Detection of nanodust in the solar system

N. Meyer-Vernet, I. Mann*, G. Le Chat, P. Schippers, S. Belheouane, K. Issautier, A. Lecacheux, M. Maksimovic, F. Pantellini, A. Zaslavsky

LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris Diderot, Meudon, France
* EISCAT, Kiruna, Sweden & Physics Dt, Umeå University, Sweden

What are they?

Original definition of a nanoparticle: a particle that consists of a countable number of atoms

• What are they?

• What makes them different?

• How are they charged and accelerated in plasmas?

• How and where are they detected in situ?
What are they?

- **Nano particles**
 - 100 nm
 - 10 nm
 - 1 nm

- **Bulk matter**
 - 0.1 µm

- **Molecules**
 - 1 Å

Macromolecule or nano grain?

- Polycyclic Aromatic Hydrocarbons: ≥ C_{2n}H_{14}
- Fullerenes: C_{60} → C_{400}
- Nanotechnology
- Biology
- Insulin
- Graphene

What makes them different?

- **Large proportion of surface atoms**
 - Surface atoms have too few bonding partners
 - Free radicals = surface "dangling bonds"
 - Mean-square displacements of surface atoms are relatively large
 - Melting point & latent heat decrease
 - Diffusion coefficient increases
 - Optical properties change
 - Much chemical activity at surface
 - Surface reconstruction
 - Coagulation decreases in surface energy

What makes them different?

- **Size smaller than basic scales**
 - De Broglie wavelength \hbar/m_ν
 - *(Quantum confinement)*
 - Heisenberg: $\Delta x \Delta p = h/2\pi$
 - Electron confined in nanograin of radius a:
 - $\Delta x \sim a$ → momentum: $\Delta p = h/(2\pi a)$
 - Confinement energy: $E_0 \sim \Delta p^2/2m_\nu$
 - Affects optical & electrical properties when $E_0 \gtrsim k_B T$
 - [e.g., Li 2004]
 - Equivalent to $a \sim \hbar/m_\nu \nu$ with $\nu \sim (k_B T/m_\nu)^{1/2}$
 - Concerns nanodust if $T < 300$ K
What makes them different?

- **Size smaller than basic scales**

 - Electron free path in solids

 - For $E < 100$ eV

 \[\sim 1 \text{ nm} \]

 - Atomic scale: $2 r_B$

 - Electron secondary emission increases

 [Draine & Salpeter 1979; Chow et al. 1993]

 - Electron sticking coefficient decreases if $a \lesssim l_e$

 - Photons scales

 - Photon attenuation length $\sim 10 - 100$ nm

 - Photoelectron escape length $l_e \sim 0.5 - 5$ nm

 - Photoelectron yield increases if $a \lesssim l_e$

 Photoelectrons have a better chance to escape (Watson 1972; Draine 1978)

 - Photon wave length (UV) $\lambda > a$

 - Photon absorption cross-section $\propto (a^2) \propto a$ (Rayleigh)

 - Photon escape length $l_e \sim 0.5 - 5$ nm

 - Size smaller than basic scales

 - Plasma Landau radius

 \[r_L = \frac{e^2}{4\pi \varepsilon_0 k_B T} \]

 - If $a \lesssim r_L$, dipole induced by an approaching charge strongly curves its trajectory

 - Increases plasma currents

 \[r_{L \text{ nm}} = 1.4 \sqrt{T_{eV}} \]

 - Concerns nanodust if $T < 2$ eV

 - These effects change their electric charge in plasmas

 - Their electric charge plays a major role

 - Dynamics and pick-up in magnetized plasmas

 - Dusty plasma effects

 - Electrostatic disruption: stress $\propto (q/a^2)^2$

 - Makes grain explode

 - May determine minimum size

What makes them different?

- **Size smaller than basic scales**

 - Electron free path in solids

 - For $E < 100$ eV

 \[\sim 1 \text{ nm} \]

 - Atomic scale: $2 r_B$

 - Electron secondary emission increases

 [Draine & Salpeter 1979; Chow et al. 1993]

 - Electron sticking coefficient decreases if $a \lesssim l_e$

 - Photons scales

 - Photon attenuation length $\sim 10 - 100$ nm

 - Photoelectron escape length $l_e \sim 0.5 - 5$ nm

 - Photoelectron yield increases if $a \lesssim l_e$

 Photoelectrons have a better chance to escape (Watson 1972; Draine 1978)

 - Photon wave length (UV) $\lambda > a$

 - Photon absorption cross-section $\propto (a^2) \propto a$ (Rayleigh)

 - Photon escape length $l_e \sim 0.5 - 5$ nm

 - Size smaller than basic scales

 - Plasma Landau radius

 \[r_L = \frac{e^2}{4\pi \varepsilon_0 k_B T} \]

 - If $a \lesssim r_L$, dipole induced by an approaching charge strongly curves its trajectory

 - Increases plasma currents

 \[r_{L \text{ nm}} = 1.4 \sqrt{T_{eV}} \]

 - Concerns nanodust if $T < 2$ eV

 - These effects change their electric charge in plasmas

 - Their electric charge plays a major role

 - Dynamics and pick-up in magnetized plasmas

 - Dusty plasma effects

 - Electrostatic disruption: stress $\propto (q/a^2)^2$

 - Makes grain explode

 - May determine minimum size
Basics of electric charging in space

PLANETS (dense plasmas)

SOLAR WIND

- Charging governed by incoming plasma electrons until grain negative charge repels them sufficiently to balance other currents [e.g. Whipple 1981]
- Charging governed by escaping photoelectrons until grain positive charge binds them sufficiently for escaping photoelectrons to balance other currents

Electric charging in space dusty plasmas

- If $P > 1$, Debye sheaths overlap → plasma electrons depleted → reduces grain’s charge
- If $P >> 1$: $Z \sim a^{-2}$
- Limiting electric field for (electron) field emission: $\Phi/a \sim 10^9 \text{ V/m}$

Electric charging in space dust plasmas

- Long charging time scales:
 - $\tau \sim RC \sim (dI/d\Phi)^{-1} \sim \mu^{-1}$ if $a > \lambda_L$
 - $\tau \sim (2\sigma a)^{3/2} \lambda_L^{1/2} J_e^{-1}$ if $a < \lambda_L$

- Field emission limits negative charge:
 - Limiting electric field for (electron) field emission: $\Phi/a \sim 10^9 \text{ V/m}$
 - Maximum number of electrons on a nanograin:

- Important limitations for nanodust

- Maximum number of electrons on a nanograin:
Charging in cold dusty space plasmas

1. Approaching charges are strongly attracted by induced dipole
 Potential energy $e^2/(4\pi\varepsilon_0 a) \gg k_B T$
 → increases currents
 → decreases charging time scales
 (Natanson 1960; e.g. Draine & Sutin 1987; Rapp & Lübken 2001)

2. Grain's number of charges $|Z| \approx \eta a/r_L \gg 1$
 → statistical treatment: $f(Z) J_i(Z) = f(Z+1) J_e(Z+1)$
 [Draine & Sutin 1987] deduce moments, as:
 average charge state: $<Z> = \sum Z f(Z)$
 f is probability for charge state Z

Average number of charges on a grain

$<Z> \sim 1$

$<Z> \approx 1$

Nanodust: $a \leq r_L \approx 1.4/T(eV)$ nm

Two major consequences:

Average number of charges on a grain

$<Z> \neq a$

Because proba. that uncharged grain collects an electron
$> proba.$ that neutral or negatively charged grain collects an ion

Charging in cold dusty space plasmas

Interstellar nanodust cannot enter the heliosphere

Example: for $a = 5$ nm, $q/m = 10^4 e/m_p$ in the solar wind

Lorentz force plays a major role

Charged grains follow magnetic field lines if $r_{gyr} < B$ scale

Gyroradius: $r_{gyr} = |(v-V_{plasma})/\omega_{gyr}|$

$\omega_{gyr} \sim m/q$

Interstellar nanodust cannot enter the heliosphere

Nanodust produced in the solar system

Charging in cold dusty space plasmas

Approximation neglecting field emission

Nanograins have large charge-to-mass ratios

Example: for $a = 5$ nm, $q/m = 10^4 e/m_p$ in the solar wind

$\propto a$ (or $=-e$) $m \propto a^3$ (if compact)

Charge to mass ratio: $q/m \propto a^2$ or a^3

Nanodust produced in the solar system

$<Z> \neq a

H_3^{+} ions

$<Z> = 1$

$e/m_i = 1$

$e/m_i = 0.1$

$e/m_i = 0.01$

$3.6 a/r_L$

10^2 10^3 10^4 10^5

10^{-2} 10^{-1} 10^0 10^1 10^2

10^3 10^4 10^5

H_3O^+ ions

$e/m_i = 0.1$

$e/m_i = 0.01$

$3.6 a/r_L$

10^2 10^3 10^4 10^5

10^{-2} 10^{-1} 10^0 10^1 10^2

10^3 10^4 10^5

10^2 10^3 10^4 10^5

10^{-2} 10^{-1} 10^0 10^1 10^2

10^3 10^4 10^5

Heliosphere

Dust density (10 nm) relative to value in ISM [Slavin et al. 2010]

B_{gyr}不得进入日球层

Interstellar nanodust cannot enter the heliosphere

Nanodust produced in the solar system

$<Z> \neq a$

H_3O^+ ions

$<Z> = 1$

$e/m_i = 0.1$

$e/m_i = 0.01$

$3.6 a/r_L$

10^2 10^3 10^4 10^5

10^{-2} 10^{-1} 10^0 10^1 10^2

10^3 10^4 10^5

10^2 10^3 10^4 10^5

10^{-2} 10^{-1} 10^0 10^1 10^2

10^3 10^4 10^5

Heliosphere
Dynamics in magnetized space plasmas

Nanodust produced in inner solar system where dust concentration is large

- B: Parker spiral
- For nanodust: Lorentz force >> gravitational force
 \[r_{gr} < B \text{ scale} \]
 \[\rightarrow \text{Nano dust picked-up & accelerated} \]

\[\text{[Mann et al. 2007, Czekowski & Mann 2010, 2012]} \]

• Solar wind

1 AU

\[\text{V}_{SW} \]

\[\text{SUN} \]

\[\text{B} \]

\[\text{V}_{\text{rot}} \]

Dynamics in magnetized space plasmas

Nanodust produced in planetary environments

- Rotating planetary magnetospheres
 \[\text{V}_{\text{rot}} = \Omega \times r \]

Lorentz force: \[\text{F}_{E} = q(\text{v}-\text{V}_{\text{rot}}) \times \text{B} \]
 outwards for Jupiter & Saturn if \(q > 0 \)
 Grains are accelerated and ejected at speed:
 \[\text{v}_{ej}^2 \approx \left(\frac{\text{MG}}{r_0} \right) \left[\frac{2 \text{F}_{E}}{\text{F}_{\text{grav}}} \right]^{-1} \]
 \[\text{[Hamilton & Burns 1983, Burns et al. 2001]} \]

\[\Rightarrow \text{nanodust speed} \approx 300 \text{ km/s for a } \approx 10 \text{ nm} \]

How and where are they detected in situ?

- Planetary environments
 - Polar mesosphere in summer: coldest place on Earth
 - “Smoke particles”: a few 0.1 nm to a few nm (from condensation of meteoritic matter)
 - Charged aerosols: a few nm to 100 nm [e.g., Friedrich & Rapp 2009]

- T < water vapor frost point:
 - Large quantities of charged nanodust (ice): up to a few 10^4/cm^3

\[\text{Rapp & Thomas 2006} \]

\[\text{Temperature (K)} \]

\[\text{N. Meyer-Vernet - 41st EPS Conference on Plasma Physics - Berlin 2014} \]
How and where are they detected in situ?

- **Planetary environments**
 - Polar mesosphere in summer: coldest place on Earth
 - **Nanodust produces:**
 - Noctulescent Clouds (ground obs.)
 - Polar Mesospheric Clouds (SC obs.): ice grains $a > 20$ nm scatter light
 - Decreases in electron density n_e associated to increases in (negatively charged) dust density n_d
 - Polar Mesosphere Summer Echoes: strong backscatter of radio waves (50 - 10^3 MHZ) [e.g. Rees & Lubken 2004]

Peak in n_d

![Graph of peak in n_d](image)

How and where are they detected in situ?

- **Nanodust produces:**
 - Noctulescent Clouds (ground obs.)
 - Polar Mesospheric Clouds (SC obs.): ice grains $a > 20$ nm scatter light
 - Polar Mesosphere Summer Echoes: strong backscatter of radio waves (50 - 10^3 MHZ) [e.g. Rees & Lubken 2004]

Peak in n_d

![Graph of peak in n_d](image)

How and where are they detected in situ?

- **Planetary environments**
 - Polar mesosphere in summer: coldest place on Earth
 - **Nanodust produces:**
 - Noctulescent Clouds (ground obs.)
 - Polar Mesospheric Clouds (SC obs.): ice grains $a > 20$ nm scatter light
 - Decreases in electron density n_e associated to increases in (negatively charged) dust density n_d
 - Polar Mesosphere Summer Echoes: strong backscatter of radio waves (50 - 10^3 MHZ) [e.g. Rees & Lubken 2004]

Peak in n_d

![Graph of peak in n_d](image)

How and where are they detected in situ?

- **Planetary environments**
 - Polar mesosphere in summer: coldest place on Earth
 - **Nanodust produces:**
 - Noctulescent Clouds (ground obs.)
 - Polar Mesospheric Clouds (SC obs.): ice grains $a > 20$ nm scatter light
 - Decreases in electron density n_e associated to increases in (negatively charged) dust density n_d
 - Polar Mesosphere Summer Echoes: strong backscatter of radio waves (50 - 10^3 MHZ) [e.g. Rees & Lubken 2004]

Peak in n_d

![Graph of peak in n_d](image)

How and where are they detected in situ?

- **Planetary environments**
 - Polar mesosphere in summer: coldest place on Earth
 - **Nanodust produces:**
 - Noctulescent Clouds (ground obs.)
 - Polar Mesospheric Clouds (SC obs.): ice grains $a > 20$ nm scatter light
 - Decreases in electron density n_e associated to increases in (negatively charged) dust density n_d
 - Polar Mesosphere Summer Echoes: strong backscatter of radio waves (50 - 10^3 MHZ) [e.g. Rees & Lubken 2004]

Peak in n_d

![Graph of peak in n_d](image)

How and where are they detected in situ?

- **Planetary environments**
 - Polar mesosphere in summer: coldest place on Earth
 - **Nanodust produces:**
 - Noctulescent Clouds (ground obs.)
 - Polar Mesospheric Clouds (SC obs.): ice grains $a > 20$ nm scatter light
 - Decreases in electron density n_e associated to increases in (negatively charged) dust density n_d
 - Polar Mesosphere Summer Echoes: strong backscatter of radio waves (50 - 10^3 MHZ) [e.g. Rees & Lubken 2004]

Peak in n_d

![Graph of peak in n_d](image)

How and where are they detected in situ?

- **Planetary environments**
 - Polar mesosphere in summer: coldest place on Earth
 - **Nanodust produces:**
 - Noctulescent Clouds (ground obs.)
 - Polar Mesospheric Clouds (SC obs.): ice grains $a > 20$ nm scatter light
 - Decreases in electron density n_e associated to increases in (negatively charged) dust density n_d
 - Polar Mesosphere Summer Echoes: strong backscatter of radio waves (50 - 10^3 MHZ) [e.g. Rees & Lubken 2004]

Peak in n_d

![Graph of peak in n_d](image)

How and where are they detected in situ?

- **Planetary environments**
 - Polar mesosphere in summer: coldest place on Earth
 - **Nanodust produces:**
 - Noctulescent Clouds (ground obs.)
 - Polar Mesospheric Clouds (SC obs.): ice grains $a > 20$ nm scatter light
 - Decreases in electron density n_e associated to increases in (negatively charged) dust density n_d
 - Polar Mesosphere Summer Echoes: strong backscatter of radio waves (50 - 10^3 MHZ) [e.g. Rees & Lubken 2004]

Peak in n_d

![Graph of peak in n_d](image)

How and where are they detected in situ?

- **Planetary environments**
 - Polar mesosphere in summer: coldest place on Earth
 - **Nanodust produces:**
 - Noctulescent Clouds (ground obs.)
 - Polar Mesospheric Clouds (SC obs.): ice grains $a > 20$ nm scatter light
 - Decreases in electron density n_e associated to increases in (negatively charged) dust density n_d
 - Polar Mesosphere Summer Echoes: strong backscatter of radio waves (50 - 10^3 MHZ) [e.g. Rees & Lubken 2004]

Peak in n_d

![Graph of peak in n_d](image)

How and where are they detected in situ?

- **Planetary environments**
 - Polar mesosphere in summer: coldest place on Earth
 - **Nanodust produces:**
 - Noctulescent Clouds (ground obs.)
 - Polar Mesospheric Clouds (SC obs.): ice grains $a > 20$ nm scatter light
 - Decreases in electron density n_e associated to increases in (negatively charged) dust density n_d
 - Polar Mesosphere Summer Echoes: strong backscatter of radio waves (50 - 10^3 MHZ) [e.g. Rees & Lubken 2004]

Peak in n_d

![Graph of peak in n_d](image)

How and where are they detected in situ?

- **Planetary environments**
 - Polar mesosphere in summer: coldest place on Earth
 - **Nanodust produces:**
 - Noctulescent Clouds (ground obs.)
 - Polar Mesospheric Clouds (SC obs.): ice grains $a > 20$ nm scatter light
 - Decreases in electron density n_e associated to increases in (negatively charged) dust density n_d
 - Polar Mesosphere Summer Echoes: strong backscatter of radio waves (50 - 10^3 MHZ) [e.g. Rees & Lubken 2004]

Peak in n_d

![Graph of peak in n_d](image)
STEREO spacecraft: serendipitous detection (voltage pulses from high-speed (~300 km/s) dust impacts on spacecraft)

5 km

How are they detected in situ? in situ detection with WAVE instrument!

Interplanetary medium
Nano grains accelerated by the magnetized solar wind as predicted by theory
STEREO spacecraft: serendipitous detection (voltage pulses from high-speed (~300 km/s) dust impacts on spacecraft)
Confirmed by 5 years of data [Le Chat et al. 2013]

Context: passing-by plasma particles produce electric potential fluctuations detected by electric antennas

Stereo wave noise (QT noise)

Power spectrum:
peak at the plasma frequency (~ n_e)
whose shape reveals the temperature and suprathermal particles [Meyer-Vernet & Perche, 1989]

Wave instruments on space missions measure plasma properties via spectroscopy of plasma QT noise [Meyer-Vernet et al. 1998]

Example: Ulysses in the solar wind

How are they detected in situ via waves?

Context: passing-by plasma particles produce electric potential fluctuations detected by electric antennas

Impact of fast dust particle

Vaporized & ionized produces expanding plasma cloud

Released charge Q ~ m * 3^0.5

10 nm grain at 300 km/s produces 10^7 electrons similar charge as 0.2 \mu m grain at 20 km/s

Charge separation or recollection produces electric pulse detected by the radio receiver

... and power spectral density

 released charge Q = \frac{Q}{C}

Spacecraft capacitance

Electric antenna Wave receiver

Time t
How are they detected \textit{in situ} via waves?

STEREO/WAVES at 1 AU

- Electric pulses produced by destabilization of photoelectrons surrounding antenna

- **Two different wave instruments:**
 - time domain sampler (TDS)
 - frequency receiver (LFR)

- **[Pantellini et al. 2012, 2013]**

- **nanodust impacts**

- **[Zaslavsky et al. 2012]**

- **Time (ms)**

- **[Le Chat et al. 2013]**

- **Frequency (kHz)**

- **10**

How are they detected \textit{in situ} via waves?

- **Cassini RPWS**

- **1 AU**

- **Solar radio emissions**

- **SC surface larger than STEREO by factor of 10**

- **[Schippers et al. 2014]**

Flux from nanodust to large bodies near 1 AU

- **Saturn**

- **Near Jupiter**

- **Detected nanodust flux similar to value measured on STEREO**

- **Detected nanodust** [Meyer-Vernet et al., 2009] simultaneously to detection of Jovian nanodust by conventional detectors
Open questions

- Size distribution? **smallest nanoparticle?**
 - E = q/a^2
 - May be determined by electrostatic disruption
 - Disruption if electrostatic stress E^2 > tensile strength S
 - a_{min} > 1 nm if tensile strength S < 10^9 N/m^2
 - S badly known for nanodust (uncertain transition between microscopic & macroscopic)

- Composition & physical structure?

Beware of nanodust particles

- Ubiquitous
- Physical properties different
- Were detected *serendipitously* in most environments …

Will crop up when you don’t expect them

Supplementary material

What are they?

- The size may determine the structure

<table>
<thead>
<tr>
<th>Cluster of H_2O molecules</th>
<th>Smallest ice crystal</th>
</tr>
</thead>
<tbody>
<tr>
<td>disordered structure</td>
<td>1.3 nm</td>
</tr>
<tr>
<td>90 – 115 K</td>
<td></td>
</tr>
</tbody>
</table>

- Number of atoms or molecules
- Graphite
- Si
- Ice
- compact spheres

With thanks to the International Space Science Institute, and
Andrzej Czechowski
Huang Wen Hsu
Geraint Jones
Vasili Kharchenko
Yuki Kimura
Harald Krueger
Nicholas Lewkow
Aigen Li
Frank Postberg
Peter Wurz
Arnaud Zaslavsky

[Pradzynski 2012]