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ABSTRACT 
When calculating the deceleration of a magnetic monopole in a thermal plasma, one cannot neglect the 

nonlocal dispersive properties if the plasma is conductive and the monopole’s velocity is subthermal. This 
yields values of the stopping power in astrophysical plasmas smaller than previously found. 
Subject headings: elementary particles — plasmas 

I. INTRODUCTION 

The deceleration of massive nonrelativistic magnetic mono- 
poles in a classical thermal plasma has recently been calculated 
(Hamilton and Sarazin 1983) in view of astrophysical applica- 
tions. However, that calculation does not take into account the 
nonlocal plasma dispersive properties. This approximation is 
expected to be correct in a conductive plasma if the relevant 
phase velocity is much larger than the plasma thermal velocity, 
i.e., if the monopoles are suprathermal. Since this condition 
does not hold for monopoles moving at galactic virial veloc- 
ities (~10-3c) in most diffuse astrophysical plasmas, the 
spatial dispersion should be taken into account. This is an 
example of the so-called anomalous skin effect (see, e.g., Akhie- 
zer et al. 1975), where the electromagnetic characteristic length 
is much larger than the “ normal ” value c/(Dp. Thus, we expect 
that the spatial dispersion will reduce the losses. 

The present short paper calculates this effect, in the simple 
case where the monopoles are very much subthermal with 
respect to the plasma electrons, and the plasma is highly con- 
ductive. These approximations hold for monopoles moving at 
10“ 3c in dilute astrophysical plasmas. 

The plasma description is given in § II ; the losses are calcu- 
lated in § III and discussed and compared with previous results 
in § IV; SI units are used throughout the paper, unless other- 
wise stated. 

II. PLASMA DESCRIPTION 

Let us neglect the plasma large-scale magnetic field and non- 
linearity. Thus, the transverse and longitudinal plasma disper- 
sion properties decouple from each other. The former, relevant 
when the source is a magnetic monopole, is given by (see, e.g., 
Sitenko 1967) 

œî 
er(/c, a>) = 1 — —f 

x i¡/(z) + - il/(gz) — in z2 

il/(z) = 2ze z 
CO 

kvth ’ 
(1) 

where cop and t>th = (2KT/m)112 are respectively the electron 
(angular) plasma frequency and thermal velocity, and 
j¿2 = M/m (M and m are respectively the ion and electron 
mass). Equation (1) holds for a classical, nonrelativistic, 

thermal and collisionless plasma, in the Vlasov description 
(many particles in a cubic Debye length, i.e., nL^ 1). 

Since the source is a monopole with velocity V vth, we 
need an approximation of eT for z = co/kvth = k • L//ci;th 1. 
We take 

6t(/c, co) ~ 1 + in1/2(col/co2)z . (2) 

It is easily seen that equation (2) is correct in both cases gz 1 
and fiz P 1; the ions contribute only in the intermediate situ- 
ation fiz ^ 1, which for simplicity we will not consider here. 

Writing the dispersion equation k2c2/m2 = er with 
ai = k • V yields the characteristic attenuation length 

l = \k\^ = n-ll\vJVfl2cloopi (3) 

larger than the value c/cop obtained by using the local approx- 
imation of €r (i.e., z-> oo in eq. [1]). 

III. MONOPOLE LOSSES 

The moving monopole yields the charge and current density 

pM(r, t) = eMô{r - Vt) ; /M(r, t) = VpM(r, t) , (4) 

where eM = (137/2)ec is the minimum Dirac monopole charge. 
The corresponding magnetic field is given, in Fourier space, 

by Maxwell equations as 

B(k, co) = ji0i 
coeTJ

M(k, oo)/c2 — kpM(k, co) 
k2 — eT(k, co)co2/c2 (5) 

The monopole power loss is 

dW 
dt 

d3rJM(r, t)B(r, t) 

Po ie1Y 

(27T)3 d3kkz 
1 ~ ß2eT 

k2 - ß2eTk2 ’ 
(6) 

where er stands for eT(k, k • V), ß = V/c, and the z-axis is 
taken along V. Using equation (2) and integrating in spherical 
coordinates yield, since 1, 

dW 
dt 

p0e
M2V 

4n2l2 
1 — u2 

k4 + u2/l4 ' 
(7) 

The logarithmic divergence in k is avoided in the usual way 
(see, e.g., Bekefi 1966; Sitenko 1967) by truncating the k inte- 
gral at /cMax. (This corresponds to the failure of the Vlasov 
equation to describe short-range interactions ; in the absence of 
quantum effects, /cMax is customarily taken as the inverse of the 
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impact parameter, where the charged particle electrostatic 
energy equals the thermal energy, i.e., /cMax ~ Vq1 ~ 4nnL^.) 
The actual value of kMax relevant to the present problem could 
be discussed but is not very important, since it enters logarith- 
mically in the result, and in any case the inequality /cMax / > 1 
holds. Thus equation (7) yields 

dW 
dt 

HoeM2V 
3n2l2 In (feMax (8) 

where the characteristic length / is defined in equation (3). 
Thus the stopping power is 

Pm — 
dW 
dx 

not unexpectedly, our result is formally similar (apart from a 
factor of order unity, and replacing the thermal velocity by the 
Fermi velocity, fF) to that found for slow monopoles (V/vF 1) 
in a degenerate Fermi gas, when damping and spin are 
neglected (see eq. [33] in Ahlen and Kinoshita 1982). In both 
cases, the nonlocal properties of the medium are important at 
low velocities. This yields a linear dependence of stopping 
power on velocity. 

The deceleration of slow monopoles in classical plasmas has 
been studied by Hamilton and Sarazin (1983). They assume a 
local plasma dielectric function and include collisions. This 
corresponds to taking the limit z = co/kvth^> oo in equation (1), 
trivially generalized to a finite-conductivity plasma. As already 
noted, this is expected to be correct if either V/vih 1 or 
v/kvth > 1 (where v is the plasma effective collision frequency). 
Otherwise, their results (in eqs. [27] and [28]) and their appli- 
cations to the interstellar medium and the Sun are overesti- 
mated by approximately the factor rth/F. 

c) Effect of an Electric Charge 

(9) 

where ß = F/c < 1.8 x 10~5r1/2, n is the plasma electron 
density, and 

-1/2 5/4 
ß-112 . 

Physically, these losses (for V/vth < 1) stem from a 
Cerenkov-like interaction between the nonpropagating elec- 
tromagnetic waves with phase velocity œ/k = F and electrons 
with the same velocity, as in the usual Landau damping of 
plasma waves. (On the contrary, if V/vth P 1, this mechanism is 
negligible, since there are few electrons with velocity F, and the 
local dispersion relation of propagating electromagnetic waves 
can be used.) 

IV. DISCUSSION 

a) Limitations of the Calculations 

Equation (8) (or eq. [9]) does not take into account inter- 
actions closer than k^ax. The latter can be calculated by 
summing over single-particle short-range collisions, and yields 
a contribution of the same order as equation (8) or smaller, for 
FMh<l. 

Since our starting point is the dielectric function given by the 
collisionless Vlasov equation, an implicit assumption is that 
the effective collision frequency v satisfies v/kV 1 for any 
k>l~\i.e., v/œp < (V/vth)1/2ß; thus 

ß3/2T5/4-C0-
1(\n A)"1 > 4 x 10"12 , (10) 

where A ~ kMaxLD. However, the calculation is expected to be 
approximately valid if v/kvth 1, i.e., 

j51/2T7/4cop"Hin A)"1 2 x 10"7 . (11) 

Besides, we have assumed implicitly that h/mV /c^aV 

b) Comparison with Other Works 
Most calculations of monopole deceleration have been 

undertaken in view of applications to detecting devices, and are 
concerned with neutral media or condensed materials (see 
Martern’Yanov and Khakimov 1972; Ahlen and Kinoshita 
1982; Ford 1982; Drell et al 1983). It is interesting to note that, 

If the particle has electric (magnitude Ze) as well as magnetic 
charge, the stopping power becomes PM + PE, where PE is due 
to the excitation of Landau damped longitudinal plasma waves 
(see, e.g., Sitenko 1967): 

p - dx ~Po 1 + 
V 4 / 

= PoP . 

where 

— •4p 1 , (12) 
^th 

P° 3n312 e2
0m ^ ln (W^d) 

/ Z c 
% MV137/2 % 

is the loss due to the plasma electrons for a subthermal electric 
charge with mass >m. Equation (12) takes into account both 
electron and ion contributions to the particle losses. 

v. CONCLUSION 

a) Main-Sequence Stars 

It is tempting to apply our calculation to the interiors of 
main-sequence stars. However, in that case, equation (10) does 
not hold and equation (11) holds only partially, as does also 
the linearized Vlasov description. Thus our results should be 
taken with caution. Seeking only an order of magnitude, let us 
take T ~ 107 K, and an electron density of order n ~ 1024 

cm“3. Equation(9) yields PM ~ 10~2O(tt/cm“3)/?GeVm"1. 
This is rather close to the result quoted in Ahlen (1983), who 

considered only binary interactions. For a monopole with 
mass 1016 GeV and ß ~ 10"3, this yields a stopping length of 
the order of the solar radius (thus much larger than that found 
by Hamilton and Sarazin 1983), which allows trapping inside 
the Sun. 

b) Diffuse Plasmas 

The present calculation can be applied to heavy monopoles 
in the interstellar medium (ISM) or intergalactic medium 
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(IGM) plasmas, since inequality (10) generally holds. In the 
ISM, we take the “ standard ” velocity for heavy monopoles in 
the galaxy, ß ~ 10“3 (larger values are expected when the 
monopole mass is smaller than 1016 GeV/c2, owing to acceler- 
ation by the galactic magnetic field; see, e.g., Turner, Parker, 
and Bogdan 1982). In the IGM, this estimate of ß is still less 
secure, and we shall also take ß ~ 10-3, which holds approx- 
imately for the virial velocity in a cluster (larger values could be 
due to the intracluster magnetic field; see Rephaeli and Turner 
1983). In both cases, V/vth < 1, so that equation (9) holds. As 
shown below, this yields negligible losses in present diffuse 
astrophysical plasmas. 

THERMAL PLASMA 23 

i) Warm Interstellar Medium 
Let us take n ~ 0.03 cm-3 and T ~ 104 K; thus V/vth ~ 0.5, 

PM~ —10-22 GeV m_1. 
ii) Hot Interstellar Medium 

We take n ~ 0.003 cm-3 and T ~ 106 K (McKee and 
Ostriker 1977; McCray and Snow 1979 and references 
therein); thus V/vth - 0.05, PM ~ -10“24 GeVm“\ 

iii) Intergalactic Medium 
Here n - 10"3 cm"3 and T ~ 108 K (Silk 1973; Bahcall 

1977 and references therein); thus V/vth ~ 0.005, PM ~ —0.5 
x 10"25 GeV m"1. 
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