Contents

Preface

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>1 The wind from the Sun: an introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 A brief history of ideas</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Intermittent particle beams?</td>
<td>2</td>
</tr>
<tr>
<td>1.1.2 Permanent solar corpuscular emission?</td>
<td>4</td>
</tr>
<tr>
<td>1.1.3 The modern solar wind</td>
<td>6</td>
</tr>
<tr>
<td>1.2 Looking at the Sun</td>
<td>8</td>
</tr>
<tr>
<td>1.2.1 Basic solar properties</td>
<td>9</td>
</tr>
<tr>
<td>1.2.2 The solar spectrum</td>
<td>10</td>
</tr>
<tr>
<td>1.2.3 The solar disc</td>
<td>13</td>
</tr>
<tr>
<td>1.2.4 Sunspots, magnetic fields and the solar cycle</td>
<td>15</td>
</tr>
<tr>
<td>1.2.5 Around the Sun: chromosphere and corona</td>
<td>18</td>
</tr>
<tr>
<td>1.3 Observing the solar wind</td>
<td>24</td>
</tr>
<tr>
<td>1.3.1 Observing near the ecliptic</td>
<td>24</td>
</tr>
<tr>
<td>1.3.2 Exploring the third dimension with Ulysses</td>
<td>28</td>
</tr>
<tr>
<td>1.3.3 A simplified three-dimensional picture</td>
<td>33</td>
</tr>
<tr>
<td>References</td>
<td>37</td>
</tr>
</tbody>
</table>

2 Tool kit for space plasma physics	41
2.1 What is a plasma?	42
2.1.1 Gaseous plasma	44
2.1.2 Quasi-neutrality	44
2.1.3 Collisions of charged particles	48
2.1.4 Plasma oscillations	54
2.1.5 Non-classical plasmas	56
2.1.6 Summary	57
2.2 Dynamics of a charged particle	58
2.2.1 The key role of the magnetic field	58
2.2.2 Basic charge motion in constant and uniform fields	59
2.2.3 Non-uniform magnetic field	62
2.2.4 Adiabatic invariants	65
2.2.5 Summary	66
2.3 Many particles: from kinetics to magnetohydrodynamics	66
2.3.1 Elements of plasma kinetics	66
2.3.2 First-aid kit for space plasma fluids 72
2.3.3 Elements of magnetohydrodynamics 85
2.3.4 Waves and instabilities 96
2.3.5 Summary 100

2.4 Basic tools for ionisation 101
2.4.1 Energy of ionisation and the size of the hydrogen atom 101
2.4.2 Ionisation by compressing or heating 102
2.4.3 Radiative ionisation and recombination 103
2.4.4 Non-radiative ionisation and recombination 105

2.5 Problems 107
2.5.1 Linear Debye shielding in a non-equilibrium plasma 107
2.5.2 Mean free path in a plasma 108
2.5.3 Particles trapped in a planetary magnetic field 108
2.5.4 Filtration of particles in the absence of equilibrium 109
2.5.5 Freezing of magnetic field lines 110
2.5.6 Alfvén wave 110
2.5.7 Why is the solar wind ionised? 110

References 110

3 Anatomy of the Sun 113
3.1 An (almost) ordinary star 113
3.1.1 Hydrostatic equilibrium of a large ball of plasma 114
3.1.2 Luminosity 116
3.1.3 Energy source and timescales 118
3.1.4 The mass of a normal star 121

3.2 Structure and dynamics 123
3.2.1 Modelling the solar interior 124
3.2.2 Convective instability 125
3.2.3 Convective energy transfer 128
3.2.4 The quiet photosphere 132
3.2.5 Solar rotation 135

3.3 Some guesses on solar magnetism 137
3.3.1 Elements of dynamo theory 138
3.3.2 Solar kinematic dynamos 142
3.3.3 Concentrating and expelling the magnetic field 145
3.3.4 Lorentz force restriction on dynamo action 148
3.3.5 Elementary physics of magnetic flux tubes 149
3.3.6 Surface magnetic field 154

3.4 Problems 158
3.4.1 Conductive heat transfer in the solar interior 158
3.4.2 Timescale for radiative transport 158
3.4.3 Solar differential rotation 158
3.4.4 Twisted magnetic flux tube 159
3.4.5 The heat flux blocked by sunspots 159

References 160
4 The outer solar atmosphere

4.1 From the photosphere to the corona

4.1.1 The atmosphere in one dimension

4.1.2 One more dimension

4.1.3 Three dimensions in space

4.1.4 ...and one dimension in time

4.1.5 A (tentative) look at the solar jungle

4.2 Force balance and magnetic structures

4.2.1 Forces

4.2.2 Force-free magnetic field

4.2.3 Magnetic helicity

4.2.4 Inferences on magnetic structure in the low corona

4.3 Energy balance

4.3.1 Radiative losses

4.3.2 Radiative and conductive timescales

4.3.3 Temperature structure

4.4 Some prominent species

4.4.1 Spicules

4.4.2 Magnetic loops

4.4.3 Prominences

4.5 Time variability

4.5.1 Empirical facts

4.5.2 Hints from physics

4.5.3 Further difficult questions

4.6 Coronal heating: boojums at work?

4.6.1 The energy budget and how to balance it

4.6.2 Heating through reconnection events

4.6.3 Heating by waves

4.6.4 Filtration of a non-Maxwellian velocity distribution

4.7 Hydrostatic instability of the corona

4.7.1 Simplified picture of a static atmosphere

4.7.2 Magnetic field effects

4.8 Problems

4.8.1 Elementary temperature profile

4.8.2 Helicity of a string wrapped around a doughnut

4.8.3 A static solar atmosphere?

References

5 How does the solar wind blow?

5.1 The basic problem

5.1.1 The solar wind on the back of an envelope

5.1.2 Nasty questions, or why it is complicated

5.2 Simple fluid theory

5.2.1 The isothermal approximation

5.2.2 Breeze, wind or accretion?

5.3 Letting the temperature vary
5.3.1 Energy balance 237
5.3.2 Polytrope approximation 239
5.3.3 Changing the geometry 246
5.3.4 Further pushing or heating the wind 247
5.3.5 What about viscosity? 249
5.4 A mixture of fluids 250
5.4.1 Simple balance equations 251
5.4.2 Observed proton and electron temperatures 253
5.4.3 The role of collisions 254
5.4.4 Heat flux 256
5.4.5 The electric field 257
5.4.6 Fluid picture balance sheet and refinements 261
5.5 Kinetic descriptions 262
5.5.1 Some notations 262
5.5.2 Observed proton and electron velocity distributions 263
5.5.3 Non-collisional electron heat flux 267
5.5.4 Exospheric models 268
5.5.5 Kinetic models with collisions and wave–particle interactions 273
5.6 Building a ‘full’ theory? 274
5.6.1 More and better observations (beware of hidden assumptions) 274
5.6.2 Difficult theoretical questions 275
5.7 Problems 277
5.7.1 Transonic flows in ducts: the de Laval nozzle 277
5.7.2 The hysteresis cycle of an isothermal flow 279
5.7.3 Spherical accretion by a star: the Bondi problem 280
5.7.4 A wind with polytrope protons and electrons 281
5.7.5 Playing with the kappa distribution 282
5.7.6 ‘Temperature’ or ‘temperatures’? 283
5.7.7 Non-collisional heat flux 284
5.7.8 An imaginary wind with charges of equal masses 285
References 286

6 Structure and perturbations 291
6.1 Basic large-scale magnetic field 291
6.1.1 Parker’s spiral 291
6.1.2 Basic heliospheric current sheet and other currents 296
6.1.3 Magnetic field effects on the wind 299
6.2 Three-dimensional structure during the solar cycle 300
6.2.1 Warped heliospheric current sheet 301
6.2.2 Observed large-scale structure 301
6.2.3 Connecting the Sun and the solar wind, or: where do the fast and slow winds come from? 305
6.3 Major perturbations 308
6.3.1 Interaction between the fast and slow winds 308
6.3.2 Coronal mass ejections in the solar wind 309
6.3.3 Associated shocks 311

6.4 Waves and turbulence 315
- **6.4.1 Waves** 315
- **6.4.2 Turbulence** 318

6.5 Minor constituents 326
- **6.5.1 Abundances: from the Universe to the solar wind** 326
- **6.5.2 Helium and heavier solar wind ions** 327
- **6.5.3 Pick-up ions** 328

6.6 Problems 329
- **6.6.1 Parker’s spiral** 329
- **6.6.2 Heliospheric currents** 329
- **6.6.3 Coplanarity in MHD shocks** 330
- **6.6.4 Kraichnan’s spectrum in magnetofluid turbulence** 330

References 330

7 Bodies in the wind: dust, asteroids, planets and comets 335
7.1 Bodies in the wind 336
- **7.1.1 Various bodies** 336
- **7.1.2 Mass distribution** 338
- **7.1.3 Mass versus size** 341
- **7.1.4 Atmospheres and how they are ionised** 344
- **7.1.5 Planetary magnetic fields and ionospheric conductivity** 347

7.2 Basics of the interaction 348
- **7.2.1 Properties and spatial scales of the flow** 348
- **7.2.2 Being small: electrostatic charging and wakes** 352
- **7.2.3 Being large: the importance of conductivity** 358
- **7.2.4 Large objects with a conducting atmosphere** 362
- **7.2.5 Large magnetised objects** 365
- **7.2.6 Bow shocks** 368
- **7.2.7 Not being constant: sputtering and evaporation** 371

7.3 The magnetospheric engine 372
- **7.3.1 Basic structure** 375
- **7.3.2 Energy, coupling and timescales** 378
- **7.3.3 Storms, substorms and auroras** 385

7.4 Physics of heliospheric dust grains 390
- **7.4.1 Forces** 390
- **7.4.2 Evaporation** 394

7.5 Comets 394
- **7.5.1 Producing an atmosphere** 397
- **7.5.2 Ionising the atmosphere** 400
- **7.5.3 Pick-up of cometary ions** 401
- **7.5.4 Magnetic pile-up** 403
- **7.5.5 The plasma tail** 404
- **7.5.6 X-ray emission** 406
- **7.5.7 The dust tail** 408