward negative x , while the vertical layer is more shifted from the HFT, toward
low z. These shifts are a natural consequence of the fact that the area, covered
by the twisting motions at z = 0 for t < t�, did not include the footpoints of the
central axis of the HFT. As argued in Paper I, even though any footpoint motion is
expected to generate electric current layers along QSLs, being preferentially thinner
and more intense around HFTs, the precise shapes and locations of these layers are
still controlled by the form of the line-tied motions.

3.2. ORIGIN OF THE COMPLEX QSL DEFORMATION

This dual deformation of the QSLs naturally finds its origin in the early twisting
motions which stressed the initial potential field configurations for 0 < t < t�.
Referring to the color-coding of field lines shown in the upper row of Figure 2, the
QSL motions naturally resulted in the displacement of red-type (resp. cyan-type)
field lines mostly in the y (resp. x) direction. This was ensured by the 2D horizontal
motions prescribed at their footpoints, which propagated along thefield lines, thanks
to quickly damping Alfvén waves. Both types of field lines also expanded toward
higher z. This motion was due to local increases of magnetic pressure, at low
altitude in the inner bipole, thus leading to a slow rise of the twisted volume. This
expansion can also be physically interpreted as the consequence of the repulsion
between the volume electric currents which developed in the domain and the surface
currents which developed in the infinitely conducting plane at z = 0. These latter
currents are equivalent to those produced by so-called “image currents”, which can
artificially be placed at z < 0 so as to preserve bz(z = 0), as in the models of van
Tend and Kuperus (1978).

We can make an analogy between the present QSLs with their HFT (projected
onto 2D planes with fixed y, see Figure 2) and 2D separatrices with their null point
(formed in classical quadrupolar configurations). While true separatrices are known
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to separate a magnetic field in well-defined connectivity domains, QSLs do not.
However, the 2D analogy allows us to consider quasi-connectivity domains which
help to understand the time evolution of the 3D field lines. In this context, the red-
type (resp. cyan-type) field lines are located in the central (resp. in a lateral) “quasi-
connectivity domain” and they move toward the black-type (resp. green-type) field
lines, the latter being located in the overlaying (resp. the other lateral) “quasi-
connectivity domain”. This naturally forms a horizontal (resp. vertical) current
layer at the null point in the case of separatrices, or near the HFT in the case of
QSLs. Of course there is a competition between the horizontal motions and the
vertical expansions in 3D, because of the non-local response of the magnetic field
to boundary motions. The shapes and locations of current layers are therefore not
easy to predict in general, using 2D analogies.

It is noteworthy that the formation of two nearly orthogonal narrow current
layers at the same time in the QSLs was caused by a very simple and relatively
weak torsional displacement of field line footpoints. This cannot happen in 2D
and 2.5D geometries involving separatrices, in which only one single current sheet
can be generated at the intersection of the separatrices when line-tied motions are
prescribed (see e.g. Low and Wolfson, 1988). We conjecture that in 3D, complex
deformations of QSLs are easy to obtain in general. This is typically expected,
for example, when the boundary motions expand a “quasi-connectivity domain”
in one region and shrink it in another region. Still, some conditions can prevent
the formation of various current layers in QSLs. One example is 3D magnetic
field configurations and 2D footpoints motions which maintain special symmetries
during time, as done in many previously published numerical experiments, and as
naturally set-up in laboratory experiments. One single current layer is also expected
to be formed when a “quasi-connectivity domain” is dominantly expanded by the
boundary motions. The set-up of our translation simulations in Paper I falls into this
case. In general for 3D configurations, since the photosphericflows are not expected
to have any relationship with the QSL locations, a complex pattern of current layers
is expected along the QSLs, though it must depend on how the “quasi-connectivity
domains” are evolved by the flows.

3.3. UNDRIVEN COLLAPSE OF THE CURRENT LAYERS

At t = t�, in the regions where extended electric currents exist, the deviation from
the force-freeness as estimated by ε = |j × b|/|j | |b| is typically ε ∼ 0.1%. Thus
the magnetic field configurations are nearly force-free, i.e. j ∼ αb with α defined
in Equation (6). The weak non force-freeness comes from residual Lorentz forces
associated with small wave-number Alfvén waves. These waves were traveling
along the magneticfield lines so as to allow the magneticfield to adjust progressively
to the continuous twisting motions that existed at t < t�. Thanks to the viscousfilter,
these waves damp in a few Alfvén time scales during the MHD relaxations.
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In the QSLs, especially within both current layers described above, the non
force-freeness peaks at ε ∼ 1 – 2%. Even if this shows that the QSLs are not so far
from being force-free, the related Lorentz forces are there the strongest in the whole
domain. These forces do not decrease very quickly in time. They are the cause of
magnetic reconnection in both current layers. All around the QSLs, the Lorentz
force vectors are all directed more or less perpendicular to the QSLs and they have
converging patterns toward the QSLs. So the related current layers tend to collapse
under the action of these forces, without any boundary driving. Figure 3 shows
1D cuts along z, at several times during one of the MHD relaxations, of various
physical quantities across the horizontal current layer located in the vicinity of the
HFT (see Figure 2). The plots stand for � = 150◦ and η = 10η�. The same kind
of plots can be produced along x for the vertical current layer, and for � = 120◦.
The double-peaked Lorentz forces f along the z axis result in the development of

Figure 3. Temporal variation of 1D cuts along z at (x ; y) = (−0.003; 0.07) of various physical quan-
tities, during the resistive relaxation of the configuration � = 150◦, using η = 15×10−6. Upper-left:
the x component of the magnetic field b. Lower-left: the magnitude of electric currents j . Upper-right:
the z component of the Lorentz force j × b. Lower-right: the z component of the velocity u in units
of cA(t = 0) × 10−2 = 2 × 10−3. On each panel, each quantity is plotted for t = t� + (0; 2; 4; 6; 8)
in (black; pink; blue; green; grey).
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sub-Alfvénic pinching motions, in and around the current sheet. Their small speed
is a natural result of the weak ε values. These motions quickly reach a larger
extension along z than the width of the current sheet, because of the response of the
distant magnetic fields to the local deformation of the current layer, which typically
occurs on an Alfvén time scale (and probably also because of the viscous diffusion).
The undriven self-collapse of the current sheet locally increases the resistive term
in Equation (2), which in turn triggers magnetic reconnection. Its 3D nature is
analyzed in Section 4.

This behavior can be related to 1D current layer models (e.g. Harris current
sheets). Let us consider a magnetic field distribution along one axis z, which only
has a component along x direction: bx (z) = tanh(z). A current layer exists around
z = 0. The Lorentz force f reduces to the magnetic pressure force along z, which
is fz ∝ −∂zb2

x . This term shows two peaks of opposite signs which, in ideal MHD,
must result in a fast implosion of the current layer, within a finite time (Forbes,
1982). This collapse can be slowed (or halted) by the inclusion of large enough
plasma pressure, or magnetic field component perpendicular to the (x ; z) plane, or
resistivity (Forbes, 1982; McClymont and Craig, 1996). Even if there is an analogy
between our 3D MHD relaxations and this 1D current sheet model (see Figure 3),
there is also a significant difference. This difference is due to the weak ε values in
the MHD relaxations. There, the double-peak profile of f is in fact a combination of
several magnetic field derivative terms, whose individual amplitudes are typically
20 – 40 times as large as the result of their sum. The Lorentz forces around the
3D QSL current layers are thus relatively weaker than in 1D Harris current layers,
because of the existence of several magnetic field components which ensures a
nearly force-free evolution during line-tied motions.

3.4. CRITICAL η FOR QUASI-STEADY-STATE RECONNECTION

It is physically and numerically interesting to understand which conditions can
prevent the current layer from collapsing to a zero thickness, a fortiori beyond the
mesh resolution. Since our MHD relaxations are in zero-β, plasma pressure cannot
counteract this collapse. At the first order, the slowness of the collapse (due to the
low ε values) permits the magnetic field component perpendicular to the current
sheet to evacuate most of the stress that is generated within the current layer by
the collapse, toward large distances, thanks to Alfvén waves. So flux pile-up and
therefore magnetic pressure forces within the current layers that could oppose the
collapse are not as efficiently created as in 1D models (e.g. Forbes, 1982). So at the
first order on relatively short time scales, only resistivity can prevent the collapse
of the current layer.

In an open medium, the minimum resistivity which has to be considered to
prevent the collapse is the one that leads to a steady state (or stationary) solu-
tion. However, no real steady-state regime can be reached in our MHD relaxations,
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because the line-tying constraint at z = 0 prevents magnetic flux from rising indefi-
nitely toward and into the QSL current layer at z > 0. If one considers the evolution
of horizontal current layers, the rise of magnetic field lines along z must lead to an
increase of the magnetic tension, which points downward along z, so the tension
will eventually halt this rise. Still, the slow amplitude of the pinching velocities
along z can allow a quasi-steady-state regime to be satisfied for many Alfvén times,
thus allowing to derive the critical ηc value as follows.

Let us analyze a horizontal current layer, in which the strongest field gradients
are in the z direction. Let us consider, at first order, that the current layer is 1D.
In this approximation, the horizontal derivatives are zero (∂x = ∂y = 0), the inflow
velocities are vertical (ux = uy = 0) and the magnetic field is horizontal (bz = 0).
Under the steady state condition (∂t = 0 and η = ηc) and for any horizontal mag-
netic field component bi = bx or by , Equation (2) then reduces to:

−bi∂zuz + ηc∂
2
z bi = 0. (7)

Its dimensional analysis results in:

ηc = uiδ
2/Lz, (8)

where ui is the maximum amplitude of the inflows, Lz is their length scale and
δ ∼ α−1 is the scale length of the magnetic field gradients in the current layer
(i.e. the width of the current layer at FWHM). For both magnetic field configura-
tions and at early times, ui weakly depends on η. This is natural, since we have
seen that the inflow is due to an ideal MHD process. These speeds are typically
ui ∼ 10−3 ∼ 0.5% cA. After a few Alfvén times, ui becomes different because sub-
sequent magnetic reconnection pulls magnetic flux away from the current layer. So
reconnection decreases the magnetic pressure, thus increasing the pinching pressure
forces. We do not consider these variations at first order.

From Figure 3, one can estimate δ ∼ 0.02 and Lz ∼ 0.15. Equation (8) then
results in ηc ∼ 3 × 10−6 ∼ 2η�. Almost the same result can be reached for the
vertical current layer and for � = 120◦. This estimation actually fits quite nicely
the results of our relaxations using different η values. On one hand, we find quasi-
steady states for t < t� + 40, using η = 3η�. On the other hand, the current layers
collapse below the mesh resolution for t < t� + 15 using η = η�. Finally, they
rapidly diffuse for η = 10η�. These results are further described below.

4. Local Dynamics and Global Oscillations

4.1. RECONNECTION JETS AND η-DEPENDENCE

The undriven collapse of the narrow current layers described in Section 3.3 and
shown in Figure 3 results in an enhanced magnetic diffusion and therefore in
magnetic reconnection. The reconnecting current layers are at the location of the
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strongest currents along the QSLs (seeα maps in Figure 2). These currents are nearly
aligned with the magnetic field (see ε values in Section 3.3). So the strongest field-
aligned resistive electric fields (E‖ = ηj‖) are co-spatial with the 3D reconnecting
layers in our QSL configurations. Our calculations thus nicely follow the conditions
for general magnetic reconnection in 3D (Hesse and Schindler, 1988).

As viewed in Figure 4, in (x ; z) planes for y = constant the magnetic reconnection
is associated with the formation of sub-Alfvénic plasma jets. These jets diverge
from the diffusive layers, and their velocity component along y has about the
same amplitude as those in the (x ; z) plane. For � = 150◦ and η = (1; 3; 10)η�,
the maximum velocities of the jets during the first few Alfvén times are u J =
(0.45; 0.85; 1.75)% cA, respectively. These jets are associated with inflow velocities
ui ∼ 0.5% cA which are nearly independent of η (see Section 3.4). The velocities
given above were normalized to the homogeneous initial Alfvén speed cA = 0.2
given in Section 2.1. The latter indeed gives a good approximation of the total

Figure 4. Close-up around the narrowest current layers shown in Figure 2 at t = t� +2, for y = 0.07
(upper row) and y = −0.12 (lower row). The greyscale color coding correspond to j/b ∼ |α|. Arrows
correspond to 2D vectors of the fluid velocities (right column) and of the Lorentz forces (left column)
in the (x ; z) plane. The arrow lengths are proportional to the norm of their corresponding vector field
in the 2D plane.
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Figure 5. Free magnetic and kinetic energies during the resistive relaxations. The thick (resp. thin)
curves stand for the configuration � = 150◦ (resp. � = 120◦). Continuous; dashed; dash-dotted
curves stand for resistive relaxations using η = η�; 3η�; 10η�, respectively.

space-varying Alfvén speed for t > t� since it only varies between 0.18 and 0.23 in
all our relaxations. For both magnetic field configurations (i.e. both � values), the
sub-Alfvénic outflow velocities are a monotonic function of η and the maximum
values for the total kinetic energies naturally follow the same trend.

During the reconnection, the gradual diffusion of the magnetic fields naturally
leads to a decrease of the magnetic energies Eb. Meanwhile, the slow decay of the
current layers progressively results in slower and less extended reconnection jets,
so that the kinetic energies Ek also decrease in time. Plots of the free magnetic
energy δEb (as defined in Section 2.2) and of Ek as a function of time are shown
on Figure 5 for all six MHD relaxations. For both �, these decays in energy are
mostly obvious during relaxations using η = 10η�. Once reconnection has started,
the kinetic energies remain nearly constant for several tenths of Alfvén times when
using η = 3η�. During this plateau, the current layers very slowly decay. It is also
worth noticing that for η = η�, the calculations rapidly break down. This particular
behavior is due to the collapse of the current layers, during which reconnection jets
amplify, until the currents become unresolved, which leads to numerical instabilities
quickly halting the calculations. These different behaviors, for various η, nicely
follow the estimations reported in Section 3.4.

Testing wether or not the classical Sweet-Parker reconnection regime in 2.5D
exists in the 3D systems considered in this study is not straightforward. Indeed, it is
hard to find a guide field direction precisely in the HFT, which is needed to define
the local “perpendicular” Alfvén speed cA⊥, that is supposed to be reached by the
reconnection jets in this regime. Let us focus on the horizontal current layer which
exists near y = 0.07 for � = 150◦. Since the HFT is primarily oriented in the (y; z)
plane (as seen in the top-right panel of Figure 2) and since bx is the magnetic field
component which has the strongest gradients in this layer, let us assume the crude
approximation (as in Section 3.3) that the horizontal current layer can be treated
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by a model in which bx is the only component of the magnetic field which is being
diffused along the z axis, and that the reconnection jets are primarily oriented along
the x axis. In this simple approximation, cA⊥ = √

b2
x/ρ. Out of the diffusive layer

cA⊥ ∼ cA ∼ 0.1–0.2 (in the middle of this layer, this quantity naturally falls down
to 0 since there bx changes sign, as seen in Figure 3). As mentioned above, the
outflow velocities in the reconnection jets are therefore u J 
 cA⊥. This shows that
the 2.5D Sweet-Parker reconnection regime is not reached in our 3D relaxations.
This may be due to several reasons. Firstly, the diffusion time of the current layers
may be shorter than the time required for them to adapt their shapes so as to reach
this regime. This is not unlikely since no external driving was imposed during the
relaxations and since the inflow velocities were fixed by the Lorentz forces in the
current layers (see Section 3.3). Secondly, the use of a too high viscous filter and
of a too coarse mesh (so of a too low magnetic Reynolds number), both during the
driving and the relaxation phases, may have prevented the current layer to evolve
toward this standard regime. Understanding this issue, which is not the primary
topic of this paper, would require further analyses.

4.2. BOUNDARY-DRIVEN OSCILLATIONS ON LARGE-SCALES

Two peculiar features appear on Figure 5: damped oscillations of δEb and Ek
superposed on their global decrease in time (for both �) and rises in δEb at small
times (for � = 150◦ only). Both have the same origin.

The energy oscillations visible in Figure 5 could, a priori, be attributed to
physical non force-free magnetic field perturbations which naturally generate new
Alfvén waves for t > t�, since all velocities were reset to zero at t = t�. Even
though this effect must exist, it cannot explain the energy oscillations of Figure 5
because (i) the frequency of the oscillating component of Ek is twice that of δEb
and (ii) using the dispersion relation for Alfvén waves, they should correspond to
spatial frequencies ∼1, which is not typical of the length of the previously twisted
and now reconnecting field lines.

In fact, these oscillations rather seem to be due to numerical boundary effects,
in the weak field regions, as illustrated in Figure 3, since residual Lorentz forces
exist near the open boundaries. These forces are due to artificial small electric
currents extending two to three grid points from the boundaries into the domain.
These currents are generated from our numerical prescriptions of so-called “open”
boundaries with non-zero magnetic field gradients using ghost-cells (see Paper I).
These artificial forces first result in weak implosion-type motions toward the flux
concentrations, followed by weak diverging motions toward the open boundaries
when magnetic pressure has sufficiently built-up in the domain so as to counteract
the early implosion. This process repeats itself, thus leading to weak oscillations
in the whole numerical domain, during tens of Alfvén times. Since new flux can
enter into the numerical domain through the open boundaries, δEb can increase
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(resp. decrease) when inflows (resp. outflows) are present. Its temporal frequency
is therefore that of the global oscillations. Ek has a maximum both during the
inflow and outflow, which explains why its temporal frequency is twice that of
δEb. The initial rise in δEb in each relaxation for � = 150◦ is due to the initial
implosion, which is faster than the subsequent ones, thus bringing more mag-
netic energy density into the domain from the open boundaries. Even though the
same process occurs for � = 120◦, it does not lead to an increase of the total
magnetic energy, because its evolution is there dominated by the resistive energy
decrease. The initial implosion and the first following oscillation are visible on
velocity and Lorentz force plots in Figure 3, at large z above the narrow current
layer.

Performing some numerical experiments, we found that setting η = 0 near the
boundaries reduced this phenomenon, but it did not completely suppressed it. In
the present relaxations, these oscillations do not affect the reconnecting regions,
probably because the magnetic field and density are there stronger.

5. Three-Dimensional Slip-Running Reconnection

5.1. FIELD LINE SLIPPAGE IN OPPOSITE SENSES ALONG QSLS

In spite of the fact that the MHD relaxations are performed using u(z = 0) = 0
and η(z = 0) = 0, some magnetic field lines do not remain anchored at the same
position in the line-tied plane at z = 0. Figure 6 shows how suchfield lines gradually
slip along one another. Each of them is integrated from a fixed footpoint position in
the negative polarity, in the vicinity of a QSL. Their conjugate footpoints all move
along the same arc-shaped trajectories at z = 0, from the positive polarity of the
outer bipole to that of the inner bipole, or in the opposite direction, depending on
the field line. The same process occurs more-or-less (but not exactly) symmetrically
for field lines with fixed footpoints in the positive polarity.

While field line slippage has already been reported in MHD simulations of mag-
netic reconnection in a straight and stressed HFT (Pontin et al., 2005) and in sim-
ulations of prominence merging due to shearing dipoles (DeVore, Antiochos, and
Aulanier, 2005; Aulanier, DeVore, and Antiochos, 2006), the present calculations
reveal that the arc-shaped trajectories on both sides of inversion line correspond
to the intersection of the QSLs with the line-tied plane (these arcs are shown in
Paper I). Further analysis reveals that during their gradual slippage, field lines cross
the narrow volume of the QSLs in the domain. Therefore, QSLs are the global
and fully three-dimensional generalization of the 2.5D “magnetic flipping layers”
identified by Priest and Forbes (1992b).

The side-views along the y axis shown in the left column of Figure 6
are reminiscent of standard 2D reconnection models with NP separatrices in
quadrupolar configurations. The red-type field lines (initially located in the central
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Figure 6. Slip-running field lines, for � = 150◦ and η = 15 × 10−6, shown at t = t� +
0, +3, +10, +30, going down from the first row. The contours of bz(z = 0) are the same as in
Figure 1 and the color-coding of field lines is the same as in Figure 2. At every time, each field
line is integrated from the same footpoint position at z = 0, in the negative magnetic polarity, near
the intersection of the QSL with the z = 0 plane. For a given field line color, the fixed footpoints
are placed along a very short line-segment, which is orthogonal to QSL. The left, middle and right
columns show top (along z), projection and side (along y) views respectively. [This figure is available
as GIF animations in the electronic version of Solar Physics – see Appendix.]

“quasi-connectivity domain”) reconnect with the black-type ones, (initially lo-
cated in the overlaying “quasi-connectivity domain”), gradually exchanging their
connections through field line slippage (thus forming new field lines in both lat-
eral “quasi-connectivity domains”). During this process, both types of field lines
slip along each other along QSLs. The same process occurs at the same time,
for the cyan- and green-type reconnecting field lines, but in this case the pre-
reconnection field lines are both located in the lateral “quasi-connectivity do-
mains”. So reconnection proceeds in two opposite senses at the same time in the
QSLs.

The field lines drawn in Figure 6 are of the same type as those drawn in Figure 2.
For a given ensemble of field lines (of a given color in Figure 6), the line-segment
defined by their fixed footpoint positions, in the negative polarity, was chosen so
as to cross the intersection of the QSLs with the line-tied boundary, close to the
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footpoint position of the field line of the same color shown in Figure 2. The red
and black (resp. cyan and green) field lines are thus closest to one another on both
sides of the horizontal (resp. vertical) current layer (shown in Figures 2 and 4). It
is interesting to notice how the simple and weak twisting of one single polarity in a
four flux and bipolar system naturally produces such a complex reconnection and
field line slippage patterns.

5.2. SLIP-RUNNING REGIME

The tracking of individual field line footpoints on Figure 6, especially between
t = t� and t� + 3, suggests that some of them slip at velocities of the order of the
Alfvén speed along the arc-shaped QSL. These displacements do not correspond to
real bulk motions, but to the rearrangements of the global field lines as a result of
reconnection. Indeed, the magnetic field is locally and gradually diffused within the
current layers. This occurs, at a given time, where the field lines have the strongest
gradients of connectivity, within the QSLs and near the central axis of the HFT. In
such conditions, field lines must naturally exchange their connectivities with that of
their neighbors, in a continuous way. This is the physical origin of field line slippage
in QSL reconnection, as already reported in past MHD experiments referred to in
Section 1.

This continuous change of connectivity during reconnection must be fast when
the QSLs/HFT are thin, since by definition, neighboring field lines there have strong
gradients of connectivity. When this process occurs at (super) Alfvénic speeds,
magnetic field lines can change their connections on time scales far shorter than
the travel-time of Alfvén waves along them.

Let us describe what happens in this case, with a field line that has two initial
footpoint positions labeled A and B. Before reconnection, when an Alfvén wave is
emitted (or reflected) from the footpoint A, it travels to B and it is reflected back to
A over a time scale of 2 tA, thus bringing to A the information that the connectivity
of the field line is A− B. When it is reflected from A and as reconnection starts, the
wave must then gradually change its direction of propagation, following the fast
slippage of the field line along which it travels. Meanwhile the conjugate footpoint
of the field line quickly slips from its initial position B to a new distant position C .
So after a time scale of tA, the wave reaches the conjugate footpoint of the field line
at C , from which it is reflected back to A along the now fixed field line. Therefore,
over a time scale of 2 tA the wave only carries back to A the information that the
field line has changed its connectivity from A − B to A − C . So on MHD time
scales, the footpoint A has no way to “know” that the field line has slipped in a
continuous way. The system must therefore respond to any MHD perturbation as if
the field line had changed its connectivity abruptly, which is exactly what happens
when reconnection occurs at true separatrices. QSLs can thus physically behave as
true separatrices on MHD time scales.
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We define this regime as slip-running reconnection. This process is an intermedi-
ate between two previously recognized regimes: first, abrupt field line reconnection
when true separatrices exist (i.e. with infinite slippage velocity) and second, mild
and slow field line slippage during magnetic field diffusion.

Naturally, the exact definition of the slippage velocity is ambiguous, since it
depends on which fixed position is selected in the domain from which a field line is
integrated at different times. Choosing a position within the reconnecting current
layer, which approximately evolves in time accordingly with the local plasma ve-
locity (i.e. following a plasma element), results in the very asymetric slippage of
both footpoints of the field line. In general, one footpoint weakly moves whereas the
other one slips in a very similar way as if the field line was integrated from a fixed
position at the z = 0 boundary. So the definition of the slip-running reconnection
regime seems not to be very sensitive to this issue. Even though considering field
lines which are integrated from moving plasma elements may be more meaningful
physically, in the following we keep analyzing field lines that have one footpoint
fixed at the line-tied boundary, because this method more clearly illustrates the
slippage from one “quasi-connectivity domain” to another.

5.3. SLIPPAGE VELOCITY AS A FUNCTION OF η AND Q

Figure 7 shows the evolution in time of selected field lines with fixed footpoints in
the negative polarities, so as to measure the slippage velocities of their conjugate
footpoints along the QSLs, in the positive polarities. The relaxations there show that
the slippage of a given field line is continuous, but not uniform in time (mostly for
� = 150◦): the slippage velocities have a well defined maximum in time, between
two slower phases. Other field lines rooted in the vicinity of the QSL (as shown in
Figure 6) have the same behavior, except that their faster slippage does not occur at
the same time. Fast field line slippage is therefore also a continuous process, which
lasts for many Alfvén times after t = t�, as long as the reconnecting layers are not
fully dissipated.

The maximum slippage velocity occurs when the footpoints transit from one
positive flux concentration to the other, which in our models corresponds to the
thinnest portions of the QSLs, close to the axis of the HFT. The relaxation for
� = 150◦ and η = 10η� clearly shows that the cyan (resp. red) field line moves
super-Alfvénically (resp. slightly slower that the Alfvén speed) in this region, at
t ∼ t� + 1.5 (resp. ∼ t� + 2.5). There, all reconnecting field lines are in the slip-
running regime. For � = 150◦ and η = 3η�, only the cyan field line is slip-running
(its footpoints moves at the Alfvén speed at t ∼ t� + 4.5). For � = 120◦ and
η = 10η�, the field line slippage is much slower, in a rather diffusive-like regime,
even though the current layers have approximately the same widths as for � = 150◦.

We come to the conclusion that Q is the main factor that determines the con-
ditions for slip-running reconnection, although resistivity also plays a role. For
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Figure 7. Time evolution of two slip-runningfield lines withfixed footpoints in the negative polarities.
The greyscale color coding shows bz(z = 0) and the color-coding of field lines is the same as in
Figure 2. Three relaxation runs are shown: for � = 150◦ and η = 15 × 10−6 (top panel); � = 150◦
and η = 4.5 × 10−6 (middle panel); � = 120◦ and η = 15 × 10−6 (bottom panel). The fixed field
line footpoints are indicated by circles. The time interval between each plotted field line is the same
in any given panel. It is equal to 1 (resp. 2) for � = 150◦ (resp. 120◦).

comparison, the maximum Q in our configuration � = 120◦ is of the same order
as the one which was reached in the calculations Pontin et al. (2005) after large
deformations of the HFT (see Gaslgaard et al., 2003). We thus also conclude that
very strong deformations of an initial configuration that does not already con-
tain very narrow QSLs are required so that the diffusion of narrow current layers
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permits slip-running reconnection. Magnetic configurations that initially possess
narrow QSLs are most favorable for the occurence of slip-running reconnection.

At the line-tied boundary, the fast slippage velocity along the QSL v‖ can be
related with the displacement of the QSL, which occurs at a slower velocities v⊥
orthogonally to its elongated direction. This transverse displacement results from
the reconnection process, as further described in Section 5.4. Let us consider a
field line with a fixed footpoint initially located on one edge of an arc-shaped QSL.
As the QSL shifts in position during magnetic reconnection, the fixed field line
footpoint gradually moves inside the QSL. When the QSL has shifted in position
by its full width d⊥, the conjugate footpoint of the field line, on the other side of
the inversion line, must have slipped all the way along the other arc-shaped QSL of
length d‖. So the ratio between the maximum slippage velocity and the transverse
QSL velocity should be of the order of:

v‖
v⊥

∼ d‖
d⊥

∼
√

Q. (9)

Observationally, the field line slippage velocity could be predicted from the
transverse displacements of flare ribbons (which correspond to the footprints of the
QSLs in the chromosphere, see e.g. the review of Démoulin, 2006) as observed in
Hα or in EUV, and from the squashing degree calculated from force-free magnetic
field extrapolations of photospheric magnetograms.

5.4. RELAXATION OF CURRENTS AND QSL DE-STRETCHING

The resistive diffusion of current layers within the domain is associated with changes
in electric currents at the line-tied boundary. The latter also change shape and
slowly decrease in amplitude. Such changes at z = 0 are shown in the top panels of
Figure 8 for � = 150◦ and η = 10η�. These variations are not a direct consequence
of resistivity at z = 0, since there η is set to zero and bz is fixed in time. These
changes are rather due to the gradual rearrangement of field line connectivities so as
to diminish their relative stress. They are both due to fast slip-running reconnection
in the QSLs and to slow magnetic field diffusion in the quasi force-free extended
currents (see Figure 3), as a direct consequence of our uniform resistivity at z > 0.
Figure 8 also shows a sample of slip-running field lines (with a different color
convention as in Figures 2 and 6), whose fixed footpoints are located in the regions
where the current layers shift in time.

During the relaxations, the gradual diffusion of the current layers lead the QSLs
to lose the deformations that the line-tied motions induced at earlier times (see
Section 3.1). Doing so, the QSLs also gradually shift in space. These shifts occur
all along their lengths in the domain, down to the line-tied boundary as shown in
the lower panels of Figure 8. This process is the 3D generalization of the displace-
ment of separatrices to different Clebsch variable values during 2.5D null point
reconnection, as analyzed by Antiochos, Karpen, and DeVore (2002). Doing the
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Figure 8. Top row: Slip-running field lines overlaid on greyscale images of the vertical electric
currents on the line-tied boundary jz(z = 0) for � = 150◦ and η = 15 × 10−6, at t = t� (left panel)
and t = t� +20 (right panel). The greyscale values range from jz = −500; +250 (resp. −250; +125)
on the left panel (resp. right panel), from black to white. One footpoint of each field line is fixed in
time, as indicated by circles. Bottom row: Corresponding maps of the squashing degree Q(z = 0),
which show the intersections of the QSLs with the line-tied boundary. The (red; yellow; green; cyan;
blue; pink) colors stand for Q = (108; 3 106; 105; 5 103; 50; 2).

same 2D reconnection analysis for different fixed position along the y axis (see
Section 5.1), and considering the color coded field lines of Figures 2 and 6, one
finds that the reconnection of the red and black (resp. cyan and green) field lines,
at the horizontal (resp. vertical) current layer, should lead to a shrinkage (resp. an
expansion) of the central lower “quasi-connectivity domain” along x , for y = 0.07
(resp. −0.012). Indeed, the associated field line slippage will transfer the red (resp.
green) field lines to a lateral (resp. the central) “quasi-connectivity domain” (see
Figure 6). The de-stretching of the QSLs (shown in the lower panels of Figure 8)
almost exactly shows this behavior.

Only small portions of the QSLs, located on the edge of the strongest return
currents move in the opposite directions as what is predicted by the 2D analogy (i.e.
around (x ; y) ∼ (−0.02; 0.12) and (x ; y) ∼ (−0.1; −0.04) in the positive polarity
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of the inner bipole). The slip-running dark blue field line shown in Figure 8 is in one
of these two regions. Since these regions are at the continuous transition between
“quasi-connectivity domains”, it is natural that the 2D analogy fails to predict their
behavior. In such regions in general, a detailed analysis of the 3D distribution of
the Lorentz forces is therefore required to understand in what sense reconnection
will take place.

It is also worth noticing that as the QSLs shift position during the reconnection,
electric currents shift with them. As for separatrix displacements (or slip-running
field line motions), QSL de-stretching is not a physical motion, therefore the electric
current shifts cannot be a result of the advection of slowly diffusing current layers.
They are rather due to the gradual reformation of current layers in the evolving
QSLs, thanks to the reconnection induced motions in the domain and connectivity
rearrangements at the line-tied boundary. This by-product result shows that narrow
current layers can naturally be generated along thin QSLs, not only with any type
of line-tied motions (as shown in Paper I), but also with plasma motions above
the line-tied boundary. We believe that this does not depend on the origin of these
motions, which could either come from ideal instabilities, reconnection jets, etc.
This is rather an intrinsic property of QSLs, which is a consequence of their drastic
mapping changes.

Finally, Figure 8 obviously shows that our resistive relaxations do not evolve the
magnetic field configuration toward a linear force-free state (α = constant), even
after a hundred Alfvén times (note that the diffusion time is ∼2700 Alfvén times
for a length scale L = 0.2 and for η = 10η�). This property has been noted in many
MHD experiments for solar physics. It is in contradiction with the predictions of
Taylor (1974) that any magnetic field configuration must gradually relax to a linear
force-free state, since it corresponds to the minimum energy for a given magnetic
helicity (which is known to be nearly conserved for time scales much shorter than the
global diffusion time scale). Amari and Luciani (2000) attributed this difference
between Taylor’s conjecture and MHD simulations to the line-tying constraints,
which may prevent turbulent reconnection from occurring everywhere in the mag-
netic field. This interpretation was further developed by Antiochos, Karpen, and
DeVore (2002), who proposed that electric currents can only be redistributed in
space thanks to reconnection in moving separatrices. The present results generalize
the conditions for magnetic reconnection to QSLs.

6. Slip-Running Reconnection and Particle Acceleration

6.1. AMPLITUDE OF PARALLEL ELECTRIC FIELDS

We have seen in Section 4.1 that the reconnecting electric fields E‖ were the
strongest in the QSL current sheets. In our non-dimensionalized units, E‖ = ηj‖ =
4.5 × 10−4 in the quasi-steady state regime (η = 3η�).
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Considering a size of L = 20 Mm for the inner bipole (instead of 0.2), so that the
width of the current layers are δ = 2 Mm (instead of 0.02) and the size of the smallest
grid point is d = 150 km (instead of 1.5×10−3), then taking the maximum magnetic
field in the photosphere to be b◦ = 1000 G (instead of 35) so that the magnetic field
in the current layers is b = 60 G (instead of 2), then the maximum current density
is j‖ = 2.3 mA m−2 (instead of 100). Also, considering a coronal Alfvén speed
of cA = 103 km s−1 (instead of 0.2) so that the Alfvén time is tA = 20 s (instead
of 1), the resistivity for the quasi-steady state is η = 2.2 × 109 m2 s−1 (instead of
4.5 × 10−6). The physical parallel electric field, being expressed as E‖ = μηj‖, is
therefore E‖ = 6 V m−1.

This value is much smaller than those estimated at large scales during intense
solar flares, using transversal flare ribbon motions (Poletto and Kopp, 1986; Forbes
and Lin, 2000; Qiu et al., 2002), and even smaller than those required to accelerate
particles to the observed range of energies (as modeled by e.g. Turkmani et al., 2006;
Dauphin, Vilmer, and Anastasiadis, 2006). Even though the present experiments
imply that E‖ is quite small and that it decreases even further as η gets smaller, they
do not preclude the existence of a re-increase of E‖ when η becomes even smaller.
Indeed, very small η must lead to a stronger and faster collapse of the current layers
toward very high current densities.

Such a parameter study though, is not achievable with the present resolutions
which are too coarse to treat much sharper magnetic field gradients. Considering the
spatial resolutions achievable by the presently existing computers, a direct use of
large-scale MHD experiments as a background for quantitative particle acceleration
models is therefore impossible. Qualitatively however, our MHD experiments can
address the issue of particle acceleration, because they still predict where the strong
E‖ can develop and how they can evolve in time.

6.2. MOTION OF HXR SOURCES ALONG FLARE RIBBONS

During intense solar flares, chromospheric ribbons as observed in Hα and in EUV
move apart from one another, as predicted by standard 2D reconnection models
(e.g. Poletto and Kopp, 1986; Qiu et al., 2002). Their separation velocities are of
a few tens of km s−1. Recent analyzes of Yohkoh/HXT and RHESSI observations
have also revealed the common occurence of hard X-ray (HXR) compact sources
moving along the chromospheric ribbons, with rapid changes followed by relative
stability, with peak velocities of several hundreds km s−1 (Fletcher and Hudson,
2002; Krucker, Hurford, and Lin, 2003; Bogachev et al., 2005).

These HXR motions along flare ribbons are often interpreted (in the frame of
standard separatrix reconnection in 2.5D) as being due to the displacement of the
reconnection layer in time, when the HXR sources move parallel to each other along
the ribbons, or by the successive reconnection of more and more (resp. less and less)
sheared field lines, when the HXR sources move antiparallel to each other toward
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the ends (resp. the centers) of the ribbons. Let us discuss how QSL reconnection
may also explain these HXR footpoint motions.

First, many confined and eruptive flares do not involve reconnection in separa-
trices, but rather in QSLs. In these cases, flare ribbons correspond to the intersec-
tion of the QSLs with the chromosphere (see e.g. Démoulin et al., 1997 and the
review of Démoulin, 2006), and the diverging motions of flare ribbons there cor-
respond to those of the QSLs during the reconnection (as described in Section 5.4
in this paper). Second, when reconnection occurs in QSLs, regardless of the ex-
act values for the reconnection electric field E‖, one can reasonably assume that
E‖ reaches its maximum value where the current layers are the thinnest, which is
close to the HFT (where Q is maximum). Particles should therefore be accelerated
to their highest energies close to the regions where field lines have the strongest
gradients of connectivity. So their impact with the chromosphere, which produces
HXR emission, should be located around the regions where Q(z = 0) is maxi-
mum, which are rather extended due to the HFT geometry (see the red regions
in the lower panels of Figure 8). Third, we have shown in this study that QSL
reconnection leads to field line slippage along the QSLs, so a fortiori along the
intersection of QSLs with the chromosphere. So during the period of accelera-
tion, particle impact along the chromosphere should also gradually move along the
QSLs.

We therefore argue that the displacement of HXR emission along flare ribbons
could be interpreted as a signature of field line slippage during magnetic recon-
nection in QSLs, which neither requires a displacement of the reconnection region
along the ribbons, nor a drastic change of magnetic shear angle for the reconnecting
field lines.

However, the details of this mechanism remain to be analyzed. Since both foot-
points of a field line that is integrated from the diffusion region slip along the
photosphere (as mentioned in Section 5.2) and since two reconnecting field lines
have at least one footpoint which quickly slips, magnetic reconnection in QSLs
can account for antiparallel HXR footpoint motions. Also, considering that HFTs
may have complex deformations which lead to reconnection in opposite senses
(see Figures 4 and 7), this process could also account for parallel HXR footpoint
motions along two flare ribbons, and for (yet unobserved) crossing motions along
one given ribbon. Finally, it is not sure that HXR footpoints can move all along the
footprint of a QSL. Their motions may well be confined to the regions of highest
Q values, i.e. at the footpoints of the HFT. The extent and the velocity of the HXR
footpoint motion along a flare ribbon indeed must depend on three characteristic
time scales: the duration of the particle acceleration in the diffusion region, their
travel-time along the field lines and the time scale defined by the slippage velocity.
If the particle-related time scales are far shorter than the field line-related ones, the
HXR footpoints could be confined to the slowly moving footprints of the HFT. All
these important issues are far beyond the scope of this study and they will have to
be addressed in the future.
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7. Conclusion

Mathematically speaking, quasi-separatrix layers and hyperbolic flux tubes (QSLs
and HFTs) are not topological boundaries which separate distinct connectivity
domains in three-dimensional magnetic field configurations, contrary to separa-
trices (and separators). QSLs/HFTs are rather geometrical objects which, when
they are sufficiently thin (i.e. when their squashing degrees Q are large enough),
form a sharp, but continuous, transition layer of magnetic field connectivity
between different regions of the system. This mathematical difference in terms of
continuous/discontinuous field line mapping a priori could (and for a long time
did) lead to a strong under-estimation of their physical relevance for current sheet
formation and diffusion as well as for magnetic reconnection. These physical
processes are predominant features of solar flares, coronal heating and many other
resistive phenomena in natural and laboratory strongly magnetized plasmas. We
performed 3D resistive MHD numerical experiments, in the so-called cold-plasma
approximation and using line-tied conditions at a single plane where the magnetic
flux is the most concentrated (as in solar-like conditions). These experiments
demonstrate that the physics involved at separatrices (formation of current layers
and reconnection) is also present at QSLs.

We extended the conditions of current sheet formation in QSLs to any large-
scale velocity perturbation, either being due to extended sub-Alfvénic line-tied
motions or to plasma motions within the system driven by existing Lorentz forces. In
terms of current formation, it follows that QSLs behave as separatrices, numerically
when their thickness is smaller than the mesh resolution, and physically when their
thickness is smaller than the dissipative scale-length. QSLs/HFTs can therefore
play an equal role as separatrices/separators do, at least in the triggering of solar
flares but also in the heating of the solar corona.

Our MHD relaxations clearly showed that 3D reconnection does occur in thin
QSLs, even though we could not reach the classical 2.5D Sweet-Parker regime. In
zero-β, reconnection is driven by the ideal self-pinching of quasi force-free thin
current layers, whose subsequent diffusion leads to mass motion in the form of
reconnection jets. This is exactly the same as in the case of separatrices. A feature
that differs from reconnection in separatrices, however, is the development of fast
slippage of magnetic field lines along QSLs during the whole process. We found
that this slippage is the natural consequence of the local and gradual re-orientation
of the magnetic field vector, as being due to local magnetic diffusion in the current
layer, embedded in a continuum of field lines having sharp gradients of connectivity
at the line-tied boundary. This allowed to put past analytical and numerical models
of field line slippage (also referred to as field line flipping) in the frame of the single
concept of QSLs.

We also reached the interesting conclusion that, when QSLs are thin enough
(actually thinner than what is typically reached by large-scale shearing of initially
low Q configurations in MHD simulations), the slippage velocities of the field
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lines can be so fast that Alfvén waves traveling along them do not have the time
to propagate from one footpoint to another. It follows that on MHD time scales,
such slipping field lines can physically behave nearly as if they were reconnecting at
separatrices, i.e. as if they instantaneously changed their connectivities. We call this
new phenomenon slip-running reconnection. It fills the continuous gap between
two extreme regimes: abrupt field line reconnection in separatrices (i.e. infinite
slippage velocity) and very slow field line diffusion in braided flux tubes. During
separatrix-less reconnection in 3D, we propose that a field line either slips or slip-
runs, depending if its motion along the QSL is sub- or super-Alfvénic.

Aside from theoretical considerations, field line slippage offers a simple expla-
nation for the puzzling motions of hard X-ray (HXR) sources, which move along
chromospheric ribbons, as observed in some solar flares. In QSL reconnection, par-
ticles accelerated by super-Dreicer electric fields from a single coronal diffusion
region within the QSLs, should quickly travel along field lines whose footpoint po-
sitions gradually move along the intersection of the QSL with the chromosphere, as
slip-running reconnection proceeds. Theoretically, the speed and the extent of the
HXR footpoint motions along the ribbons will depend not only upon the thickness
of the QSL, but also on the relative position of the acceleration site with respect to
the hyperbolic flux tube in the corona (which are not necessarily exactly co-spatial,
as shown in Paper I) as well as on the relative values for all the time scales involved.
These important issues will have to be addressed in a further study. Observationally,
the finding of slip-running reconnection during solar flares, and its association with
accelerated particles, requires the full tracing of fast-moving magnetic field lines,
which can have an extended range of temperatures observable in EUV wavelengths,
in conjunction with the moving locii of particle impacts in the chromosphere, vis-
ible in HXR. The unprecedented imaging qualities of the AIA instrument on the
upcoming SDO, combined with RHESSI observations, will certainly be well suited
for this study.

Appendix

The three columns of Figure 6 are available as GIF animations in the electronic
version of Solar Physics. These animations show slip-running field lines with
their footpoints being fixed in the z = 0 plane, during 0 ≤ t − t� ≤ 28 and us-
ing time-intervals of dt = 2. Supplementary material is available for this article at
http://dx.doi.org/10.1007/s11207-006-0230-2.
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Büchner, J.: 2006, Space Sci. Rev. 122, 149.
Craig, I.J.D. and McClymont, A.N.: 1993, Astrophys. J. 405, 207.
Dauphin, C., Vilmer, N., and Anastasiadis, A.: 2006, Astron. Astrophys., submitted for publication.
Delannée, C. and Aulanier, G.: 1999, Solar Phys. 190, 107.
de Moortel, I. and Galsgaard, K.: 2006, Astron. Astrophys. 451, 1101.
Démoulin, P.: 2006, Adv. Space Res. 37(7), 1269.
Démoulin, P. and Priest, E.R.: 1997, Solar Phys. 175, 123.
Démoulin, P., Priest, E.R., and Lonie, D.P.: 1996, J. Geophys. Res. 101, 7631.
Démoulin, P., Hénoux, J.-C., Priest, E.R., and Mandrini, C.H.: 1996, Astron. Astrophys. 308, 643.
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