Quasi-thermal noise in the heliosphere

N. Meyer-Vernet & the QTN team(s)

International Workshop on solar, heliospheric and magnetospheric radioastronomy:

The legacy of Jean-Louis Steinberg (1922-2016) 6-10 Nov 2017, Observatoire de Paris, Meudon

nicole.meyer@obspm.fr www.lesia.obspm.fr/perso/nicole-meyer/

- What is quasi-thermal noise (QTN) spectroscopy?
- Theoretical bases: plasma/antenna
- Complications
- Further complications

• Applications in various heliospheric environments

• The future

• What is quasi-thermal noise (QTN) spectroscopy? *The beginning*

On Natural Noises Detected by Antennas in Plasmas J. Geophys. Res. (1979)

Received August 2, 1978

A noise that might serve to use a radio receiver as an *in situ* plasma sensor and should explain previous measurements

February 1979: Paper rejected because the theory was too simple and there was no detailed application to a geophysical plasma

The beginning

On Natural Noises Detected by Antennas in Plasmas J. Geophys. Res. (1979)

Received August 2, 1978

A noise that might serve to use a radio receiver as an *in situ* plasma sensor and should explain previous measurements

February 1979: Paper rejected because the theory was too simple and there was no detailed application to a geophysical plasma

What is the origin of this noise?

The beginning

J. Geophys. Res. (1979) On Natural Noises Detected by Antennas in Plasmas

Received August 2, 1978

A noise that might serve to use a radio receiver as an *in situ* plasma sensor and should explain previous measurements

February 1979: Paper rejected because the theory was too simple and there was no detailed application to a geophysical plasma

16

revised March 27, 1979

This "mysterious noise" is similar to accepted March 28, 1979 the value predicted by the theory of the paper rejected ! N. Meyer-Vernet 8/11/2017

don

re Meu

QTN spectroscopy was born

N. M-V 1979, Hoang et al 1980, Couturier et al 1981

It is not surprising that in 1978 the referee was doubtful about QTN use

Context: • Plasma **theory** dealed mainly with instabilities & turbulence

• Fashionable plasma wave **instruments:** relaxation sounder & quadrupolar probe.

Common view: "the passive mode ... is of relatively little interest" (XXX 1977)

Despite several previous publications on plasma fluctuations & antennas in plasmas: Rostoker 1961, Balmain 1965, Sitenko 1967, Fejer & Kan 1969, Schiff 1970

QTN mainly below receiver noise
 ⇒ plasma frequency peak attributed
 to plasma instabilities

QTN spectroscopy was born

Receiver noise on ISEE-3: 4 10⁻¹⁷ V²Hz⁻¹

from Gérard Epstein's 1974 notes

• QTN mainly below receiver noise

Except 3D radio mapping on ISEE-3 (Observatoire de Paris, NASA/GSFC): The most sensitive radio receiver of these days (*Knoll et al 1978*)

N. Meyer-Vernet 8/11/2017

• What is quasi-thermal noise (QTN) spectroscopy?

The art of transforming a nuisance into a powerful sensor of space plasmas

Contrary to usual spectroscopy, based on **EM waves**, producing a **distant** diagnostic

QTN based on **electrostatic plasma waves** ⇒ produces an *in situ* diagnostic

Frequency of the line \Rightarrow electron **density** $f_{p (kHz)} = 9 n^{1/2}_{(cm-3)} \Rightarrow$ radiofrequency range

Receiver noise too small to be shown on the figure

Shape of the line \Rightarrow electron **temperature** & other properties

Electric antennaSensitive radio receiver

- Senses a large plasma volume (via waves of $\lambda \rightarrow \infty$) Ulysses S/C
 - Equivalent to detector of large cross-section
 - Immune to spacecraft perturbations (charging effects, photoelectrons ...)
 - Passive ⇒ does not perturb the medium

Complementary to particle detectors

• Serves to calibrate them (Maksimovic et al 1995, Issautier et al. 2001, Salem et al. 2001, 2016)

Theoretical bases: plasma/antenna

Antenna in blackbody radiation at *T* Nyquist: $V_f^2 = 4 k_B T R_{EM}$ Antenna in plasma at *T* $V_f^2 = 4 k_B T R_P$

Just below f_p , $R_p/R_{EM} = 10^{-2} (c/fL)^3 >> 1 \implies$ Plasma thermal noise dominates

• Theoretical bases: plasma/antenna

Plasma thermal noise dominates

N. M-V, Hoang, Issautier, Moncuquet, Marcos 2001

• Theoretical bases: plasma/antenna

- QTN produced by motion of charged particles
- Electrostatic field ≠ Coulomb because plasma particles are dressed

- f < f_p : electrons passing within Debye sheath
- $f \gtrsim f_p$: Langmuir waves $k_L \simeq (1/3^{1/2}L_D) (1-f_p^2/f^2)^{1/2}$

✓ **E** || **k** making angle θ with antenna: max. sensitivity *kL* cos $\theta \simeq \pi$ ⇒ if *kL* >>1 antenna favors $\theta \simeq \pi/2$

• Complications

Complications

• Space plasmas are NOT in thermal equilibrium!

Fundamental reason: Coulomb cross-section $\propto r_{L}^{2} \Rightarrow$ free path \propto energy squared

Fast particles are collisionless, even when most particles (core of distribution) are collisional \Rightarrow Velocity distributions have suprathermal tails

Coulomb energy

= kinetic energy

at distance r_1 =

• Space plasmas are NOT in thermal equilibrium!

What kind of « temperature » does QTN spectroscopy measure?

Define « temperatures » from moments of distribution $T_p \propto \langle v^p \rangle^{2/p}$

- > kinetic temperature $T_2 \propto \langle v^2 \rangle$
- > Debye length $L_D^2 \propto T_{-2} \propto 1/\langle v^{-2} \rangle$ depends on core of distribution

• Space plasmas are NOT in thermal equilibrium!

• Space plasmas are NOT in thermal equilibrium!

Fine structure of the f_p peak reveals high-energy electrons

T_=10.1 eV Could QTN spectroscopy be used to (core) 10'15 measure super-halo electrons in the solar WIND Wang et al wind? h=49.2 e\ 2012 Kappa=11.0 l(v) (s³ m^{-θ}) (Halo) Energy $E \gtrsim 2 \text{ keV}$ A(Superhalo) 10-25 TEREO A WIND • Revealed at frequencies $(f - f_p)/f_p \simeq (3/4) T/E$ 2007 December 6 10.30 108 107 v (m/s)

 \Rightarrow between $f_{\rm p}$ and 1.004 $f_{\rm p}$ if $T \simeq 10 \, {\rm eV}$

• QTN power $V_f^2 \simeq 10^{-12} \text{ V}^2 \text{Hz}^{-1}$ with frequency resolution $\simeq 4 \ 10^{-3}$

N. M-V, Issautier, Moncuquet. 2017 Might be erroneously interpreted as due to a plasma instability

Complications

• Magnetic field

- ✓ Changes resonance frequencies
 - ✓ Bernstein waves …
- At gyroharmonics: QTN unchanged
- Between gyroharmonics: maximum QTN reveals suprathermal electrons

Agrees with in board magnetometer within 2%

QTN spectroscopy can serve as a cheap magnetometer!

Complications

- Space plasmas may be dusty
- ✓ High-speed impacts
- \Rightarrow Voltage pulse δv

Impact ionization $Q \propto m_{
m dust} v^{3-4}$

- Micrometer grain at $v = 10 \text{ km/s} \implies \delta v = Q/C = 10 \text{ mV}$
- Nanometer grain at $v = 300 \text{ km/s} \Rightarrow same amplitude$

- Space plasmas may be dusty
- ✓ Low-speed impacts

Dust grains carry an electric charge

QTN of moving charged dust grains is dominant

Basics of electric charging in space

Charging governed by incoming plasma electrons until grain **negative** charge repels them sufficiently to balance other currents

Charging governed by escaping photoelectrons until grain **positive** charge binds them sufficiently to balance plasma currents

Grain of radius *r* carries electric charge
$$q = 4\pi\varepsilon_0 r \Phi$$
, a few T_{eV}
 $\Rightarrow |q/e| = a \text{ few } r/r_L$
Landau radius = $e/(4\pi\varepsilon_0 T_{eV})$
Mann, N. M-V, Czechowski 2013 N. Meyer-Vernet 8/11/2017
Temperature of main charging process
 $e r_L e |fr > r_L$
N. Meyer-Vernet 8/11/2017

QTN of moving charged dust grains

Example: $n = 10^3$ cm⁻³ nanograins (10 nm) at 15 km/s $\Rightarrow V_f^2 \simeq 10^{-10}$ V²Hz⁻¹ near 1 kHz

• Further complications

Plasma electrons impacting antenna \Rightarrow voltage pulse $\delta V = e/C \Rightarrow V_f^2 \propto S \frac{e^2}{C^2 f^2}$ Antenna surface

Shot noise generally small with thin wire antennas

Beware!

✓ Biased antennas

Solar wind: photoelectron current ~ 20 X plasma electron current \Rightarrow antenna floats at Φ > 0 (enables current balance by reducing escaping photoelectron current)

If antenna biased to Φ = 0 : full photoelectron current \Rightarrow shot noise X 20 !

• Applications: QTN in a comet's plasma tail

September 11, 1985 First encounter of a spacecraft with a comet

6 months before a fleet of spacecraft encountered Halley comet

ICE crossed the plasma tail

Plasma too cold for the plasma electron experiment (Bame et al. 1986) to measure correctly the electron density and temperature within the tail

QTN spectroscopy was well adapted $(L/L_D >> 1)$

• Applications: QTN in a comet's plasma tail

N. M-V, Couturier, Hoang, Perche, Steinberg, Fainberg, Meetre (Science, 1986)

• QTN in 3-D solar wind

Ulysses/URAP

Issautier et al., 1998

QTN in 4-D solar wind

QTN in planetary magnetospheres

• Future

> Ionospheres

- Saturn's ionosphere (Cassini grand finale 2017) Lecacheux et al. 2018
- Earth's ionosphere CubeSats projects

♦ Debye length $\sim \text{ cm } \leq \text{antenna radius}$

Antenna impedance and QTN: integrals over **k** involving the antenna current distribution in Fourier space

o Current distribution

$$|\mathbf{k}.\mathbf{J}| = |\frac{4\sin^2(k_{\parallel}L/2)}{k_{\parallel}L} \xrightarrow{J_0(k_{\perp}a)|} \Rightarrow J_0 \neq \mathbf{1}$$

Reactive antenna impedance \Rightarrow changes the receiver gain

• Charging governed by ambient electrons \Rightarrow Antenna's potential is negative

 \Rightarrow Debye sheath with depleted electrons > $L_{\rm D}$ around antenna

Plasma resonances in the sheath increase QTN by orders of magnitude *N. M-V et al. 1977, 1978* (calculated and observed)

• Future

Inner solar wind and corona

Anisotropy of the velocity distributions

Strahl: mirror force (focusing \Rightarrow beam-like) + pitch-angle scattering (collisions + ..)

- Expected to decrease with distance at low and medium speeds Stverak et al. 2009
- Expected to increase with distance at higher speeds ($v \gtrsim 5 v_{th}$) Horaites et al. 2017 Should affect QTN near the f_p peak

Parker Solar Probe / FIELDS (Bale et al. 2016, Pulupa et al. 2017)

