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ABSTRACT

Context. Magnetic clouds are transient magnetic structures expulsed from the Sun that travel toward the external heliosphere carrying
a significant amount of magnetic flux and helicity.
Aims. To improve our understanding of magnetic clouds in relation to their solar source regions, we need a reliable method to
compute magnetic flux and helicity in both regions. Here we evaluate the sensitivity of the results using different models, methods
and magnetic-cloud boundaries applied to the same magnetic cloud data.
Methods. The magnetic cloud was observed by the spacecraft Wind on October 18–20, 1995. We analyze this cloud considering
four different theoretical configurations (two force free and two non-force free) that have been previously proposed to model cloud
fields. These four models are applied using two methods to determine the orientation of the cloud axis: minimum variance and
simultaneous fitting. Finally, we present a new method to obtain the axial and azimuthal magnetic fluxes and helicity directly from
the observed magnetic field when rotated to the cloud frame.
Results. The results from the fitted models have biases that we analyze. The new method determines the centre and the rear boundary
of the flux rope when the front boundary is known. It also gives two independent measurements in the front and back parts for the
fluxes and helicity; they are free of model and boundary biases. We deduce that the leading flux of the magnetic cloud had reconnected
with the overtaken solar-wind magnetic field and estimate the fluxes and helicity present in the full cloud before this reconnection.
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1. Introduction

1.1. Magnetic clouds

Solar Ejecta (SE) or Interplanetary Coronal Mass Ejections
(ICMEs) are transient structures that perturb the solar wind.
They are expelled from the Sun and travel toward the external
heliosphere, reaching the Earth’s environment when their trajec-
tories are appropriate. Depending on their magnetic field orien-
tation, they can trigger intense geomagnetic storms.

An important subset of ICMEs is known as interplanetary
magnetic clouds (MCs). These huge objects are characterized
by a strongly enhanced magnetic field intensity (with respect
to ambient values), a smooth and large coherent rotation of
the magnetic field vector, and a low proton temperature (e.g.,
Burlaga et al. 1981; Klein & Burlaga 1982; Burlaga 1991, 1995).
The global magnetic structure of an MC is a twisted magnetic
flux tube; therefore, an MC carries a large amount of magnetic
helicity.

1.2. The relevance of magnetic helicity

In the Sun, magnetic helicity is generated by the dynamo (heli-
cal turbulence and differential rotation) and it does not change its
sign with the solar cycle. In the northern hemisphere, magnetic
features have preferentially negative (left-handed) helicity, while
the southern hemispheric features show a preference for the op-

posite sign (positive, right-handed helicity), for a recent review
see Pevtsov & Balasubramaniam (2003). The magnetic helicity
injected in each hemisphere cannot be dissipated on short time
scales, such as typical flare durations, nor on the time-scale of
the solar cycle (Berger 1984). Apart from the cancellation of
helicity by reconnection between the two hemispheres and that
carried by the solar wind, the coronal helicity only can be re-
leased from the Sun by CMEs. Thus, the accumulation of mag-
netic helicity in the corona is plausibly the origin of the initia-
tion of CMEs (Low 1996; Nindos & Andrews 2004; Zhang et al.
2006).

The conservation of magnetic helicity is also a key property
that allows us to link solar phenomena with their interplanetary
counterpart (see, e.g., Mandrini et al. 2005; Luoni et al. 2005).
Presently, few works have determined the magnetic helicity in
interplanetary flux tubes, such as MCs (e.g., Dasso et al. 2003;
Nindos et al. 2003; Dasso et al. 2005a,b; Gulisano et al. 2005;
Nakwacki et al. 2005; Mandrini et al. 2005; Luoni et al. 2005).

1.3. The analyzed magnetic cloud

In this paper we analyze the magnetic cloud observed by the
spacecraft Wind on October 18–20, 1995. This cloud has been
studied by several authors (e.g., Lepping et al. 1997; Larson et al.
1997; Janoo et al. 1998; Collier et al. 2001; Hidalgo et al. 2002).
The plasma and magnetic data obtained by the Wind spacecraft



2 S. Dasso et al.: Magnetic helicity in magnetic clouds

indicate that the cloud started to cross the spacecraft at 18:58 UT,
on October 18, 1995. While the beginning of the cloud is well
defined, there is some ambiguity about the position of the end
time, taken by several authors as between October 19, 22:54 UT
and October 20, 01:38 UT. Lepping et al. (1997) and Hidalgo
et al. (2002) considered an end time at 00:00 UT, on October 20,
while Janoo et al. (1998) and Collier et al. (2001) took it as
22:54 UT, on October 19, 1995. However, Larson et al. (1997)
chose the end time of this cloud at 01:38 UT on October 20.

The orientation and the size of this cloud have been deter-
mined by Lepping et al. (1997) and Hidalgo et al. (2002). The
physical parameters (free parameters of a magnetic model) have
been fitted by Lepping et al. (1997) under the assumption of
a linear force-free field model, and by Hidalgo et al. (2002) us-
ing a non-force free model. However, a detailed comparison of
the results, in particular the magnetic helicity content, using dif-
ferent models has not yet been done.

Complementary information to understand the topology of
this cloud can be obtained by studying the electron distribu-
tion function. Impulsive electron beams with energies between
∼0.1–100 keV are good tracers of the interplanetary magnetic
field; they are supposed to come from the corona, indicating a
magnetic connection to the Sun. The cloud of October 18–20
presents different topologies: regions magnetically connected to
the Sun at both ends, only at one end, and disconnected (Collier
et al. 2001). Larson et al. (1997) have estimated the semi-length
of the magnetic field lines from in situ observations (at 1 AU) of
impulsive electron events (∼1−100 keV) and solar type III radio
bursts. From an analysis of the arrival time and the velocity of
these electrons, the semi-length of the field lines near the cen-
tre of the cloud (i.e., lines practically parallel to the cloud axis)
was estimated as ∼1.2 AU, a result consistent with a leg still
connected to the Sun.

The solar source of this MC was identified as located be-
tween two interacting solar active regions (NOAA 7912 and
NOAA 7910) by Smith et al. (1997). In a later study, based on the
analysis of the coronal soft X-ray evolution, van Driel-Gesztelyi
et al. (2000) proposed that the MC was launched from the ac-
tive region NOAA 7912. This MC was related to a C1.6 long
duration event between 5:00 UT and 20:00 UT on October 14,
1995.

1.4. The aims of the analysis

The local magnetic configuration of MCs can be modeled us-
ing a cylindrical geometry and four different approximations:
a linear force-free field (L, Lundquist 1950), a uniformly twisted
and non-linear force-free model (G, Gold & Hoyle 1960), a non
force-free model with constant current density (H, Hidalgo et al.
2000), and a non force-free model assuming a constant ax-
ial component and a linear dependence on the radius for the
poloidal component of the current density (C, Cid et al. 2002).
These four models provide significantly different helical mag-
netic configurations with very different distributions of the mag-
netic twist.

The present work is focused on the determination of the mag-
netic helicity and flux contained in the MC of October 18–20,
1995, to compare the obtained values when various models
and/or methods and/or cloud-sizes are used. We fit the physi-
cal parameters for each of the four models (L, G, H, and C).
The orientation of the tube is computed with two different meth-
ods: a minimum variance (MV) analysis and a simultaneous fit-
ting (SF) of all the parameters. We also present a new method to
compute the content of magnetic helicity and flux directly from

the magnetic observations, assuming only a cylindrical symme-
try for the observed cloud section. We find that the computation
of these quantities is very useful to improve the localization of
the cloud boundaries. Finally, we explore the sensitivity of the
results to variations of the radius of the cloud.

In Sect. 2, we briefly summarize the basic equations. Four
models of twisted flux tubes are presented in Sect. 3, where we
derive the theoretical expressions for the magnetic helicity and
flux. The results of fitting the models to the data are given in
Sect. 4. In Sect. 5, we use the new method to directly measure
the magnetic helicity and flux of the cloud. We interpret the flux
observations in terms of a magnetic shape for the MC that we
propose, and we analyze the sensitivity of the results to varia-
tions of the MC boundaries. In Sect. 6, we give our conclusions.

2. Magnetic helicity and fluxes

The relative magnetic helicity within a volume V is obtained by
subtracting the helicity of a reference field Bref having the same
distribution of the normal component Bn on the surface S sur-
rounding V (Berger & Field 1984):

H =
∫

V
A · B dV −

∫
V

Aref · Bref dV, (1)

where A is the vector potential of the magnetic field B. H is
gauge invariant (invariant in the transformation A to A + ∇ψ).
H extends the definition of magnetic helicity to magnetic con-
figurations where Bn � 0 (for example, a section of a twisted
flux tube).

Several authors have modeled the local magnetic field of
an interplanetary flux tube as a straight cylindrical structure hav-
ing a magnetic field

B(r) = Bφ(r) φ̂ + Bz(r) ẑ, (2)

(e.g., Burlaga 1988; Lepping et al. 1990; Farrugia et al. 1995;
Hidalgo et al. 2000, 2002). The magnetic field lines twist per
unit length is:

τ(r) = dφ/dz = Bφ/(rBz). (3)

We define two accumulative magnetic fluxes: axial Fz(r) and az-
imuthal Fφ(r) for a given length L along the flux tube:

Fz(r) = 2π
∫ r

0
Bz(r′)r′ dr′ (4)

Fφ(r) = L
∫ r

0
Bφ(r′) dr′. (5)

The reference field can be chosen as Bref(r) = Bz(r) ẑ (with null
magnetic helicity, since field lines are straight) and the reference
vector potential as Aref(r) = Aφ(r) φ̂ + Az(r = R) ẑ, where R is
the radius of the flux tube. Thus, the cumulative helicity per unit
length (H/L) can be written as:

H(r)
L
= 2π

∫ r

0
[BzAz + AφBφ − Aref,zBref,z]r′ dr′

= 4π
∫ r

0
AφBφ r′dr′. (6)

This last expression can be also directly derived from Eq. (16)
of Berger (1999), where Bφ and Bz are the “closed” and “open”
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field with Bn = 0 and Bn � 0 on the surface S surrounding the
cylindrical section of length L, respectively.

The component Aφ of the vector potential can be written as
a function of the magnetic flux (Fz) across a surface perpendic-
ular to the cloud axis as:

Aφ(r′) =
1
r′

∫ r′

0
r′′Bz(r

′′) dr′′ =
Fz(r′)
2πr′

,

and, thus, the relative helicity can be computed as an integral
of Bφ, weighted with the accumulative axial flux Fz:

H(r)
L
= 2

∫ r

0
Bφ(r′)Fz(r′) dr′. (7)

Equation (7) can be used to estimate the helicity directly from
the magnetic field observations (Sect. 5.3).

3. The four analyzed models

In the magnetohydrodynamic (MHD) framework, the magnetic
configuration of an MC can be obtained from the balance be-
tween the magnetic Lorentz force and the plasma pressure.
Several magneto-static models have been used to describe the
magnetic configuration of MCs.

When the plasma pressure is negligible compared to the
magnetic pressure, the configuration is called “force-free” be-
cause the magnetic self-force is null (and so, B is parallel to the
electric current density, j), and the magnetic pressure is balanced
by the tension of the curved magnetic field lines. The “linear-
force-free” field is a sub-set of solutions from the previous set,
which satisfies ∇×B = αB, with α constant in space. In this sec-
tion we present four different cylindrical models, two force-free
(one linear and one non-linear) and two non force-free.

For the two non force-free models we set the condition
Bz(r = R) = 0 in order to keep the same number of degrees of
freedom as with the force-free models (two degrees of freedom,
B0 and τ0, for a fixed radius of the tube). For a more general
case, including Bz(r = R) � 0, see Dasso et al. (2005b).

3.1. Linear force-free field

The axially symmetric magnetic field corresponding to a lin-
ear force-free configuration was obtained by Lundquist (1950).
It has been shown that this solution is consistent with in situ
measurements of interplanetary magnetic flux tubes at 1 AU
(Burlaga et al. 1981; Burlaga 1988; Lepping et al. 1990). Thus,
the field of MCs is often relatively well modeled by

BL = B0,L [J1(αr) φ̂ + J0(αr) ẑ], (8)

where Jn is the Bessel function of the first kind of order n,
and B0,L is the strength of the field at the MC axis.

The magnetic field line twist per unit length (Eq. (3)) is
τL(r) = J1(αr)/(rJ0(αr)). The constant α determines the twist
at the flux tube axis, τ0,L = τL(0) = α/2. The axial magnetic
flux (Eq. (4)) is given by: Fz,L = 2πB0,LRJ1(αR) /α. It has been
shown that Lundquist’s solution extended to the first zero of J0
is enough to describe the magnetic structure of some MCs (e.g.,
Lepping et al. 1990). In these cases Fz,L ∼ 1.4B0,LR2. However,
Vandas & Geranios (2001) showed that there are some MCs that
seem to be better described using Lundquist’s solution beyond
the first zero of J0. The azimuthal magnetic flux (Eq. (5)) is
given by: Fφ,L = Fφ(R) = LB0,L (1 − J0(αR)) /α.

We obtain the relative helicity per unit length from Eq. (6),
taking A = B/α:

HL

L
=

4πB2
0,L

α

∫ R

0
J2

1 (αr) r dr

=
4π
U2

[
J2

0(U) + J2
1(U) − 2J0(U)J1(U)

U

]
B2

0,LR4τ0,L, (9)

where U = 2τ0,LR is a dimensionless quantity. When the bound-
ary of the cloud is such that αR ∼ 2.405, i.e. the first zero of J0,
HL/L ∼ 0.7B0,LR3 (Démoulin et al. 2002). The last expression
of Eq. (9) emphasizes that HL/L has the units of a magnetic flux
square ((B0,LR2)2) multiplied by a twist per unit length (τ0,L).

3.2. Uniformly twisted field

A non-linear force-free field with a uniform twist has been used
to model interplanetary flux tubes (e.g., Farrugia et al. 1999). For
this configuration, B is given by Gold & Hoyle (1960):

BG = B0,G

[
b r

1 + b2r2
φ̂ +

1
1 + b2r2

ẑ
]
. (10)

In this magnetic configuration, the twist is independent of r:
τG(r) = τ0,G = b. The axial flux is: Fz,G = B0,Gπ ln(1+b2R2)/b2,
and the azimuthal flux is: Fφ,G = B0,GL ln(1 + b2R2)/(2b).

From Eq. (6), and

AG = B0,G
ln(1 + b2r2)

2b

(
1

b r
φ̂ − ẑ

)
,

the relative helicity turns out to be:

HG

L
=
πB2

0,G

2b3
[ln(1 + b2R2)]2

=

(
8π[ln(1 + U2/4)]2

U4

)
B2

0,GR4τ0,G, (11)

where U = 2τ0,GR as in the previous model.

3.3. Constant current field

A non force-free model has been proposed by Hidalgo et al.
(2000, 2002) to describe MCs. This model assumes a constant
current density such as j(r) = jφ φ̂ + jz ẑ, where jφ and jz are
constants. The magnetic field is:

BH = B0,H [τ0,Hr φ̂ + (1 − r/R) ẑ], (12)

where B0,H is the field at the centre of the tube and τ0,H is the
magnetic field line twist at the tube centre. Thus, Bz(r = R) = 0.

The twist distribution is τH(r) = τ0,H(1 − r/R)−1. The ax-
ial flux is Fz,H = πB0,HR2/3, and the azimuthal flux is Fφ,H =

B0,HR2Lτ0,H/2. The relative helicity per unit length is:

HH

L
=

7π
30

B2
0,HR4τ0,H . (13)

3.4. Linear azimuthal current

A cylindrical magnetic configuration with a current density such
as: j(r) = ar φ̂ + jz ẑ, with a and jz constants, has been pro-
posed for magnetic clouds by Cid et al. (2002). This structure
has a magnetic field distribution given by:

BC = B0,C [τ0,Cr φ̂ + (1 − r2/R2) ẑ], (14)
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where B0,C is the field at the centre of the flux tube and τ0,C is
the twist at the axis.

The twist distribution is τC(r) = τ0,C(1 − r2/R2)−1. The ax-
ial flux is Fz,C = B0,CR2π/2, and the azimuthal flux is Fφ,C =

B0,CR2Lτ0,C/2. The relative helicity per unit length is:

HC

L
=
π

3
B2

0,CR4τ0,C . (15)

4. Modeling the magnetic cloud

4.1. The cloud coordinate system

In situ measurements of the magnetic field vector components
are obtained along the trajectory of the spacecraft. Since the
speed of an MC is practically in the Sun-Earth direction and it is
much larger than the spacecraft speed (which can be supposed to
be at rest during the cloud transit time), we assume a rectilinear
spacecraft trajectory in the cloud frame. We analyze the three
components of the magnetic field measured in GSE (Geocentric
Solar Ecliptic) coordinates. In this system of coordinates, x̂GSE
corresponds to the Earth-Sun direction, ẑGSE points to the North
(perpendicular to the ecliptic plane) and ŷGSE is such that the
system is right handed.

It is useful to define a local system of coordinates linked to
the cloud in which ẑcloud is along the cloud axis (with Bz,cloud >
0). To associate the cloud axis direction with the GSE system,
we define the latitude angle (θ) between the ecliptic plane and
the cloud axis (oriented as ẑcloud), as well as the longitude an-
gle (ϕ) between the projection of the axis on the ecliptic plane
and the Earth-Sun direction (x̂GSE) measured counterclockwise.
Accordingly θ is such that when θ = 90◦ (θ = −90◦) the cloud
axis is parallel to ẑGSE and it points to the ecliptic North (South).
When θ = 0◦ the cloud axis is on the ecliptic plane, ϕ = 0◦ being
the case of the axial field pointing toward the Sun, and ϕ = 90◦
(ϕ = 270◦) when it points to the terrestrial dusk (dawn).

The rectilinear trajectory of the spacecraft defines a di-
rection d̂; then, we define ŷcloud in the direction ẑcloud ×
d̂ and x̂cloud completes the right-handed orthonormal base
(x̂cloud, ŷcloud, ẑcloud). We also define the impact parameter, p, as
the minimum approach distance from the spacecraft to the cloud
axis. Then, we construct a rotation matrix from the GSE system
to the cloud system, and obtain the components of the observed
magnetic field in the cloud coordinates: Bx,cloud, By,cloud, Bz,cloud.

The local system of coordinates is especially useful when p
is small compared to the MC radius. In particular, for p = 0
and an MC described by a cylindrical magnetic configuration
B(r) = Bz(r)ẑ + Bφ(r)φ̂, we have x̂cloud = r̂ and ŷcloud = φ̂ when
the spacecraft leaves the cloud. In this case, the magnetic field
data obtained by the spacecraft will show: Bx,cloud = 0, a large
and coherent variation of By,cloud (with a change of sign), and
an intermediate and coherent variation of Bz,cloud, from low val-
ues at one cloud edge, taking the largest value at its axis and
returning to low values at the other edge.

4.2. Minimum variance method

It is possible to estimate the orientation of an MC applying the
minimum variance (MV) method to the magnetic observations
when p is small compared to the cloud radius. This method finds
the directions (n̂) in which the mean quadratic deviation of the
field, 〈(B · n̂ − 〈B · n̂〉)2〉, is minimum and maximum, as well
as the orthogonal direction to both. It is possible to show that
this is equivalent to finding the eigen-vectors of the covariance

matrix Mi, j = 〈BiB j〉 − 〈Bi〉〈B j〉 (Sonnerup & Cahill 1967). This
symmetric and real matrix has three real eigen-values with or-
thogonal eigen-vectors.

The MV method determines the MC axis direction, ẑcloud,
as the eigen-vector associated with the intermediate eigen-value.
The eigen-vector associated with the lowest eigen-value is ex-
pected to be close to the direction that results from the projection
of the spacecraft trajectory on the plane perpendicular to ẑcloud.
In particular, in the cloud analyzed in this paper (see Sect. 4.4)
this spacecraft trajectory projection and this eigen-vector dif-
fer by less than ∼6◦, compared to the mean value when differ-
ent boundaries are chosen for the cloud (Sect. 4.6). The eigen-
vector associated with the highest eigen-value closes the system
such that it is right handed. A more complete discussion of the
MV method applied to interplanetary flux tubes can be found in
the appendix of Bothmer & Schwenn (1998).

4.3. Fitting the physical parameters

From the observed bulk velocity of the interplanetary plasma,
we transform the observed time series, Bobs(t), to a spatial series,
Bobs(x), along x̂GSE. Assuming a local invariance by translation
along the MC axis and for a given orientation of this axis, the
data are transformed to a series along x̂cloud. Further, assuming
a cylindrical symmetry, and for a given impact parameter p, we
can write the field as a function of the spacecraft distance to the
MC axis, r, then we obtain the series Bobs(r). We define a resid-
ual function (χ2), comparing Bobs(r) with Bmodel(r), for each of
the models described in Sect. 3, such that:

χ2 =
1
N

N∑
i=1

[(Bi
x,obs − Bi

x,model)
2

+ (Bi
y,obs − Bi

y,model)
2 + (Bi

z,obs − Bi
z,model)

2], (16)

where i labels the time and N is the number of data points. We
minimize χ2 using the standard non-linear least-square fitting
Levenberg-Marquardt routine (Press et al. 1992).

We use two methods which differ in the number of free
parameters in the χ2 minimization. The first method takes the
orientation angles, θ and ϕ, from the MV method. The im-
pact parameter p is assumed to be zero and we fit the two free
parameters of the models (B0 and τ0, Sect. 3). The results of this
method are labeled simply with MV.

In order to test the validity of the MV method, and to deter-
mine p, the second method simultaneously fits (SF) the orienta-
tion angles (θ, ϕ), the impact parameter (p), and the two physi-
cal parameters (B0 and τ0). The equations for the SF method are
given in Hidalgo et al. (2002).

4.4. The data in the cloud frame

Figure 1 shows the magnetic field components, the bulk velocity
and the proton density for an extended range of time around the
magnetic cloud. In each panel, the dashed line shows the begin-
ning of the magnetic cloud (18:58 UT, October 18, 1995), while
the two dash-dotted lines mark the range of possible final bound-
aries (from 22:54 UT, October 19 to 01:38 UT, October 20).

We select an end boundary at 00:00 UT on October 20 to
apply the MV method; with this boundary we obtain θ = −2◦
and ϕ = 288◦ (with a radius R = 0.13 AU). The flux tube axis is
almost on the ecliptic plane and perpendicular to the Sun-Earth
direction. Choosing different final boundaries inside the range
marked by the two dash-dotted lines in Fig. 1, we obtain very
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Fig. 1. Wind observations for the magnetic cloud observed on
18–20 October, 1995 (one minute cadence). From the upper to the lower
panel: radial (Bx,cloud), azimuthal (By,cloud), and axial (Bz,cloud) compo-
nents of the magnetic field (local coordinates, as deduced from the
MV), bulk velocity (V), and proton density (np), as a function of time
(in hours, after 00:00 UT, October 18, 1995). Dashed lines mark the
front boundary of the cloud (18:58 UT, October 18, 1995). Between
dash-dotted lines we mark the range of possible ends of the cloud
(October 19, 22:54 UT and October 20, 01:38 UT).

similar orientations for the cloud axis (the angles are modified
by less than 5◦).

The MV analysis gives a ratio between the intermediate and
the minimum eigen-values ≈7, so that the MC axis is well de-
fined. This is confirmed by the SF method which gives a similar
orientation (with, at most, 7◦ difference to the MV result).

The fact that Bx,cloud in Fig. 1 fluctuates around zero is con-
sistent with a trajectory of Wind almost intersecting the cloud
axis (p 	 R). In the second and third panels we have the typ-
ical behavior of the azimuthal (By,cloud, global largest variance)
and axial (Bz,cloud, global intermediate variance) magnetic field
components of a cylindrical flux rope, as described in Sect. 4.1.

The bulk velocity profile (fourth panel) shows that this cloud
is not expanding, it travels with an almost constant velocity of
∼400 km s−1. A shock front is present ∼8 h ahead of the cloud
(10:42 UT, October 18). This shock was produced because the
speed of the leading boundary of the cloud relative to the so-
lar wind is greater than the magneto-acoustic speed (Lepping
et al. 1997). Accordingly, the proton density (bottom panel) is
high between the shock and the outer front of the cloud imply-
ing the consequent accumulation of material at its front. From
a 4 minute time cadence analysis, Lepping et al. (1997) showed
that there is a tangential discontinuity with a magnetic hole at
the leading boundary of the magnetic cloud.

4.5. Comparative analysis of the different models

Figures 2 and 3 show the magnetic observations together with
the fitted curves corresponding to the four models and the
MV method. The curves from the SF (not shown) are similar.
Close to the centre of the cloud models L, G, and H overesti-
mate Bz,cloud, while model C rather overestimates Bz,cloud near
the cloud boundaries. In the case of model H, a triangular profile
is present for the magnetic field computed along any rectilinear
trajectory that crosses the flux tube axis (p = 0, see dotted curve
in Fig. 2). In Fig. 3, the two non-force free models (H and C)

0 5 10 15 20 25 30
−10

−5

0

5

10

15

20

25

30

B
z cl

ou
d (

nT
)

Time after 18−Oct−1995 18:58 (Hours in UT)

L

G

H

C

Fig. 2. Axial component, Bz,cloud, of the cloud magnetic field (local coor-
dinate system from MV) as a function of time (in hours, after 18:58 UT,
October 18, 1995). Dots correspond to the observed field (temporal ca-
dence of one minute), solid line to the Lundquist model, dashed line
to the Gold-Hoyle model, dotted line to the Hidalgo model and dash-
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Fig. 3. Field component in the direction orthogonal to both the space-
craft trajectory and the MC axis. By,cloud is the azimuthal component of
the magnetic field with the hypothesis of negligible impact parameter.
The plotting convention is the same as in Fig. 2.

are represented by the same straight line, which gives only the
global behavior of By,cloud. The two force-free models (L and G)
underestimate |By,cloud| near the cloud boundaries.

According to the χ2 values (Table 1), the quality of the fit,
in decreasing order, is: C, H, L and G models for both MV and
SF methods. This confirms the visual inspection of Figs. 2 and 3.
However, we have to be cautious when making this comparison
because in models L and G, Bz is not forced to be zero at the
cloud boundary, while this is the case in models H and C to keep
the same degrees of freedom between models. Finally, as ex-
pected, a better quality fit is obtained with a SF in all four cases.

The SF method gives a way to estimate the impact parame-
ter p, which is of the order of 10% of the MC radius, while the
orientation remains almost the same. This result, as well as the
large angle of rotation of the magnetic vector seen on the vari-
ance plane (larger than ∼180◦, not shown), justifies the use of
p = 0 in the MV method.

The orientation of the magnetic cloud is well determined,
being the maximum deviation in θ of 4◦ and in ϕ of 6◦. This,
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Table 1. Results from fitting of the geometrical and physical parameters for the magnetic cloud of October 18–20, 1995, choosing the end time
as 20-October-1995 00:00 UT (i.e., at t = 29 in Figs. 2, 3, 5). The first four rows correspond to the orientation given by the minimum variance
method (MV, Sect. 4.2), while the next four to a simultaneous fit (SF, Sect. 4.3). The next two rows are the mean and the maximum deviation from
the mean of the parameters found with the eight above models and methods. The bottom three rows give the results of the direct method for the
in-bound and out-bound parts of the flux rope, and the full back part of the MC (see Sect. 5.4). L, G, H, C refer to the Lundquist, Gold-Hoyle,
Hidalgo et al. and Cid et al. models, respectively, and D to the direct method. The geometrical parameters are: the angle (θ) between the axis of
the tube and the ecliptic plane (i.e., its latitude), the angle (ϕ) between the projection of the cloud axis on the ecliptic plane and the x-axis of GSE
(i.e., its longitude), the flux tube radius (R), and the impact parameter (p) measured in units of R. The two physical parameters of the models are:
the twist angle per unit length (τ0) and the intensity of the field (B0), both computed at the cloud axis. The quality of the fitting is given by the
square root of χ2 (Eq. (16)). Finally, we give the axial magnetic flux (Fz) and quantities defined per unit length along the cloud axis: the azimuthal
magnetic flux and magnetic helicity (Fφ/L and H/L).

Model θ ϕ R p/R τ0 B0

√
χ2 Fz Fφ/L H/L

-Method AU AU−1 nT nT 1021 Mx 1021 Mx/AU 1042 Mx2/AU
L-MV –2 288 0.13 0 9.6 24.3 8.1 1.15 2.98 4.6
G-MV –2 288 0.13 0 14.9 26.0 8.7 1.32 3.06 4.1
H-MV –2 288 0.13 0 9.0 22.6 6.3 0.94 3.87 5.3
C-MV –2 288 0.13 0 11.4 17.9 6.1 1.12 3.88 6.0
L-SF 5 288 0.13 0.11 9.5 24.9 7.4 1.20 3.05 4.9
G-SF 4 295 0.13 0.03 15.4 26.4 8.0 1.23 3.11 3.7
H-SF 4 285 0.14 0.12 8.4 23.9 5.5 1.03 4.43 6.0
C-SF 4 289 0.13 0.09 11.1 18.4 5.4 1.14 3.88 6.1
mean 1 289 0.13 0.04 11.2 23.1 1.14 3.53 5.1
deviat. 4 6 0.01 0.08 4.2 5.2 0.20 0.90 1.2
D-MV in –2 288 0.13 0 0.86 2.50 2.6
D-MV out –2 288 0.13 0 0.51 2.50 1.3
D-MV back –2 288 0.13 0 0.68 5.80 5.4

together with an always low impact parameter, implies that
the geometry of the crossing is similar in all cases. Then, for
fixed MC boundaries, the determined radius varies very little
(Table 1).

We compare our results with those of previous works that
used the same start and end times. Lepping et al. (1997) found
θ = −12◦, ϕ = 291◦, p/R = 0.08, τ0 = 8.9 AU−1, B0 = 25.6 nT,
using the linear force-free field model (L) but fitting a magnetic
field normalized to unity at each position. These authors fitted
hourly averaged magnetic observations and forced Bz to be null
at the cloud boundaries. Hidalgo et al. (2002), using model H,
found θ = −16◦, ϕ = 282◦, p/R = 0.15, τ0 = 7.7 AU−1,
B0 = 24.3 nT, fitting the toroidal and poloidal components of
the current (equivalent to our fit of B0 and τ0). These authors an-
alyzed hourly averaged GSE components of the magnetic field.
These small differences between our results and those of previ-
ous works are due to the different time cadence and minimization
methods used.

From Table 1, we see that the largest difference between
models is found for the parameter τ0, as its relative maximum de-
viation is ∼38% (compared to ∼23% for B0). However, the mag-
netic field line twist distribution is strongly model dependent.
In the Gold-Hoyle model the twist is constant, in the Lundquist
model it is mostly distributed in the periphery of the tube, in
the Hidalgo model it depends inversely on the distance to the
boundary ((1 − r/R)−1), while in the Cid model it depends on
(1−r2/R2)−1. This implies that the obtained values for τ0, a local
quantity, are not directly comparable between different models.
A pertinent comparison can only be done using a global quantity,
such as the magnetic helicity.

For the estimated fluxes and helicities we have a bias: the
largest axial fluxes, Fz, are obtained with the two force-free mod-
els, while the largest azimuthal fluxes and helicities are given by
the non-force free models. So the estimated global quantities,
Fz, Fφ/L,H/L, have a maximum deviation from the mean of 18,
25 and 28%, respectively.
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Fig. 4. Axial magnetic field (B0), axial twist per unit length (τ0),
fluxes (Fφ/L and Fz) and helicity (H/L), for the different chosen end
times, as a function of the corresponding estimated MC radius R (see
Sect. 4.6). Asterisks and solid line correspond to model L, triangles
and dashed line to model G, X-symbol and the dotted line to model H,
the O-symbol and dot-dashed line to model C. The vertical dashed
line shows the end boundary of the magnetic cloud set on October 19,
22:54 UT. The radius range corresponds to the 21 equi-spaced end
boundaries chosen between October 19, 17:31 UT and October 20,
01:38 UT.

4.6. Effects of the boundary selection

The end time of this MC is not well defined and different val-
ues have been considered (Sect. 1.3). We repeat the fittings (MV
and SF) but change the end time from October 19 at 17:31 UT to
October 20 at 01:38 UT. We provide the reasons to exploring this
extended range of times in Sect. 5. Changing the end time im-
plies some modifications in the cloud orientation and the radius,
as well as in the determined physical parameters.
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Taking the mean value as reference (for the 4 models), to
change the back boundary to the range used in Fig. 4 introduces
a maximum relative change of ±35% in τ0 and of ±20% in B0.
The above changes of the fitted parameters have implications for
the estimation of the fluxes and helicity, but, since they are ex-
tensive quantities, they are more affected by the flux tube radius
(which depends directly on the selection of the end time). Both
fluxes and helicity show a nearly linear dependence on R (Fig. 4).
We find a maximum relative change (relative to the mean value)
of ±50% in Fz, ±40% in Fφ/L, and ±75% in H/L. In particu-
lar, H depends strongly on the radius (see Eqs. (9), (11), (13),
and (15)) and, as found, we expect the largest variations for its
value.

The time interval explored for the back boundary is about
3 times larger than the time interval given by the fixed values
chosen as the back boundary by the different previous authors
(Sect. 1.3). Taking the previous authors’ interval, the changes
in the magnitudes are about a factor of 2 lower than using our
extended time interval (the changes can be seen in Fig. 4 be-
tween the dashed line and the right end of the plot). More pre-
cisely, for the previous authors’ interval we find a relative change
of ∼±25% in Fz, ∼±20% in Fφ/L, and ∼±35% in H/L. These
variations are comparable to the relative changes introduced
when changing fitting methods and models (relative change
of ±18% in Fz, ±25% in Fφ/L, and ±28% in H/L from Table 1).

5. Helicity and fluxes with the direct method

5.1. Determination of the MC centre and boundary directly
from observations

Below we use ∇ · B = 0 and the local invariance of B along the
MC axis to define the centre and rear boundary of the twisted
flux tube present in the MC.

Previous investigations of MCs (see Sect. 1), as well as the
present one, concluded that they are formed by a twisted mag-
netic flux tube (or flux rope). Its magnetic field has two com-
ponents: a longitudinal one (parallel to the MC axis) and an az-
imuthal one. Let us cut the flux rope once by a generic plane P,
and let us compute the magnetic flux crossing P. The longitudi-
nal component cuts P in only one sense and, thus, its flux con-
tributes a given sign, but the azimuthal component has both posi-
tive and negative flux contributions of equal absolute magnitudes
across this plane. In order to have only the azimuthal flux and to
include the data, below we define P as that plane formed by the
spacecraft trajectory and ẑcloud. Then, we have:∫

flux rope
By,cloud dx dz = 0, (17)

with x, z being the spatial coordinates in the x̂cloud and ẑcloud di-
rections, respectively.

The magnetic field is expected to change significantly along
the MC axis on a scale of a few AUs, which is much larger than
its radius (≈0.1 AU). The global radius of curvature of the MC
is also expected to be a few AUs. Then, the hypothesis of a local
symmetry by translation along the MC axis is well justified (in
particular when data are fitted with models, see Sect. 3). With
this hypothesis, Eq. (17) reduces to:∫

flux rope
By,cloud dx = 0, (18)

whatever the precise shape of the MC cross section is (so
compared to Sect. 3, we relax the hypothesis of cylindrical
symmetry).
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Fig. 5. Accumulative flux of By,cloud (thick solid line) starting from the
leading boundary of the cloud. Thin solid line shows By,cloud as a refer-
ence (in arbitrary units). The times of minimum and null flux accumu-
lation are marked with vertical dashed lines.

If one MC boundary is known, the above flux balance prop-
erty can be used to find the MC centre and the other boundary as
follows. We define the accumulative flux per unit length

Fy(x)

L
=

∫ x

Xin

By,cloud(x′) dx′, (19)

where Xin is the position of the known boundary (the front one
in the present case). The position where Fy(x)/L has its absolute
extremum gives an estimation of the x position of the MC centre.
This estimation is more precise as the impact parameter is lower.
Then, when Fy(x)/L goes back to zero at x = Xout, we have the
other boundary. The region from x = Xin to x = Xout defines the
MC flux rope.

The accumulative flux Fy/L is shown in Fig. 5 (thick solid
line), together with the observed By,cloud component (thin solid
line). Vertical dashed lines mark the time at which Fy/L reaches
the minimum (October 19, 07:26 UT) and the time when the flux
cancels (October 19, 17:37 UT). They correspond to the centre
and the rear boundary of the MC flux rope, respectively.

We note that around the time of the defined centre (±2 h)
a well defined sub-structure is present in By,cloud. This sub-
structure is globally anti-symmetric, which is a confirmation of
the above determination of the flux rope centre from global flux
balance. It also indicates the presence of a specific twist profile in
the centre of the main flux rope. Even more striking, the flux bal-
ance determines the rear boundary of the flux rope where there
is a discontinuity of By,cloud. This is a confirmation of the rear
boundary location since a current sheet, so a discontinuity of B,
is expected at the boundary of two different magnetic structures
(e.g. Aly 1990).

An alternative interpretation of this discontinuity has been
proposed by Collier et al. (2001). These authors suggested that
it is due to an internal shock traveling approximately along the
cloud axis. The origin of the shock is supposed to be magnetic
reconnection occurring close to the solar surface. With this in-
terpretation, the flux balance determined above is only a coinci-
dence. Our results rather support that this discontinuity is consis-
tent with the presence of a time-dependent current sheet which
separates the flux rope from the open field structure at the back
part of the cloud. We further justify this below.
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Fig. 6. Schematic 2D view of the magnetic cloud embedded in the so-
lar wind near the Sun (top) and during the spacecraft passage at 1 AU
(bottom). Because the MC is faster than the surrounding solar wind and
their magnetic fields form a large angle (anti-parallel in the scheme),
reconnection is forced in front of the MC (see Sect. 5.2). The horizontal
dashed line in the bottom figure indicates the spacecraft trajectory.

5.2. The structure of the magnetic cloud

The previous analysis of Fy/L shows that this MC is not simply
formed by a flux rope. We summarize below the most plausible
physical scenario to create such magnetic structure: reconnec-
tion between the original flux rope and the solar wind magnetic
field. This scenario is coherent with all our results (Sect. 5.4),
but we cannot rule out other possibilities such as reconenction
closer to the solar surface (coronal observations are not stringent
enough, Luoni et al. 2005).

Some of the MC characteristics, such as the low magnetic
variance and the low proton temperature, continue well after the
rear boundary of the flux rope (Lepping et al. 1997). Indeed,
the accumulative Fy/L shows a strong change in the slope at
01:36 UT on October 20 (36 min after the tick at 30 h on the
abscissa of Fig. 5), which was almost the back boundary chosen
by some authors (Sect. 1.3). The fact that a portion of the back
of the MC maintains the characteristics of a classical cloud, as
well as a larger unbalanced flux, is unusual and was not noticed
in previous works.

We interpret the lack of flux cancellation in the rear portion
of the MC as evidence of a magnetic structure connected with
solar wind field lines, which in the past formed the periphery of
a larger flux rope. The top panel of Fig. 6 shows a 2D scheme of
the initial magnetic configuration. It is formed by a flux rope em-
bedded in a solar wind environment having the conditions that
favor reconnection at the front of the MC as the flux rope over-
takes the wind field. The bottom panel shows a possible result
of magnetic reconnection between the MC and the solar wind

field lines. Vandas et al. (1995) and Schmidt & Cargill (2003)
have done MHD simulations of this process in comparable but
different configurations: in a Parker spiral field with an MC axis
orthogonal to the ecliptic, and in a radial unipolar solar wind or
in a radial current-sheet with an MC, respectively.

The magnetic field in the MC front is mostly directed north-
south (Fig. 1 of Janoo et al. 1998). If this field is pushed against
a field with a significantly different direction, like the solar wind
magnetic field dominant in the ecliptic plane, it will recon-
nect with it. Indeed, our Fig. 1 shows a sudden change of the
bulk velocity at the upstream shock occurring at 10:42 UT on
October 18, from ∼320 km s−1 before the shock to ∼400 km s−1

after, indicating a significant relative velocity between the cloud
(plus its sheath) and its environment during the early stage of its
travel from the lower corona to 1 AU. This fact favors the re-
connection process because its efficiency increases with the rel-
ative velocity between the cloud and the solar wind (Schmidt &
Cargill 2003). In low density plasmas, such as those found in the
interplanetary medium, numerical simulations show that the Hall
effect can significantly increase the reconnection rate over the
classical rate (e.g., Morales et al. 2005). Furthermore, Farrugia
et al. (2001) found that magnetic holes, such as that preced-
ing the cloud analyzed here, can be a signature of magnetic re-
connection. Thus, assuming a reconnection process in the cloud
front, part of the flux in the front will be removed and will not be
observed by a spacecraft crossing the cloud centre. However, the
available data do not allow us to localize the reconnection site
during the cloud travel from the Sun to the spacecraft.

What are the major implications for the reconnected field
lines and the remnant flux rope? First, the magnetic stress is able
to decrease because of the propagation of Alfvén waves from
the MC into the solar wind along the new reconnected field lines.
This decreases Bz,cloud at the back of the MC as the reconnected
field lines tend to straighten. However, the flux of By,cloud cannot
decrease since it would need a further reconnection with almost
parallel magnetic fields (located further inside the MC). In order
to compensate the decrease of Bz,cloud in the magnetic pressure,
By,cloud has to increase. Furthermore, the new reconnected field
lines are linked to the solar wind at the back of the MC where
a faster stream is present (Lepping et al. 1997). All these effects
imply a compression of the back of the MC, with an expected
effect also on the back of the remnant flux rope. In conclusion,
the front reconnection makes the MC asymmetric, not only in
flux but also in field strength.

5.3. Quantification of global magnitudes using
the direct method

In this section we show how the direct method can be used to
compute the magnetic fluxes (axial and azimuthal) and the he-
licity per unit length directly from the observed magnetic time
series. These computations are done as a function of the x coor-
dinate along the projection of the spacecraft trajectory orthogo-
nal to the MC axis. This requires us to transform the magnetic
data in the cloud frame (Sect. 4.1). Three hypothesis are needed:
the local invariance along the cloud axis, the cylindrical symme-
try and a moderately low impact parameter (p/R <∼ 0.3, see last
paragraph of this section).

The centre of the flux rope is defined at the time when Fy/L
is minimum (Sect. 5.1, Fig. 5), and we set the coordinate origin
there (x = 0). Then, we split the time series of B in two subseries
for By,cloud and Bz,cloud. The first subseries corresponds to the in-
bound path (the path when the spacecraft is going toward the
centre of the cloud, x < 0) and the second to the out-bound
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path (when the spacecraft has reached the minimum distance to
the cloud axis and is going out the MC, x > 0). Differences in
the results obtained with these two branches are due to the non-
cylindrical symmetry of the flux rope, and also to the systematic
bias due to reconnection of part of the MC flux with the solar
wind magnetic field (Sect. 5.2).

The spacecraft trajectory approaches the MC axis up to the
minimum distance p, so we are only able to evaluate the follow-
ing quantities on the out-bound path:

Fz,e(x) ≡ 2π
∫ x

0
Bz(x′)x′ dx′

= 2π
∫ r

p
Bz(r′)r′ dr′ = Fz(r) − Fz(p) (20)

Fy,e(x)

L
≡

∫ x

0
By,cloud(x′) dx′

=

∫ r

p
Bφ(r′) dr′ =

Fφ(r) − Fφ(p)

L
(21)

He(x)
L
≡ 2

∫ x

0
By,cloud(x′)Fz,e(x′) dx′

≈ 2
∫ r

p
Bφ(r′)Fz(r′) dr′ =

H(r) − H(p)
L

, (22)

where the position x corresponds to the radius r (taken from the
centre of the flux rope). The definitions of Fz,e, Fy,e/L, and He/L
(with the symbol ≡) involve only available data in the MC frame.
The following equalities (or approximation for He/L) give the
interpretation of these quantities supposing a cylindrical sym-
metry. For the in-bound path the expressions are the same ex-
cept that integral limits, [0, x], are simply replaced by [x, 0]
(with x < 0).

If the impact parameter is finite, the core of the flux rope is
not present in the data, so the fluxes and helicity will be under-
estimated. Since Bz ≈ B0 and Bφ ≈ B0τ0r in the core (r 	 R),
the relative underestimation of both fluxes given by Eqs. (20)
and (21) is of the order of (p/R)2 compared to the fluxes given
by Eqs. (4) and (5). If Fz is known, the underestimation of the
helicity in the core is of the order of (p/R)4; however, an un-
derestimation of Fz (a cumulative magnitude from r = 0) by
using Fz,e is present in the integral, and it increases the underes-
timation to the order (p/R)2. Then, the underestimation of both
global fluxes and helicity is of the order of (p/R)2 ≈ 1% for
the October 18 MC. This is much smaller than the uncertainties
present on these quantities (e.g. the difference between the in and
out-bound values), and we neglect them below.

We note that, for MCs observed with a higher p/R, a correc-
tion can be added by using a fitted model (Sect. 3) as follows.
The simultaneous fit of the model parameters to the data lets us
estimate the impact parameter p, as well as an extrapolation of
the magnetic field in the unobserved core (Sect. 4.3). This ex-
trapolated field can be used to estimate Fz(p), Fφ(p) and H(p)
in Eqs. (20)–(22), and so to add a correction for the unobserved
core.

5.4. The computed fluxes and helicity values

In this section, we present the results obtained with the direct
method applied to the MC of October 18–20, 1995. Each result is
first described, and then interpreted within the physical scenario
of Sect. 5.2.

The accumulative flux Fy,e(x)/L, shown in Fig. 7, is asym-
metric in x between the in-bound (solid line) and the out-bound
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Fig. 7. Accumulative azimuthal flux per unit length (Fy,e/L ≈ Fφ,e/L,
in 1021 Mx/AU), axial flux (Fz,e , in 1021 Mx), and magnetic helicity per
unit length (He/L, in 1042 Mx2/AU), as function of |x| where x is the
coordinate along the projection of the spacecraft trajectory orthogonal
to the MC axis. The location of the MC centre was chosen at 07:26 UT
on October 19 (Sect. 5.1). The solid vertical line shows the position
of the front of the MC (at x = Xin) and the dotted vertical line the
position of the rear boundary (at x = Xout) selected to have flux balance
in By,cloud. The dashed vertical line shows the position of the back of
the MC (at x = Xback).

(dotted line) paths because at the back of the cloud there is
a magnetic compression due to the excess of flux (as conse-
quence of the flux reconnected in its front, see Sect. 5.2 and
Fig. 6). The vertical solid line marks the well-determined ini-
tial boundary of the cloud at |Xin| = 0.101 AU (note the strong
change of the slope of Fy,e/L). An azimuthal flux Fy,e/L(Xin) =
2.5 × 1021 Mx/AU is accumulated in the front part of the
flux rope. The vertical dotted line indicates the position Xout
(=0.081 AU) where the azimuthal flux cancels the in-bound
flux (Fig. 5). Thus, the rear boundary of the flux rope is
closer to the centre than its front with an asymmetry factor of
2(Xout − |Xin|)/(Xout + |Xin|) = 0.22.

Furthermore, in accordance with Fig. 5, there is a strong
change of the slope at an out-bound distance Xback = 0.147 AU.
Integrating from x = 0 up to this extended boundary we ob-
tain Fy,e/L(Xback) = 5.8 × 1021 Mx/AU (a factor 2.3 larger than
the closed azimuthal flux). Following Sect. 5.2, this flux is in-
terpreted as the total azimuthal flux of the flux rope before its
reconnection with the solar-wind magnetic field.

The in- and out-bound Fz,e(x) fluxes are very close, from the
centre to about the middle of the central part of the flux rope
(Fig. 7). In the outer part the difference has the opposite sign
than for Fy,e/L. This is a consequence of the compression of
the rear of the flux rope: it enhances By,cloud, but it also flattens
the flux rope, extending it in the ±y directions; then, the Bz flux
spreads over a larger area, giving a lower measured Bz for the
out-bound (than for the in-bound). The computed fluxes, assum-
ing cylindrical symmetry, are: Fz,e(Xin) = 0.86 × 1021 Mx and
Fz,e(Xout) = 0.51 × 1021 Mx, thus a relative balance of 51% in
the flux rope. As with Fy,e/L, a clear change of the Fz,e(x) slope
is present at the back of the MC (x = Xback). The extra Bz

flux at the back of the MC (between Xout and Xback) is small:
∆Fz,e = 0.17 × 1021 Mx. This was expected in the interpretation
of Sect. 5.2 since Alfvén waves transport the Bz component away
from the MC on field lines reconnected with the solar wind.

The accumulated magnetic helicity per unit length (He/L)
is the most symmetric magnitude (between in- and out-bound
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paths) of the three quantities shown in Fig. 7. However, there
is a strong asymmetry when we consider the amount accumu-
lated at the flux rope boundaries: He/L(Xin) = 2.6 × 1042 and
He/L(Xout) = 1.3 × 1042 Mx2/AU. There is less helicity at the
rear of the flux rope because it is compressed, so Bz is lower.

When considering the full out-bound part of the MC, the
asymmetry is reversed, and we get He/L(Xback) = 5.4 ×
1042 Mx2/AU so about a factor 2 larger than He/L(Xin). This
shows that taking only the flux rope part of the MC, the mag-
netic helicity can be significantly underestimated. In fact, even
with the full out bound part, the magnetic helicity content before
reconnection is still underestimated since part of the helicity is
transported away in the reconnected field lines. Thus, part of the
mutual helicity associated with Bφ, which encircles the internal
Bz flux before reconnection, is lost at the back part due to the
propagation of torsional Alfvén waves.

The magnetic helicity found with the full out-bound data,
H/L(Xback) = 5.4 × 1042 Mx2/AU, is within the range found for
the models [3.7, 6.1] × 1042 Mx2/AU in Sect. 4.5. These results
were obtained fitting the data from Xin to ∼Xback (Table 1). This
approach also assumes a cylindrical symmetry, but sets the cen-
tre in the middle between Xin and Xback, which is not the centre
of the flux rope (Sect. 5.1). Moreover, the fits introduce model-
dependent deviations from the observed data. Then, the estima-
tions from Eqs. (20)–(22) should be more reliable.

Finally, we compare the MC helicity to the helicity variation
before and after the solar ejection. The relevant quantity is the
total helicity present in the CME/MC before it significantly re-
connects with the solar wind magnetic field. Our best estimate is
H/L(Xback). The estimated length of the cloud is ≈2 AU (Larson
et al. 1997); then, the magnetic helicity content in the MC is, at
least, 10 × 1042 Mx2. This amount is twice the value found by
Luoni et al. (2005) (≈5 × 1042 Mx2) for the difference between
the pre- and post-eruption helicity in active region NOAA 7912.
This was estimated from a linear force-free field model fitted
to best represent the observed coronal loops before and after
the solar ejection. This is an indication that the coronal model
used underestimates the amount of magnetic helicity present in
the corona.

6. Conclusions

We have computed the large-scale magnetic fluxes and he-
licity for the magnetic cloud (MC) observed by Wind on
October 18–20, 1995, following two different approaches. The
first one fits an analytical model to the observed in situ mag-
netic field vector. We have tested four models, already proposed
in the literature. The second method, introduced in this paper,
computes the magnetic fluxes and helicity directly from the ob-
served data, rotated in the MC system of coordinates.

We have determined the MC orientation both from the
standard minimum variance analysis (MV) and a simultaneous
fitting (SF) of the geometrical and physical parameters. The
four different models included in our study are a linear force-
free field (L), a uniformly twisted field (G), a field with constant
current (H), and a field with a linearly distributed current (C).

The front boundary of the MC is well defined at 18:58 UT
on October 18, so we always keep this value. Fixing the back
boundary at 00:00 UT on October 20 and considering the differ-
ent models using MV and SF, we have found a maximum devia-
tion from the mean value of 18% in the axial flux (Fz), of 25% in
the azimuthal flux (Fφ) and of 28% in the magnetic helicity (H).
However, because of the ambiguity present in defining the back
boundary, we explore the effects of changing its position. If we

restrict the boundary location to the range previously used by
several authors (Sect. 1.3), the change of position of the back
boundary has an effect comparable to the change when using
a different model and method.

The direct integration method takes as input the ob-
served magnetic data transformed to the MC coordinate system
(Sect. 4.1). The centre of the flux rope is determined by the ex-
tremum of the flux of the azimuthal field (more precisely the flux
of the field component both orthogonal to the MC axis and the
spacecraft trajectory). This direct method relaxes the need for
a model to compute the fluxes and helicity; then, it avoids the
biases introduced by a specific model. It also permits two inde-
pendent measurements on both sides of the flux rope centre: one
in the in-bound and another in the out-bound part.

The direct method allows us to determine the centre and the
rear boundary of the flux rope present at the time of the observa-
tions. The rear boundary is confirmed by the presence of a strong
discontinuity of the magnetic field, which implies a current sheet
as expected between two magnetic regions of different connec-
tivities. The fluxes and helicity associated with the flux rope are
smaller than those estimated from the fitted models, which in-
clude a larger part of the MC.

As an outcome of the application of the direct method we
can better understand the structure of the MC. We conclude that
this MC was most plausibly formed by a large flux rope after its
ejection from the Sun, but its front partially reconnects with the
solar wind magnetic field. This reconnection removes magnetic
flux from the front part of the MC and creates the correspond-
ing amount of open field lines at the back of the MC. At the
time of the observations, only the core of the original flux rope
remains. The back part no longer belongs to the flux rope but
it is still formed by the field and plasma that have some typi-
cal characteristics of MCs (low field variance, low proton tem-
perature). We conclude that the direct method provides a better
estimate of the fluxes and magnetic helicity in the original flux
rope, before reconnection, by using the extended out-bound re-
sults (D-MV back in Table 1).

The extended magnetic configuration (flux rope and open
field at the back) is more representative of the flux tube expelled
from the Sun. Still, magnetic reconnection in the front allows
the axial flux and the helicity to go away from the front of the
MC, but also partly from its back. So our estimation using the ex-
tended out-bound measured values is expected to be only a lower
limit. Moreover, we assume a cylindrical symmetry, and with
an MC more extended in the transverse direction to the space-
craft trajectory, the axial flux and helicity will be even larger
(by a factor roughly proportional to the aspect ratio). Thus, in
the October 18 MC we determine a minimum helicity content
≈1043 Mx2. This minimum is still a factor of two larger than the
coronal helicity variation estimated by Luoni et al. (2005). This
indicates that the coronal value is even more underestimated.
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