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ABSTRACT

Context. A standard model for eruptive flares aims at describing observational 3D features of the reconnecting coronal
magnetic field. Extensions to the 2D model require the physical understanding of 3D reconnection processes at the
origin of the magnetic configuration evolution. However, the properties of 3D reconnection without null point and
separatrices still need to be analyzed.

Aims. We focus on magnetic reconnection associated with the growth and evolution of a flux rope and associated flare
loops during an eruptive flare. We aim at understanding the intrinsic characteristics of 3D reconnection in the presence
of quasi-separatrix layers (QSLs), how QSL properties are related to the slip-running reconnection mode in general,
and how this applies to eruptive flares in particular.

Methods. We studied the slip-running reconnection of field lines in a magnetohydrodynamic simulation of an eruptive
flare associated with a torus-unstable flux rope. The squashing degree and the mapping norm are two parameters related
to the QSLs. We computed them to investigate their relation with the slip-running reconnection speed of selected field
lines.

Results. Field lines associated with the flux rope and the flare loops undergo a continuous series of magnetic reconnection,
which results in their super-Alfvénic slipping motion. The time profile of their slippage speed and the space distribution
of the mapping norm are shown to be strongly correlated. We find that the motion speed is proportional to the mapping
norm. Moreover, this slip-running motion becomes faster as the flux rope expands, since the 3D current layer evolves
toward a current sheet, and QSLs to separatrices.

Conclusions. The present analysis extends our understanding of the 3D slip-running reconnection regime. We identified
a controlling parameter of the apparent velocity of field lines while they slip-reconnect, enabling the interpretation of
the evolution of post flare loops. This work completes the standard model for flares and eruptions by giving its 3D
properties.
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1. Introduction

Eruptive flares are major energetic events taking place
in the Sun’s atmosphere that extend to the interplane-
tary medium, and especially affect the near-Earth envi-
ronment (e.g.Gosling et al. 1991). Their evolution is as-
sociated with the formation of the coronal mass ejection
(CME) and flare loops (also defined as post-flare loops), and
their mechanism has long been explained with a simplified
model depicting reconnecting coronal loops. This model,
also referred to as the CSHKP model (Carmichael 1964;
Sturrock 1966; Hirayama 1974; Kopp & Pneuman 1976),
captures the main features of observed signatures of erup-
tive flares but also of confined flares (i.e., not associated
with a CME). Among these signatures are the formation
of the flux rope (e.g.Sakurai 1976; Dere et al. 1999; Cheng
et al. 2011, 2013) as well as the flare loops and the flare rib-
bons (e.g.Schmieder et al. 1996), correlated with the impact
of high-energy particles with the chromosphere (e.g.Reid
et al. 2012).

Magnetic reconnection is believed to be the core pro-
cess at work in these events, with numerous observa-

tional evidence (e.g.Tsuneta et al. 1992; Schmieder et al.
1997; Yokoyama et al. 2001; McKenzie 2011). This pro-
cess releases the energy stored in the coronal magnetic
field by converting it into heating and kinetic energy,
and by injecting energetic particles into reconnected loops
(e.g.Aschwanden et al. 1996) and the CME (e.g.Masson
et al. 2009, 2012).

Over the years, extended observations of eruptive flares
during their evolution have revealed typical 3D magnetic
structures. Among them, twisted flux ropes often appear
in pre-flare/flaring regions (e.g.Canou & Amari 2010; Guo
et al. 2012). J— and S— shaped sigmoids (Gibson et al.
2002; Savcheva & van Ballegooijen 2009; Green et al. 2011;
Savcheva et al. 2012) as well as sheared flare loops (Asai
et al. 2003; Warren et al. 2011; Aulanier et al. 2012) are
commonly observed. Since the CSHKP model is restricted
in terms of 3D features intrinsic to flares, 3D extensions
have been proposed to explain the expansion of the flux
rope associated with the CME. Models inspired by obser-
vations and developed numerically include reconnection of
sheared arcades, also referred to as tether-cutting (Moore
et al. 1997; Fan 2012), formation and evolution of twisted
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flux ropes (Shibata et al. 1995; Shiota et al. 2005; Priest &
Forbes 2002; Amari et al. 2003a,b), and unstable flux ropes
(Torok et al. 2004; Aulanier et al. 2010).

The 3D features of an eruptive flare were studied in de-
tail in the first paper of the present series (Aulanier et al.
2012), hereafter referred to as Paper I. There, the authors
investigated the changes in the shear during the formation
and evolution of flare loops. A 3D flux rope simulation was
used to investigate the May 9, 2011 event (see also Warren
et al. 2011). It was shown that the shear found in flare loops
is transferred from the pre-eruptive expanding magnetic
field via the gradual formation of the loops by reconnec-
tion. In the present paper, which is the third of the series,
3D reconnection, i.e., the mechanism that forms both flux
rope and flare loops, is studied in detail.

Reconnection corresponds to the change of magnetic
connectivity, i.e., when field lines “break” and reconnect
with each other. This process exists only in regions where
the ideal MHD breaks down, i.e., when the plasma frozen-
in condition ceases to be valid. A steady-state mechanism
explaining the release of magnetic energy was first given
in Sweet 1958; Parker 1957, with extensions more recently
in 3D (e.g.Baty 2000). In this model, a small diffusion re-
gion exists where the plasma is no longer “attached” to
the magnetic field, allowing new connections of magnetic
field lines and defining four domains of magnetic connec-
tivity. The frontiers of different domains are introduced as
separatrices, while their intersection is referred to as a null
point, which can exist both in 2D an 3D (Lau & Finn 1990).
However, although they necessarily exist in 2D reconnec-
tion, 3D reconnecting configurations do not always require
separatrices and null points (see Longcope 2005,and refer-
ences therein).

Démoulin et al. (1996a, 1997), for example, showed
from linear force-free magnetic field extrapolations that the
photospheric footpoint mapping can be continuous (i.e.,
without separatrices) in regions associated with solar flare
events. In such a configuration, domains corresponding to
drastic changes in the magnetic field connectivity gradi-
ent are identified as quasi-separatrix layers (QSLs). The
central part of these volumes corresponds to the strongest
field line distortion and is defined as a hyperbolic flux tube
(HFT, Titov et al. 2002). QSLs and especially HFTs have
been shown to be associated with locations of high electric
current density regions (e.g. Aulanier et al. 2005b; Masson
et al. 2009; Wilmot-Smith et al. 2009). The latter behave
similarly to current sheets associated with separatrices, be-
cause ideal MHD can break down and magnetic reconnec-
tion can take place (Aulanier et al. 2006). In such cases,
magnetic field lines “slip” or “flip” inside the plasma as
suggested by Priest & Démoulin (1995) and subsequently
investigated in Priest et al. (2003). This 3D reconnecting
mode explains observations of coronal loop motion with the
Hinode spacecraft (Aulanier et al. 2007). Finally, Masson
et al. (2012) showed that a model involving slipping recon-
nection can explain interchange reconnection between close
and open field lines in the corona, allowing the injection of
energetic particles into the interplanetary space.

Depending on the speed of the flipping motion, two def-
initions were given in Aulanier et al. (2006): if the speed
is sub-Alfvénic (vgip< ca), the field lines have a slipping
motion, while if the speed is super-alfvénic, the apparent
motion of the reconnecting field lines is said to be due to
slip-running reconnection. The authors also investigated

the properties of the slipping motion and the possible re-
lation with that of the QSLs. Although it was discussed
that the slipping motion should have a velocity propor-
tional to Q/2, where Q stands for the squashing degree
defining QSLs, a strict correlation study was not explicitly
achieved.

In the present paper, we investigate in detail the fea-
tures of the reconnection process that leads to the forma-
tion of flare loops during the flux rope ejection. Especially,
we extensively use parameters that define QSLs, such as the
norm of the connectivity mapping N (Priest & Démoulin
1995) and the squashing degree @ (Titov et al. 2002), to
find possible relations with the speed of the slipping motion
of field lines. Thus, understanding how magnetic reconnec-
tion works in the presence of QSLs provides a generalization
of the mechanisms in the 3D framework. This knowledge is
important for understanding observational features of solar
reconnection events and for extending the standard flare
model in 3D. In particular, we explain the formation of the
flux rope envelope and the flare loops, as well as the flare
ribbons and chromospheric footpoint motions with the QSL
reconnection model.

The structure of the paper is as follows: Section 2
presents details of the MHD simulation of the flux rope ejec-
tion and the general evolution of the magnetic structure, its
topology, and the associated electric currents. Section 3 fo-
cuses on the formation of flare loops and the subsequent
build-up of the flux rope via slip-running reconnection,
and their relation with the spatial distribution of QSLs.
Section 4 correlates the slip-running reconnection speed
with QSL parameters, and characterizes the evolution of
QSLs throughout the simulation. Finally, the results are
summarized in Sect. 5 and are discussed along with con-
cluding remarks in Sect. 6.

2. MHD simulation of an eruptive flare
2.1. Initial conditions, equations, and numerical domain

We used a 3D MHD simulation that reproduces the ejection
of a flux rope during an eruptive flare (identical to Paper I).
A twisted flux rope is first constructed from shearing mo-
tions and diffusion at the photosphere of a bipolar and
asymmetric potential magnetic field. As shown in Aulanier
et al. (2010), a threshold is reached at a critical step of the
evolution, compatible with the onset of the torus instabil-
ity. In the present simulation, the height of the magnetic
flux rope was slightly above this threshold and is provided
as an initial condition. No external forcing was applied, so
that the torus instability leads to the subsequent expansion
and ejection of the flux rope accompanied by reconnecting
loops in the wake of the simulated CME.

The 3D numerical simulation was performed with
the observationally-driven high-order scheme magneto-
hydrodynamic code (OHM, Aulanier et al. 2005a). This
solves the full MHD equations for the mass density p,
the fluid velocity w, and the magnetic field B under the
plasma (=0 assumption. All parameters are expressed in
non-dimensionalized units, with the averaged Alfvén speed
ca=1 used to normalize the velocities, and t4 = 1 the
travel time for a distance d = 1 at ¢afor time normaliza-
tion. Typically, the whole size of the photospheric bipole is
LAiPole — 5 (see Aulanier et al. 2013).
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Fig. 1. Global evolution of the magnetic
®  field lines, the QSL, and the electric cur-
rent during the flux rope ejection. Top

t=15.00tA t=230.00 tA
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row: sets of random field lines at ¢ =
15,30, and 45 t4. Their colors are chosen
randomly. Middle row: 2D vertical cuts
for the decimal logarithm of the squash-
ing degree @ for y = —0.3. High val-
ues of @ are red-colored. White corre-
sponds to magnetic field lines reaching the
sides of the numerical box. Bottom row:
Corresponding vertical cuts of the current

t=45.00tA
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The time-dependent parameters are advected in

Cartesian coordinates in the MHD equations:

% = =V - (pu)+CA(p—po) (1)
O o (w-V)ut(VxB)x<B/u) +7du (2)
%—?:Vx(uxB)—i—nAB, 3)

where 1, £ and v are diffusive coefficients. In particular, n
stands for the magnetic diffusivity responsible for the re-
connection process and is set to be constant throughout
the whole domain except at the photospheric boundary at
z = 0, where n = 0. Line-tied conditions are set for z = 0,
while the other five sides of the simulation box have open
boundaries. The simulation domain extends to [—10,10] in
the (z;y) plane and to [0, 30] in the z-direction, with a non-
uniform mesh. The velocity is initially set to 0 in the whole
volume, but because the system is in the torus-unstable do-
main, the evolution of the flux rope is driven by the mag-
netic forces within the volume. More detailed descriptions
of the numerical settings are given in section 3.3 and Table
1 of Paper 1.

The evolution of a set of random field lines represent-
ing the coronal magnetic field is given in the top row of
Fig. 1. These field lines were drawn with the TOPOTR
package (Démoulin et al. 1996a) and their colors chosen
randomly to distinguish line bundles. The selected times

- . 07 ¢
0 density J(z,—0.3, z).

show the outward expansion of (2-shaped field lines. They
reconnect at low height, additionally building up the flux
rope, which was already partly formed in the pre-eruptive
phase (see Aulanier et al. 2010). Below, arch-shaped flare
loops form in the center of the simulation box in the wake
of the CME. The narrow field structure just above the flare
loops indicates the location of the thin current layer where
reconnection takes place.

2.2. Coronal magnetic topology and electric currents

In the absence of separatrices and null points, magnetic field
reconnection in the solar corona is believed to take place in
QSLs (Démoulin et al. 1997). These are regions of high dis-
tortion of the mapping of magnetic field lines anchored in
the photosphere (Priest & Démoulin 1995; Démoulin et al.
1996b). This distortion is described by derivatives of the
field line mapping functions expressed via Jacobian matri-
ces, defined in the positive and the negative photospheric
regions. The first definition of a QSL was given by means
of the norm N of the Jacobi matrix (Eq.[1] in Démoulin
et al. 1996a), also referred to as the mapping norm. Another
definition, the degree of the squashing of the mapping @,
has been given in Titov et al. (2002). Naming the ratio
of the vertical components of the magnetic field Bt at
each footpoint, the squashing degree @) is related to N as
Q — N2/B2ati0.

Using TOPOTR, we calculated the squashing degree @
and plot the related QSLs (details of these calculations can
be found in Pariat & Démoulin 2012). Vertical 2D cuts of
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Fig. 3. Comparison of electric currents, magnetic field, and Q distribution at z = 0. a) Plots of the photospheric current J.
(gray-scale image) and magnetic field B.(z = 0) (cyan/pink overplotted contours for the negative/positive values, respectively).
Both direct and return currents exist in the two magnetic polarities (separated by the photospheric inversion line shown in yellow).
b) Logarithm of the squashing degree Q(z = 0) at ¢ = 20 t4 showing a similar double-J structure. The color-coding for log @ is
the same as in Fig. 1. ¢) The footprints of the main QSLs, related with the formation of the flux rope and the flare loops, are
highlighted with thick dashed pink lines on top of the shaded @-map of panel b).
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Fig. 2. Zoom of the 2D vertical cut at ¢t =20 t4 and y = —0.3
comparing (left) the logarithm of the squashing degree @ and
(right) the current density J. The gray/color scales are the same
as in Fig. 1.

the QSLs showing log Q(z, z) at y = —0.3 are presented in
the middle row of Fig. 1. The y-position has been chosen
so that it cuts the flux rope in its center. Note that these
vertical cuts are only shown in = € [-2;2],z € [0;4]. This
is the region where flare loops are formed, as discussed in
the description of the top row panels.

These cuts reveal the time-evolution of the region sur-
rounding the HFT, the thin volume where ) reaches its
highest values (Titov et al. 2002) and where reconnection
can take place. This coronal portion of the HFT shows a
typical X-shape corresponding to a vertical cross-section of
the QSL volume (Fig. 1). At t = 15 t 4, the 2D cut reveals a
tear-drop shape in the top-left corner, identifying the enve-
lope of the flux rope (similarly to Fig. 8 in Savcheva et al.
2012). The upward motion associated with its ejection can
be seen from the changes at ¢t = 30 and 45 t4. A cusp
also forms underneath the flux rope envelope and the legs
of the cusp are located around the arch-shaped flare loops
found in the center of the simulation box (see top row of
Fig. 1). Note that the white areas in these cuts correspond
to regions where the squashing degree ) could not be cal-
culated. Indeed, some magnetic field lines go beyond the
simulation box, so that the integration along those lines

down to the lower boundary and therefore the calculation
of @ is irrelevant.

Co-temporal and co-spatial 2D vertical cuts of the elec-
tric current J(x,z) at y = —0.3 are shown in the bottom
row of Fig. 1. From ¢t = 15 t4 to t = 45 t 4, these panels
show the upward motion and the thinning of the vertical
current layer where reconnection of field lines takes place.
The electric current presents an inverse-Y configuration and
the cusp has the same location as that of the HFT. This
cusp also surrounds the arch-shaped flare loops and corre-
sponds to the boundary between pre- and post-reconnected
field lines.

Figure 2 shows a zoom of the 2D vertical cut for both
the HFT and the current layer from Fig. 1 at t = 20¢4. The
X-shape typical of the QSL cross-section in the corona is
seen (about mid-way from the photospheric footpoints, see
also Titov et al. 2002 and figure 6 in Aulanier et al. 2005b).
Thin branches can also be seen in yellow-green colors at the
side of the central cross shape. They demonstrate a complex
QSL/HFT structure associated with the present magnetic
configuration, which has more structures than a “mere”
X-shaped crossing. Since the HFT corresponds to the high-
Q@ region, and since intense currents build up where field
lines anchored very close to each other have opposite feet
widely separated (Démoulin et al. 1996a), one can expect
the formation of a high-current region around the HFT,
such as found in Aulanier et al. (2005b) and Effenberger
et al. (2011) in non-eruptive models. Similar results are ob-
tained here, as shown with the zoom of the current layer
on the right panel of Fig. 2, as the intense current layer
exists where the HFT is localized. Note that in the 2D
cuts of QSLs at ¢ = 45 t4, a QSL branch not associated
to any current density structure appears. This QSL does
not have a high intensity and is related to a region where
magnetic field lines are branched out of the simulation box
(Q therefore corresponds to a different reference boundary
and its calculation is therefore irrelevant). This shows that
QSLs can exist without being necessarily related with cur-
rent densities.
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2.3. Photospheric QSL traces and electric currents

Figure 3 shows top views of the photospheric current J,
and the logarithm of the squashing degree log @ on the
photosphere at z =0, t = 20 t 4.

In Figure 3a, the two magnetic polarities show several
electric current patterns. Two patches of strong direct cur-
rents (J,/B, > 0) can be found in the center of the two
magnetic polarities, as well as small patches of weak re-
turn currents (J,/B. < 0). Note that in the present paper,
the term “direct currents” should not be confused with DC
currents used to describe currents with transit times longer
than the Alfvén transit time in the corona, which appear
in coronal heating studies. In the positive polarity (pink
isocontours), one of the direct current patches (J, > 0)
starts in the center of the polarity and extends following a
hook shape in the higher y-value region. The second direct
current patch is located very near the photospheric inver-
sion line (PIL). Both direct currents have a counterpart
in the negative polarity (where direct currents stand for
J, < 0): elongated patches of strong direct current extend
toward the lower y-value region along the PIL and there is
a patch of weak return current near the center of the neg-
ative polarity, although not as strong as the patch in the
positive polarity. These differences are due to the choice of
an asymmetric initial magnetic configuration, as discussed
in Aulanier et al. (2013).

The long and thin patches of weak direct current along
the PIL correspond to a bald patch region, but this is not
involved in the flare. Next, the narrow current layers of
strong direct currents near the PIL are parallel to each
other and form two current ribbons that are strongly similar
to flare ribbons as observed, for example, in Fletcher &
Hudson (2001). These current ribbons are associated with
flare loops that form during the ejection of the flux rope.

The QSL mapping onto the photospheric plane (see
Fig. 3b) reveals similar structures as the electric current.
The intense Q-layers (in red) present a hook shape similar
to that of the current density. We find in this map that
some structures seen in the QSL at the photosphere do not
have an equivalent in the current-density map of Fig. 3a.
For example, the QSL extending in the negative-z/positive-
y region does not show up as a high-current-density region
in the J, image. This is because this QSL branch is as-
sociated with low-current densities (the level is J, ~ 1.2
so that the region disappears with the present gray color-
scale used in Fig. 3a). Note, however, that in general, there
is not necessarily a one-to-one association between QSLs
and current-density structures, because potential (current-
free) magnetic configurations can be associated with QSLs
(see also the discussion in Fig. 1 above). Here, currents are
present in most of the QSLs. The large double-J hooked
QSLs are bounded by white regions corresponding to mag-
netic field lines that reach the lateral boundaries of the sim-
ulation box, and blue areas correspond to weakly distorted
magnetic field lines.

The large hooked structure of the QSL in the negative
polarity stretches toward lower y-value regions but remains
within the simulation box. Some QSLs are also identified
along the PIL and correspond to the bald patch region,
similarly to what was found for the current. In the negative
polarity, other QSL footpoints extend toward high y-values,
but are not associated with reconnecting field lines. They
are instead reminiscent of the asymmetric photospheric

shear that resulted in the flux rope build-up. This analysis
permits us to highlight in Fig. 3¢ the main stripes of QSLs
associated with 3D reconnection with thick dashed pink
lines. The MHD simulation therefore reveals that intense
Q layers around the PIL are localized where the intense di-
rect current ribbons are found. Since QSLs are associated
with 3D reconnection, this also gives strong evidence that
current ribbons can be associated with flare ribbons. The
QSL structure discussed here is very similar to the configu-
ration found for a pre-eruptive magnetic field configuration
in Schrijver et al. (2011) and as depicted in their Figure 21.

2.4. J-hooked structures and evolution in time

As shown in Fig. 6 of Paper I, the strong direct currents
in the center of the positive and negative polarities are
linked with forward J-shaped sigmoidal magnetic field lines
(i.e., weakly twisted field lines associated with the erupting
flux rope). This double J-shaped current structure found in
the present simulation can be related with observations of
sigmoids such as reported in Green et al. (2011), and are
similar to observations and numerical models discussed in
Savcheva et al. (2012). The present simulation shows the
evolution in time of 3D magnetic fields formerly associated
with a sigmoidal pre-eruptive phase similarly as Savcheva
et al. (2012), and as depicted in the Figure 21 of Schrijver
et al. (2011).

Intense @Q-layers with a double-J structure in the pho-
tosphere are also identified within the two magnetic polari-
ties. This configuration is a signature of twisted flux tubes,
as was shown analytically by Démoulin et al. (1996b) and
Titov (2007). Field lines anchored in the regions surrounded
by the hooks of the QSLs, and therefore of the double-J cur-
rents, correspond to the expanding flux rope. Its tear-drop
cross-section is shown in the description of Fig.1, middle
row. The elongated QSL stripes at z = 0, shown with the
pink lines in Fig. 3c, form the two principal branches of
the X-shaped HFT as seen in Fig. 2. Similarly, the cur-
rent ribbons depicted in panel a of Fig. 3 are linked with
the 2D cuts of electric current of Fig. 1: the footpoints of
the cusp, which defines the frontier between pre- and post-
reconnected magnetic field lines, are situated within these
current ribbons.

As discussed in Paper I, the hooks of the J-shaped pho-
tospheric currents almost do not evolve in time, while the
current ribbons eventually move away from the PIL. This
motion can be readily seen in Fig. 1 where the legs of
the cusp move outward. This motion is again very simi-
lar to that of flare ribbons observed during eruptive flares
(e.g.-Wang et al. 2003).

Comparisons of the locations of high-current density
build-up and high squashing degree from Figs. 1, 2 and 3
reveal strong similarities during the whole time-evolution:
high |J| locations are associated with regions of high Q.
Correspondence in shapes can also be pointed out, such
as the J-hooked structures seen in the photospheric maps
in Fig. 3 and the cusps in Fig. 1 and QSLs and electric
currents evolve similarly in time. The present simulation
shows that QSLs are preferential locations for a thin cur-
rent layer to build and therefore for 3D reconnection to
take place, as found in previous simulations (Aulanier et al.
2005b; Biichner 2006; Masson et al. 2009; Wilmot-Smith
et al. 2009, 2010) and very recently in laboratory plasmas
(Gekelman et al. 2012), all in non-eruptive configurations.
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Fig. 4. Flare loop formation via slip-running reconnection. Top and side views show a set of field lines drawn at ¢ = 20, 20.3,20.7 t 4.
The field lines are integrated at each time from the same set of footpoints (anchored at their respective coordinates F_ ). The panels
show different locations of the moving footpoints within the positive magnetic polarity. The gray-scale image and the cyan/pink

contourplots represent J.(z = 0) and B,(z = 0) as in Fig. 3a.

3. Slip-running 3D reconnection

3.1. Flare loops and flux rope formation via slipping
reconnection

We now investigate the features of the reconnection process
that leads to the formation of flare loops during the flux
rope ejection. To study the 3D reconnection at work here in
detail, we generated outputs in the simulation every At =
0.02 t4.

Top and side views in Fig. 4 show selected field lines at
different times with their footpoints anchored in the nega-
tive polarity with line-tied conditions at z = 0. In the fol-
lowing, we write F_ (F.) the coordinates of the footpoint
in the negative (positive) polarity. Note that the fixed foot-
points are anchored in the strong direct current patch (or
ribbon) as described in Sect. 2.3. Their conjugated foot-
points in the positive polarity evolve significantly, but only
during a short time-interval. This evolution occurs when
the QSL moves, following the outward motion of the current
ribbon (as explained in 2.3) and overtakes the footpoint at
F_. Figure 4 illustrates the field line motion from an initial
position in the positive polarity F (¢t = 20 t4) to a final
location Fly (t = 20.7 t4). After t = 20.7 t4, no significant
motion of the field lines can be detected. The moving field
lines eventually form strongly sheared flare loops (right col-
umn). The field lines do not jump from F, (¢t = 20 t4) to
Fy(t = 20.7 t4) instantaneously, but are seen to “slip” in
time. An intermediate time at ¢ = 20.3 ¢4 (middle column)
is shown to illustrate this continuous change of connectivity.

At t = 20 t4, the locations Fy of the footpoints in the
positive polarity are all in the strong direct current patch
in the middle of the magnetic polarity. At the intermedi-
ate time t = 20.3 t 4, some of the footpoints remain in this
patch, while others have moved along the hook of the J-
shaped patch. Some are also located in the intense direct
current ribbon close to the PIL. At ¢t = 20.7 t4, all the
footpoints F. are located in the direct current ribbon. The
footpoints in the positive polarity of the successively recon-
nected field lines are therefore always located in the intense
direct current. They also follow the hook-shaped QSL (pink
dashed line of Fig. 3) during their motion. The flare loops
eventually formed via the continuous series of reconnection
are then anchored in the direct current ribbons along the
PIL: this finally confirms the relation between current and
flare ribbons.

A different set of field lines is presented in Fig. 5. Now,
the footpoints are anchored and fixed in time in the positive
polarity at coordinates Fy. These correspond to locations
within the intense direct current patch in the center of the
magnetic positive polarity. The motion of the footpoints in
the negative polarity are tracked by field line integration
from F;. The colors chosen here for the field lines are un-
related to Fig. 4. The top and side views show the flipping
motion at three different times. At ¢ = 20 ¢ 4, the footpoints
in the negative polarity are all located within the intense
direct current ribbon near the PIL. At intermediate times,
some of them remain relatively close to their initial posi-
tion, while other footpoints are located in the hook-shaped
and elongated current patch on the other side of the neg-
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t = 20.24 tA

Fig. 5. Flux rope growth via slip-running reconnection. Similar views as in Fig. 4 show a set of field lines drawn at t =
20,20.24,20.7 t4. The field lines are integrated from fixed footpoints anchored at F in the positive polarity and the panels
show the locations of the moving footpoints within the negative magnetic polarity. The views are extended to show the full field

line extension.

ative polarity. At t = 20.7 t4, most of the footpoints are
located in the current patch near the center of the negative
magnetic polarity. Similarly to Fig. 4, the field lines move
within the current patches and follow the hook-shaped QSL
(Fig. 3). We can then point out that, for the flux rope and
flare loops formation, QSL and high-J regions with similar
structures also play similar roles. From the side views of
Fig. 5 (bottom row), the field lines are seen to wind in on
themselves and they are also winding around the flux rope
axis (as seen also in Fig. 5 in Paper I). They are there-
fore associated with the expanding and growing flux rope.
Eventually, the field lines created by the continuous series
of magnetic reconnection form different layers of the flux
rope envelope. The sets of field lines corresponding to the
flare loops and the flux rope are shown in separate figures,
but they belong to the same reconnecting field lines pairs,
as shown in Fig. 5 of Paper I.

The apparent slippage of magnetic field lines is not the
same for all field lines. In Fig. 4, at the intermediate time
t = 20.3 ta, the position F of the red line is located in
the direct current ribbon near the PIL, while F of the yel-
low line is still located in the direct current patch in the
center of the magnetic polarity. This is in sharp contrast
with ¢ = 20.24 t4, when they are both located at similar
positions. Similarly, in Fig. 5, the position F_ of the red
line at t = 20.24 t4 is located in the direct current patch
near the center of the negative magnetic polarity, while the
yellow line footpoint is located in the direct current rib-
bon near the PIL. Thus, the moving footpoints are not
shifted by the same distance during the flipping motion.

Furthermore, tracking their motion from the initial to their
final position reveals that they do not have the same speed.
Since the field lines are slipping from the initial to the final
positions within less than one Alfvén time, this motion can
be coined a “slip-running” reconnection motion (as defined
in Aulanier et al. 2006). In the following, we focus on the
slip-running speed characteristics by studying the motion
of two selected field lines associated with flare loops: the
yellow and purple ones indicated in Fig. 4. Hereafter, they
are referred to as line A and line B, respectively.

3.2. Super-alfvénic slippage of selected field lines

Figure 6 shows field lines A and B with fixed footpoints
in the negative magnetic polarity (as shown in Fig. 4).
Figure 6a shows line A at different but equidistant times
from ¢ = 20 t4 (in black) to ¢ = 20.54 t4 (in white) but
all drawn together on a single panel. We used a rainbow
color gradation to distinguish the different times and to
follow the motion of the footpoint in the positive polar-
ity. Figure 6b shows the same outputs from a top view.
Figure 6¢ represents a shaded QSL map (i.e., log Q(z = 0)
at t = 20 t4) and the different locations of F; and their
corresponding times. The same views are presented in the
bottom row for line B.

The two field lines A and B show similar characteristics
during their slippage. The inverse J-hooked shape of the
initial position (in black) is present in both cases (Figs. 6b
and e), and the final positions correspond to sheared flare
loops (in red, Figs. 6¢ and f). The two footpoints in the pos-
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Evolution of line A

Fig. 6. Time evolution during the slip-running motion of field lines A and B. Side (a) and top (b) views of the line A defined
from Fig. 4 with fixed F_(z = 0.035,y = —2.1). The set of colors varies from black to white in a rainbow fashion, and corresponds
to line A at every At = 0.06 ¢4 from ¢ = 20 ¢4 (in black) to ¢t = 20.54 t4 (in white). The gray-scale image and the cyan/pink
contourplots correspond to J.(z = 0) and B.(z = 0) at ¢ = 20 t4 with the same color coding as in Fig. 3. (c) A top view of the
QSLs at t = 20 t4 with the same color-coding as in Fig. 3b (but shaded) is presented with the locations of the moving F at
different times. The field line at ¢ = 20 ¢4 and at t = 20.6 ta is represented in black and red. (d,e,f): same views for line B from
Fig. 4 with its fixed footpoint F_(z = 0.32,y = —3.4). The color-coding is the same as for a.b.c.

itive polarity move inside the thin QSL footprint, following
the hook shape of the QSL. Their motion is faster around
the hook of the QSL, since the distance between successive
footpoint locations is larger there (Fig. 6).

The slip-running motion of lines A and B is related to
the motion of the QSL in the negative polarity away from
the PIL: as the QSL overtakes the field line footpoints, these
field lines slip-run in time. When looking at the QSL map
of Fig. 3b in the region surrounding the two footpoint lo-
cations F_ for the two lines, we see that faster slip-running
motion corresponds to F_ located in the intense @ layer.
Note also that the distance between successive footpoint lo-
cations in the QSL hook is larger for line B than for line A.
Therefore, line B slip-runs faster than line A. More gen-
erally, analyzing other field lines shows that the slippage
depends on the field line and its F_ coordinates.

Knowing the F positions and the related times, we
computed the slip-running speed vg;p profile for the two
field lines. These profiles are given in the top rows of Fig.
7 (field line A) and 8 (field line B). The outputs, marked
with x signs, were calculated every At = 2 x 1072 ¢4 to
every At =5x 1073 ¢4 (and to At = 7x 1074 t4 for line B)
to resolve the different narrow peaks in the speed profiles.
We also used a third-order spline interpolation between the
measured positions F} to obtain the speed evolution in
time. All the secondary peaks are clearly resolved, and the

central peak for line B is marginally well resolved. Since the
resolution highly depends on At, obtaining an extremely
refined central peak is cumbersome (simulation-wise), but
the following Sect. 4 shows that the results found with the
present At are quantitatively satisfying. The analysis of
Figs. 7 and 8 leads to two main conclusions.

Firstly, the slip-running motion varies in time, as can
be seen in Figs. 7a and 8a. This evolution is related with
the displacement of the QSL as discussed above, since the
fixed footpoint in the negative polarity F_ is swiped by
the moving QSL. We verified that the central peak of vg;p
(hereafter noted vpeak) is reached at the same time at which
F_ was anchored in the high-Q region (central red layer in
Fig. 3b). This indicates that QSL geometries play a strong
role in determining vpcax and the time evolution of vgjjp.

Secondly, the time evolution of vgj, shows that
Upeak(B) ~ 390 €4 > vpeax(A) ~ 130 €z, i.e., line B slips
faster than line A. Still, the two speed profiles present sim-
ilar features: first a low peak < 20 ¢z (at t ~ 20.25 t4
for line A, and t ~ 20.055 t4 for line B, see Figs. 7a and
8a), and a central peak followed by a second high peak
Uslip & Upeak/2. The zoom on the central peak for line A
(Fig. 7b) in fact shows another peak, very close to vpeak,
that is only suggested in the velocity profile for line B
(Fig. 8b) due to the resolution of the speed profile (even
with the lower At used here). Note that such high slip-
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running speed values have never been calculated in simula-
tions before. Considering the short time intervals needed to
quantify vgip, the slip-running reconnection regime is diffi-
cult to detect in simulations running with a time interval
on the order of one Alfvén time. In the following, we quan-
tify the similarities found between vg);, and the parameters
that define the QSLs.

3.3. Similarities in the vy, profiles and 1D cuts of the QSL

The footpoints Fy for the lines A and B are moving within
the same QSL in the positive polarity (right column, Fig. 6).
However, the QSL map presented in Fig. 6 cannot give a
precise quantification of the squashing degree ) because
of its low spatial resolution. To quantify @) and the map-
ping norm N, high spatial resolution of 1D cuts of the QSL
around F_ were made and are presented in the bottom rows
of Figs. 7 (line A) and 8 (line B). Note that in contrast to
the vqip profile, the convergence for the field line integra-
tion has been tested for the 1D cuts of the QSLs to resolve
the fine peaks of N(z) and Q(z).

Figures 7c and 8c represent the spatial distribution of
the mapping norm N (in red), the squashing degree @ (in
blue), and Q2 (in green, drawn here because it is directly
proportional to N, see subsection 2.2). The graphs are cen-
tered on Tpeak, With Tpeak = 0 when Npeax (and Qpeax) is
reached. Interestingly, z(F_) is at Zpeax for both lines at
the time at which vpcak is reached, demonstrating that vgip
peaks for the highest values of N and Q.

The spatial range of these panels is £1072 (5 x 1073)
around Zpeax for line A (line B). This frame is chosen to
show the strong similarities existing between the 1D spatial
cuts and the v profiles of Figs. 7a and 8a. Comparing the
two graphs shows that the IV spatial distribution is closely
similar to that of vgp.

Such similarities can also be found with a finer resolu-
tion. The panels 7d and 8d present a zoom of the highest
peak for N, Q, Q'/? with a window £10~3 around Tpeak for
line A and 45 x 10~ for line B. Similar secondary peaks
appear for the N and vy, profiles for line A (Fig. 7b.d),
and we would expect similar features for line B (Fig. 8b,d)
with a better temporal resolution of the profile surrounding
Upeak-

All similarities with the v, profile are stronger for
N for the full z interval shown here (Figs. 7c, 8c). The
second-highest peak in the slip-running motion profile ap-
pears more clearly in the N spatial distribution than for
Q and Q'/2. What happens is that even though Q'/? is di-
rectly related to IV, their profiles are actually similar to each
other only on the left side of the graphs (see Figs. 7¢ and
8¢), i.e. for & < Zpeax. The reason is that the profile of B;‘“io
(not presented here) is almost constant only for z < Zpeak
and not for > Tpeax. SO Q'/? is directly proportional to N
(QY? = N/Bclﬁst) only for & < Zpeax. This linear relation
disappears for > Zpeak, which explains the difference in
the two profiles. This suggests that the mapping norm N
is a better proxy to relate the slip-running motion to the
QSLs. Section 4 provides a more precise analysis.

Finally, the 1D cuts represented in Figs. 7c and 8c cor-
respond to the same QSL footpoint but at a different y po-
sition. This first explains the qualitatively similar features
in the N, Q,andQ'/? profiles found in both the y = —2.1
cut (Fig. 7c¢) and the y = —3.4 cut (Fig. 8c). However,

Table 1. Pearson and Spearman correlation coefficients cp and
cs for N vs vgp and Q1/2 VS Uslip-

Spline interpolation cp cs
Line A 1% Vs:. vsl?p 0.998 0.996
Q7 Vs vslip 0.932 0.969
. N vs vl 0.987 0.935
Line B sup
e Q'/? vs vaip 0.934 0.923
Linear interpolation cp cs
Line A 15\27 Vs vsl?p 0.997 0.997
Q VS Uslip 0.913 0.922
Line B N vs vglip 0.964 0.976

QY2 vs vgiip 0.842 0.805

the peak at y = —3.4 is much narrower than at y = —2.1.
Since the local maximum value Npeak is simply linked with
the local thickness of the QSL (see Eq. (21) in Démoulin
et al. 1996b), Npeax and Qpeak values strongly increase as
y diminishes. This explains why vpeax(B) > vpeak (A).

The present study quantifies the qualitative changes of
the QSL that were seen in Fig. 3. On the one hand, vpeax
is reached when the fixed footpoint F_ is swiped by the
Npeak(0r Qpeax) layer. On the other hand, the vy, profile
has very similar features with that of the norm N. Section
4 investigates the correlation between vgi, and N and @
more quantitatively.

4. vg;p, and N correlation and their time evolution
4.1. Correlation between vqi, and N

Figures 7 and 8 show that the time evolution of vg;, within
a short time interval (A¢ < 1 t4) is similar to the spa-
tial changes of the norm N and the squashing degree Q/2,
although the similarities are clearly much stronger for V.
We analyze this relationship below in more detail. This is
done by considering the displacement of the QSLs: the lat-
ter eventually move outward from the PIL, similarly to the
flare ribbons (as discussed in Sect. 2). This photospheric
motion can be seen along the (y = —0.3, z = 0) cuts shown
in the middle row of Fig. 1.

First, to calculate the speed related to the displacement
of the QSLs, the reference point Npcax Was chosen. Then,
different z-cuts of the QSL (such as panel 7c) were made at
different times, which allowed us to track the displacement
of the peak position #(Npeax) along z. Figure 9 shows this
displacement for line A (the z-cuts are made at y = —2.1)
and line B (the z-cuts are made at y = —3.4). In both cases,
the displacement of the QSL is a linear function of time,
i.e., the speed vqsr,= |slope| is constant within the time
intervals of Figs. 7a and 8a. We obtain vqsr,= 3.73% ¢4
for line A and 3.18% ¢4 for line B. This provides a direct
relation between the spatial distribution of N and Q*/2 and
the time distribution of vgjip, both shown in Figs. 7 and 8
(because it connects the abscissa x and t/t4 of the panels).

Using this relation, we present in Table 1 the Pearson
and Spearman coefficients cp and cg for the correlation be-
tween IV and vgip, and for Ql/ 2 and vglip for line A and line
B. Two cases are presented corresponding to two interpo-
lations of the footpoint positions before computing v, : a
third-order spline interpolation between the measured po-
sitions F; and a simple linear interpolation method. With
both methods, the correlation coefficients are best for NV vs
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Uslip, showing that Q2 is less correlated to vslip than N.
These results confirm the qualitative results obtained from
the analysis of the temporal profile of vg;, and spatial pro-
file of N, presented in Figs. 7 and 8. Note that cp and cg
are better for line A than line B. This could be due to the
better time resolution of vy, for line A as can be seen by
comparing Fig. 7b and Fig. 8b.

Since the time profile of vy, and z-distribution of IV
are very similar and the correlation coefficients are very
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field line B.

good, we tested whether IV is a linear function of vgjp.
As Q'/? is directly related to N, we also tested the same
hypothesis for Q/2 and Vglip- 10 show this, Figures 10a
and c present log IV versus log vgjip with v, obtained from
the third-order spline interpolation (panel a) and the linear
interpolation (panel c). Panels b and d represent log Q2
versus log vgip, for the same interpolation methods. We also
plot in all graphs the function f(vsip)=log(vsip)-log(vgst).
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Table 2. Slope a and coefficient of determination R? of the
linear fitting functions for Fig. 10.

.2 The standard flare model in three dimensions

Fig. 10. Linear correlation between log N,
log Q'? and log wvsiip. @) logN as a
function of log(vsip/ca) for Line A (yel-
low) and Line B (purple) with wvgi, ob-
tained from third-order spline interpola-
tion. b) log Q*/? in function of log(vsiip /A
with the same color-code and for the
same interpolation scheme. c¢),d) Same
graphs, but with wvgi, measured with a
linear interpolation method. The function
f (vsiip)=log(vgiip) — log(vqst.) is added to
all the graphs, with vqsr, = 0.0373 for
line A (black) and vgsr, = 0.0318 for line B
(red), see Fig. 9.
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For both lines and the two interpolation cases, the lin-
ear relation is readily seen for N vs vy, with a very low
dispersion, and the graphs show a linear trend similar to
log(vsiip)-log(vgst,). Note, however, that the linear interpo-
lation of the field-line footpoints implies that one point for
line B is outside of the linear correlation. This is because of
the low time resolution, which implies errors when deter-
mining vgjip. However, such an error nearly disappears with
the third order spline interpolation, which smoothes the
time distribution of wvgp. For Ql/ 2 vs Vslip, @ linear trend
exists similarly to the previous graph, but the dispersion is
much higher than for V.

We then applied a linear fitting function to the graphs.
The slope a and the coefficient of determination R? are re-
ported for lines A and B in Table 2. We also report the same
coefficients for the linear interpolation of wgj, for line B
where the outside data point, corresponding to the low time
resolution calculation, has been removed. We find that the
slopes are very close to o = 1 for all NV vs vgip graphs with
a very good determination coefficient R? > 0.97. However,
the linear trend is not as good for Q'/2 since both a and

Fig. 11. Spatial distribution of N(z) at different times and cen-
tered on the peak value. The solid blue line represents N cen-
tered on Npeak at t = 20.2 4 for a cross-section at the footpoint
of line A in the negative polarity. The dashed red line represents
N for t = 20.7 t4. N(z) almost does not evolve during 0.5 t4.

R? are not close to 1, showing that the linear correlation is
only valid for N.

As discussed in Sect. 3.3, B%° is almost constant for
2 < Tpeak- There is then a proportional relation between N
and Q'/2 for this space interval. We verified this result by
removing all £ > Zpeak, which indeed shows a strict linear
correlation similar to N and vgj;p (not presented here). The
dispersion seen in Figs. 10b and 10d therefore results from
the different values taken by B!*°. This analysis is deeper
than that in Sect. 2.3 and confirms that the mapping norm
N is a better proxy than the squashing degree @ for linking
the QSLs with the slipping motion speed vgip.

4.2. Origin of vgip= aN

What is the meaning of the strict correlation we find be-
tween IV and vgip? To obtain Figs. 7a and 8a, we consid-
ered two field lines anchored in the negative polarity at a

11
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Fig. 12. Time evolution of Npcak during the flux rope ejection.
The Npeak values are reported by making x-cuts at different y
(different colors/markers).

fixed footpoint F_ that are overtaken by a moving QSL.
F_ crosses a portion §l(t) of the whole QSL width during a
short time interval §¢. As was shown in Fig. 9, the outward
velocity of the QSL is vqst(t) = 6i(t)/6t. It is constant
in the time interval of the QSL crossing. Meanwhile, dur-
ing the short time interval §t, the footpoint in the pos-
itive polarity F; moves along the conjugate QSL foot-
print for a fraction 0L(¢) of the whole QSL length. Then,
Vslip(t) = O0L(t)/6t. From the definition of the mapping
norm N, we take only into account the steepest spatial
gradients and N is nearly N(t) ~ 6L/dl for 6L > 61 (see
Eq. (3) in Démoulin et al. 1996a). Then, at time ¢, the two
definitions for vgip and NV lead to

0L  6lSL
5t 6t 8l

This analytical relation should only be valid at time ¢,
since N(x) can change as time passes by. This relation has
been verified in Figs. 10a and 10c where the vy, values are
related to different times while N (¢ = 20.41 t4) for line
A and N(t = 20.15 t4) are calculated at fixed times. The
clear linear correlation found above implies that the spatial
distribution of N does not change significantly during the
crossing of the full QSL width. To verify this, we have plot-
ted in Fig. 11 the spatial distribution of N for t = 20.2 t4
and ¢t = 20.7 t 4 with x-cuts made around F_ for line A. The
chosen times correspond to the beginning and the end of the
slipping motion. Both profiles have been centered on Npeak
and have the same spatial window. Indeed, the profiles are
very similar, demonstrating that the spatial distribution of
N clearly does not change much during the slipping motion.

Note that line A and line B are not specific cases: study-
ing the other lines of Fig. 4 shows the same correlation be-
tween the slipping motion speed and the mapping field line
parameter .

Vglip (1) = ~ vQsL N (t). (4)

4.3. QSL evolution during the flux rope ejection

The previous analyses concluded that N does not signifi-
cantly change on a time scale shorter than ¢ 4. However, the
HFT as shown in the bottom row Fig. 1 evolves through-
out the flux rope ejection, which lasts a few tens of ¢4,
indicating that NV is likely to change during the entire solar
eruptions.
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Since the QSLs are displaced during the flux rope expan-
sion, a reference parameter should be chosen for comparison
at different times in the simulation. To quantify the evolu-
tion of the QSL in time, the maximum value of N along
the QSL crest could be measured as a reference. However,
this study necessitates many iterations to follow the peak
of N in the whole 2D domain (at z = 0) and does not nec-
essarily relate to the previous calculations of N for lines A
and B. Moreover, it does not give the general evolution of
the QSL at different locations. Therefore, we calculated the
Npeak values at different locations by making several z-cuts
of the N profile, from y = —2 to y = —6. Then the general
tendency of the Npcak evolution within similar regions can
be observed.

The logarithm of the peak value Npcax is reported in
Fig. 12, where two domains, for ¢t < 22 t4 and t > 22 ty4,
are defined. In the first domain with ¢t < 22 t 4, there is no
clear time evolution of Npeax. Note that the lack of data
for y = —5, —6 at earlier times is due to the portion of the
studied QSL that does not extend farther than y = —4.
In the second domain, however, (t > 22 t4), there is a
clear increase in the N,cak value as time advances, with an
exponential trend. Interestingly, as time evolves, the Npeax
values tend to a similar value that itself tends to infinity.

The clear transition between the two domains can
be understood from different physical processes at work.
Eventually, the two HFT branches show an increase in the
squashing degree value as well as a thinning of the QSLs
(Fig. 1). To readily understand the changes in the configu-
ration, different sets of reconnecting field lines are presented
at three different times in the simulation in Fig. 13. Front
and side views are presented to clearly show the vertical
expansion of the flux rope during its ejection. This vertical
stretching gradually leads to planar field lines, and recon-
nection then takes place similarly as in 2D models, as can be
seen at t = 45 t4 (right panels, see also Paper I, Figure 5).
QSLs in such a system evolve toward separatrices, so that
a fast, exponential-like evolution of N can be expected and
is confirmed in Fig. 12. However, this explanation is only
valid at later times in the simulation, i.e., for ¢t > 22 t4.

The question remains why at ¢t < 22 t4 there is no
clear Npeax behavior. Different physical explanations can
be given: in the early stage of the simulation, even though
the shearing motion at the photosphere is stopped, residual
forces from the simulation at ¢ = 0 still act on the magnetic
field while the instability develops. These forces influence
the dynamics of the QSLs related with the initial magnetic
configuration. Therefore, the QSLs evolution cannot only
be associated with the instability leading to the flux rope
expansion and associated reconnection. Moreover, the dif-
ferential magnetic shear around the flux rope created by the
differential velocity shear at ¢ < 0, as discussed in Paper I,
participates in the QSLs found in the early stages of the nu-
merical simulation. Finally, note that the resistive diffusion
coefficient 7 is doubled at ¢ = 16 t4 (to ensure numerical
stability). Increasing the resistivity impacts the reconnec-
tion dynamics of magnetic field lines and can explain the
fluctuations of Npeak(t) between t = 10 t4 and t = 20 t4.
Eventually, the flux rope expansion and the reconnection of
field lines become the main driver of QSLs dynamics, as is
shown in the time evolution of Npeak for ¢ > 22 t4. Then,
doubling the value of the resistivity again at ¢ = 30 t4 does
not affect the exponential-like evolution of Npeak.
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Since wvglip is correlated with N during a short At within
which slip-running reconnection takes place, the present re-
sult suggests that vpeax probably also evolves during the
flux rope ejection. This has been qualitatively verified in
the present simulation by investigating several vgi, pro-
files for different sets of field lines and at different times.
However, since a very high time resolution is required to ob-
tain an accurate vpeak value, quantifying vpeax= f(t) would
require a rather cumbersome analysis. Furthermore, since
QSLs evolve toward separatrices, this means that vgi,— o0,
so that quantifying vpeax for t > 22 ¢4 is harder.

5. Summary

We aimed at understanding the main characteristics of 3D
reconnection for the formation of flare loops during an erup-
tive flare and in the absence of a magnetic null point to ex-
tend the standard solar eruptive flare model from 2D to 3D.
To do this, we analyzed a magnetic configuration modeling
a simple bipolar active region, with quasi-separatrix layers
(regions of high magnetic connectivity distortion) and with-
out a null point. A 3D MHD numerical simulation was used
to model the expansion of a flux rope during an eruptive
flare event. QSLs lead to 3D reconnection dynamics that
form both the flux rope envelope and the flare loops.

The core of the QSL is an HFT that is located in the
corona, below the flux rope (Titov 2007). This HFT can
locally be regarded as an X-point, with a guide field that is
not invariant by translation, and that connects down to the
photosphere. We showed that the location and the evolution
of the QSLs are strongly correlated with high current build-
up regions where 3D reconnection takes place. Hence, the
HFT is surrounded by a coronal current layer in which the
flare reconnection takes place. The photospheric footprints
of the QSL form a double J-shaped pattern (Démoulin et al.
1996b; Savcheva et al. 2012). The hooked parts of the Js

Fig.13. Three sets of reconnecting field
lines at different times during the flux
rope ejection. Left: side and front views
at t = 25 t4. Middle: a different set at
t = 35 ta. Right: Reconnecting field lines
at t = 45t .

surround the legs of the flux rope, and comprise both di-
rect and return currents. The straight parts of the Js are
the sites of direct currents only. They correspond to flare
ribbons (Qiu et al. 2007), and join the coronal HFT by a
cusp-shaped feature.

We demonstrated that the dynamics of the formation
of flare loops and the flux rope via 3D reconnection is as-
sociated with the flipping motion of field lines. This flip-
ping motion corresponds to successive reconnections that
are a signature of QSL reconnection. Investigating the slip-
ping motion speed vglip, We showed that the apparent mo-
tion of magnetic field lines is super-alfvénic, which is why
we named this dynamics a slip-running reconnection phe-
nomenon.

Investigating vgip in great detail for different field lines
at a given time, we also showed that its time profile is sim-
ilar to the spatial profile of the field line mapping norm
N, a parameter used to quantify QSLs in the reconnection
time interval. Furthermore, we statistically showed a strict
linear correlation between the two quantities. Therefore,
N was found to be a much better proxy than the squash-
ing degree Q, or even Q'/2, to relate slipping reconnection
motions with QSL properties. Since the vertical magnetic
field magnitudes at the two footpoints of reconnecting flux
tubes are different in typically asymmetric solar active re-
gions, one can expect different field line motion velocities
in each polarity.

Next, we showed that the QSL parameter N evolves
with an exponential-like increase in the simulation when
the flux rope ejection becomes the main driver of QSL dy-
namics. This fast increase is driven by the pre-reconnection
magnetic field lines eventually becoming more 2D. This is
a consequence of the expansion of the flux rope, which
stretches the whole structure, and of the reconnection of
more potential field lines in the outer part of the magnetic
configuration. This results in thinner QSLs with higher N
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values, so evolving toward separatrices, as demonstrated in
vertical cuts of the HFT at different times.

To summarize, we have shown that the slipping motion
of field lines in 3D reconnection can be characterized by
the norm N of the field line mapping. The slipping mo-
tion vgp and the mapping norm N are strictly and linearly
correlated, with vy, (t) ~ vqsr, N (t), where vqgr, is the dis-
placement velocity of the QSL at the photosphere.

6. Conclusion

The present numerical results, considered together with
those of the first two papers of the present series (Aulanier
et al. 2012, 2013), constitute 3D extensions to the magnetic
field structure and dynamics in the standard CSHKP model
for solar eruptive flares. These extensions primarily consist
of introducing the 3D physics of magnetic reconnection at
a QSL that surrounds an erupting flux rope that is initially
weakly twisted, with a pair of J-shaped loops, and nearly
aligned with the PIL.

The global nature of the flare reconnection is slip-
running: individual field lines slip at super-Alfvénic speeds
within slowly moving plasma (Aulanier et al. 2006). For a
given reconnection rate, these very high apparent field line
speeds are determined by the thickness of the QSL. At a
given time during the eruption, the magnitude of the slip-
ping speed of an elementary flux tube is proportional to the
norm N (Priest & Démoulin 1995) of the QSL at its foot-
point. During the eruption, the reconnection taking place
in the coronal current layer leads to the displacement of the
QSL footprints away from the PIL, just like flare ribbons
do. These QSL footprints then swipe the footpoints of the
field lines while they reconnect at the HFT. Then, the ac-
celeration of the apparent motion of a flux tube footpoint
is determined by the spatial profile of N across the QSL
footprint.

The slip-running flare reconnection forms flare loops
that undergo a strong-to-weak shear transition, as well as
a broad and more-and-more twisted envelope around the
initially weakly twisted erupting flux rope (see Paper I).
These time-evolutions come from the combined effects of
the reconnection-driven transfer of magnetic shear from the
pre-erupting coronal arcades into the flare loops (see also
Schmieder et al. 1996; Su et al. 2006) and around the erupt-
ing rope, and of the vertical stretching of the whole sys-
tem. The latter leads to a diminishing of the spatially non-
uniform guide field. This leads to the formation of nearly
potential flare loops and a highly twisted envelope later in
time. This process is associated with a sharp amplification
in time of the norm N of the QSL by several orders of
magnitudes, which in turns leads to a strong increase in
the slip-running speeds. Eventually, the reconnection tends
to become two-dimensional, which incidentally leads to the
recovering of the CSHKP flare model late in the eruption.

The previous successful associations of this numerical
model to various observed features and to the estimation of
flare energies suggest that the present extensions to the 2D
standard flare model are generic. Moreover, even though
the flare reconnection in the present numerical model is
a result of the expansion of a torus-unstable flux rope
(Aulanier et al. 2010), it is arguable that these extensions
will hold in other simulations in which the flare reconnec-
tion is driven by different mechanisms. Indeed, these ex-
tensions rely on the existence of an erupting twisted flux

14

rope. Such a magnetic structure is detected in-situ as mag-
netic clouds even for large impact parameters (Démoulin
et al. 2013). Moreover, including the magnetic could-like
ICMEsS, evidence of flux ropes in in-situ data accounts for
at least two-thirds of observed ICMEs (see Zurbuchen &
Richardson 2006 and Riley & Richardson 2012).
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