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ABSTRACT

Context. Magnetic clouds (MCs) are a subset of interplanetary coronal mass ejections (ICMEs). One property of MCs is the presence
of a magnetic flux rope. Is the difference between ICMEs with and without MCs intrinsic or rather due to an observational bias?
Aims. As the spacecraft has no relationship with the MC trajectory, the frequency distribution of MCs versus the spacecraft distance
to the MCs’ axis is expected to be approximately flat. However, Lepping and Wu (2010) confirmed that it is a strongly decreasing
function of the estimated impact parameter. Is a flux rope more frequently undetected for larger impact parameter?

Methods. In order to answer the questions above, we explore the parameter space of flux rope models, especially the aspect ratio,
boundary shape, and current distribution. The proposed models are analyzed as MCs by fitting a circular linear force-free field to the
magnetic field computed along simulated crossings.

Results. We find that the distribution of the twist within the flux rope and the non-detection due to too low field rotation angle or
magnitude only weakly affect the expected frequency distribution of MCs versus impact parameter. However, the estimated impact
parameter is increasingly biased to lower values as the flux rope cross section is more elongated orthogonally to the crossing trajectory.
The observed distribution of MCs is a natural consequence of a flux rope cross section flattened on average by a factor 2 to 3 depending
on the magnetic twist profile. However, the faster MCs at 1 AU, with V > 550 km/s, present an almost uniform distribution of MCs
vs. impact parameter, which is consistent with round-shaped flux ropes, in contrast with the slower ones.

Conclusions. We conclude that the sampling of MCs at various distances from the axis does not significantly affect their detection.
The large fraction of ICMEs without MC could be due to a too strict criteria for MCs, or either these ICMEs are encountered outside

their flux rope or near the leg region, or they do not contain any.
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1. Introduction

Interplanetary coronal mass ejections (ICMEs) are detected in
the solar wind (SW) by in situ plasma and magnetic field mea-
surements onboard spacecraft. They are the counterpart of coro-
nal mass ejections (CMEs) observed with coronagraphs (e.g.,
Howard 2011; Lugaz & Roussev 2011). With STEREO twin
spacecraft having both in situ and imager instruments, this link is
presently well etablished (e.g., Harrison et al. 2009; Kilpua et al.
2011; Rouillard 2011; Lugaz et al. 2012; Wood et al. 2012, and
references therein). ICMEs are defined by one or several criteria
(for reviews see Wimmer-Schweingruber et al. 2006; Zurbuchen
& Richardson 2006). Typical criteria are: (a) a stronger mag-
netic field with lower variance than in the surrounding SW; (b)
a low proton plasma 3, (< 0.4 typically); (c) a smooth and large
rotation of the magnetic field; (d) a proton temperature lower at
least by a factor 2 than in ambient SW with the same velocity as
in the ICME; (e) an enhanced helium abundance (He/H > 6%);
(f) the presence of counter-streaming suprathermal (> 80 eV)
electron beams; (g) enhanced ion charge states. Magnetic clouds
(MCs) are defined with criteria (a-d) all satisfied (Burlaga et al.
1981), then they are a sub-class of ICMEs. The criteria (a,c)

of MCs are fulfilled with a flux rope model (e.g., Burlaga 1988;
Lepping et al. 1990; Lynch et al. 2003; Dasso et al. 2006; Leitner
et al. 2007).

Gosling (1990) found that an MC is present inside [CMEs
only for 10-30% of the cases. Presently, an MC is detected on
average in about 30% of ICMEs (Richardson & Cane 2010; Wu
& Lepping 2011). Cane & Richardson (2003) found that this
ratio evolves with the solar cycle: the MC/ICME ratio increases
from ~ 15% at solar maximum to ~ 100% at solar minimum.
They interpreted this evolution as due to an observational selec-
tion effect since CMEs are launched from higher solar latitudes
at solar maximum than at minimum. As a result, a spacecraft lo-
cated in the ecliptic more frequently crosses the flux rope away
from its axis at solar maximum than at solar minimum (Richard-
son & Cane 2004). This evolution with solar cycle is confirmed
by their newer results (Richardson & Cane 2010) and by the re-
sults of Kilpua et al. (2012) around the minimum between solar
cycle 23/24 (they found that = 76% of ICMEs have flux rope
characteristics in the time period 2007-2010). Since nearly all
ICMEs are MCs at solar minimum, it has been suggested that
MCs are only observed when the spacecraft crosses the magnetic
structure near the flux rope center (e.g., Jian et al. 2006).
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Fig. 1. Probability distribution, Pups(p), of the impact parameter

(p). The results of MCs observed by WIND at 1 AU and fitted by the
Lundquist model (Lepping et al. 1990; Lepping & Wu 2010) are shown
with a histogram having 10 bins of p. Black curve: A linear fit to the
histogram. Red curve: The Gaussian function derived by Lepping &
Wu (2010). The histogram in the top panel has 100 MCs, while the one
in the bottom panel is restricted to the 74 best observed MCs (quality
1,2).

Still, the in situ observations provide only a 1D cut through
a 3D structure, so there is a lack of information. For MCs, this is
typically complemented by a fit of a magnetic model to the data,
giving both the local orientation of the flux rope and its field
distribution within the cross section. So far, the most often used
model is the so-called Lundquist model (Lundquist 1950), which
considers a static and axi-symmetric linear force-free magnetic
equilibrium configuration (e.g., Goldstein 1983; Burlaga 1988).
Its main advantage is its simplicity (low number of free parame-
ters). Moreover, it satisfies the low plasma 8 condition normally
found in MCs (typically 8, < 0.1) and fits observations rela-
tively well (e.g., Lepping et al. 1990; Burlaga 1995; Lepping
et al. 2003; Dasso et al. 2005b). The fit of the Lundquist model
provides an estimation of the closest approach position (CA) of
the spacecraft trajectory to the flux rope axis. It is generally
expressed in % of the flux rope radius R (e.g., Lepping & Wu
2010). The CA/R is also called the impact parameter and noted
p (e.g., Lynch et al. 2003; Jian et al. 2006). The sign of p indi-
cates which side of the MC is crossed by the spacecraft. Below,
we consider only the distance to axis, thus |p|, and simplify the
notation to p.

With a set of 98 MCs observed at 1 AU, Lepping & Wu
(2010) found that the number of MCs, detected at 1 AU near
Earth, decreases with |CA|, or p (Fig. 1, Sect. 2.1), confirming
previous results (Lepping et al. 2006). They checked that the de-
pendence with p of the rotation angle and of the mean magnetic
field along the spacecraft trajectory was behaving as expected
for the Lundquist field model. While p is the most uncertain
parameter of the fit result for an individual MC (Lepping et al.
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1990), these self-consistency tests reinforce that, on average, p
was estimated correctly enough by the fit of the Lundquist model
to the observations.

Every MC with a flux rope axis inclined on the ecliptic plane
crosses it. Then, because CMEs depart from the Sun at any lon-
gitude relative to the center disk, the related MC in situ obser-
vations are expected to cross the flux rope at a random distance
from its axis. Next, we consider the minority of MC cases where
the flux rope axis is nearly parallel to the ecliptic plane. Because
CMEs depart typically away from the solar equator, the space-
craft is expected to cross the flux rope at a distance to its axis
that is correlated to its launched latitude. Such cases imply a
bias towards a larger impact parameter (even if the deflection of
CME:s toward the heliospheric current sheet reduces this effect).
From these considerations, one expects a flat, or even slightly
increasing, distribution of MCs versus p, which is not observed
(Fig. 1).

A first interpretation of the observed decrease (Fig. 1) is a
strong selection effect due to a greater difficulty to detect a flux
rope when p is larger. In this case, correcting this selection ef-
fect by supposing a flat distribution, with the frequency detected
for low p value, would typically double the number of detected
MCs. Then, does a large fraction of the non-MC ICME:s corre-
spond to undetected flux rope with the spacecraft trajectory too
far from the flux rope axis?

A weakness of the above analysis is that the deduced im-
pact parameter can still be biased by the selection of a partic-
ular model. Indeed, the self-consistency tests of Lepping et al.
(1990) only check that the fit to the data provides coherent results
with the hypothesis of the model. Evidences of compression in
the direction of propagation are present in CME observations
(e.g., Savani et al. 2009, 2010) and in magnetohydrodynamics
(MHD) simulations (e.g., Cargill & Schmidt 2002; Odstrcil et al.
2004; Manchester et al. 2004; Lugaz et al. 2005b; Xiong et al.
2006). Such a compression flattens the cross section, and such
a geometrical feature has been partly taken into account by Van-
das & Romashets (2003). They developed an extension of the
Lundquist model from a circular to an elliptical boundary. This
model is still analytical (but relatively complex), and it intro-
duces only one more parameter, the aspect ratio of the ellipse,
if one supposes that the major axis of the elliptical cross sec-
tion of the flux rope is perpendicular to the direction of its mo-
tion. Moreover, it provides a better fit to observed MCs with
a relatively uniform field strength. This flatness of the mag-
netic profile increases with the aspect ratio, indicating that some
MC:s have a relatively flat cross section (Vandas et al. 2005; An-
toniadou et al. 2008). Finally, Vandas et al. (2010) tested this
model with the results of an MHD simulation by exploring sev-
eral spacecraft crossings of the simulated flux rope. They con-
cluded that both the aspect ratio and the impact parameter p are
fully reliable only for low p values, confirming and extending
the results of Lepping et al. (1990).

A variety of alternative models has been proposed for MCs.
Keeping the cylindrical symmetry, a diversity of non-linear
force-free field models is also possible (see Sect. 3.1). One pos-
sibility has a uniform twist within the cross section (e.g., Far-
rugia et al. 1999; Dasso et al. 2003, 2005a). Also, several non-
force-free models have been applied, using different shapes for
their cross sections (e.g., Mulligan et al. 1999; Cid et al. 2002;
Hidalgo et al. 2002; Hidalgo 2011). So far, even if a given model
has been shown to better fit the data of a few MCs than other
models, this conclusion has not been extended to a large set of
MCs. Indeed, the typical internal structure (e.g., the twist pro-
file) of MCs is still not precisely known.
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Another approach is to include the curvature of the flux
rope axis by developing toroidal models (Marubashi 1997; Ro-
mashets & Vandas 2003; Marubashi & Lepping 2007; Ro-
mashets & Vandas 2009; Owens et al. 2012). This approach
is especially needed when a leg of the flux rope is crossed (i.e.,
when the spacecraft trajectory is close to the local flux rope axis
direction). In this case, the inclusion of the axis curvature can
strongly change both the deduced axis orientation and the im-
pact parameter (Marubashi et al. 2012). Such leg crossings are
typically characterized by a long-duration MC with a complex
rotation profile of the magnetic field and a low angle between
the solar radial direction and the flux rope axis (known as the
cone angle). The frequency of such cases is small in the dataset
of Lepping & Wu (2010) with, for example only 6 of 98 MCs
with a cone angle below 30° and none for the 67 MCs of qual-
ity 1 and 2 (as defined in their paper). Then, we consider only
local models of MCs with a straight axis as they have fewer free
parameters than toroidal models.

One major unknown is the extension of the MC cross section.
A way to deduce it is to solve the non-linear force-free equations
by a direct numerical integration with the measured vector mag-
netic field as boundary conditions. This approach only supposes
a magnetostatic field invariant by translation along the straight
axis (Hu & Sonnerup 2002; Sonnerup et al. 2006). The method
was tested successfully with MCs crossed by two spacecraft (Liu
et al. 2008; Kilpua et al. 2009; Mostl et al. 2009a). The results
depend on the MC studied, ranging from nearly round to elon-
gated cross sections (Hu et al. 2005; Liu et al. 2008; Mostl et al.
2009a,b; Isavnin et al. 2011; Farrugia et al. 2011). The main
limitation of this kind of approach is that it solves an ill-posed
problem: the integration of an elliptic partial differential equa-
tion from a part of the boundary of the domain. The results can
indeed be strongly affected by the time resolution and the range
of the data used, as well as by the method implemented to stabi-
lize the integration.

The short review above shows a large variety of flux rope
models. If the MC data of Lepping & Wu (2010) had been fit-
ted by one of these models, how would the estimated impact
parameter, p, have been affected? Said differently, how model
dependent is the MC distribution shown in Fig. 1? Moreover,
how strongly do selection effects, e.g., on the amount of mag-
netic field rotation or field strength, affect such a distribution?
We analyzed these issues for a large set of MCs by studying a
variety of force-free field models (as the plasma-f is typically
around 0.1 in MCs). The meaning of the main parameters used
throughout the paper is summarized in Table 1.

The observation results and the fitting method are summa-
rized in Sect. 2. In Sect. 3, we investigate the effect of a broad
spectrum of magnetic field profiles ranging from flat to peaked
around the axis, keeping a circular cross section. In Sect. 4, we
mostly investigate the effect of the cross section elongation on
models having elliptical cross sections. We also analyze the ef-
fect of bending the cross section to a “bean shape”. We con-
clude that p is most affected by the aspect ratio of the cross
section. Then, in Sect. 5, we deduce a distribution of the as-
pect ratio compatible with the results of Lepping & Wu (2010).
Next, in Sect. 6, we further analyze the MCs according to their
global properties and show that some sets of MCs have a rela-
tively round cross section. Finally, we conclude by summarizing
our results and, in particular, answering the question set in the
title of this paper (Sect. 7).
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Fig. 2.  Drawing defining the geometry parameters for a spacecraft
crossing an MC. The fit of the Lundquist field is schematized by the
blue circle, while the black ellipse delimitates the half extension of the
MC boundary. In this figure, we scale the drawing with the semi-minor
axis of the ellipse set to unity. The true impact parameter, y/b, is larger
than p.

2. Observations and fitting method

2.1. Observed probability distribution of the impact
parameter

We used the results of the Lundquist model fitted to MCs
observed at 1 AU by the WIND spacecraft from February
1995 to November 2007. They are available in Table 2 at
http://wind.nasa.gov/mfi/mag_cloud_S1.html. The list from 13
Dec, 2011 contains the results of 120 MCs. However, we restrict
the list to 110 MCs by removing the cases where the handedness
could not be determined (flag f in the list) or the fitting conver-
gence was not achieved (flag F). Next, we examined the cone
angle 8 which is the angle between the MC axis (found by the
Lundquist fit) to the solar radial direction (-X axis in GSE co-
ordinates). We considered a folded angle, so 8 was in the range
[0°,90°]. Since the data obtained in the cases of MC leg cross-
ing were the most difficult to analyze, making the fit results from
cases with small 8 angle the most uncertain (Sect. 1), we limit
the study to 8 > 30°. This restricted the MC sample to 103 MCs.
Finally, there were 3 MCs with an impact parameter p > 1 (so a
fitted flux rope extending beyond the first zero of the axial field in
the Lundquist model). After we removed these suspicious cases,
which comprised the worst class (quality 3, as defined in Lep-
ping & Wu 2010), 100 MCs remained. One can even be more
strict on the selection criteria. An extreme case is to select only
the best cases (quality 1), with the limitation that the statistics is
then restricted to 19 MCs. A less extreme case is to select the
best and good cases (quality 1 and 2), yielding 67 MCs. We ver-
ified that our results were not significantly affected by the group
of MC selected.

Lepping & Wu (2010) found that the number of MCs de-
tected decreases rapidly with p. The same result is shown in
Fig. 1 for the 100 MCs selected and a bin size of Ap = 0.1.
Very close results are obtained if we restrict the analysis to the
best observed MCs (quality 1 and 2). We define a probability of
detection by normalizing the sum of the bin counts to 1. This al-
lows the comparison between the results obtained with different
sets of MCs and the model predictions. The Gaussian function

Article number, page 3 of 15



shown in Fig. 1 (red curve) is a fit of the distribution as given
by Eq. (A1) of Lepping & Wu, with b = 0 and o = 0.407. It
also fits well both sets of MCs shown in Fig. 1. The observed
distribution can also be fitted with a linear function without sig-
nificant difference with a Gaussian function (taking into account
the statistical fluctuations).

2.2. Flux rope fit with the Lunquist field

Models are used to simulate flux rope crossings, providing syn-
thetic observations that are analyzed as MCs, thus following the
classical procedure of Lepping et al. (1990). These synthetic
models can be chosen as circular or elliptic, and the half exten-
sion of such a structure is given in black in Fig. 2. Then, the
bias in the fits are analyzed. The simulated trajectory is set at a
distance y parallel to the x-axis, because of the invariance in the
z direction of the models, the same B would be obtained along a
trajectory inclined on the flux rope axis. The true impact param-
eter is y/b, where b is the size of the structure in the y-direction
(Fig. 2). The synthetic observations are fitted with a linear force-
free model, the classical Lundquist solution (Lundquist 1950),
which is in cylindrical coordinates:

B = By (0, Ji(ar), Jo(ar) ), ey

where « is associated with the first zero of Bz, By is the axial
field strength, and J,, is the ordinary Bessel function of order
m. The fit of Eq. (1) to the synthetic observations provides an
estimation of y, called y, with an origin not necessarily located
on the true flux rope axis (Fig. 2). Then, the Lundquist fit pro-
vides the estimated impact parameter p = y/R, where R is the
estimated flux rope radius (defined for B, = 0).

The By, field is fitted to the synthetic observations By by
minimizing the function dev defined by

N,

1 P
— E - )2
dev = JN (BL,z Bobs,t) >

P izl

@)

where N, is the number of points in the synthetic observations,
By is related with y/b, and By is related to p. Providing that
N, is large enough (i.e., N, > 20), the results of the fits are
insensitive to the value of N,, which is to be expected because
the synthetic observations are well resolved with such N, values.
Since the orientation of B.,s in MCs follows that of By better
than the magnetic field magnitude, Lepping et al. (1990) fitted
Boys with By with a two-step procedure. In the first step, both
Bobys and By, norms are normalized to unit at each point before
minimizing dev. Then, in the second step, the full fields are
considered and dev is minimized by only changing the axial field
strength By. From synthetic Lundquist fields, Gulisano et al.
(2007) also concluded that fitting to normalized B,y gives better
estimation of the real orientation of the MC axis.

Compared to real MC observations, the models provide syn-
thetic observations with no internal structures and with known
axis orientation and boundaries. The exploration of the effect of
perturbations on B and on various axis orientations and bound-
aries could be realized in the line of the following exploration of
the parameter space (e.g., the parameters defining the shape of
the cross section). However, we chose to limit the exploration
to the global structure of the flux ropes (i.e., the magnetic field
repartition and the cross section shape) as such a structure is ex-
pected to have a major effect on the estimated impact parame-
ter. Then, in the above first step, the minimization is realized by
changing p and « (because both the axis orientation and the flux
rope boundaries, set at B, = 0, are known and fixed).
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3. Detecting circular flux ropes

In this section, we analyze a series of circular force-free fields
in order to test if the impact parameter could be biased by the

choice of the model with the classical analysis of Lepping et al.
(1990).

3.1. Force-free models

Frequently, the magnetic structure of an MC is locally approx-
imated by a straight flux rope invariant along its axis (Sect. 1).
We use below an orthogonal frame, called the MC frame, with
coordinates (x,y,z). The z direction is along the MC axis. Be-
cause B is independent of z and V - B = 0, the implication is
that one can write the magnetic field components orthogonal to
the symmetry axis B, = dA/0y and B, = —0A/dx, where A(x,y)
is the magnetic flux function. The force-free field condition im-
plies

dB?/2 .
A+ —— =0, with B,(A). 3)
A series of non-linear force-free fields are generated by
B(A)=cA", “

where ¢ and n > 0 are independent of x,y,z. Typically, the
flux rope boundary is set at a location where B, = 0, which can
be set for A = 0 without losing generality. We normalized the
cross-section extension to the half of its maximal value in the x-
direction (Fig. 2). Its half maximal extension in the y-direction is
then the aspect ratio, b, set to b = 1 in this section (i.e., circular
shape). The flux rope axial field is called Bjyis.

Since we consider circular flux ropes in this section, Eq. (3)
reduces to a differential equation of second order with the ra-

dius (4/x2 +y?). It is solved by a numerical integration using
a shooting method (e.g., Press et al. 1992, p.746) applied to the
resonance problem set by Eqs. (3, 4) and the three boundary con-
ditions A(0) = 1, [dA/dr](0) = 0, and A(1) = O (corresponding
respectively to an azimuthal flux normalized to 1, a regular field
on the axis, and to B, = 0 at the boundary). We select the lowest
eigenvalue ¢ to have models with an axial field vanishing only at
the boundary as present in most MCs. For n = 1, the field is a
linear force-free field and ¢ = « (as defined by Eq. (1)). Finally,
the field strength on the axis can be scaled to any desired B,yis
value.
The axial electric current density is

Jo==0AlHo = n & (A, )" o, ®)
where y is the permeability of the free space. For n = 0.5, j,
is uniform, while for n > 0.5, j, decreases from the axis to the
boundary (where A = 0, so j, = 0). Finally, for n < 0.5, j, is
singular at the boundary (presence of a current sheet).

The value of n also determines the spatial variation of B.
This is illustrated in the left-hand panels of Fig. 3. Because n
is increased, the magnetic field strength becomes more concen-
trated around the axis and, near the boundary for n > 0.5, the
azimuthal field (= |By| at y = 0) is a decreasing function of the

radius (= +/x2 + y?) over a larger radius range. The case n = 2,
Fig. 3e, is an extreme case for an MC. In contrast, as n decreases,
the profile of the magnetic field strength flattens. For n = 0.5,
the azimuthal field is linear with radius, while for n < 0.5, it in-
creases more sharply near the boundary as n is decreased. The
case n = 0.1 is another extreme case for an MC. The Lundquist
model fits the different models relatively well, except in extreme
cases (e.g., n = 2 case, Fig. 3e,f), even for large impact parame-
ters (e.g., see the case y/b = 0.9 in Fig. 3b,d).
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Examples of circular models (black dots) least square fitted with the Lundquist field (red curves). Three non-linear force-free models

(n = 0.1,0.5,2) are selected to represent strong departure to the Lundquist field (n = 1). The true impact parameter, y/b, is either null (left) or
large (right). B, is the axial field component, and By is the azimuthal field component for y = 0. The field strength of the model on the axis, Bis,

is normalized to 1.
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Fig. 4. (a) Dependence of the true impact parameter, y/b, (b) the fitted
Lundquist field strength on the axis, By, (¢) the normalized deviation,
dev/< B>, and (d) the mean field magnitude < B> normalized to By
in function of the impact parameter, p, found by fitting the Lundquist
field to the models. The parameter n describes the profile of the axial
component of the magnetic field and electric current, see Egs. (4, 5).

3.2. Information provided by the Lundquist fit

The results of Fig. 4a show that y/b is relatively well estimated
by p for all the range of n values relevant to MCs. The extreme
case n = 0.1 has very similar results to the case n = 0.25, so it
is not shown. All cases with n < 1 have p only slightly lower
than y/b, so that the observed distribution probability (in func-
tion of p) would only be slightly compressed toward lower p
values compared to the original distribution probability (in func-

tion of y/b). In contrast, all cases with n > 1 would introduce a
bias opposite to those observed since p > y/b (Fig. 1). We con-
clude that the deviation around y/b = p (green curve, n = 1 in
Fig. 4a) cannot explain the strong decrease of the probability to
observe an MC with moderate and large p values seen in Fig. 1.

The axial field of the model, set to B = 1, is also well
recovered with the fitted parameter By of the Lundquist field
(Fig. 4b). Only large differences (> 20%) are obtained for glanc-
ing encounters (p, so y/b, close to 1) or peaked magnetic field
profiles (e.g., n = 2).

Next, we normalized the deviation, Eq. (2), by <B>, the aver-
age of the field strength along the simulated trajectory. Figure 4c
shows that the deviation of the fit to synthetic data is relatively
small unless extreme cases are considered (e.g., n = 2, see also
Fig. 3). It is important to notice that dev/<B> is not a secure
indicator of the precision of the fitted parameters: for example
By fits well the synthetic observations for large p with a low
dev/<B> value (Figs. 3,4), while the fitted parameters are more
biased (e.g., By) and/or unprecised for these glancing encoun-
ters.

Finally, Lepping & Wu (2010) found that <B>/By(p) from
the analyzed MCs followed very well the expected relation from
the Lundquist field, except from a slight shift in ordinate (see
their Fig. 5). This shift could be explained by n ~ 0.7-0.8
(Fig. 4d). This is an indication that the typical field in MCs is be-
tween a linear force-free field and a field with constant axial cur-
rent density. This result is in the same line of those obtained by
Gulisano et al. (2005), where crude approximations were done
(assuming circular cross section, zero impact parameter, and the
orientation of the main axis are given only from the minimum
variance method). They found clues in favor of magnetic con-
figurations between linear force-free field and constant current
models.
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Table 1. Description of the main parameters and where they are defined.

Synthetic models
a bending of the boundary Sect. 4.5
b aspect ratio of the boundary Fig. 2
Bisis field strength on the flux rope axis Sect. 3.1
c B, forA =1, Eq. 4)
C ={a, b, n, rgmin, Wmin}» set of all characteristics
of a model and selection parameters Eq. (8)
n exponent defining B, and j, Egs. 4,5)
X coordinate along the simulated trajectory Fig. 2
y coordinate across the simulated trajectory Fig. 2
z coordinate along the flux rope axis Sect. 3.1
y/b true impact parameter Fig. 2
Fitted Lundquist model
a linear force-free field constant Eq. (1)
B Lundquist field Eq. (1)
By estimated axial field strength Eq. (1)
dev function of fit minimization Eq. (2)
R flux rope radius (for B, = 0) Fig. 2
YL estimated distance of the spacecraft trajectory Fig. 2
to the flux rope axis
)4 = yL/R, estimated impact parameter Fig. 2
Estimated along the spacecraft trajectory
<B>  average B strength Sect. 3.2
<By> average B component parallel to the spacecraft Sect. 4.1
trajectory
Bx = <B>/<B> Sect. 4.1
w rotation angle of B across the flux rope Sect. 3.3
Selection parameters
TBmin minimum average field strength to detect
a flux rope: <B> /Buxis = "Bmin Sect. 4.4
Win minimum rotation angle of B to detect a flux rope Sect. 4.4

Probability functions

Pobs(p) observed probability Fig. 1
P(p,C) theoretical probability for a model defined by C Eq. (8)
P(p) P(p,C) integrated on a flux rope set Eq. (9)
P(b)  probability distribution of b Eq. (9)
buean  mean value of b Egs. (12,13)
w o
150
n=1
100} . .
n=0.5
n=0.25 .
S0F .
0.2 04 06 08 P 10
Fig. 5.  Dependence of the rotation angle, w, of the magnetic field

component orthogonal to the axis in function of the impact parameter,
p, found by fitting the Lundquist field to circular models (Egs. (3, 4)).
The dots are the results obtained by Lepping & Wu (2010) for 65 MCs
(see their Fig. 3B).

3.3. Is there a significant selection effect with p?

The rotation angle of the magnetic field along the simulated tra-
jectory is weaker as the impact parameter increases (Fig. 5).
Since an important field rotation is a key ingredient in defining
an MC, a too weak rotation angle could lead to no MC detec-
tion, and thus a bias in the probability distribution in function of
p. As in Lepping & Wu (2010), we analyzed the rotation an-
gle of B in the plane orthogonal to the flux rope axis by taking
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the angle formed by B at each of the two boundaries (hereafter
noted w). Because they averaged the observed B over one hour
(their Fig. 3B), the modeled B is averaged over 5% of the cross-
ing length near the boundaries in order to be comparable to their
observations. For a typical MC duration of 20h, this implies an
average over lh, so that our results are directly comparable to
their Fig. 3B.

For the case n = 1, the synthetic data are derived from the
Lundquist field, like the fitting field; it implies that the rotation
angle has a simple expression, 2 arccos(p), which is nearly iden-
tical to the green curve in Fig. 5 (the differences are only due to
the small averaging performed near the boundaries). Finally, we
found that a broad range of n values is compatible with their re-
sults (Fig. 5), so that the amount of B rotation angle does not al-
low to select between different models. This result is confirmed
in Sects. 4 and 5.

Is there a severe selection effect with the amount of rotation
angle in observed MCs? In fact, for a rotation angle lower than
30°, no MC is observed (Fig. 5). Four MCs are observed with a
rotation angle as low as =~ 50° or less, showing that MCs with a
low rotation angle can be detected. This value of w corresponds
to p > 0.9 with the above models, so that a selection effect on
MCs with a low B rotation angle cannot explain the progressive
decrease of the detection probability of MCs with p (Fig. 1).
A way out would be to argue that significant B structures are
frequently present within MCs, especially close to the boundary
(i.e., for large p values), so that they can mask the lower rotation
cases even more. However, an important rotation angle, w > 90°,
is still present for p ~ 0.7, both for MCs and simulated flux
ropes (Fig. 5). Then, it is very unlikely that the presence of B
structures in MCs can decrease the probability of detection by a
factor 3 to 4 for p ~ 0.7 (Fig. 1). It implies that a selection effect
on rotation angle cannot explain the observed probability. In the
same line, By remains close to Byis (Fig. 4b), so that a selection
effect on the field strength is expected to be weak for flux rope
with a nearly circular cross section.

We conclude that the explored circular models cannot ex-
plain the observations (Fig. 1).

4. Detecting flux ropes with elongated cross section

In this section, we explore mainly the effects of the flux rope
boundary shape. An elliptical boundary is described by its as-
pect ratio b (b > 1 means that the cross section is elongated or-
thogonally to the MC trajectory, Fig. 2). We also consider bent
cross sections in Sect. 4.5, which are described by an extra pa-
rameter called a. A rectangular cross section is also considered
(it is an extreme case). These different types of cross sections al-
low exploration of the space of parameters (Fig. 6) with models
depending on a set of parameters (a, b, n).

4.1. Expected effect of the cross section aspect ratio

Gulisano et al. (2007) have shown that the ratio rgy= <Byx>/<B>
is a function of the true impact parameter y/b for a variety of cir-
cular models (<> means averaging along the spacecraft trajec-
tory within the MC). Démoulin & Dasso (2009) have extended
this relationship for linear force-free models with various bound-
ary shapes (see their Fig. 10). For an elliptical boundary, this
relationship is summarized as rgx(y/b, b,n = 1). This applies in
particular to the Lunquist field (b = 1) and is simply summarized
as rex L(y/b) = rex(y/b,b = 1,n = 1).

Next, a similar <Bx>/<B> is expected when B is fitted to B
(since By, approaches the best possible B). Setting the equality
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Fig. 6. Drawing defining the regions of the parameter space explored.
The red line indicates the circular models analyzed in Sect. 3. The MC
boundary is elliptical for the blue region and is deformed to a bean
shape in the green region. The two blue lines indicate the elliptical
models analyzed in Sect. 4. Finally, the purple line indicates an extreme
case where the MC boundary is rectangular. n defines the axial electric
current and magnetic field component (Eqgs. (3,4)). A cross section
elongated orthogonally to the spacecraft trajectory has b > 1 (Fig. 2).
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Fig. 7. Examples of two elliptical models (n = 0.5, 1, black dots) least
square fitted with the Lundquist field (red curves) for a large true impact
parameter, y/b = 0.9. B, is the axial field component, and By is the field
component both orthogonal to the simulated trajectory and to the flux
rope axis.

rex(y/b,b,n = 1) = rgx1.(p) provides a relation p(y/b, b). For a
fixed y/b value, the derivation of this relation implies dp/db =
(drgx/db)/(drexL/dp). Since rgy is a decreasing function of b for
a fixed y/b and rgy . is an increasing function of p (Démoulin &
Dasso 2009), this implies that p is a decreasing function of b.

Finally, with the magnitude of change of rgx with b found in
Fig. 10 of Démoulin & Dasso (2009), the value of b is expected
to strongly affect the estimated p value. As aresult, it is expected
to strongly bias the MC probability distribution (Fig. 1). This
expectation is tested below by fitting with By a variety of models
with elongated cross section.

n=0.5 dev/<B> n=0.5 (b)

()

0.15

0.10 b=1 =
N

0.05 \

02 04 06 ().8pl‘() 02 04 06 0.8pl.()
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10 ©) 030 " (d)
0.8 0.25
0.20
06 015 b=4
04 b=1 0.10 b=2
0.2
0.05 b=1
02 04 06 08,10 02 04 06 08,10

p p

Fig. 8. Dependence of the true impact parameter, y/b, and of the nor-
malized deviation, dev/<B> in function of the fitted impact parameter p,
found by fitting the Lundquist field to elliptical boundary models. The
parameter n describes the profile of the axial current (Egs. (3,4)).

4.2. Models with elongated cross section

We explore the space of parameters mainly with analytical mod-
els as summarized in Fig. 6. The emphasis is set on the aspect
ratio b since it was found to be the most important parameter
affecting p (for a fixed y/b). We first analyze the model of Van-
das & Romashets (2003), who derived an analytical solution of
a linear force-free field (n = 1) contained inside an elliptical
boundary (so generalizing By).

A numerical extension of the above model to cross sections
with a bent (bean-like) shape was analyzed by Démoulin &
Dasso (2009). They also consider the limit case of a rectangular
cross section. It has a simple analytical expression for a linear
force-free field (n = 1); see their Eq. (14) while their Eq. (15)

should be ag = 7/2 V1 + b%/b.

Finally, even if we have shown in Sect. 3 that n has a small
effect on circular cross sections, we also consider the force-free
field with n = 0.5 and an elliptical cross section

1—x2— (ly—))z] . (6)

B y xb
bNT+02 V1i+b2

(BX9 Bya BZ) =

4.3. Effect of the aspect ratio

As the aspect ratio b increases, more significant deviations be-
tween the synthetic observations of the modeled B and the fitted
By are present. For example, Fig. 7 shows two extreme cases
with b = 4 and y/b = 0.9 (similar fits are obtained with lower
y/b values). For both cases the field rotation angle, w, is about
120°, and thus large enough to be detected. However, using at
typical value of By, = 20 nT at 1 AU, such a flux rope would
not be detected for n = 1. However, for n = 0.5, it would since
the respective mean magnetic field strength along the simulated
trajectory is < 0.8 and ~ 9 nT (compare to a typical SW field
~ 5nT).

As expected in Sect. 4.1, the aspect ratio b has a strong ef-
fect on the estimated impact parameter p (Fig. 8a,c). This ef-
fect is much stronger than the effect of n for circular flux ropes
(Fig. 4a). The results obtained for n = 1 and a rectangular
boundary are similar (so not shown) to the results for n = 0.5 and
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Fig. 9. Dependence of the rotation angle, w, of the magnetic field component orthogonal to the axis in function of the impact parameter, p, found
by fitting the Lundquist field to two models with an elliptical boundary (a,b) and one with a rectangular boundary (c). The dots are the results

obtained by Lepping & Wu (2010) for 65 MCs (see their Fig. 3B).
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Fig. 10. Probability distribution of the impact parameter, P(p), deduced from various models and a uniform probability distribution of y/b. The
thin curves are without selection effect and the thick curves are for < B > /B, > 0.25 and a magnetic field rotation angle greater than 90°. The

dashed black curve is a Gaussian function fitted to observations (Fig. 1).

an elliptical boundary. All these results imply that p is system-
atically biased to a lower value than the true impact parameter
y/b, which strongly increases as b is larger.

As with circular models (Sect. 3.2), the quality of the fit of
B_ to the synthetic data (thus a low value of dev/<B>) cannot be
used to estimate the quality of the derived fitted parameters, in
particular of p. Indeed, even small values of dev/<B> are present
for large p values (Fig. 8b,d), where p is the most biased com-
pared with y/b (Fig. 8a,c). Moreover, dev/<B> has only a small
dependence on b for n = 0.5, while p has a strong dependence
on b. We conclude that the value of dev/<B> is not a reliable
way to qualify the best fitting model.

As the aspect ratio b is increased, the flux rope is stretched in
the y direction, so one expects an increase of By at the expense of
By and thus an increase of the field rotation angle w. In the mod-
els shown here, this enhanced rotation angle is mainly present
for the elliptical case with n = 1 (Fig. 9b). For the two other
models, the rotation angle is almost independent of b (Fig. 9a,c).

With a larger b value, the magnetic field can expand further
away in the y direction, implying lower field strength (see, e.g.,
Fig. 5 of Démoulin & Dasso 2009). The fit of By, to this weaker
field leads to a lower By (much lower than B,,;s). Then, we found
that By is a faster decreasing function of p for larger b values.
By contrast, <B>/ By is found to be almost independent of b and
more generally of the boundary shape. Then, the slightly higher
value of <B> /B, for MCs than for a Lundquist field, as found
by Lepping & Wu (2010) in their Fig. 5, is mainly related to the
B,(A) relation, and in particular to n, Eq. (4), as found at the end
of Sect. 3.2.

Article number, page 8 of 15

4.4. Expected observed distribution of impact parameter

The above bias on the estimated impact parameter, p, has impor-
tant implications for the observed probability distribution (e.g.,
Fig. 1). More precisely, let us consider MC models with the same
physical characteristics and observing bias (called C, which de-
fines a set of five parameters, see Table 1). The simulated cross-
ing is set at y/b with a distribution P(y/b). The models present
in the interval [y/b,y/b + d(y/b)] are mapped to the interval
[p, p + dp] with the Lundquist fit. The two probability distri-
butions are related by

P(p,C) dp = P(y/b) d(y/b). (N

Moreover, some flux ropes could not be recognized as MCs
because the crossing was too close to the flux rope border. We
include two important selection effects: a too weak field strength
and a too low rotation angle of the magnetic field. Other selec-
tion effects are associated to the presence of strong distortions,
especially present when two MCs are interacting (e.g., Wang
et al. 2003; Lugaz et al. 2005a; Dasso et al. 2009). Our mod-
els cannot take into account these relatively rare cases of MCs in
interaction. For isolated MCs, the distortions close to the bound-
ary are expected to be the strongest (weaker magnetic field and
stronger effect of the surroundings, e.g., Lepping et al. 2007).
Therefore, we select a relatively large minimum rotation angle,
Wiin = 90°, while MCs are detected in observations with a min-
imum rotation angle of ~ 40° (Fig. 9). The flux rope can also be
missed if its magnetic field strength is too weak. We select cases
with <B> /Byxis = rgmin With typically rgmin = 0.25, since for a

typical Byis value of 20 nT this implies that <B> is comparable
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Fig. 11. Approximate dependence of the true impact parameter, y/b,
in function of the estimated impact parameter, p, for bent cross sections
derived from Démoulin and Dasso’s (2009) results (derived from rg;,
see text in Sect. 4.5). The bending increases with the dimensionless
parameter a. Linear force-free models (n = 1, Eq. (4)) are shown for
two aspect ratio b. The black dashed line is the relation found by fitting
the Lundquist field to the elliptic (¢ = 0) model with n = 1.

to the typical field magnitude in the solar wind at 1 AU. Suppos-
ing a uniform distribution P(y/b) (see Sect. 1), and including the
above selection effects in Eq. (7), the probability of detecting an
MC is

d(y/b)

dp <B>/Buxis 2IBmin & ©>Wnin

P(p.C) = ®)

Within the studied models (Fig. 6) the weakest bias of p
with increasing b is obtained for the linear force-free model,
n = 1, with an elliptic cross section (Fig. 8c). It implies a
moderate decrease of P(p,C) with p without selection effect
("Bmin = Wmin = 0, see thin curves in Fig. 10b). The selection
effect with w is only present for large p values and its effect de-
creases with b (Fig. 9b). However, this model also has the weak-
est <B> for large p values. It implies a strong selection effect for
"Bmin = 0.25, increasing with b (thick curves in Fig. 10b).

Increasing the axial currents (n = 0.5) or extending the cross
section to a rectangular shape implies a stronger magnetic field
for large p and thus a weaker selection effect. The selection ef-
fect with the field rotation angle also remains limited to large p
values (Fig. 9a,c). Moreover, as b is increased, the strong de-
crease of d(y/b)/dp with p further reduces the selection effects
(compare thin and thick curves in Fig. 10a,c). We conclude that
the relation p(y/b) has generically a major effect on the ob-
served MC distribution drawn in function of p.

Can we interpret the observed distribution Pyps(p) (Fig. 1)
as due to oblate cross sections? For the elliptic case with n = 1,
none of the P(p, C) distributions with a fixed » and selection cri-
teria are close to the observed distribution (Fig. 10b). However,
a mixture of such distributions well could be, and this will be
analyzed in Sect. 5. For the elliptic case with n = 0.5, P(p,C) is
very close (i.e., within the error bars) to the observed distribution
Povs(p) for b ~ 2 (Fig. 10a), while for the rectangular boundary
with n = 1, P(p,C) is also close to the observed distribution for
b =~ 1.5 (Fig. 10c).

4.5. Effect of a bent cross section

In some MHD simulations, the flux rope is strongly compressed
in the propagation direction, such that its front region becomes
relatively flat (e.g., Vandas et al. 2002). The cross section can
even develop a bending of the lateral sides towards the front di-
rection when its central (resp. lateral) parts move in a slow (resp.
fast) solar wind (e.g., Riley et al. 2003; Manchester et al. 2004).
Démoulin & Dasso (2009) have investigated the effects of bend-
ing the flux rope boundary to a bean-like shape. This bending is

parameterized by the dimensionless parameter called a. Exam-
ples of computed fields with various a values are shown in their
Figs. 3-5. Typically |a| needs to be larger as b increases to get a
comparable bending.

Does bending of the flux rope cross section modify the prob-
ability distribution of flux rope detection, P(p,C), versus the
estimated parameter p? The effect of a value can be approxi-
mately derived from the relation rgx= <Bx>/<B> in function
of y/b,a and b as summarized by the analytical expression of
Eq. (31) of Démoulin & Dasso (2009). As in Sect. 4.1, a similar
< B> /< B> is expected for B and its fitted B, field. Setting
the equality rgx1.(p) = rex(y/b,a,b) provides an estimation of
p, named pc(a, b, y/b), which is shown in Fig. 11 for a few a and
b values.

We also compare the estimation p, to the result of fitting By,
to B for a = 0, so an elliptical boundary (dashed black line).
For b = 1, both curves are simply p = p. = y/b (Fig. 11a),
while for b > 1, there is good agreement up to large y/b values
(Fig. 11b). Such a result could be extended to a > 0 by applying
the Lundquist fit to the bent models developed by Démoulin &
Dasso (2009). Then, the analytical expression p.(a, b, y/b) pro-
vides an estimation of p for a broad range of {a, b, y/b} values.
This result has a practical application: it provides a good initial
guess of p (from observed rgy) for the non-linear fit of By, to B
(thus both avoiding starting in a wrong local well of dev, Eq. (2)
and speeding up the computations).

Figure 11 shows that bending of the flux rope cross section,
so increasing |a|, increases p for a given y/b. This is the opposite
effect of increasing b (Fig. 8a,c). As seen in Eq. (8), this implies
a bias toward increasing the probability of flux ropes for large
p, which is the opposite of the observations (Fig. 1). It is also
worth noting that |a| = 2 is already a very bent cross section
(see Figs. 4, 5 of Démoulin & Dasso 2009) that we expect to be
rarely present in observed MCs. We conclude that the effect of
bending the cross section is expected to introduce only a weak
bias to the estimated p value.

5. Distribution of the cross-section aspect ratio

In the previous section, we found that the probability distribu-
tion P(p,C) was most sensitive to the aspect ratio b. In this
section, we use this property to constrain the probability distri-
bution, P(b), of the aspect ratio b for the MCs observed at 1 AU.
We end by exploring how P(b) depends on the MCs’ properties.

5.1. Method

In the following, we consider that the aspect ratio b is distributed
according to the probability function P(b), while the other pa-
rameters in C remain the same. Because of the small effect of
a, see Sect. 4.5, we set a = 0. The expected probability of the
impact parameter P(p) is the superposition of the contribution
of each b values according to

P(p) = f P(b) P(p,C) db, ©))

'min

where C = {a,b. 1, ’Bmin, Wmin} and [~ P(b) db = 1, while

fol P(p,C) dp < 1 since cases are missed with the selection on
"Bmin and Wmip.

Since P(b) is contributing through an integral to the distribu-
tion P(p) in Eq. (9) and Pops(p) (shown in Fig. 1) has important
uncertainties due to the limited number of observed MCs, we
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Fig. 12. Probability distributions P(p) from Eq. (9) and P(b) from Eqgs. (11, 13) for the minimum of dist(1, byean) as defined by Eq. (10). Pops(p)
of Fig. 1 is added in (a,d). Two force-free elliptical models are shown: (a-c) n = 0.5 (constant current density), (d-f) n = 1 (linear force-free) for
TBmin = 0.25 and wy, = 0. The three P(b) functions, shown with three colors, imply similar results.

can only derive a global behavior of P(b). For that, we limit
the freedom of P(b) by selecting functions that depend on few
parameters (Pmean, b,.) and minimize the distance, dist, between
SD(P) and Pobs(p)

1 o0 2
dist = \/ f (Pobs(p)—n f P(b) P(p,C) db) dp .
0 1

We introduce the parameter 7 in front of P(p) since Pops(p) is

normalized with all the observed MCs ( fol Pors(p) dp = 1),
while each P(p, C) is normalized to all the cases. Since we can-
not also normalize P,ps(p) to all cases, we leave 7 as a free pa-
rameter. It is expected to be around 1 since the selection biases
are expected to be small (Sect. 4).

The generic cross section shape of MCs is mostly unknown
since the only shape determinations were done with a Grad-
Shafranov reconstruction technique or by fitting the elliptical lin-
ear force-free model on a few MCs (see Sect. 1). The cross sec-
tion has the tendency to be round (b ~ 1) because of the magnetic
tension and the typically low plasma S found in MCs. However,
the large pressure of the MC sheath tends to elongate the cross
section orthogonally to the MC mean velocity, so b > 1. Then,
we set a minimum value for b as b,;, = 1. Indeed, the MCs with
b < 1 cannot be too numerous, otherwise more MCs with large
p would be observed (because for b < 1 the bias of p(y/b) is the
reverse of b > 1).

10)

We first select a simple linear function for P(b)

2
PL(b7 bmean) = m

=0

(bmax - b) lf 1 < b < bmax (11)
otherwise,
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where the coefficient in front of (b — b) is computed from the
normalisation ﬁbm“ PL(b, bean) db = 1, and

bmax + 2
—5 -

As a second possibility for P(b) we select a Gaussian distri-
bution, limited to b > 1

hl“ax
mm=f b PL(b, bean) db = (12)
1

b —b.)?
PG(bsbmean,b’c) = f eXp (_%) » (13)
. 2 1
with ro= \/; (I +erf(b)) o’
b, = (b.—1/(V20),
Buean = V2 o-(b’ + L_b,?)) +1
C Nm[l+ef®l)

where erf is the error function. The coefficient f was computed
from the normalisation flm PG (b, bmean, b.) db = 1. The parame-
ter bmean 18 the mean value of Pg, restricted to & > 1. The free-
dom of Pg is expressed in function of {bmean, b..} rather than with
the usual parameters of a Gaussian distribution {b., o} (Eq. (13))
in order to easily compare our results with the linear distribu-
tion Py (Eq. (11)). Moreover, as shown below, bpye,, value is
the most stable result deduced from minimizing the function dist
(Eq. (10)). Therefore, we set the parameter b,y in both distri-
butions. For a given bmean, the normalized parameter b]. deter-
mines the location of the maximum of Pg and the spread of the
distribution as follows. The probability at b = 1 divided by the
maximal one, at b = b, is simply exp(—b’f). Therefore, b, de-
scribes how much the function Pg is peaked (b, = bl.o V2 +1,
then for b, = 0, its maximum is at » = 1, while it is more peaked
toward b > 1 as b), increases).
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7min along the simulated crossing). The coefficient 7, by, is found
by minimizing dist (Eq. (10)) for two force-free fields (lower curves:
n = 0.5, upper curves: n = 1). Three probability distributions of P(b)
are shown with different colors (for n = 0.5, the three curves are almost
identical).

5.2. Probability distribution of aspect ratio: P(b)

In this section, for a given Puns(p) (Fig. 1), the function
dist(n, byean), defined by Eq. (10), is minimized. We provide
typical results for P(b).

The function dist(n, byean) has a well-defined global min-
imum in all explored cases, see e.g., Fig. 12¢,f, where cuts
through the minimum are shown in function of bye,,. For n =
0.5, the minima are nearly at the same location ( = 0.91 +0.01,
bmean = 2.29 £ 0.01 for the three P(b) functions shown), while
for n = 1, nis larger (= 1.26 = 0.06) and b,y is more broadly
distributed (from ~ 2.2 to 3.4). For each n value, the derived
P(p) are all very close and fit globally well the observations
(Fig. 12a,d), with a comparable minimum of dist (~ 0.036 for
n = 0.5 and ~ 0.035 for n = 1). There are still some differrences:
for the case n = 1, P(p) is slightly lower than Pq,s(p) for both
small and large p values (p < 0.3 and p > 0.7), while it is the
opposite for the case n = 0.5 (Fig. 12a,d). It is an indication that
n is typically between these values in MCs, in agreement with
the result found for <B>/By(p) at the end of Sect. 3.2.

5.3. Sensivity of P(b)

We compare below the results for P and Pg varying both the
models (n, cross section shape) and the selection effects (rgmin
and Wnin)-

The results above are derived by fitting the theoretical results
to Pobs(p), which has statistical fluctuations with the relatively
low number (100) of MCs available. Then, we also derive the
results from the Gaussian and linear fits (Fig. 1). The larger
change is present for the case n = 1, and we find that byeqp
is inside the range [2.2, 3.4] for the P(b) distributions shown in
Fig. 12e. The range found for b,y is changed to [2.7, 3.0] when
the Gaussian fit is used, and to [2.3, 2.5] for the linear fit. Forn =
0.5, the changes are more limited: byean = 2.29 with Pops(p),
changing to ~ 2.33 for the Gaussian fit and = 2.11 for the linear
fit. We conclude that the results are weakly dependent on the
details of the function Pyps(p).

The selection on rotation angle, wmin, has a low effect on
the minimum of dist(7], bean) for wmin < 90°. The main effect
of increasing wp, is to force P(p) to zero for large p values
(Fig. 10). This effect remains in the integration on b in Eq. (9).
For example, with wpi, = 90°, P(p) = 0 for p > 0.75 for both
n = 0.5 and 1, in contradiction with Py,s(p) (Fig. 12). However,
when wpi, is decreased to ~ 45°, there is only a slight decrease
of P(p) for p > 0.9, then wp;, around 45° is compatible with
Povs(p) in agreement with the minimum rotation angle detected
in MCs (Fig. 9).

We next explore the sensitivity of the results with rgpi, se-
lection. The elliptical linear force-free field (n = 1) is the most
affected by changes of rgmin threshold (Fig. 13). This is indeed
expected from the results of Sect. 4.4 and in particular from what
is shown in Fig. 10b. As rgmi, increases, so does the selection
effect for large p values; lower b values are needed to fit the ob-
servations and a larger i is needed to compensate the selection
effect (Fig. 13). At the opposite, the case n = 0.5 is almost in-
dependent of rgy;, since the selection affects only the low prob-
ability tail of P(p, C), see Fig. 10a. Similar results are obtained
for n = 1 and a rectangular shape, with only a shift of bpea, to
~ 1.56 + 0.01 and 7 increasing a bit to 1.07, as expected from
Fig. 10c.

We conclude that the observed probability P.n(p) is
mostly affected by the oblateness, b, of the flux rope cross
section.

5.4. Main constrain on P(b)

The results above are also relatively independent of the function
P(b) selected within the explored set. In all cases, close results
are obtained from a linear and Gaussian distribution having a
maximum located at b = 1 (e.g., Fig. 12). Moreover, similar re-
sults are found for a Gaussian distribution more peaked around
its maximum, especially for the elliptical n = 0.5 and the rect-
angular n = 1 cases, i.e., changing b, has nearly no effect on
and bpean values minimizing dist(1, byean)- This is illustrated by
the cases b, = 0 and 1 in Figs. 12,13. It is also true for much
larger b),, so more peaked Gaussian function (indeed also in the
limit b, — oo, so when Pg select only b = bpean). This prop-
erty is linked to the behavior of the functions P(p,C): the ones
for b = byean approximately fit the observations, while the ones
for larger b are too peaked to low p values and the opposite for
lower b values (Fig. 10a,c). Then, for a distribution of b values,
the best fit is always found around the same b,y value, and the
behavior of P(p, C) for lower b values tends to compensate those
for higher b values.

The above results can be modeled with the following analyt-
ical functions

2+/gb/m

P(p,anal.) = ———— exp(-qp°b),

erf(~/q b)

which approximate the behavior of P(p,C) for the n = 0.5 el-
liptical case with ¢ =~ 1.4 and for the n = 1 rectangular case
with ¢ = 2. The n = 1 elliptical case has P(p,C) functions
that are the most different from P(p, anal.) while still having
some global similarities in their dependences on p and b. Then,
and even in this case the results are weakly dependent on b/,
(Fig. 13). We conclude that the observations, summarized with
Pobs(p), mainly determine the mean value of b, independently of
the shape of P(b).

(14)

6. Application to subsets of MCs
6.1. Correlation between MC parameters

In this section, we explore the correlations between p and the
other global parameters measured in the set of 100 MCs ob-
served at 1 AU. In particular, we find unexpected correlations.
First, we examine the cone angle B, which is the angle be-
tween the MC axis to the solar radial direction. The number of
detected MCs decreases with a lower 8 angle (Fig. 14a). Still,
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Fig. 14. Correlations of the impact parameter p with (a) the angle between the MC axis and the radial solar direction, (b) the mean MC velocity
(in km/s), and (c) the flux rope radius (in AU) found with the Lundquist fit. The straight line is a linear fit to the data points (MCs).

we find no correlation between 8 and p, showing that the cross-
ing cases away from the MC nose (low S values) have no special
biased impact parameter when the few cases corresponding to a
leg crossing are filtered out (8 > 30°). This justifies the use of
models with a locally straight axis (e.g., Owens et al. 2012, and
references therein).

As reported by Lepping & Wu (2010), we also find no sig-
nificant correlation between p and By (the deduced axial field
strength). We agree with their interpretation that By of MCs
is expected to be spread in a large range (about a factor 10), so
that the dispersion of By;s is likely to mask any weak depen-
dence By(p). Indeed, we find such dependence in the models.
The dependance is weak for circular models (Fig. 4) and moder-
ate for models with elongated cross sections. For example, with
b = 2, By monotonously decreases from 1 to ~ 0.4 for an ellip-
tical linear force-free field, while this decrease is much weaker,
only down to = 0.8, for an elliptical model with uniform current
(not shown). Since we detected two indicators in favor of finding
typical MCs between those models (ends of Sects. 3.3 and 4.2),
By(p) is expected to have a relatively weak dependence (from 1
to = 0.6) that can be easily masked by the large dispersion of
Bxis in MCs.

Other global parameters are not or are only weakly correlated
with p, except for two: V (mean velocity of the MC along the
spacecraft trajectory) and R (flux rope radius deduced from the
Lundquist field). The Pearson’s correlation coefficient is 0.26
and 0.35 for V and R respectively, and a linear fit also clearly
shows the trends (Fig. 15b,c). The correlation V(p) is the most
surprising since V is measured directly from the data and is a
robust quantity (weakly dependent on the selected MC bound-
aries). Such a result could not be interpreted as a real velocity
shear between the MC core and its surrounding since by its mag-
nitude this effect would shear apart the flux rope before its arrival
to 1 AU (the consequences of this particular behavior around
1 AU are neither observed and nor plausible). The strong cor-
relation R(p) is also surprising. Still, we emphasize the study
of V because R could be affected by the amount of reconnection
achieved between the MC and the overtaken magnetic field as
deduced by the presence of a back region in MCs (Dasso et al.
2006, 2007; Ruffenach et al. 2012).

6.2. Sets of MCs with different aspect ratios

We investigate the above puzzling result by analyzing probabil-
ity distributions, as in Fig. 1, but for MCs with a restricted in-
terval of velocity. Due to the fairly low number of MCs, we are
limited to a relatively coarse sampling in V.

The probability distributions are fitted by a straight line (such
as the black line in Fig. 1) in order to decrease the statistical fluc-
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tuations inside the p bins and summarize the distribution infor-
mation to the slope. For a histogram of N MCs that is distributed
according to a linear function of p, the constrain that the sum of
the probabilities is unity implies a relation between the slope of
this distribution and the mean value of p, noted < p >, as

slope = 12 Ap (< p > —1/2)/(1 =N, (15)

with Ap being the bin size. For N slightly large (say N > 10),
Eq. (15) shows that the slope is almost independent of N and
simply related to < p >. It implies that the slope is a relatively
robust quantity, even for a low number N of MCs used to build
the distribution. The expected statistical fluctuations on < p >
are of the order of < p > / VN , which translate to fluctuations of
the slope = (slope + 6Ap)/ VN ~ 0.1 fora slope =~ —0.2 (Fig. 1),
Ap=0.1and N = 16.

Next, we ordered the MC data according to growing values
of V and computed the evolution of the slope for N MCs pro-
gressively shifting to higher V values. With N = 16, fluctu-
ations of the slope are < 0.1, as expected. There is a sudden
change for V above ~ 550 km/s (Fig. 15a). A similar result is
obtained for larger N values, with fewer fluctuations, but with
a reduced dynamic (in both axis directions). Indeed, separating
the MCs to two groups shows two different distribution functions
(Fig. 15b,c). Similar results are found when the above ordering
with V is replaced by one with R.

With the results of Sects. 5.2 and 5.4, we interpret this result
as the presence of two main groups of MCs. The slower ones,
V < 550 km/s, which are also the most numerous (84 MCs),
have an oblate cross section with a mean aspect ratio between 2
and 3, depending the model used, similar to the full set of MCs.
However, the faster MCs at 1 AU have a nearly flat distribution,
so they are mostly round whatever model is selected (within the
explored ones). It would be worth checking this conclusion with
more MCs since this group is limited to 16 MCs. These MCs
are also typically larger and have a stronger magnetic field since
V has a correlation coefficient of 0.32 with R and 0.68 with By
(for the full set of 100 MCs). Indeed, a variation of the slope of
Povs(p) with MCs ordered with R was found to be similar to that
of V (Fig. 15a). This is not the case with By since there is no
significant correlation between By and p (Sect. 6.1).

Why would faster and larger MCs typically have nearly
round cross section? On first thought, a faster MC would im-
ply alarger snowplow effect, plausibly generating a larger sheath
that can compress the flux rope more, and thus induce a flatter
cross section. However, the velocity is measured at 1 AU and
the above result could mean that those faster MCs were on aver-
age less decelerated than others, so that the distortion from the
surrounding solar wind was less important than for other MCs.
Moreover, faster MCs spend less time from solar eruption to
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Fig. 15. Properties of impact parameter distributions Pops(p) for dif-

ferent MC groups. (a) Slope of the linear fit of Pyps(p) when MCs are
first ordered with a growing mean velocity V, then binned in groups of
16 cases (running grouping with increasing V). The three curves repre-
sent this slope, with the black line corresponding to the mean V of each
group and the blue (resp. red) line corresponding to the minimum (resp.
maximum) value of each group. The horizontal dashed line is the slope
for all MCs (slope of the black line in Fig. 1). The horizontal axis is
scaled with the logarithm of V. (b,c) Probability distribution, Pops(p),
as in Fig. 1, with MCs separated in two groups according to their mean
velocity V.

their arrival at the point where they are observed in situ, and the
distortion mechanisms are expected to be less effective. Another
plausibly complementary answer is that the faster MCs have typ-
ically a stronger magnetic field, so that the magnetic tension is
stronger and keeps the cross section rounder.

7. Conclusions

The MCs observed at 1 AU are classically fitted with a Lundquist
model (Lepping et al. 1990). In the set of 120 MCs analyzed,
only 11% (13/120) of the MCs could not be satisfactorily fitted
(either the flux rope handedness could not be determined or the
fit did not converge), while 6% (7/120) of the MCs are crossed

too far away from the nose to provide reliable fit results. For the
remaining 100 MCs, the fit provides an estimation of the impact
parameter (p). The observed probability distribution, Pops(p),
of these MCs is found to decrease strongly with p (Lepping &
Wu 2010, and Fig. 1). Compared to an expected almost uniform
distribution, this could imply that about half of the MCs are not
detected by in situ observations. Is this decrease due to a strong
selection effect, like on the magnetic field strength and/or the
amount of field-rotation angle? Or are the MCs observed only in
about one-third of ICMEs because more criteria are used to de-
fine ICMESs than MCs? Moreover, several of the less restrictive
criteria used to identify ICMEs are expected to be independent
of the impact parameters (such as temperature, composition, and
ionization level). In order to answer these questions, we explored
the parameter space of flux rope models with force-free fields.
We simulated spacecraft crossings and performed a least-square
fit of the synthetic data with a Lundquist field, using the same
procedure as for observations of real MCs. The fit provided an
estimated impact parameter p that we compared to the true one
known from the synthetic model.

For models with circular cross sections, we found that selec-
tion effects with magnetic field strength and field-rotation angle
are present only for large p values, so they cannot explain the
gradual decrease of Pops(p). This result is found for a broad va-
riety of magnetic field profiles ranging from nearly uniform to
peaked field strength across the flux rope.

Next, exploring non-circular cross sections, we found that
the aspect ratio, b, of the cross section is the main parameter af-
fecting the estimated impact parameter p. For flux ropes flatter in
the propagating direction (corresponding to b > 1), p is more bi-
ased to lower values, compared to the true one, as b is increased.
This effect implies simulated distributions $(p), which are close
to observed ones with b = 2 for an elliptical model with uniform
axial current density. For linear force-free fields with elliptical
cross sections, p is less affected by b. However, the field strength
decreases more rapidly away from the flux rope axis, so that the
selection effect on the field strength enhances the dependence of
P(p) on b.

We also explored other effects that can bias the probability
distribution of p. We found that bending the cross section in a
bean-like shape has a small effect on the estimated p. A much
larger effect is present if the cross section is set broader than an
ellipse at large distance from the axis. An extreme case is a rect-
angular cross section. In that case, the linear force-free model
corresponds to an even more biased p than the above elliptical
model with uniform axial current density, and b ~ 1.5 is suf-
ficient to reproduce the observed distribution Pops(p). Finally,
we found that for all the models explored, the rotation angle
along the spacecraft trajectory is above 90°, except for large p
values (at least p > 0.7). Then, a selection effect on this pa-
rameter cannot explain P,s(p). Furthermore, only a selection
criterium around 40° can lead to a computed P(p) in agreement
with Pops(p) for large p values. This is in agreement with the
minimum rotation angle found in the set of MCs analyzed by
Lepping & Wu (2010).

We conclude that the observed distribution Pps(p) is mainly
shaped by the oblateness of the MC cross section, with some
contribution by a field strength selection when the flux rope is
close to a linear force-free field. Still, even in this last case,
typically more than 70% of the flux ropes are expected to be de-
tected. Even adding infrequent cases that are not detected be-
cause of very large perturbations (so that the field rotation is
not detected), a crossing within a leg, or MCs strongly inter-
acting, this implies a low amount of undetected flux rope, well
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below two thirds. So we conclude that a large majority of flux
ropes can be expected to be detected. ICMEs could still have a
flux rope without strictly filling all MC criteria, such as a strong
enough magnetic field strength or a low enough proton temper-
ature. These cloud-like events are reported in Lepping et al.
(2005). The non-MC ICMEs could also be events encountered
outside the flux rope limits or such ICMEs would contain none.

We also get results beyond the initial questions. The main
dependence of #(p) on the aspect ratio b allows a key property
of the distribution P(b) for MCs to be constrained: the mean
of the aspect ratio. With an elliptical model with uniform cur-
rent density, Pops(p) sets the mean of b near 2.3, independently
of the broadness of distribution. This last property is approxi-
mately kept for a linear-force field, but the mean of b is shifted to
around 3 with a slight dependence on the amount of the selection
effect of the field strength. Then, we conclude that the observed
Pobs(p) implies that MCs are moderately oblate at 1 AU, at least
on average.

We further analyzed the observed MCs by separating them
into groups with different physical parameters. In contrast to
most MCs, the faster MCs (above ~ 550 km/s) have a flat Pops(p)
distribution. This implies that the faster MCs, which typically
also have both larger radius and field strength, are nearly round,
while the slower ones have typically the above mean oblateness.
Finally, we found two results indicating that the typical magnetic
field profile in MCs is between a linear force-free field and one
with a constant axial current density:

- First, the mean field strength observed along the space-
craft trajectory is systematically above what is predicted by a
linear force-free field, but below the prediction given by a con-
stant current model. This is independent of the aspect ratio of
the cross section, in agreement with a previous study (Gulisano
et al. 2005).

- Second, the distribution P(p) computed with a distribution
of b, derived to fit Py,s(p), shows systematic biases, both at low
and large p values, with the opposite tendency for both types of
magnetic fields. This conclusion is also coherent with the flat-
ter field strength profile found in MCs compared to a Lundquist
field. Then, both the current distribution and the oblateness of
the flux ropes contribute to a relatively flat profile of the field
strength.
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