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Abstract

Although the analysis of observational data indicates that quasi-separatrix layers (QSLs) of
magnetic configurations have to play an important role in solar flares, the corresponding theory
is only at an initial stage so far. In particular, there is still a need of a proper definition of QSLs
based on a comprehensive mathematical description of magnetic connectivity. Such a definition
is given here by analyzing the mapping produced by the field lines which connect photospheric
areas of positive and negative magnetic polarities. It is shown that magnetic configurations may
have regions, where cross-sections of magnetic flux tubes are strongly squashed by this mapping.
These are the geometrical features that can be identified as the QSLs. The theory is applied to
quadrupole configuration to demonstrate that it may contain two QSLs combined in a special
structure called hyperbolic flux tube (HFT). Both theoretical and observational arguments
indicate that the HFT is a preferred site for magnetic reconnection processes in solar flares.



1. Introduction

Investigations of coronal magnetic fields extrapo-
lated from photospheric magnetograms show a sys-
tematic spatial correlation between the locations of
energy release in solar flares and the regions of strong
variation of the field line connectivity [Mandrini et
al., 1995; Démoulin et al., 1997]. Such regions, called
quasi-separatrix layers (QSLs), are thought to be the
plausible places for the magnetic reconnection process
[Longcope and Strauss, 1994; Priest and Démoulin,
1995].

In most of the coronal volume the quasi-static con-
ditions are fulfilled, so that the magnetic field evolves
through a sequence of force-free equilibriums. These
conditions, however, may easily break down in QSLs,
where due to a strong variation of the field line con-
nectivity the rearrangement of the field lines during
the evolution of the configuration may occur faster
than in other places. This in turn implies a locally
large acceleration of plasma and hence a locally unbal-
anced Lorentz force, which requires the corresponding
enhancement of the current density in QSLs. The im-
portance of inertia in the current layers at the QSLs
also follows from exact solutions of linearized MHD
equations describing a quasi-static evolution of in-
homogeneous magnetic fields [Inverarity and Titov,
1997].

The paper is organized as follows. In Section 2
the difference between separatrix surfaces and QSLs
is discussed together with a first definition of QSLs.
Section 3 describes local geometrical properties of the
magnetic connectivity and gives the correct definition
of QSL. Section 4 illustrates the developed theory by
applying it to quadrupole magnetic configuration rel-
evant to solar flares. The conclusions are summarized
in Section 5.

2. Field line mapping

The magnetic field lines in solar active regions nor-
mally connect domains of positive and negative polar-
ity of the photospheric plane. Choose the coordinate
system, so that this plane is given by z = 0. The loca-
tion of field line footpoints on the photosphere can be
represented depending on the polarity by the radius-
vector ry = (z4,y4) orr_ = (z_,y_). The connec-
tions of the footpoints by field lines determine two
mutually inverse mappings Il : ry — r_and II :
r_ — r (Figure 1). We shall simply use II if we refer
to aspects valid for both mappings. Also the repre-
sentation in coordinates JI (r;) = (X_(ry),Y_(ry))
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and IL (r_) = (X4 (r_),Y,(r_)) will be used for the
mappings further on.

The mapping II is discontinuous at the footpoints
of the field lines threading magnetic nulls in the
corona or touching the photosphere, since the mag-
netic flux tubes enclosing such field lines are split at
the nulls or at the so-called ‘bald patches’ [Seehafer,
1986; Titov et al., 1993]. The latter are segments of
the photospheric inversion line, where coronal field
lines touch the photosphere. The corresponding dis-
continuities serve as indicators for the separatrix field
lines and surfaces. It is worth to emphasize that the
coordinates (1, y+) in this case need not to be Carte-
sian because the discontinuities are revealed in any
system of coordinates irrespective of the metric.

However, with the help of the metric or Cartesian
coordinates one can determine not only the genuine
separatrices but also the QSLs. The integrity of the
flux tubes is preserved within the QSLs and so the
mapping II remains continuous at the correspond-
ing footpoints, but the shape of their cross-sections
strongly changes along the flux tubes. Thus, instead
of true discontinuities in II at the intersection of the
genuine separatrices with the photosphere, there are
continuous but rapid variations in II at the photo-
spheric cross-sections of QSLs. These variations can
be detected with the help of the metric only, which
enables us to measure and compare the distances be-
tween the footpoints in one polarity and correspond-
ing footpoints in the other polarity. In this respect
QSLs and separatrices are qualitatively different ob-
jects. Indeed, ignoring the above metrical information
about II and using a proper continuous change of co-
ordinates, it is possible to eliminate the rapid vari-
ations in IT and thereby the QSLs themselves, while
discontinuities of IT and hence the corresponding sep-
aratrices are not removable in this way. However, as
we will see the discontinuities can be considered as
degenerated cases of QSLs which suggests that such
QSLs must be as important as a genuine separatrix
surfaces.

For the determination of the QSLs Priest and
Démoulin [1995] proposed to use the function (called
‘the norm’) N(r4) or N(r_), which in Cartesian co-
ordinates are
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It was proposed that N(ry) > 1 defines field lines
belonging to QSLs. Yet this norm in application to
different footpoints of the same field line yields gen-
erally different values N, and N_, which leads to an
ambiguity in the determination of QSLs. This dis-
advantage of the norm indicates that the adequate
measure for QSLs must be invariant to the choice of
the mapping JII or IL . In the next section we find
such a measure by analyzing geometrical properties
of the field line connectivity.

3. Geometrical description of
magnetic connectivity

3.1. Diagonalisation of the Jacobian matrix

The mapping II or IL is locally described by its
differential d I or dIL , respectively, which is a linear
mapping from the plane tangent to the photosphere
at one footpoint to a similar plane at the other foot-
point. These differentials are represented by the cor-
responding, mutually inverse, Jacobian matrices
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We assume hereafter that (z4,y+) are measured in
one Cartesian system of coordinates covering the
whole photospheric plane. Equations (2) and (3) show
that it is sufficient to have only one of these matrices
for a local description of the magnetic connectivity.

The determinant A is always negative in the cho-
sen coordinate system. This can easily be seen for the
simplest arcade-like magnetic configuration, which is
symmetric about its photospheric inversion line y = 0
separating positive and negative polarities at the up-
per (y > 0) and lower (y < 0) half planes, respectively.
Due to the assumed symmetry X _(z4,y+) = z4 and
Y_(z4+,y+) = —y4, so that a =1, b =0, ¢ = 0 and
d = —1, which in turn yields A, = —1. Any other
configuration with the same trivial topology can be
obtained from the considered one by using a suitable
smooth deformation. Such a deformation generally
changes the absolute value of Ay, but preserves its
sign, so that A always has to be negative.

The negative sign of A, is related with the re-
versing of the orientation of the vector basis by the
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dJI -mapping. Indeed, let us take in the tangent
plane at some footpoint r; an orthonormal vector ba-
sis (G4, V4 ) having a right-handed orientation, which
means that Gy X V4 -2 = 1, where 2 is a unit vec-
tor along z-axis. This basis is generally mapped by
dIL into a non-orthonormal basis (u_,v_) in the
corresponding tangent plane at JI (ry) by giving
u_ x v_ -2z = Ay < 0. Thus the basis (u_,v_)
must have the left-handed orientation (Figure 2a).
The angle between u_ and v_ depends not only
on the matrix D but also on the orientation of the
orthonormal basis (fi4,V4). It turns out that by
rotating the latter one can yield an orthogonal pair
(u_,v_) (Figure 2b). To show this we use angles v+
and v_ which determine the directions of Gy and u_
with respect to the z-axis and corresponding matrices
of rotations of these vectors R, and R,_. Regarding
now the vectors as appropriate columns of coordinates
and denoting % = (1 0)T and § = (0 1)T, we obtain
from Figure 2b that 4, =R,, X and u_ = \; R,,_X,

where A\; = |u_|. By definition, however, u_ = D
and therefore R;' DR, % =\ k.

Similarly, v, = R,,¥ and v_ = DV, result in
v_ = DR, y. To satisfy the condition u_ 1 v_
we have to require v_ = A, R,,_y, where Ay = —|v_|

is negative because dJI reverses the orientation of
the basis. Thus both ¥ and % are eigenvectors of
the same matrix R' D R, . Summarizing all these
calculations as

,R’;_l 422 R’y+ = diag(/\ly )‘2) = Aa (5)

we see that the condition u_ | v_ requires that the
two non-diagonal elements of R;_l D R,, must van-
ish. For a given matrix D these requirements deter-
mine the angles v, and y_. The calculation of the
angles is facilitated significantly if we introduce the
following complex variables (i = v/—1)

& = a+d+i(b—rc), (6)
¢ = a—d+i(b+o). (7)

Expressing a, b, ¢ and d from (6) and (7) in terms of
|€|, arg&, ||, arg( and then substituting them into
(5), one obtains after some transformations

[€lcosat|¢|cos B |€|sin at[¢|sin B
A= |§|sinaE|C|sinﬂ |§|cosa—2|C|cosﬂ ’ (8)
2 2

where

a = 74— —argé, 9)
Y+ + - —arg(. (10)

™
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The matrix A is diagonal and hence the basis
(u_,v_) is orthogonal if @ = 8 = 0, which yields

v = (argé+arg()/2, (11)

7- = (arg¢—argf)/2. (12)

The diagonal elements of (8) in this case simply be-
come

AL
A2

(€l +1¢0)/2, (13)
(&l =1¢h)/2. (14)

Other solutions with & = 7 and/or 8 = 7 are also
possible but not of interest, since they are the result
of mirror reflections about the directions given by (11)
and (12).

By using (13) and (14) together with (7),(6),(1)
and (2) one obtains

lu +v |=(@+*+E+d)V2 =N, (15)

Thus the norm N, determines simply the length of
the diagonal in the rectangular constructed on the
orthogonal vectors u_ and v_ (Figure 2b).

3.2. The degree of squashing

Let us determine similar characteristics for the re-
verse differential dII, at r_ = II (r;) . The simplest
way to do this is just to change in (11)—(14) the su-
perscripts + on F and the elements of D (2) to the
corresponding elements of D, (3). Then we obtain for
the complex values similar to (6) and (7)

[d+a—-i(b-c)l/Ar=¢E/Ay,  (16)

]
[d—a—-i(b+c)l/Ay =—(/Ay, (17)

Iy

yielding the following angles:

Y4 = (arg& +arg(+m)/2 =4 + /2, (18)
3 = (argC —arge +m)/2 =7 + /2 (19
They show that the orthonormal basis (i, V_) cor-
responding to this solution is rotated by /2 with
respect to the basis (u_,v_) and the same is valid
for (uy,vy) and (44,V4) (Figure 2b, c). Defining
A1 and A in analogy to (13) and (14) and using
A, = A1)\ together with (16) and (17) we obtain
A= =1/, (20)
Aa = —1/\. (21)
So the norm in the negative polarity at the footpoint
ro=[Il(ry)is

N_o L =N,/|AL], (22)
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hereafter the symbol o stands for the composition of
the corresponding functions.

This consideration shows that the determination of
QSLs by means of the norms N, and N_ must really
lead to different results if |[AL| # 1. For example,
consider the potential configuration, in which a small
photospheric area of concentrated positive flux is sur-
rounded by a large negative polarity with the same
absolute value of the flux. This configuration can
be modeled by fictive positive and negative charges,
which are equal in absolute value and placed below
the photosphere on different depths [ and L, respec-
tively, such that [ < L. Field lines ‘fountain’ here
from the positive to the negative polarity, so that
N; > 1and N_ < 1. Thus, we have a contradictory
case, where being applied to different polarities the
norm Yyields different results.

One could try to avoid this ambiguity by requiring
that both conditions N; > 1 and N_ > 1 should be
satisfied in QSLs. According to (22) this would ac-
tually be equivalent to finding regions in the positive
polarity, where both N > 1 and N4 /|A4| > 1 are
fulfilled. In principle, nothing is wrong here accept
that the description of QSLs simultaneously by two
different functions does not look like a well-founded
approach.

Alternatively, one could sacrifice the symmetry of
the QSL definition with respect to the ‘positive’ and
‘negative’ footpoints by requiring that N, or N_
must be large in QSLs. Then the configurations like
the one in the above example would be identified as
QSLs. However, they show no connection to any true
separatrix surface in whatsoever limiting case, thus
such a criterion of QSL should also be discarded.

The described difficulty may be resolved in the fol-
lowing way. Notice first that the mapping IT can lo-
cally be described by A;, A2, 74+ and y_. Here only
A1 and A2 determine the value of footpoint displace-
ments, while v, and 7_ define their directions. So
it would be natural if the required characteristics is
a function of A\; and A only. Let us show that this
is actually the ratio |A\1/A2|. According to (20) and
(21) (see also Figure 2b, c) it coincides with the ratio
|A1/A2| and thereby characterizes the magnetic con-
nectivity itself rather than one of the mappings Il or
II, . If we define the elemental flux tubes (EFTs) as
tubes with infinitesimal cross-sections, then |\;/Ag]
determines the degree of squashing of the EFTs at
their photospheric ends (see shaded regions in Figure
2b, ¢). Normally this quantity has to be of the order
of unity and only in special regions it may become



extremely large. By using (6)—(14) one can derive
that

Ai/X2] = Q/2++/Q%/4-1, (23)
Q = N/IAL, (24)

which shows that [A1/A2| &~ Q for @ > 1. Q can be
interpreted geometrically with the help of the rect-
angle built on the vectors u_ and v_ (see Figure
2b) as the ratio of its diagonal squared to its area,
because |[Ay| = |u_||v_|. This means also that
Q= (A2 +)2)/|A\1)2] and so min Q = 2 at |A;| = |Ag)-
The expression for Q has an elegant form, invariant
to interchanging of + and —, and simpler than (23),
so it is reasonable to define that

the QSL is a layer-like flux tube con-
sisting of magnetic field lines with
Q> 2.

Bearing in mind the above mentioned properties of
@, one can call this quantity QSL squashing degree.
Equation (24) implies that the QSLs defined with the
help of Q or N, have to be essentially different if the
determinant A, varies in the photospheric plane as
strong as N.

Here it is worth mentioning a related quantity,
namely the so-called differential flux volume

AL (r4)
veo = [T gEvaie). @)

+

in which the integration is carried out along the cor-
responding field line. It defines the ratio of volume
and magnetic flux of an elemental flux tube enclosing
a given field line, since

II (rq) 1 I (ry)
Viry) = /+ %dl =% T ssa,
r 1‘+

+

where S and §® = B4S are the cross-section of that
tube and magnetic flux in it, respectively. This value
has appeared in the analysis of current sheet forma-
tions along separatrix surfaces in quasi-static evolu-
tions of 2%D magnetic configurations [Zwingmann et
al., 1985; Low and Wolfson, 1988; Vekstein et al.,
1991; Vekstein and Priest, 1992]. It has also been
used (under the name ‘delay function’) for study-
ing 3D magnetic topology caused by the presence of
null points [Lau, 1993]. Recently Schindler and Birn
[1999] have shown that strong spatial variations of V'
may cause a similar formation of current layers in 3D
magnetic fields. So at first sight it seems natural to
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use this value for characterizing QSLs. However, one
can see from the definition of V' that it depends not
only on the field line connections of the points in dif-
ferent polarities but also on the field line properties in
the coronal volume. Therefore, V is not a measure for
the field line connectivity alone. For example, if one
fixes the foot points of the field lines in a given config-
uration and exposes the coronal volume to a smooth
deformation, then V will change in response to such a
deformation, while the field line connectivity will re-
main the same. Thus, V' cannot be used as a measure
of the connectivity, which does not reduce, however,
its value in understanding the process of current sheet
formation, because this process may depend not only
on the connectivity but on other factors as well (see
also Section 4.3).

3.3. Expansion-contraction degree

The QSL-squashing degree ) provides the most
important information about the magnetic connectiv-
ity. However, it is only a part of the whole information
provided by the Jacobian matrix, which has four inde-
pendent parameters. The second characteristic of the
connectivity can be obtained as follows. Since II and
II, are mutually inverse mappings (see also (3) and
(4)), the quantities |Ay| and |[A_|7 (= |det D |7})
have the same value if they are evaluated at the cor-
responding footpoints of a given field line. In other
words,

K =lg]Ay|=—~lg]A_o 1| (26)

and so |K| is invariant to an interchange of + and —.
Therefore |K| can be used as a second independent
characteristic of the magnetic connectivity.

However, the sign of K yields an extra informa-
tion, which shows whether an EFT (elemental flux
tube) starting at the point of the evaluation expands
(K > 0) or contracts (K < 0) towards its other foot-
point. If one plots the distribution of K together
with the photospheric inversion line separating posi-
tive and negative polarities, it will show not only the
degree of expansion of EFTs, but also the direction
in which this expansion occurs. Thus, for characteriz-
ing magnetic connectivity it is better to use the value
K than its modulus. Further K will be called the
expansion-contraction degree of EFTs.

The conservation of magnetic flux in flux tubes en-
ables us to express K in terms of the normal com-
ponent of the photospheric magnetic field. Indeed,
let an EFT have the cross-section |dz1dyy| in the
positive polarity, then the equality of magnetic flux



at the ends of the EFT means that |B,4 0z 0y4| =
|B.— o IL Aydz 0y, |, where B, = B.(z4,y4,0)
and B, = B,(z_,y_,0) are normal components
of the magnetic field in the corresponding polarities.
Therefore for the positive polarity we have

B., ‘
b

K :lg 7Bz_ o+l_[_

(27)

while the interchange of 4+ and — in this formula de-
termines K for the negative polarity. Here we used
that Jacobian of the field line mapping coincides with
the ratio of B,-components at the ends of field lines.
This ratio is much easier to compute than the Jaco-
bian, so that formula (27) is more valuable for appli-
cation than (26). Also it is a bit more convenient to
plot this ratio in a logarithmic scale rather than K
itself.

3.4. Orthogonal parquet

One can see from (18) and (19) that v; — - and
any m-periodic function of v, + «_ are also invariant
with respect to the direction of mapping II. Being
independent on @ and K, these invariants could ad-
ditionally be used for characterizing magnetic connec-
tivity. Unfortunately, their plots are not much mean-
ingful for the interpretation compared to @@ and K.
This motivated us to use these angles for obtaining a
more transparent graphical representation.

Remember that (see Section 3.1) vy and v_ de-
termine at the footpoints of a given field line the ori-
entations at which the orthogonal vector bases are
mapped into each other. This defines two mutually
orthogonal vector fields on the photosphere. The in-
tegral lines of both fields intersect each other orthog-
onally and thus form what we call the orthogonal par-
quet. In the positive polarity the lines with tangents
inclined at the angles v, correspond to the dilation
coefficient A1, while the lines orthogonal to them cor-
respond to Ao. In the negative polarity the lines with
tangents inclined at the angles v_ correspond to the
dilation coefficient A;, while the lines orthogonal to
them correspond to Ap. The corresponding tiles of
the parquet are interconnected by II, so that (20) and
(21) are fulfilled. Thus, such a parquet visualizes the
properties of magnetic connectivity described by v
and 7_. In fact, the properties determined by @ and
K or \; and Az can also be incorporated in the par-
quet if one chooses properly sizes of the tiles or, in
other words, the proper parameterization of the inte-
gral lines.
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Indeed, we can regard the whole magnetic config-
uration in the corona as a collection of EFTs with
infinitesimal photospheric cross-sections ~ §2. Given
the rectangles (Af1/25) x (|A2|~'/268) in the positive
polarity with the first side inclined at angles v, (cf.
Figure 2), it follows then from (5) rewritten as

D=R,_AR}/ (28)

that the corresponding cross-sections in the negative
polarity are also rectangles but of the size ()\i/ %6) x
(|A2]'/26) with the first side inclined at angles .
This is actually nothing more than a construc-
tion of the orthogonal parquet in the limit of van-
ishing rectangular tiles (§ — 0). To describe the
parquet with tiles of finite size (curvilinear rectan-
gles now), assume that the parquet lines correspond-
ing to A\; and Ay are determined in positive polarity
by (2+1(s1),y+1(s1)) and (z42(s2), y+2(s2)). Choose
the parameters s; and sy so that their infinitesimal
increments ds; and dss correspond to § in the above
discussion, then the parquet lines have to satisfy

dziq COoS Y4

= , 29
dSl RV )\1 ( )
dy41 sin y4
= , 30
dSl 4/ )\1 ( )
and
dzo sinyy
= _ , 31
dso A/ |)\2| ( )
dy+2 _ COS 7Y+ (32)

dsz Vil

The equations for the parquet in the negative polarity
are obtained similarly. Hereafter the integral lines of
systems (29)—(30) and (31)—(32), respectively, will be
called \;- and \y-lines.

To construct the orthogonal parquet, it is neces-
sary first to take an origin O, as an initial point for
integrating (29)—(30) and compute the A;-line passing
through this point. Then the points belonging to this
line can be used as initial points for (31)—(32) to com-
pute the corresponding set of As-lines. The Ag-line
passing through O, yields in turn initial points for
(29)—(30), whose integration gives the corresponding
set of Aj-lines. If the initial points in this procedure
are chosen equidistantly in parameter space, namely
As; = § and Asy = §, with a sufficiently small step
d, then the aspect ratio of the parquet tiles will be
& 4/A1/|X2| and, in particular, ~ /@ at QSLs. Do-

ing the same in the negative polarity with the origin



O_ mapped from O, by II, one can reproduce the
parquet in the whole photosphere. The ratio of tile
areas interconnected by field lines will approximately
coincide in this case with the corresponding local val-
ues of the Jacobian. So the orthogonal parquet gives
a complete and convenient representation of magnetic
connectivity.

3.5. Critical points of the parquet

The present construction of the parquet is well de-
fined everywhere except for the points, where

£=0. (33)

At these points arg& and hence v4 and y_ are not
defined, so they are critical for (29)—(32). One can
see from (13) and (14) that first Ay = —A2 and hence
Q attains there its absolute minimum value 2 (see
(23)). Secondly, vanishing of ¢ is impossible, since
it would mean that A; = Az, which contradicts to
that A1A2 = A4 < 0. Thus, the critical points are
defined by (33) only. The behavior of the parquet in
their vicinity requires a special consideration. It is
sufficient to do this for A;-lines, since the properties
of Ao-lines are similar. It happens that in this case

T = tanvyy

is more convenient for parameterizing A;-lines than
s1. Using this notation and (11), one can rewrite
tan 2y, as

27 tan(arg) + tan(arg()
1—-72 1-tan(arg¢)tan(arg()’

(34)

From here we are now going to derive an approximate
analytic form of the A;-lines in the vicinity of critical
points. Note first that according to (6) and (33)
d = -—a, (35)
c = b (36)

at such points, so (7) yields
tan(arg () ~ b/a. (37)

Keeping also the first order terms in Taylor expansion
of (6) at a given critical point, we have

-~ £Im$+£Iyy

tan(arg) ~ =~ — . (38)

where the indices I and R stand for the imaginary and
real parts of &, respectively, and the indices z and y
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denote the corresponding derivatives at the critical
point — for example, {1, = 03(§)/0x) = 0b/0x —
Oc/0zx.

By substituting (37) and (38) into (34) and making
some transformations one can obtain

y/z = Pi(7)/Ps(7), (39)
where
P (1) = (a€1y + b€y ) (1—72) — 2(abge — bE1,)T, (40)
Py(1) = (alry + bgRy)(TQ_l) + 2(ary — b1y)7. (41)

Since on Aj-lines dy/dz = 7, the differentiation of
(39) yields the following equation for x(7)

dinz  P{(1)Py(1) — Pi(7)P5(7)

= 42
dr Py(1)(1Py(1) — P (7)) (42)
which can be integrated to give
3 ki—1
T Py(7) T—7 |
e 43
zo  Pa(mo) H To— Ti (43)

=1

Here the index 0 denotes the corresponding initial
values, while 7; are the roots of the cubic equation
P;(7) = 0 such that

P3(T) :TPQ(T)—Pl(T) (44)
and
ki = Pa(7;)/P3(:) (45)

with the prime standing for the derivative to ;.

Equation (43) corresponds to the case, where all
the roots 7; are real. However, if only one of the
roots, say, 73 is real, then the solution is

T _ Py71) | T— 13 ks—l[ (r=m)(r —71) R(k1)—1
o Pa(0) |70 — 73 (r0 — 1) (0 — 71)

x exp {25(k1) [arg(T1 — 7o) — arg(T1 — 7)]}. (46)

This expression actually follows from (43) if one omits
there the modulus at 7 =1, 2.

Thus, the \;-lines in the vicinity of a critical point
of the parquet are described in general either by (43)
and (39) or by (46) and (39). In the first case there
are separatrices emanating from the critical point in
the directions with tangents 7y, 72 and 73 (Figure 3a).
In the second case there is a single separatrix and
its tangent equals 73 (Figure 3b). The characteristic
structure of A;-lines suggests to classify the critical



points in I- or Y-type depending on the number of
separatrices (one or three, respectively) they have.
A similar analysis of \p-lines shows that their local
structure at a critical point is the same as for A;-lines
but rotated on 180° around this point (Figure 3).

The structure of the orthogonal parquet breaks
down at the critical points in the following way. Any
Y-point is a vertex for siz adjoint tetragons (Figure
3a), while a normal point is a vertex for four adjoint
rectangles. Any I-point belongs to a common side
of two adjoint triangles rather than rectangles in the
normal case. The consideration of particular exam-
ples shows also that the separatrices emanating from
these points connect the points or go to infinity. In
the result the whole photospheric plane is uniquely
divided by separatrices in several domains, whose cor-
ners are the critical points. Each of these domains is
smoothly covered by the orthogonal parquet, while
its ‘defects’ are localized at the critical points in the
above mentioned way. Thus the critical points of the
parquet describe a global geometrical complexity of
topologically simple magnetic configurations. A more
detailed investigation of the orthogonal parquet is cer-
tainly required, but it goes far beyond the scope of the
present work and so we restrict ourselves here by an
illustrative example (see Section 4.5).

4. Application of the theory to a
quadrupole configuration

Let us see what the above formulated theory yields
for the configuration formed by two bipolar groups of
sunspots. Such a configuration is considered for a long
time as a basic model for solar prominences [Kippen-
hahn and Schliter, 1957] and flares [Sweet, 1969] and
it is quite instructive for our purposes. In an ideal-
ized form the corresponding sunspots can be modeled
by point-like sources e, ..., e4 of potential magnetic
flux. The configuration has a non-trivial topological
structure due to the presence of null points in the
field. This means that all separatrix surfaces here are
formed by field lines emanating from the nulls. For a
wide range of positions and strengths of the sources
there are only two nulls N; and Ny with the sepa-
ratrices intersecting along a special field line called
‘separator’ ([Baum and Bratenahl, 1980], Figure 4).
The same is also true for a bit more general config-
uration with the sources spread on the photosphere
in finite regions, outside of which the vertical com-
ponent of the field vanishes [Sweet,1969]. The neigh-
borhood of the separator here has to be favorable for

8

the development of a current sheet and a magnetic
reconnection process. This follows from the tendency
of the highly conducting solar plasma to preserve the
magnetic topology of the configuration during its evo-
lution. Therefore the presence of the nulls in the field
is a crucial argument for the current sheet formation
in this configuration.

4.1. Distributed versus concentrated sources

In reality, however, the vertical magnetic field is
distributed on the whole photospheric plane. To in-
corporate this fact, Gorbachev and Somov [1988] mod-
ified the idealized configuration by placing the sources
below the photosphere. The sources here become fic-
tive in the sense that they determine a physically
meaningful field only in the corona and on the pho-
tosphere but not below it, where the magnetic field
is certainly not potential. This trick significantly fa-
cilitates the calculation of a potential coronal field
corresponding to a rather complicated effective mag-
netogram (Figure 5), since the resulting field here is
just a superposition of the fields produced by the fic-
tive sources. However, such an ‘innocent’ modifica-
tion of the model leads to serious topological conse-
quences: the nulls determining the separator disap-
pear from the photosphere together with the sources.
This means that the separator in the form as defined
above does not exist anymore. Therefore it is incon-
sistent to introduce the separator into the above re-
alistic configuration by simply identifying it with the
separator of the fictive source system, as suggested by
Gorbachev and Somov [1988] (see Figure 6).

In fact, the coronal magnetic topology in such a
case may be non-trivial only due to the field lines
starting at bald patches [Seehafer, 1986; Titov et al.,
1993], and indeed, there is a substantial range of pa-
rameters for the above configuration, where this sit-
uation is realized [Titov et al., 1993]. It gives the
generalized separator field line [Bungey et al., 1996],
which is a limiting case of the normal one [Titov,
1998]. However, one can prove that for the particular
example shown in Figure 5 the coronal nulls and bald
patches are absent and so the configuration is topo-
logically as simple as an arcade-like field. Thus, the
self-consistent topological approach does not reveal
in this case any site preferable for the reconnection
process.

This negative but mathematically strict conclusion
contradicts an intuitive feeling that both the idealized
and realistic configurations must have similar physical
properties. The discrepancy becomes even stronger if



one takes into account the success of the Gorbachev-
Somov model in explaining some observed features
of solar flares (see Section 4.4). This successful part
of the model has been confirmed and developed later
by other authors ([Démoulin et al., 1997] and refer-
ences therein). Nevertheless, the above discrepancy
remained unresolved in these works, since they fol-
lowed the erroneous paradigm that a strong varia-
tion of magnetic connectivity can be interpreted ex-
clusively as a topological effect.

4.2. A hyperbolic flux tube (HFT)

The above discrepancy can be resolved only in
the framework of a geometrical approach, which de-
scribes equally good both topological and geometrical
features of magnetic connectivity [Titov and Hornig,
2002]. Indeed, the computation of @Q-distribution
for the above topologically simple field (Figure 5)
reveals on the photosphere two very narrow strips
with extremely high values of @) attaining ~ 106
in maximum (see Figure 7a). The distribution of
|A| = [A1A2| = 10X represented in logarithmic scale
(Figure 7b) has a very large gradient at these strips,
because they separate two extended areas (elongated
light grey regions) of small |A| with the minimums
~ 1072 and end up in smaller areas (compact dark
grey regions) of large |A| with the maximums ~ 102.

The strips here correspond to the photospheric
cross-sections of a magnetic flux tube which according
to our definition could be identified as a QSL. A more
detailed consideration below, however, shows that it
is actually worth to distinguish two QSLs in this tube.
The way they appear here suggests to call such a tube
a hyperbolic flur tube (HFT) and its photospheric
cross-sections HF T-traces. The structure of the HFT
becomes clear if one computes the magnetic flux sur-
face forming its boundary. It is natural to determine
such a surface by the condition @@ = const > 2, in
which we have chosen = 100 for the HFT under
study. Other choices of @) are also possible, but they
define a similar larger or smaller surface depending
on whether the new @ is smaller or larger as the old
one, respectively.

Figure 8 shows a rather non-trivial structure of the
HFT: it starts first at each of the above mentioned
strips on the photosphere as a thin layer and then
quickly transforms in the corona into a tube with an
X-type cross-section in the middle (see Figure 9). The
behavior of the field lines on the boundary of the HF T
helps to understand its basic properties. Notice first
that this boundary surface intersects the photosphere
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at the two very stretched ovals of crescent shape. The
field lines starting at the ends of one of the crescents
form a narrow bunch, which diverges hyperbolically
in the corona and ends up at one side of the other
crescent. This remains valid for the flux surfaces char-
acterized by larger boundary values of @, so that such
a hyperbolic structure of magnetic flux recurs inside
the HF'T on smaller scales. The latter seems to be a
characteristic feature of the HF T motivating its name.
The relationship between the HFT and QSLs will be
clarified in the next subsection, where the limiting
transition of the HFT to the genuine separatrices is
considered.

4.2.1. Degenerate case of the HFT. Con-
sider now what happens in our example when the
fictive sub-photospheric sources appear on the photo-
sphere. This implies that the depth of the sources d —
0 and the magnetic flux distributed over the whole
photosphere is concentrating in point-like sources. At
each non-vanishing d the configuration has a simple
arcade-like magnetic topology, while at d = 0 it ac-
quires a non-trivial topological structure shown in
Figure 4. To understand how the HFT evolves in
this limiting process, determine the HFT-boundary
with the help of Q@ = Qmax/2, where Qmax is the cor-
responding maximal value of () on the photosphere at
a fixed d. It is clear that Quax — 00 at d — 0, since
in the limiting configuration null points appear on the
photosphere. As was mentioned above, all HFTs ir-
respective of the boundary value of () have a similar
form shown in Figure 8.

This figure shows that the HFT can be considered
as formed by two intersecting layers of variable thick-
ness and width. Their cross-sections continuously
transform along the HFT as follows

S oX =X =X =\

That is the width of the intersecting layers starts from
a relatively large value (compared to the thickness) at
one of the photospheric polarities, it grows further in
the corona and shrinks abruptly to a small value at
the other polarity, where it corresponds to the thick-
ness of the other layer. Within one cross-section the
thickness of the layers has in general a maximal value
in the middle of the HFT and decreases monotonically
towards the edges of the layers.

For d — 0 the witdth of the layers is increasing
while the thickness is continuously decreasing, so that
for d = 0 they form two genuine separatrix surfaces
intersecting along the separator field line (Figure 4).
Thus the separatrix surfaces present in the d = 0 case



have to be considered as a result of a degenerated
HFT.

Since the above layers collapse to the genuine sep-
aratrix surfaces in such a limiting transition, they
should be identified with QSLs. This fits very well
to our general definition of a QSL as a flux tube
with @ > 2. Note, however, that such a flux tube
has the shape of a layer only in the major part of
the volume, while near one of the photospheric polar-
ity the high width/thickness ratio decreases abruptly
(see in Figure 8 the region of strong divergence of
the field lines in the HFT). One can also conclude
from the considered example that the magnetic sur-
face Q = const > 2 may inclose not one but two
QSLs simultaneously.

Finally, this example motivates also the following
definition: the quasi-separator is a field line of the
HFT, on which Q attains a mazimum. The quasi-
separator turns into the genuine separator when the
corresponding null points appear at the photosphere
or in the corona.

4.3. HFTs as a favourable site for magnetic
reconnection

Although intersecting separatrix surfaces are the
limiting case of an HFT, the topological argument
on the current sheet formations along these surfaces
and especially at the separator is no longer applicable
to the HFT because of its topologically trivial struc-
ture. This does not exclude, however, that the quasi-
separator plays a similar role in reconnection process
as the genuine separator. It is simply necessary to find
other arguments not based on magnetic topology. Be-
low we propose two such arguments which rely only
on geometrical and physical properties of the HFT.

First we have computed for our example the photo-
spheric distribution of the differential flux volume V'
(25). This distribution demonstrates (Figure 10) that
V has a very large gradient across the HFT-traces.
According to Schindler and Birn [1999], this should
be a sufficient condition for the development of cur-
rent layers at the HFT during a general quasi-static
evolution of the configuration.

However, quasi-static conditions may break down
in the solar corona due to a special structure of the
HFT. So it is worth to improve this approach by tak-
ing into account the dynamics. Notice first that the
Jacobian |A| has mutually inverse values at the ends
of a given field line. Therefore the corresponding ar-
eas of minimums and maximums of |A| are always
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connected to each other. Thus the |A|-distribution
identifies two pairs of short and long magnetic flux
tubes whose projection on the photosphere are ap-
proximately traced in Figure 7b by dots and pluses.
These tubes are actually a sort of ribs for the HFT as
it is seen from Figures 8 and 9, where the boundary of
the HFT and the |A|-distribution are shown together.
They are rooted with one end in the regions of strong
magnetic field and therefore are qualitatively distinct
structural elements of the configuration. Due to pho-
tospheric motion these tubes must somehow interact
with each other in the HFT. The character of such an
interaction can be appraised for the particular evolu-
tion in which the ideal plasma flow only ‘shuffles’ the
field lines in configuration without temporal variation
of the field itself. One can see from Figures 7b, 8 and
9 that such an evolution would have the following pe-
culiarity: if a field line passes from one of the above
mentioned tubes to another, so that one of its foot-
points crosses slowly the narrow HF T-trace, then its
other footpoint will sweep along the HF T-trace in the
other polarity. Figures 5 and 7b also show that the
HFT-traces connect the modelled sunspots, so that
they serve as channels through which the field lines
have an opportunity to switch from one sunspot to
another, both of the same polarity. The aspect ratio
of the HFT-traces in the considered example is of the
order of /@ =~ 103. A crossing of the HF T-trace by a
field line with a footpoint velocity v ~ 1 km/s would
require for its sweeping at the other end v ~ 103km/s
— a value comparable with the Alfvén speed in the
solar active regions. This demonstrates that the vio-
lation of the quasi-static conditions for such regions
is reached foremost in HFTs, which in turn implies
a current accumulation there and possible magnetic
reconnection as well.

4.4. Observable manifestations

The transverse magnetic field in the middle part
of the HFT has a pronounced hyperbolic structure
(Figure 9), which is a characteristic feature of recon-
nection models [Priest and Forbes, 1992; Hornig, G.
and L. Rastdtter, 1998]. MHD simulations for the
magnetic field with such a structure show a good cor-
respondence between the locations of developing cur-
rent layers and the QSLs determined by N [Milano et
al. 1999]. This suggests that the favorable place for
the development of a strong current layer and hence
for the magnetic reconnection process is the middle
part of the HFT. The energy released at this place is
channelled to the photosphere by the corresponding



field lines to produce there brightenings in H,-line.
Therefore the HFT-traces can be identified with the
H,-ribbons of solar flares — a fact which Gorbachev
and Somov [1988, 1989] explained by the presence
of the separator in the configuration. From our ap-
proach, however, it is clear that for the configurations
with the distributed photospheric field only the hy-
perbolic geometry has a real meaning, while the indi-
cated separator is no more than an artefact originated
by the auxiliary sub-photospheric point sources.

The flux tubes at the ‘ribs’ of the HF T contract to-
wards the ends of the HF T-traces, which is reflected
in the photospheric distribution of the Jacobian |A| as
well as in the 3D structure of field lines (Figures 7 and
8). This suggests a natural explanation of the bright
‘kernels’ at the ends of flare ribbons: the contraction
of the flux tubes at the ends of the HFT-traces has
to concentrate the released energy in these regions
and so to form such ‘kernels’. Gorbachev and Somov
[1989] came to the same conclusion, although their
analysis of the global field line structure was erro-
neous. They claimed that the ‘kernels’ are connected
to each other by field lines — this is impossible. As
was shown above the contraction of the flux tubes at
one end of the HFT is always accompanied by their
expansion at the other end, otherwise the flux tubes
in the HFT would not be squashed so much.

The degree of squashing depends on how the mag-
netic flux is distributed on the photosphere. It must
be higher for the configurations with well concen-
trated sources and lower in the opposite case. Due
to this dependence, the H,-brightenings of flares have
to be stronger in the ‘kernels’ or ribbons, respectively.
This property of magnetic connectivity naturally ex-
plains the observed morphological difference between
compact and two-ribbon flares.

Thus, we have demonstrated in the simplest po-
tential approximation that the existence of the rib-
bons is due to the special geometrical structure of
the HFT. Moreover, the previous investigations based
both on the norm N [Démoulin et al., 1996] and on
the squashing degree Q [Titov et al., 1999] suggest
that non-potential magnetic configurations have sim-
ilar properties.

4.5. The orthogonal parquet in a quadrupole
configuration

The distributions of @ and |A| yield the most im-
portant but not the full information about the mag-
netic connectivity in a given configuration. In partic-
ular @ and |A| do not show how the elemental flux
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tubes are arranged around the HFT to provide its
continuous embedding in the whole quadrupole con-
figuration. This information can be obtained by com-
puting the orthogonal parquet according to the above
formulated theory. The result for the example from
Figure 5 is shown in Figure 11.

The resulting pattern of orthogonal u- and v-field
lines (called also A;- and Ag-lines) has several criti-
cal points where the (u, v)-pair is not uniquely deter-
mined. These are three pairs of I-points and two pairs
of Y-points. Due to the mapping of field lines from
the region of positive to the region of negative polar-
ity each critical point has its counterpart in the other
polarity, denoted by upper indices + or —, depending
on the polarity they locate in.

The separatrix A-lines emanating from critical points
devide the plane in several regions, each of which
has its counterpart in the opposite polarity. The
corresponding regions are shaded in the same grey
halftones and for the corresponding separatrices the
same line style is used, so that dashed (solid) lines are
mapped onto dashed (solid) ones. As was shown in
Section 3.4, a pair of separatrix A\;- and Az-lines em-
anates from an I-point in opposite directions to meet
the other I-point (see the points I;E and I;E in Fig-
ure 11) or to intersect the other separatrice (see the
points If and IF). For Y-points there are alltogether
six separatrices, three of both types. They intersect
other separatrices or the polarity inversion line to di-
vide the whole plane on several domains with a simple
orthogonal parquet inside. To reduce the number of
such domains, each separatrice has been terminated
just after the first intersection with the other.

One can see from Figure 11 that the devision of the
photospheric plane in such domains is in itself rather
involved. To avoid an excessive complexity of the fig-
ure, the A-lines of the parquet are reproduced only in
the most interesting domains, i.e. those which inclose
the HFT-traces. In these domains the ()-distribution
presented earlier in Figure 7a is shown as well to in-
dicate the exact location of the HF T-traces. Every-
where else crosses indicate the directions of the vec-
tors u and v. The A-lines mapped onto each other are
shown in different polarities in the same style. This
helps to see that the long A-lines parallel to the HFT-
traces are mapped to the short A-lines perpendicular
to the HFT-traces — exactly as it follows from the
above discussed |A|-distribution.

Comparing pairs of appropriate domains, one can
clearly see how the combination of stretching, con-
traction and expansion of the flux tubes around the



HFT provides a continuous transition from this geo-
metrically complex object to a more simple surround-
ing field structure. Thus the described technique is
rather helpful for analysing magnetic configurations.

4.6. Concentrated versus distributed sources

A careful investigation of magnetic connectivity
as described above is a rather laborious matter. So
it is useful to have a simpler method for an ‘ex-
press analysis’ of the coronal field structure. The
point source model provides such a method for the
case, where a magnetogram under study has well pro-
nounced extremums of the vertical magnetic field. In
this case one can aggregate magnetic flux nearby these
extremums in the corresponding photospheric point
sources and investigate the structure of the field pro-
duced by these sources. As a matter of fact such
a simplified configuration has a non-trivial magnetic
topology due the presence of several null points. Most
of the nulls, however, will be located on the photo-
sphere and so they will disappear in a more accurate
model with a distributed photospheric field as it is
clear from the previously considered example. The
remaining nulls may shift to the corona, while some
of the dissappearing nulls give birth to bald patches,
thereby determining the topological skeleton of the
configuration [Bungey et al., 1996]. The rest of the
nulls disappearing in this transition from one model
to the other give actually rise to geometrical features.
In particular, if a pair of the disappearing nulls be-
longs to a separator as in our example, it will produce
an HFT. The separatrix spine lines and fan surfaces
of the nulls (in more detail about spines and fans see
[Priest and Titov, 1996]) helps here to anticipate the
structure of the HFT in the model with distributed
magnetic flux. Our example shows that the HFT-
traces are approximately located along the spine lines
of the source model — these are the separatrix lines ap-
proaching the nulls perpendicularly to the fan surfaces
(cf. Figures 4-8). The fan surfaces themselves do not
leave features at the places, where such a disappear-
ance of the nulls occur. Only with these reservations
the source models may be useful for investigating the
structure of the coronal magnetic field.

5. Conclusions

We have shown that the complete description of
the magnetic connectivity is given by the four metri-
cal quantities invariant with respect to the direction
of the field line mapping. Two of them are squashing
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and contraction-expansion degrees of the elemental
magnetic flux tubes. The second pair of quantities de-
termine the directions of the corresponding dilations
of the tubes on the photosphere. All four characteris-
tics can be combined in one geometrical object called
orthogonal parquet. This is a global photospheric net-
work with curvilinear rectangular cells representing
the cross-sections of the respective flux tubes at their
ends.

The singularities and discontinuities in the photo-
spheric distributions of the first two values correspond
to the topological features of the coronal field. They
reveal the genuine separatrix surfaces associated with
magnetic nulls and bald patches. The topologically
trivial regions are characterised by smooth distribu-
tions of the above values. Nevertheless, they may
contain geometrical features, namely the strongly

squashed flux tubes called quasi-separatrix layers (QSLs).

The considered example of the topologically sim-
ple quadrupole configuration has illustrated this ap-
proach ‘in action’ by demonstrating its high efficiency
in analysing the structure of coronal magnetic fields.
‘We have shown that this configuration may have a ge-
ometrical feature called hyperbolic flux tube (HFT),
which is a special combination of two QSLs. The
theoretical and observational arguments are given in
support of the HFT as a favourable site for magnetic
reconnection in solar flares.

The geometrical and topological properties of mag-
netic connectivity, that is those which are based on
the metric or are independent of it, are often con-
fused in astrophysics. This is a source of misleading
concepts and results rather than only a question of
terminology. In our approach the borderline between
the geometrical and topological descriptions is clearly
defined, which helps to see an urgent need in revising
the present mechanisms of current sheet formation in
the solar corona.
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N

Figure 1. The photospheric plane and magnetic field lines connecting positive and negative polarities, which are
separated by the inversion line (IL).

@

ry)

Figure 2. The mapping of an orthonormal basis ({14, V) by the differential dIT (a,b): the basis (u_,v_) is in
general non-orthonormal (a), but it is orthogonal for a special orientation of (i, V) (b) when |u_+v_| determines
the norm N(ry). The inverse differential dII, maps the orthonormal basis (i_, ¥_), rotated with respect to (u_, v_)
on /2, into the orthogonal basis (uy,vy) (c), so that |uy|/[vy| = [u_|/|v_| but |[uy +v | = N(IL (ry)) # N(ry).
The shaded areas show how these properties of the mappings manifest in the corresponding cross-sections of thin

flux tubes.
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Figure 3. The local structure of A;- (solid) and Ag-lines (dashed) in the vicinity of critical points of Y- (a) and
I-types (b) (see Section 3.5). The thick lines represent the corresponding separatrices.

Figure 4. The separator in the configuration with four point-like sources is a field line (the thickest solid line)
connecting two nulls N; and Ny (cf. Figure 10 in [Sweet, 1969]). The light grey semicircles represent the separatrix
fan surfaces near these nulls; the separatrix spine lines are perpendicular to the fans.
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Figure 5. The photospheric distribution of the vertical magnetic field for the point sources e; = —eg = 0.6 and
es = —eyq = 0.4 placed below the photosphere (z = 0) on the plane z = —0.1 (cf. Figure 1c in [Gorbachev and
Somov,1988]). The IL is a thick solid line.

A o8 04 0 04 08 1

Figure 6. The separator in the model of Gorbachev and Somov [1988]. The dashed lines passing through the
fictive charges and nulls V; and N, are intersections of the fictive separatrix surfaces with the plane of the charges,
while the neighboring solid lines are the corresponding intersections with the photosphere.
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Figure 7. The photospheric distributions of @ (a) and |A| (b) superimposed with the corresponding magnetogram
(Figure 5); the dots and pluses trace the vertical projection of the four interacting flux tubes on the photosphere.

Figure 8. The magnetic flux surface ) = 100 enclosing the hyperbolic flux tube. In the photospheric plane z = 0
the distribution of |A| is shown superimposed with the same magnetogram is shown as in Figure 7b
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Figure 9. The half of magnetic flux surface @ = 100 enclosing the hyperbolic flux tube. The cross-section is made
at the half-length of the field lines belonging to this surface. In the photospheric plane z = 0 the distribution of
|A| is shown superimposed with the magnetogram from Figure 7b.

.
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Figure 10. The photospheric distribution of differential flux volume V superimposed with the corresponding
magnetogram (Figure 5).
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Figure 11. The devison of the photospheric plane in domains of a simple orthogonal parquet for the configuration
from Figure 5 by A\-lines emanating from the critical Y- and I-points (see Figure 3 and Sections 3.4 and 4.5). The
linked domains are shaded in the same grey halftones. The A;-lines are dashed in the positive polarity and mapped
onto dashed Aq-lines in the negative polarity, and vice versa for the solid A-lines. A-lines of the orthogonal parquet
are plotted in the domains enclosing the HFT-traces. The separatrix A-lines are shown of larger thickness than the
normal ones. The crosses represent the directions of the corresponding u- and v-fields.



