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Accuracy of magnetic energy computations
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ABSTRACT

Context. For magnetically driven events, the magnetic energy of the system isithe pnergy reservoir that fuels the dynamical
evolution. In the solar context, the free energg.(the energy in excess of the potential field energy) is one of the main todica
used in space weather forecasts to predict the eruptivity of activenegiotrustworthy estimation of the magnetic energy is therefore
needed in three-dimensional (3D) models of the solar atmosphgren coronal fields reconstructions or numerical simulations.
Aims. The expression of the energy of a system as the sum of its potentialyemedgits free energy (Thomson’s theorem) is
strictly valid when the magnetic field is exactly solenoidal. For numerical i@#izs on a discrete grid, this property may be only
approximately fulfilled. We show that the imperfect solenoidality induce®gen the energy that can lead to misinterpreting the
amount of free energy present in a magnetic configuration.

Methods. We consider a decomposition of the energy in solenoidal and nonsodgpaids which allows the unambiguous estimation
of the nonsolenoidal contribution to the energy. We apply this decompositisix typical cases broadly used in solar physics. We
quantify to what extent the Thomson theorem is not satisfied when apgatety solenoidal fields are used.

Results. The quantified errors on energy vary from negligible to significantrerrdepending on the extent of the nonsolenoidal
component of the field. We identify the main source of errors and aadhezimplications of adding a variable amount of divergence
to various solenoidal fields. Finally, we present pathological unphlysitteations where the estimated free energy would appear to
be negative, as found in some previous works, and we identify thesofithis error to be the presence of a finite divergence.
Conclusions. We provide a method of quantifying théfect of a finite divergence in numerical fields, together with detailed diag-
nostics of its sources. We also compare theiency of two divergence-cleaning techniques. These results alieape to a broad
range of numerical realizations of magnetic fields.
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1. Introduction by the free energy,e., by the diference between the total mag-

) _netic energy and the energy of the corresponding currest-fr
Many astrophysical phenomena, such as stellar and so&ar jelstential) field. This very general result is known as Thon's

flares, and coronal mass ejections, are driven magneti®ly theorem, and it is based on the decomposition of the field into
Tajima & Shibata 2002; Schrijver & Zwaan 2008, and reffe sym of a current-carrying and a potential part. It do¢sieo
erences therein). Magnetically dominated plasmas are sysyq on the presence of other forces, and is valid at anyninsta
tems where the long-range, magnetic interaction domirdbes - time.

forces,e.g., plasma pressure and gravitational forces. A typica o ) .

example is the low-coronag., Priest 2003; Golub & Pasactio  The separation in the potential and free energies of Thom-
2009). There, the amount of energy associated with the niagn€on's theorem is especially relevant for systems like tve- lo
field is much larger than other energy sources, and the dynsronal field, that have fierent evolution time scales, as fol-
ics of the coronal configuration is determined by the evotuti OWS. The time scale of the coronal potential field is deteerdi

of its magnetic field €g., Forbes 2000). This includes solaPy the underlying photosphere, which is an inertia-doneidat
flares, where large currents develop in relatively smalunads Plasma, unlike the corona. This implies that the magnetic &e
(eg., Shibata & Magara 2011; Aulanier et al. 2012), and cord?€ photosphere has an evolution time scale that is muckefong
nal mass ejections (CMES), which are powerful expulsions thyan the coronal one and that it is relatively insensitivedoo-
coronal material that change the local configuration of tiag:m nal changes. Since the magnetic field at the photospherelyarg
netic field drasticallyég., Forbes 2000; Amari et al. 2003; Farfiétermines the coronal field's current-free component lahe
2010). In the coronal plasma, the magnetic energy is thexef&" also evolves on the, long photospheric time scale. As a con
the prime energy reservoir that fuels the dynamical evolugf Seduence of Thomson's theorem, relatively fast eventd) asac

these events. flares and CMEs, can only be powered by converting part of the
However, not all the magnetic energy is available for conv Oalgzr;etlc free energy (e.g. Aulanier et al. 2010; Karpen et al

sion into other forms of energy. Without changing the fielgt si
nificantly at the boundaries of the considered volume, tleegn In other words, the magnetic free energy is fiisient condi-
that can be converted into kinetic and thermal energiesviengi tion for triggering active events, and it is considered ia tbre-
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cast of eruptions in the space weather context (@ge, Forbes In Sect. 2 the Thomson theorem for the energy of a magnetic
et al. 2006; Chen 2011). Therefore, in this and similar appfield is summarized. The extension to nonsolenoidal, dizee
cations, an accurate estimation of the free energy is paratndfields is presented in Sect. 3. Section 4 introduces the six di
for understanding the observed magnetic field dynamicsleand tretized fields together with their corresponding solealoigr-
maximum energy that can be released in a flare or in a CMIbns that are used as test cases for applying our analysisew
(Emslie etal. 2012; Aulanier et al. 2013, and reference®the results are given in Sect. 5. Possible source of errors in our
On the other hand, the free energy only provides an upgaralysis are sort out in Sect. 6. Then, in Sect. 7 we present
limit to the energy available for coronal dynamics. Foramste, the parametric study of the energy dependence on the amount
in the case of a flayeruption, the post-event magnetic field conef divergence added to solenoidal magnetic fields. An arslys
figuration does not need to be potential (s2g, Berger 1985; specific to numerical fields obtained by NLFFF extrapolation
Taylor 1986; Low 2001). Indeed, flare (reconnected) loogs avf observed vector magnetograms is presented in Sect. 8, and
frequently observed to be sheared after a fastion (see.g., conclusions are finally given in Sect. 9.
Asai et al. 2003; Lin et al. 2010; Savage et al. 2012, and ref-
erences therein), a feature that is also reproduced in ricaher
simulations (Aulanier et al. 2012). This is an indicatiomtth
post-event configurations have finite free energy, and thealc We first consider the decomposition of the magnetic energy fo
energy removed by the event is given by thifetence between perfectly solenoidal fields. By decomposing the fiBldis the
the free energy of the pre- and post-event configurations. Aom of a potentialB, = V¢, and a current carrying contribution,
assessment of the true energy budget related to detapive B;,
event requires an accurate and reliable estimation of thge m%
netic energy. =Bp+By,
Another motivation of this study is to address the occuréenghe total magnetic enerdy in CGS-Gaussian units in a volume
of unphysical magnetic configurations. This is the case meso <y is given by
nonlinear force-free field (NLFFF) extrapolations when i@
processed, observed vector magnetograms are used as hourgla = 1 f dv B2
conditions. The most obvious evidence of the nonphysical na 8r Jy
ture of some solutions is when the energy of the extrapolated 1 1
field is lower than the potential field energy. This happeas, f = Ep+Ey+ in W(‘ﬁBJ) -dS— In L¢(V -By) dV, (1)
instance, in some of the solutions given in Table 3 of Metcalf
et al. (2008) and Table 1 of Schrijver et al. (2008) for thrée §/here
the considered extrapolation methods, including one uséuki 1 f B2 4V
p 9
%

2. Magnetic energy of solenoidal fields

1 2
present manuscript (Valori et al. 2010). More generally,dib Ep = 8r Es= 8r [v B; dV,
methods, the estimated coronal energy depends on the raanipu . .
lations performed on the observed data prior to their ushén 'V represents the boundary of, dS = fi dS, andf is the ex-
actual extrapolation. (This step is called preprocessiviggel- ternal normal to the bounding surface.
mann et al. 2006, Fuhrmann et al. 2007.) A significant part of WO conditions are classically considered:

the energy dference can eventually result from the details of thg) 7 . (B - Bp)lav = O, i.e, the potential field, is computed

undergone preprocessing. ) _ ) from the same distribution of normal field Bfon the bound-

~ Asa result, the understandmg of basic phyS|_caI processesary of V. This condition implies tha - Bjls, = 0 and the

in the solar atmosphere requires an accurate estimatiotteof  surface integral vanishes in Eq. (1);

magnetic free energy. On the other hand, coronal models lig V - B; = 0, in which case also the rightmost volume integral

NLFFF extrapolations, have shown that such accurate estima in Eq. (1) vanishes.

tions are not easily obtained. In such cases, Thomson'saheo .

can be exploited to address the accuracy of (free) eneriggast | these two conditions hold, then

tions. The fundamental assumption in Thomson’s theorehais tg — Ep + EJ, 2)

the magnetic field is solenoidal. Such a property is only exipr o

mately fulfilled in numerical simulations and, more genlgrah  and the energy of a magnetic field is bounded from below by the

magnetic fields that are discretized on a mesh. A quanttatiy €nergy of the corresponding potential field that has the shise

timation of the &ects caused by nonvanishing field divergendgibution of the normal component on the boundary of the con-

is complicated by its nonlocal nature. sidered volume. When applied to discretized fields, the above
The main aim of this article is to quantify thefect of the result holds under the implicit assumption that fields aneer

presence of a nonsolenoidal component on the energy of a #&lly well resolved, yielding, in particular, continuoderiva-

cretized magnetic field. This is studied using sifefient test tVeS. , , ,

magnetic fields that are a sample of the typical and character The mathematical equivalent of Eq. (2) is known as Thom-

istic examples used in the context of coronal solar physies. SON's (or Dirichlet's) theorem, seeg., Lawrence (1998). _

the first part of the article, the energy of each test field is de 10 Satisfy the above requirement [a], the scalar potential

composed and interpreted using an extension of Thomsaev's th(*- Y- 2) is computed as the solution of the Laplace equation

orem that can be applied to nonsolenoidal fields. In the secop 4 — )

part we study how the energy changes, starting from a salehoi & —(A. .

version of each test field and adding a parametric divergant c (0600l = (O - Blav

ponent. The method and results of this study are of intereehw In practical applications, Eq. (3) can be solved numerjaading

working with any discretization of magnetic fieldsg., for 3D standard methods. In the applications presented in thisrpap

coronal magnetic field extrapolations, as well as for mamnethe Poisson solver included in the IrfteMathematical Kernel

hydrodynamic (MHD) simulations. Library was used.
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3. Magnetic energy of nonsolenoidal fields Finally, we notice that this method is often used to remove
the divergence of a vector field (Brackbill & Barnes 1980, sem
times referred to as “projection method”), and it has theprty

of conserving the currente., Vx B; = V X Bjs.

In this section we provide expressions for evaluating srirothe
energy that stem from an imperfect fulfillment of the solelabi
property, as is the case for discretized magnetic fieldsetivd
ing Eq. (1) the divergence theorene,

3.3. Gauge-invariant decomposition of the magnetic energy

fq/ V-oudy = P u-ds, (4) We now summarize the procedure for the decomposition of the
) ) ) _ magnetic field. For a given numerical magnetic fiBldve solve

is used, which may not be fulfilled by the techniques employeth ~(3) numerically and compute the corresponding potentia
in constructing the numerical representations of magfiietids componentd, and current-carrying componeBy = B — B,

or ir_l thgir analysis. Moreover, if_ the_numerically c_o_mpu_rm} Next, we compute the solenoidal componBpt = B, — V£ and
tential field Bp and current-carrying fiel@, haye a finite dlyer— the nonsolenoidal componeB s = V¢ of the potential field by
gence, additional contributions can appear in the corredipg  solving Eq. (5) numerically. Similarly, the numerical st of
energy termsk, andE,. ) _ Eq. (6) provides the solenoidal compon@&jt = B; — V¢ and

~ We, therefore, seek a formulation of Eq. (1) for applicahe nonsolenoidal componeB§,s = Vi of the current-carrying
tions to numerical, nonsolenoidal fields that includes a9 part of B. The values of the dierent components at the bound-
ble sources of errors separately, that satisfies the regeie ary are such that the condition [a] is satisfied (Sect. 2)alin

[a], and that includes only volume integrals (thus avoidisgng by substituting the field decomposition E= f B2dV/8r and
. . > y
the divergence theorem). To obtain that, we first introdinee tgrouping it again as in Eq. (1), we obtain

method of computing the potential and current-carryinggpar

E = Eps+ Eys + Epns + Egns + Emixs (7)
3.1. Helmholtz decomposition of the potential part of the field with
The accuracy in the numerical solution of Eq. (3) is limited, 1 1
which may result in a finite divergence of the potential field. Ep,s = — f BV, Epns = = f |V 2dy
quantify its éfect, we can write 81” v i’r v
2 2

A = V . B E‘],s = _f B‘]’ d(V, EJ,nS = _f |Vlﬁ| d(V

Bp = Bps+ V¢, where { (é’/aﬁ)lwp: 0 (5) 8t Jy ° 8t Jy
‘ 1
which separates iB, the solenoidal parB,s = B, — Bpps from Emx = 77 (f;, Bps- Vo dV + IV Bas- Vi dV+
the nonsolenoidal on®;, s = VZ. This is equivalent to adopting
the Helmholtz decomposition for the vecty, together with the f Bps- Vy dV + f Bys- Vi dV +
v %

choice that all the nonsolenoidal componenBgfis contained
in VZ. Finally, the boundary condition faf(x,y, 2) in Eq. (5) is
chosen such tha,s satisfies the same boundary condition as fv VeV dV+ Iv Bps - Bas d(V) ) (8)
Byp; i.e,, they both fulfill requirement [a]. ) N ]

In practical applications, we first solve Eq. (3) numerigallAll terms in Eq. (7) are positively defined, except . For
to determingp, then we comput8,, = V¢, and finally we over- @ perfectly solenoidal field, it i&,s = Ep, Eys = Ey, Epns =
write the values of the normal componentsBgfon each bound- Euns = Emix = 0, and Eq. (7) reduces to Eq. (2).

ary according to Eq. (3). Since the latter operation enfothe Finally, Eqg. (7) is normalized such that
requirement [a], then any residual inaccuracy in the sotutf ~ - ~ ~ -
Eqg. (3), close to the boundary, implies a jump in the field, 1= Eps+ Eus+ Epns+ Eans+ Emix, )

a finite divergence that adds to the divergence of the patlentj h
field discussed above. Second, we solve Eg. (5) to compute
residual nonsolenoidal component3p.

ere the tilde indicates that the corresponding definition
- (8) is divided byE.
Using the divergence theorem, Eq. (4), and the conditign [a]
several terms in the above expressions could be simplified:-H
3.2. Helmholtz decomposition of the current-carrying part of ~ ever, since practical test fields may be obtained with method
the field that do not insure that the divergence theorem holds nuailtic
. . . ., we have kept all the terms in Eq. (8). Indeed, the simplifica-
Using the Helmholtz decomposition & we define a solenoidal jon gptained by using the divergence theorem results ifingix
componentB;s, and a nonsolenoidal onBys, such that other numerical issues with the issue of the finite divergenc
Ay =V B, producing cumbersome results, up to the point where Eqs(7) i
B;=Bjs+ Vv, where { (O0/0R)yy = 0 ° (6) not satisfied numerically. Moreover, the direct appearamtae
v integrals of the scalar potentials, rather then their gnatdi, in-
the nonsolenoidal part d; being: Byns = V. The boundary troduces an undesired gauge-dependence.
condition fory in Eq. (6) is chosen to have the same boundary
condition forB;s andBy, i.e, to fulfill the requirement [a]. As ot
for the potential field, the required values B at the bound- 8.4. Sources of the violation of the Thomson theorem
aries {.e, zero in this case) are overwritten onto the solution &¥e summarize which are the source of errors that we consider
Eq. (6) which is obtained numerically, so that any error iricha in Eq. (7). First, the energy igtected by the finite divergence of
ing these values by(x, y, Z) reduces to a finite jump close to thehe current-carrying part of the magnetic field, which entbe
boundaries. Ejns andEnix terms. Additionally, the potential field may have a
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finite divergence, owing to the limited numerical accuratthe 4.1. Discretized analytical test fields

solution of Eq. (3), both in the volume and close to its boupda i . A g
These @ects are contained in tH&, ns andEypy terms. The first test field that we consider is the potential fiBlgl; =

As long as these are the only source of errors, then the S&ﬁp generated by a pair of verti_cal mqgnetic _dipoles, located at
of the terms on the righthand side of Eq. (7) must be equakto #§f £Yop. Zoo), see,eg., Eq. (7) in Torok & Kliem (2003) for
total energyE computed using directly, and Eq. (7) must hold 1€ analytical expression of the field. We ggb = 2 andzop =

numerically even for nondivergence-free fields. Equivijeut -5, @nd the field is normalized such that gieomponent has
using normalized quantities, the sum on the righthand sfde 3Maximum value equal to unity at the bottom boundary ().

Eq. (9) must be equal to one. We show in Sect. 5 that the tg2€ only currents and finite divergence errors preseBbinare

tal energy is indeed retrieved by the decomposition we mptgenerated by truncation errors in its discretization.

allowing us to identify the source and extent of the eventil The second employed test fielBiest = Bro, is the model
lation of Thomson’s theorem, Eq. (2). of the magnetic field of an active region derived in Titov & Dé-

moulin (1999), given by a section of a current ring surrouhde
N _ by a stabilizing potential field. The employed configuratisn
3.5. Accuracy of the decomposition of the energy equation  the same as in Valori et al. (2012), to which we refer the reade

A further step is the assessment of the accuracy of the d(_{u:omf r further dgtaﬂs. In this case, t_he test field has an eiplic
urrent-carrying component sustained by a flux rope. The an-

sition, Eq. (7). First, we address hoWective the decomposition alytical formulae defining the test field are approximatejcivh

in th lenoidal and nonsolenoidal parts is in concreteaniym . / X
€ Soleno da_ and nonsolenoidal parts is in concreteant together with the rather coarse resolution employed heéetd y
cal applications in Sect. 6.1. . g ;
relatively large finite-divergence errors.

Second, the continuity condition, implicit in the derivati For both test field8 - and B the discretized volume is
P , L oD ™
of Eq. (7), implies that numerical derivatives can be comdut(v _ [-12.12] x [-19.19] x [0. 16], with uniform resolution

recisely enough in the employed discretization. This n ) LI
Ee the c)::lse in gome numeri?:alyapplicaticncg,, when obser;@d A =0.121in all directions.
values are used as boundary conditions for computing miagnet
fields. The continuity of the fields in relation to small s&ale 4.2 Numerical tests fields
discussed in Sect. 8.
Finally, our decomposition employs the numerical solutiohhe next test field that we considdiest = Bunp, is @ snap-
of Laplace and Poisson equations. We briefly recall the conghot of a magneto-hydrodynamic numerical simulation of mag

tions for uniqueness of the general Poisson equation netic reconnection in a null-point topology (Masson et il 2).
To use our present-stage diagnostic, we interpolated tigé or
{ Au = f , (10) nal snapshot onto a uniform and homogeneous grid, whereas th
(0u/oN)lsy = g original simulation was performed using a nonuniform one- B

wheref(x, y, 7) is a source term ifi’, andgiis the boundary value cause the divergence values are slightly increased by tae in
on dV. The use of Neumann boundary conditions implies thelation, they are not representative of the quality of theufa-
the solutionu(x, y, ) is only unique up to an additive constanttions presented in Masson et al. (2012). However, theysstilte
For Egs. (3), (5) and (6), the freedom in the additive cortsta@Hr purpose of providing a typical situation arising frone th
is equivalent to a gauge freedom for the scalar potentials numt_arlcal evolution .of magneto-hydrodynamic equatlon_be T
andy, respectively. This gauge dependence is, however, irref@nsidered volume is’ = [-20,0] x [-20,10] x [0, 12] with-
vant for Eq. (7), since the energy decomposition is intevatiy umform resolutionA = 0.05 in all d|rect|ons,_and _the f|_elql is
derived in a way such that the scalar potentia|s 0n|y app’earn' rmalized such that the vertical Component IS Unlty at B im
conjunction with the gradient operator. mum.
Integrating Eq. (10) inV and using the divergence theorem, Next, we consider three NLFFF extrapolations Idin-

Eq. (4), we find that source and boundary values must satisfyode/SOT vector magnetograms, obtained with the magneto-
frictional method in Valori et al. (2010). The original rdégo

f g= f f, (11) tion of the vector magnetograms is 0,3nd they can be pre-

av v processed (Fuhrmann et al. 2011) to improve their comiatibi
which is a necessary condition for the uniqueness of theisalu with the force-free assumption on which the extrapolatiodec

u. This implies that, for Eq. (3) wherk= 0 andg = A-B|sy, the is based.

flux of B throughoV must vanish. For Eq. (5), wheffe= V- B, Our fourth test fieldBiest = Bex1, iS the nonlinear extrapo-
andg = 0, itimplies that the volume integral & - B, must van- lation of a vector magnetogram of AR 11158, measured on 14
ish. Similarly, for Eq. (6), wheré = V-Bjandg = 0, the volume February 2011. The vector magnetogram was binned to the res-
integral of V - B; must vanish. When such conditions cannot balution A = 1.1” prior to extrapolation, and no preprocessing
insured, the uniqueness of the solution is not guarantebeé. Tvas applied in this case. The analyzed coronal model volume

effect of the violation of Eq. (11) is studied in Sect. 6.2. in arcsec isV = [-21,68] x [-273 -171] x [0, 123]. TheHin-
0de/SOT field of view of the measurements employed for this
4. Test fields extrapolation cuts through the external sunspots of a quadr

lar field distribution, resulting in high field values at thedral
To explore the fects of a finite divergence in a representativedges of the magnetogram. Even computing the potential field
sample of practical situations, we consider six test fiddgs, is problematic in this case, therefore we limited the comisd
obtained from analytical models, numerical simulationsd a volume to the bipolar core of the extrapolated field.
NLFFF extrapolations. Their magnetic configuration is ioettl The fifth test field Biest = Bexopp iS the extrapolated coronal
in the field-line plots in Fig. 1. Furthermore, we considet sifield model above AR 11024 on 4 July 2009. In this case, the full
additional test casdBiesis, Which are obtained from each of theresolution ofHinode/SOT is used, and the vector magnetogram
Biest by removing the nonsolenoidal part of the field. is preprocessed before extrapolation. The extrapolatwars a
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€) Bexorp

Fig. 1. Selected field lines of the six test cases: (a) the potential field of a douldiediyp; (b) the TD model B1p; (c) the MHD model,
Bwmrp; (d) the NLFFF model of the nonpreprocessed magnetogram of AR8LBg,,; (e) the NLFFF model of the preprocessed magnetogram of
AR 11024 Beyopp (f) the NLFFF model of the nonpreprocessed magnetogram of AR4,Beg,,. The vertical component of the magnetic field
at the bottom boundary is shown on a gray scale, with the positive (t@sggmegative) polarity in white (respectively, black). Th&eient line
colors outline diferent types of connectivities.

volume of V = [-41,42] x [-141,-16] x [0, 98] arcsec, with 5. Numerical tests of Thomson’s theorem
uniform resolutionA = 0.3”. This model of the coronal field

of AR 11024 is discussed in detail in Valori et al. (2011), nehe In this section we apply.Eq. (9) to the test cases descr.ibed in
more details about extrapolation of vector magnetogramsea S€Ct- 4- Table 1 summarizes the values of the divergencécmetr
found. ([fi|) defined in Appendix C and the contribution of each term

to Eqg. (9), for all test fields. The divergence metric sparises&

21 3
Finally, the sixth test fieldBest = Bex, is the same case adrom 10" to 10°°. In all cases, the rightmost column, corre-
Bexopp €Xcept that the vector magnetogram is not preprocesSB9nding to the sum of the righthand side of Eq. (9), is equal

prior to extrapolation. More details on the numerical inmpés- (0 Unity, despite the large fllerence in the divergence values.
tation are given in Appendix A. Therefore, we conclude that Eq. (9) completely accountaifor

relevant contributions to the energy, in all test cases. heat
consider the dferent contributions to Eq. (9) case by case.

4.3. Cleaned test fields
5.1. Results with the test fields

Since a small divergence & is one major condition for the The top part of Table 1 refers to the test fieRlss. In general,
Thomson theorem, Eq. (2), for each test fiBlgk;we consider a the energie€ of the diterent test fields go from the purely po-
corresponding solenoidal version offests, which is computed tential case oBpp, WhefeEps = 1, to high-free-energy cases
from Biest employing the divergence cleaner described in AfBrp andBgyy, with EpS 0.8), where the field is strongly non-
pendix B. In Cartesian coordinates, such a solenoidal fiakl tpotential. The main source of violation of Thomson’s theore
the samex- andy-components aBies; Whereas the-component Eq. (2), in all cases is the mixed current-potential té, ex-

is changed everywhere in the volume, except for the top bourept for theBe,oppcase wheréds; s is slightly higher in absolute
ary. ThereforeBiestandBiests have the same distribution of nor-value tharEpy.

mal field on all boundaries except for the bottom one, where More preciselyBpp is nearly perfectly potential, with non-
Brests differs fromByes; by an amount that is related to the comsolenoidal spurious fluctuations contributing to the tetakrgy
bined dfect of V-Byestin the whole volume. Since the divergencéor few parts per thousand at most (#ix). Brp has a 16%-
cleaner changes the value of the normal field component on @mergy contribution from the current-carrying part of theldi
boundary, the potential fields computed from the boundaky vé& s, with a 2% contribution from the nonsolenoidal field related
ues ofBestand of the corresponding solenoid&lsis are not the to the current-carrying structure (Bnix but not in EJ ne)- This
same. Additionally, the divergence cleaner alters theectirof is the dfect of the approximate nature in the matching between
the field, as prescribed by Eq. (B.5), of an amount that is prodrrent-carrying and external potential fields in the efriiim
portional to the divergence @s: Therefore, the field that is that defines thé@rp field. Bunp, which has 6% free energy
obtained by applying the cleaner may have drasticalffedint E;s, has an even lower nonsolenoidal contribution (-0.1%). In
properties than the original field. Finally, let us noticattdif- all three cases, there is very smdf) or no significant Bpp,
ferent solenoidal fields can be derived frd@rs using diferent Byup) violation of Thomson's theorem.

methods. The divergence-cleaned versions of the test Balds We now move to the NLFFF extrapolations. These show
are used here as illustrative examples. values of (|fj|), which are two-to-three orders of magnitude
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Table 1. Numerical tests of Thomson'’s theorem.

Brest (Ifi(B)) E Eps Eis Epns Eins Emix Sum
Bop 2x10% 145|1.00 0.00 4x10° 7x10°% -4x102| 1.00
Bto 3x10°% 390|081 0.16 3x10° 6x10* 0.02 1.00
BmHp 2x10° 194|094 006 1x10°® 1x10* -1x102%| 1.00
Bex1 4x10° 421|079 0.38 510* 029 -046 | 1.00
Bexopp 9x10% 151|088 0.11 2x10* 0.14 -0.12 1.00
Bexo 2x10° 072|229 0.14 3x10* 0.94 -2.38 1.00
Brests

Bops 1x10'® 1.44|1.00 000 4<10°> 5x10° 7x10* | 1.00
Brps  4x102' 395|084 0.16 3«10° 4x10° -3x10* | 1.00
Bwhps 3x1072' 194|094 006 1x10°® 1x10°® -1x10° | 1.00
Bexts 6x101® 5098|043 057 210% 5x10° -6x102 | 1.00
Bexopps 2x 10717 315|042 058 1x10* 2x10°% -3x10° | 1.00
Bexzs 8x107'% 099|061 039 210* 1x10°% -2x10° | 1.00

Notes. The employed test fields, defined in Sect. 4, are named in the leftmosticoBecond column|fi| ): the divergence metric of the fields
(see Eq. (C.2)). Third columik: energy of the test fields in units of ¥Gerg. TheBpp, Brp, Burp fields (and their corresponding solenoidal fields
Bpb.s, Bo.s Bunp s) were rescaled assuming a maximum value of the photospheric vericed€jual to 300 G and a typical distance between the
sunspot’s centers of (50, 50, 120) Mm, respectively. The suiveddge columns are the fierent contributions to Eq. (9), and “Sum" corresponds
to their sum. All terms fromE,¢" to “Sum" are normalized b¥. E, is the magnetic energy of the potential fi@gs, E;s that of the solenoidal
component of the current-carrying oBgs, Ep,ns and Ej,ns are the contributions associated to the divergendg,aindB;, respectiverEmiX isa
mixed potential-current carrying term (see Eq. (8) for their definitions)

greater than in the first three cases. The contribution oftime We finally notice that in the preprocessed c&8g.pp the

solenoidal part of the potential field to the total eneffgyys, is  error fromE;pns or Emix might be considered as still tolerable if

always negligible with respect to the other terms. InBagpp compared with the total energy (errors on vector magnetogra

case, the free energy associated with the solenoidal panieof are similar, after all), but it seriously compromises thiéai®l-

current-carrying fieldg;s is about 11%, and the potential fieldity of the free energy estimation, each one being as high;as

energy is 88% of the total energy. The sum of the potentitdelf.

and current-carrying solenoidal parts accounts for 99%efd-

tal energy, apparently verifying Thomson’s theorem adelya

However,E;pnsis 14% andEnmix is -12%;i.e., the errors related to 5.2. Results with the cleaned test fields

the divergence of the current-carrying part of the field have-

parable magnitudes and compensate for each other. These/dgenow consider the bottom part of Table 1 for the solenoidal

the dominant sources of error, almost three orders of madgit fields. The values of the divergence are drastically reduced

more thanE ns. all cases to 10 or less, which shows that the cleaner in Ap-
The test case with the highest value(of| ) is Bg,,. With ~Pendix B is an fiective—and fast—way of removing the non-

respect to thdBexpp Case,Bey is characterized by three timesSolenoidal component of a discretized magnetic field. Fer th

higher free energf;s, twice the error on currer; s, and al- Purpose of this article, we can then considerBalls to numer-

most a four times larger error di,. Again, the last two are ically be perfectly solenoidal. All error termsg., Epns, Egns,

largely compensating each other. We conclude that thepioterand Emix, are smaller than 1%, and we recover Eq. (2) in a nu-

lation to one third of the resolution used B¢, is less icient Merical sense.

than preprocessing (used BEgopp in eliminating the source of More precisely, théBpp s and Byp s cases are practically
violation of Thomson's theorem. identical to their corresponding test fields, as far as the¥gn

This situation is even more extreme in the case of the extrapetricsE, Eys, andE;s are concerned. On the other haBgp s
olation of the nonpreprocessed, noninterpolated magratog shows an increase of about 1.3% of the total enefgys a re-
Bex2. Although this case has a value of the mean divergensalt of the removal of the error iBn,ix of Brp. The error removal
(Ifily that is only a factor two higher than f@g,opp and not affects the potential field enerdsy, more, which raises about 5%
even the highest one, it shows the most pathological behaviwith respect to the energy of the potential fieldBfy (in non-
The potential field has an energy 2.29 times the energy of thermalized values), as a consequence of the cleaner’s wedifi
test field, which is downright unphysical according to Eq. (2tion of the bottom boundary. In contrast, the relative cbokr
Such a high value is compensated for by an equally high valiien of the current-carrying paH;s is undfected by the cleaner.
of Emix (-2.38). On the other hand, the current-carrying part dif is true that(|fj|) differs by 15 orders of magnitude between
the fieldE;s accounts for 14% of the energy, but the associat@&}p andBrps, but it is significant anyway that the removal of
error Ejns is more than six times larger. Such large errors aee2%-error inEqix changes the nonnormalized values of the to-
related to the high values of the divergence—in particuléhat tal energyE and potential field energl,s of 1% and 5%, re-
bottom boundary—and their actual values are very sensitivespectively. We conclude that, even in relatively divergefree
the numerical details of the computation. Additional asayf fields, residual nonsolenoidaffects can be energetically signif-
Bey2 andBgyoppis discussed in Sect. 8.1 icant.
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Table 2. Contributions toE, in Egs. (8,9). Table 3. Values of logy({|fil ), for the fields decomposition in Egs. (3),
(5), and (6) (see Eq. (C.2) for the definition(@fi| )).

Btest Ep,s/p,ns EJ,s/J,ns Ep,s/.],ns EJ,s/p,ns Ep,ns/J,ns Ep,s/.],s Emix

Bop -0.01 0.00 000 -0.00 -0.00 0.000.00 Best B By Bps Bpns By Bys Buns
Brp -001 000 003 000 -000 -0.00002 Boo ~ -561 -498 -560 -243 -2.35 -2.93 -2.46
Buro -0.00 000 -000 -000 -0.00 -0.0p0.00 B 554 -4.84 -540 -2.29 -422 -471 -3.20

Bew -001 -0.08 -043 000 000 005046 Bwwo -478 -576 -6.23 -255 -3.96 -4.54 -2.45

BEXZPP 0.00 -0.03 -0.10 0.00 0.00 0.01-0.12 BExl -2.40 -260 -2.66 -1.42 -2.08 -2.36 -2.04
Bee 000 -028 -246 000 -0.00 0.3p238 Beepr -305 -402 -409 -228 -2.62 -290 -2.62

B -2.66 -3.87 -3.96 -2.12 -2.69 -2.86 -2.80
Notes. Epgpns = & [, Bps- V£ AV,  Eigans= £ [, Bas- Vi dV, Brests
Epsans = & [, Bos- Vo dV,  Ejgpns= £ [, Bas- V£ OV, Bops  -180 -4.98 -560 -2.44 -0.83 -2.62 -1.91
I§p,nsu,n5~= & Ly Ve vy dv, Ep,s/lfz £ J, Bps- BusdV, Bros -20.4 -4.84 -540 -2.31 -3.41 -4.09 -2.15
Emix = Epspns + Easrans + Bpsans + Easpns + Epngans + Epsjas. BuwHps -20.5 -5.42 -579 -239 -439 -470 -2.31

Bexs  -17.2 -2.65 -2.71 -1.47 -1.72 -2.11 -1.83

In the extrapolated cases, the removal of the larger divePexeprs  -16.8 -3.78 -3.93 -2.26 -0.44 -2.76 -2.25
gence has far stronger consequences. In the first placepthe nBexes ~ -17.1 -3.63 -3.79 -1.99 -151 -2.71 -2.19
normalized field energie of the cleaned fieldBex1s, Bexopps, ) ] )
and Beys is increased of 42%, 109%, and 38%, respectiveljotes: ColumnB here is the logarithm of the columnfi(B)]) in Ta-
with respect to those of the corresponding test fields. Asna ¢ fe 1. More negative values correspond to more solenoidal fields.
sequence of the higher values©fthe importance of potential
fields relative to the total enerdsys is decreased (to 78%, 95%,

o . & - ishes becausB;sls = 0, and the volume integral vanishes be-
and 40% of their test-field values, respectively). In costirthe causev-B;s = 0. The first condition is enforced at the boundary,

T e oo O, D i th second s oy approximatel e pumercally (oo &
s gly ' P ' ect. 6.1). This is not enough to insure tkat;;ns and Eps/us

Lﬂg?gurceﬁo%gée(gfetgﬁpaerﬁ driilgt)e.d to the cumulated givee vanish numerically. This is why we adop_ted the dec_ompcrsitio
We conclude that the cleaned fields that are obtained fr(;)rfnthe energy of Sect. 3.3 that only contains volume integral
the test ones using the method in Appendix B all comply with
Thomson’s theorem accurately. However, three of them, ham
Bexis: Bexoprs, aNdBexos, are energetically very fierent from
the original fieldsBey, Bexapn andBexe, respectively. Inciden- ¢ 1 vajes of (|| ) for the field decomposition in Egs. (3-6)
tally, we notice that the removal of the finite divergence gloe
not conserve the approximate force-freeness of the exrgab In this section we quantify how accurate the decomposition i
fields. solenoidal and nonsolenoidal contributions is. Table rp
the values of the logarithm @f f;| ), defined by Eq. (C.2), for the
o o ) field decomposition used in Eq. (7). Sing;|) is not additive
5.3. Contributions to Emix for the test fields in the field, its value for, sayB is different from the sum of its
In many of the test fields in Table Eny is the largest source Values for the potentidd, and current-carrying, components.
of error. Table 2 shows the six contributionsBg;, in the order e next consider the decomposition of the potential field
in which they appear in Eq. (8) and their sty for the six 9iven by Eq. (5) for the test fieldBies: (upper half of Table 3).
test caseBes. We do not consider the solenoidal fielgss Values of(|fil) for the solenoidal part of the potential fiefihs
since all terms are mostly zero and never bigger than 0.7% T&{€ betteri(e., more negative) than those f8,ns, so that the
following conclusions can be drawn. First, the main conkrib i'?]p,tsh': ;ir:gteteh?ergocraes:%enogal tgféags- Homz\t/?ggit(zsl f0|';;y
tion t0 Emix is Epgans = = [, Bps - V¢ dV in all cases. The : DD BTD, MHD. ol I
main source of violation oEf '{qr/]omson’s theorem is then thediv has a noticeably more negative value By than forB,. In the

gence of the current-carrying part of the field. More ofteanth grc')enrl C%s:r&i:;l}l vz?:]uoeiz 23353;?% C|0$%tr(]) terf(lacgtﬁgﬁ?aﬁ d
not, this term has a similar magnitude and opposite sidfyf, Y ginafly 8By '

which is positive-definite. However, there is no obvioussmra Bons tis ? :\r/]vays mlé(éht'le'ts . Sf?:\emid?:(dt?lae TZiS isﬂpabrtly s
% a e . X ect of the nonadditivity of the metrid fi| ), and partly because
:g;aEr%S/tJﬁr}'ssté\)st;ecg:\rgvg)ésenc%r predominantly-negative, and w pns IS, on average, much smaller thBps, as the correspond-

. . . trics in Table 1 show. (In particulﬁg;n ,i.e, the
Second, the terms with residual divergence of the potent Qg energy me . . ins
field (i.e, any term containing/{ in Eq. (8)) are always neg- chergy _assomated _W'ap’”s’ s always extremely small.) .
ligible. Therefore, also in view of the always IOl s values . Similar conclusions can be drawn looking at the decomposi-
in Table 1, we can conclude that the divergence of the patienfio" Of the current-carrying parg,, where this time the energy
field always gives a negligible contribution to the energy. associated with the solenoidal error ($8gsin Table 1) is more

. . ~ 1 . significant. In this case, values ¢ffj|) for all three contribu-
Third, the integraBygans = ¢ [, Bas- V¢ dV, and the in- 55 Bjs, andBj,s are of similar magnitude. Again, the

tegralEpgs = £ [, Bps - Bas 0V have finite values for the ex- nonsolenoidal parB,ys, has a higher divergence value than the
trapolations in Table 2. Analytically, they should be vduiig). solenoidal oneB;s, but only marginally so foBpp and extrap-
Using the divergence theorem, Eq. (4), the surface integmal olated fields.

%. Source of errors in the decomposition
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Biest (Ifi(BR))  Pov(Bies) Pov(BiE) Eo  Eomix B@=( 1 f Btest-ds)r.
v

Bop -5.61 -6.83 -26.4 -17.3  -11.2 3V

Bro -5.54 -1.79 -26.0  -191 -118 Table 4 shows that the above modificationsBtgy is effec-

Buwp  -4.78 -4.36 -22.8 -12.2  -6.29 tive, drastically reducing the net flux of the original fietdvery

Bea  -2.40 -1.33 -18.7  -5.18 -3.30 low values (compare Iqg|®ay (Bres)| With l0g;q [ ®gr (BEI).

Be 2,60 -2.00 -20.9 7.49 -4.52 On the other hand, theffect on the field oBg, is very small.
X2PP . . . . . . ~ 4 5

Beyo 263 -1.86 -20.0 6.77 -4.35 Bothenergy terms related to thate(, Eo = 5 fv B;dV and
X : . : . :

Eo.mix = L frv Biest- BodV) are negligible (with a contribution

_Not&s. F_or all quantities_, the Iplg of _the absolute value is show(1|.fi| ) below 0.01% of the total enerdy computed forB{’a' _

is the ?Fveﬂrgert‘ﬁe m‘f]tr'?l gef'”‘ad In E?E' ((i'l%?’ IS the normalized Repeating the same analysis of Sects. 5 and 6.1 for the flux-

magnetic flux through all boundaries, Eq. ; andEg mix are nor- : bal \,; e .

malgiJzed to the energﬁ of B!, which is thCZa flux balanced field associ-bﬁlanlced part Ofbtlhe fieid OnIB’éBSt’ yleld%no slg?lflcant char::?e.

ated toBies, See Eq. (13). all values in Ta es 1, 2,'an 3 are identical. Inaccuracfes o
the Poisson solver in solving Eq. (3) are therefore relatettie
solver itself, not to the incompatibility of the boundarynci-

We consider the solenoidal test fielBigss (bottom half of tions. . N ]
Table 3). Values of | fi| ) for a given field component be|onging. In aS|m|Ia_1r way, the test_ fIE|_d canbe mOdlfled to have \{anlsh-
to Brestand to the correspondirBess are very similar. For in- ing volume divergence, which is the requirement for corsisy
stance, the value of Iqg((| f;| )) for Bysin, say, the test fielg,, N solving Egs. (5,6), using
is —2.36, whereas for the corresponding contributionBey, s it 1
is —2.11. Therefore, the above discussion of the contributionsgg, = (— f V - BiesdV )r .

Biest holds for those oBesis @s well. In contrast, the total diver- 3V Jy

gence of the field is very fierent in the two casese,, -2.4 and e result is likewise clear: no significant change is founthe
-17.2, respectively. This is a clear indication that theuagcy 5 es of Tables 1,2, and 3.

of the_z field decomposition is determined b_y the accuracy én th Therefore, an imperfect consistency of source and bound-
solution of Egs. (3-6) rather than by the divergence of thalto 5y conditions play no role in the accuracy of the solution of
field. _ . . . the Laplace and Poisson equations employed in the decomposi

In conclusion, the Poisson solver provides a decompositighn, Eq. (7), for any of the test cases. Recalling the resofit
of the magnetic field where the solenoidal parts have a smakgct. 6.1, we conclude that the accuracy limitation of owd-an
divergence than the original field, as required. The limithe ysjs comes from the solver itself. In this respect, we note, th
accuracy of the decomposition comes from the accuracy of {§ien the method used in Egs. (5) and (6) is viewed as an al-
solver, and not from the level of solenoidality of the inlifield.  gorithm for removing the divergence (Projection methotl)s i
One possible source of inaccuracy for the solver is the iRcofgy |ess @icient than our divergence cleaner described in Ap-
patibility of the boundary conditions used in Egs. (3-6)j0#1S  pendix B. On the other hand, the projection method has other
discussed in the next section. advantages; for instance, it change neither the currehtinal-
ume nor the normal component of the original field at the beund
6.2. Compatibility of boundary conditions in Eqgs. (3-6). ares.
We here consider the normalized flux of the fielsy,,, com- .
puted as the surface flux through all six boundaries, nomedli /- Parametric study

to the mean flux entering and exiting from the lower boundaryin this section we study how the relative energy of the field de
pends on its divergence in progressively going from a sadztho

Oyy(B) = f B - dS /®norm. (12) to nonsolenoidal realizations. The purpose is fi@oa practi-
v cal method of fixing the level of solenoidal errors that can be
. 1 tolerated in a given numerical realization, based on thmise-
with @nom = 2 j;_zl B-dS. guences on the energy of the field.

The values of log, |® sy (Biesy| in Table 4 show that the test fields
of the extrapolation casé®ey1, Bexops andBgyo are not flux-
balanced. Therefore, the decomposition of Eq. (7) baseti®n For a given test magnetic fieRles, the corresponding solenoidal
solutions of Egs. (3-6) may be inconsistent (see Eq. (11) afield Bgts is considered. A parametric, nonsolenoidal fiBld
related text). The purpose here is to determine whetherrhe is obtained by adding a nonsolenoidal comporigft to Bests,
balanced flux fiects the accuracy of any of the terms in Eq. (7using a control parametér as
A flux-balanced field B2, can be computed from a flux-
unbalanced ondBg;, by splitting the original field as Bs = Brests + 6 Ba - (14)

7.1. Parametric models of finite-divergence fields.

We consider here two models Bf;,, namely

Breat = Brest+ Bo (13) e
~2 [*(V - Bresddz Model 1,
and assumin®s = VO to be generated by an uniformly dis-, _ | 1 (A X2 1o o (Y2
tributed, constant divergencee., A® = constant. We chooseBd"’ - 3 Xfx dx +yfyZ dy’+ (15)
the simple solutior® « r?, and fix the constant such that the +2f22 dz’)V - Best Model 2

Article number, page 8 of 14



G. Valori et al.: Accuracy of magnetic energy computations

Adding the first divergence model for = 1 is the inverse op- 7.3. Comparison with the potential field energy

eration of the cleaner in Section B, sinBg(6 = 1) = Biest ) ) o

For others values, the resulting fielés only differs from the 1he Physically meaningful quantity is represented by thergy
solenoidal fieldBess in thez-component. The second model fofiormalized to the energy of the corresponding potentiadi fiel

the divergence is more general, because it changes alldbnee '€Presented in Figure 2 by black lines. Foffefients values,
ponents 0B in the volume, although not on all boundaries.the€ normal component of the fiefgh;, at the boundary changes

Both divergence models in Eq. (15) are based on the Co‘ggcordlng to Eq. (15), hence also the energy of correspgndin

tedV - B In this wav. we relate the divergence models tential field depends—quadratically—én Due to the addi-
pu " Best IS Way, We rels IVErge ' Honal 5-dependence, the shape of the black lines is not always
the source of error that is specific to the considered tgsi. fie arabolic in the six cases, and the actual profiles depenteon t
For instance, we expect that errors in the test &g Which o i< of the spatial distribution of divergence in the feesd.
are only generated by truncation errors, havefgerint distri-

bution in space than those coming from the approximate eat s h;?/;?g’rv tzfa;’r:é% flrset)(régtlct;?c)tgat tr\;vig;'g tdr:\éergr?ng? 6ni1$odels
of the Btp equilibrium, or from a numerically constructed fiel y y, except fobpop ; g
00 narrow to show significant fierences. For instancg&/E,

like Bexapn L of Model 1 (continuous black lines) is an increasing functid
The mfluence of afinite divergence Bf on the energy value s i the range (-15, 15) in thBrp case. Model 2, on the other
can be written as hand, has a parabolic energy profile with minimuns a¢t —4.
For both models, the energy variation is relatively larg& @nd
E = 6%Eqy + 26Esdy + Etests. (16) @above 2for Models 1 and 2, respectively), whereas the vaniat

in the same range @fis smaller for theBpp andByyp cases.

The extrapolated cases yield not only much larger variation
whereE, Eqyv, and Eeess are defined as usual as proportionghote again the dierence in scales between the top and bottom
to the volume integrals dB3, Bf;,, andBf, respectively, and rows of Figure 2), but also a stronger dependencé dm partic-
Esgiv = fV(BteSts- Bgiv) dV/8r. ular, Model 2 yields a relative energy that sharply increasith

Below, the energy dependence 6ris studied for the test 6, for instance, to one order of magnitude increasesfgoing

fields described in Sect. 4. Since the separation in solahaidi 70M the value 010 1 in thBe.ppcase. A saturation at high val-
nonsolenoidal components is known by construction, we sifi€S Ofé is clearly visible in the dashed black line (Model 2) of
plify the presentation by analyzing the energies of thd fatls 1€ Bext €ase, and is hinted atin thiz,oppcase. Such saturation
according to Eq. (16), and we do not separate the error spasce'> actually present in all three extrapolated cases, yiglualues
in Sect. 5. For each value 6f we consideB; as the test field to that are higher than those shown in the corresponding plos.

; ol i : saturation happens when the quadratic dependenéeobithe
%nglé/.z(egind compute the corresponding potential field doupr energy of potential field compensates the quadratic t&g, .

On the other hand, Model 1 shows a more complex depen-

dence or, which is shown in magnified scale by the black lines
7.2. Parametric dependence of the energy in Figure 3. Counterintuitively, the largest variation iretrela-

tive energyE/E, as a function ob is found forBg,opp i.€., for
Figure 2 shows the energy for the two divergence modelstife extrapolation case, which satisfies Thomson's theoretm b
Eg. (15), as a function of the control paramegein a wide ter, see Table 1. The continuous black lines in Figure 3ayvsh
range of values. Due to the largdidrence inV - Best between the presence of one maximum and one minimum in the consid-
the six models, the top- and bottom-rows havéedent scales. ered range of values of (for the Beyopp case, these lie outside
The orange lines show the energy normalized with the eneigig considered range), implying that, at high values, theril
of Bresy, Which is not dependent an They follow the expected field energy grows faster than the total energy. The locatfon
parabolic profile of Eq. (16), only scaled by the normaliaati the extrema is dierent in the thre®gy1, Beopn andBeg,, cases,
factor. Model 1 (continuous orange lines) yields a smalieia+ and in none of the cases are the extrema found for the soknoid
tion of the energy witld (corresponding to lower values Bfi,) (6 = 0) or the testd = 1) configurations. In general, the maxi-
with respect to Model 2 (dashed orange lines), and is cemtergum and minimum energy configurations depend on the spatial
farther away froms = 0 (i.e, Model 1 has higher values of distribution of the divergence of the test field, throuEga .
Esdiv/Ediv)-

The orange curves in the top row of Figure 2 show that
takes very high values @fin order to have a variation of order
one of the energy in thBpp, Brp, andByp cases&g., forthe  The black dash-dotted line &/E, = 1 in Figure 3 is the value
Model 2 applied t@p ats = 15). On the other hand, the energyselow which unphysical fields are obtained. We find that only
of the extrapolated fle_lds shows a much steeper |r_1crea595w|t|n/|ode| 1 can produce unphysical solutions, and only for jmeci
related to the much higher value Bf- Bies;, and particularly so range ofs values in theBpp, Brp, Bexz cases. The latter case is
for Model 2. known from the value oE,/E in Table 1, and is considered to be

The location of the minimum of each of the orange curvesah extreme case because of the large divergence that ivé@scol
atémin = —Enmix/Eadiv, therefore its location depends on the av-However, the possibility of also creating unphysical Solus in
erage orientation and amplitude of the divergence f&glgwith the far more solenoidal fielBpp andB+p (for values oflg| > 5)
respect to the solenoidal fieRL. The orientation and amplitudeis unexpected. It confirms that not just the value of the diver
of Bgy also determines the height of the minimum (since thlgence is important, but also its detailed spatial distidsutvith
energy of the test field is fixed). With both divergence modelsespect to the solenoidal component, as evident fggy,. It is
there are no general rulese, the energy can increase or dethe alignment betweeBg, andBs, and not just the magnitude
crease withs, and the location of the minimum depends on thef By, which determines how strongly the energy depends on
case. Moreover, whileE > E; is always satisfied foBex; andBexopn

%4. Unphysical cases.
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Fig. 2. Magnetic energy, Eq. (16), normalized to the energy of the potentialifaatthg the same distribution of normal field on the boundaries
(black lines) or to the energy of the reference field (orange lines)flasction of the amplitudé of the nonsolenoidal term, Eq. (14). Two models
for the divergence are shown according to Eq. (15). Each panelssthe results of a test field: (a) the potential field of a double di@ys; (b)

the TD modelB+p; (c) the MHD model Buup; (d) the NLFFF model of the nonpreprocessed magnetogram of ARS8 Bg,;; (€) the NLFFF
model of the preprocessed magnetogram of AR 11&24ps (f) the NLFFF model of the nonpreprocessed magnetogram of AR4,Bgy,.

An important change of scale of both axes is present between the tdpeabdttom rows.

the minimum value oE is close toE, (see Figure 3d,e), showingunphysical. For even higher values|éf the quadratic depen-
that unphysical fields may be found relatively easily in NEFFdence of the potential field energy dominaEed-rom this point
extrapolations. onward,E,s/1ns is Not the main source of error in Eq. (7).
From Table 2 and the related discussion of Sect. 5.3 we More generally, a parametric study like the one in Figs. 2 and
showed that the main source of violation of Thomson's the8-can be used to identify what is the level of divergence, the
rem is the termE,sans IN Emix. The dependence anof this level of Eyixor Epg/3ns) that can be tolerated and which is the
term, normalized to the energy of the test field, is shown ley tthreshold above which the solution becomes entirely uripays
red curves in Figure 3 for both models of divergence (Eq.)(15fi.e., with E/E, < 1).
The contribution to the total energy is negligible in Bg and In conclusion, the parametric study shows that the energy
Bumup cases, and can be a few percent for largetheBrp case. may be severely influenced by the solenoidal property of the
In the extrapolated cases, the dependenc&ygfyns on ¢ field. The dfect depends not only on the amplitude of the
is linear for Model 1 and parabolic for Model 2. In Model 1nonsolenoidal component, but also on the specific average or
the steepness of the linear curve increases, goirBetgrpto  entation of the nonsolenoidal component with respect to the
Bex: andBgyo, as expected (see Table 1 and related text). Thelenoidal one (directly fBecting Esai in EQ. (16)). As a re-
amplitude of the error is two to three orders of magnitudgdar sult, a single-number divergence metric, sucki|ds$), is insuf-
than in theBpp, Btp, andBunp cases. In thdg,opp case the ficient to deduce what errors should be expected in the energy
error is smaller, but it is still about a factor 20 larger thaBtp A more proper indication is found by the numerical verifioati
foro = 5. of Thomson’s theorem (Sect. 5) and by a parametric study as
If we consider the black curves in Figure 3 foe 0, we can presented in this section.
identify the energy of the solenoidal field as a natural mfee
value for the free energy. Starting from this reference ealar
increasing|d], the linear contribution 0E,s/3ns, together with
the quadratic change in the potential field energy, credtes YWe now investigate in more detail some of the test fields dis-
maximum and minimum values d&/E,. If the linear contri- cussed in Sect. 5, with emphasis on the reason for the large di
bution is large enough, the minimum lies below the threshol@érgence that leads to violating Thomson’s theorem. The&mai
E/Ep, = 1, and there is a range of values where the solutiongeurce of error comes, in almost all the cases, from the mixed

8. Source of divergence in NLFFF extrapolations
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Fig. 3. Magnetic energy, Eq. (16), normalized to the energy of the correipgmotential field (black lines, zoom of Figure 2), and energy
associated to the nonsolenoidal parBgf normalized to the energy &, (red lines, equal t&;,s/E in the notation of Eqg. (8)), as a function
of the amplitudes of the nonsolenoidal term, Eq. (14). Two models for the divergeneeslaown according to Eq. (15). Each panel shows the
results of a test field: (a) the potential field of a double dipBlgs; (b) the TD modelB+p; (c) the MHD model Bynp; (d) the NLFFF model

of the nonpreprocessed magnetogram of AR 11B88;; (e) the NLFFF model of the preprocessed magnetogram of AR 1BR4r (f) the
NLFFF model of the nonpreprocessed magnetogram of AR 1 )24, The black dash-dotted line B/E, = 1 marks the value below which the
solution is unphysical. A large change of scale of both axes is presemgédre the top and the bottom rows.

term Enix, and is associated with the nonsolenoidal componerdrse components. FinallBex. has neither interpolation nor
of the current-carrying part of the field. Also, there arekedly preprocessing, and it retains all the small scales thatrasept
larger errors in the extrapolated test fiel@sx1, Bexopr Bexe,  at the full resolution of thélinode/SOT vector magnetograms.
than inBpp, Btp, andBwyp. Finally, the preprocessing of the  As an example, Fig. 4 shows the power spectrum ofxthe
vector magnetogram before extrapolation yields more sid@h and zcomponents of the fieldBtp, Bexopn and Beyo, at two
fields, whereas a simple averaging does not seem to be enadifierent heights as a function of the normalized wave number
for removing errors, and yields a more severe violation aih k.. The lefthand panel of the figure shows that, at the bottom
son’s theorem (Eq. (2)). boundaryBrp has power spectra that decrease rapidly \ith

in both components. In contrast, the power spectr8gbpp
andBgy, have higher values on all scales, which are particularly
strong in the vertical component.

One main diference among th8. cases in the upper half  Ten pixels above the bottom boundary (right panel in Fig. 4),
of Table 1 is the length scale of the magnetic field: While tibe Brp power spectrum is essentially the same as -at0 be-

first three cases are smooth fields with a magnetic field vaniat cause both planes cut through the flux rope, so a similar ntiagne
spanning several times the spatial resolution, the exiatgub structure is present. In contra8igxopp0n the upper plane has
cases have large variations on the pixel scale, especiaihea a much more peaked spectrum, except for the distributidn tai
bottom boundanyi.e., on the vector magnetogram that is used a1 the smallest scales which is basically as strong as atothe b
a boundary condition for extrapolations. This is true toffedi tom boundary. Such a component on the shortest scales comes
ent degree for the three cases: Bgg; the vector magnetogramfrom the force-free condition that is enforced by the extiap
was interpolated (with a flux-conserving average) at a tetimol  tion code, which propagates into the volume the small s¢hsts

of about one third that d8g4, andBexopr Such an interpolation are present at the bottom boundary.

smooths part of the small scale away, yielding results that a We now consider the tference between preprocessed case
closer to theBg,,pp case rather than to thege., one. BexoppiS  Bexopp @and the non-preprocessed oBgc. The diference in

not interpolated, butitis preprocessed, an operatioriichtdes (|fj|) between the two is about a factor 2, and it is large in the
an explicit smoothing of smaller scales, especially on taes- other energy metrics in Table 1. The comparison between the

8.1. Analysis of small scales
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normalized spectra @exppandBey, in Fig. 4 shows that there condition is at the origin of the fierence in the errorg;,s and
are comparable (relative) energies on small scales in lastbsc Ennix betweerBeyoppandBeys.
Actually, by locally changing the magnetic field at the botto ~ We notice that preprocessing is a parametric method that can
boundary to enforce force-free compatibility, prepro@egsn- produce progressively more force-free-compatible veotag-
creases the small scales. The smoothing term that is presetbgrams for higher values of the employed parameterbeat t
in preprocessing only has a limitingfect on such an increase price of larger modifications of observed values. The energy
Therefore, the two casd:,,pp andBgy, do not diter strongly values and their relative errors therefore vary continlyoas a
as far as the presence of small scales is concerned, whila-Théunction of the preprocessing parameters, quite indepghde
son’s theorem is much better satisfied Ruyoppthan forBgs, of the particular extrapolation method that is employece(se
(see Sect. 5.1). eg., Schrijver et al. 2008; Metcalf et al. 2008). No unequivocal
The cleaned test fieldess are numerically solenoidal, andmethod is available |n.0rder for determining the best parame
there is no violation of Thomson's theorem. However, in ehed€rs to use (se&g., Wiegelmann et al. 2006; Fuhrmann et al.
cases, too, small scales are increased (not shown), siact-th 2011; Wiegelmann et al. 2012), which leaves energy estimstti
vergence cleaner introduces extra electric currents tteaten  Subjected to uncomfortable arbitrariness.
lated to derivatives of the divergence of the original fiedde
Eqg. (B.5). Thisis an a_ddltlc_)nal Conflrmatlt_)n_ that the p_rexae_mf 9. Conclusions
small scales as such is nditectly at the origin of the violation
of Thomson’s theorem. Thomson'’s theorem states that the energy of a magnetic field
is given by the sum of the energy of the current-carrying part
of the field plus the energy of the potential field that has the
8.2. Role of small scales and preprocessing same distribution of the normal component on the boundary of
) . the considered volume. The field must be perfectly solehoida
Valori et al. (2010) show that the NLFFF extrapolation of thgyr the theorem to be valid. Such a condition is often only ap-
Brp vector magnetogram yields a very accurate reconstructigiyximately satisfied in numerical simulations, such as HDV
of the whole test field, which is also solenoidal to a very higf{mulations and NLFFF extrapolations. However, it is a non-
degree. On the other hand, there is a largkernce in the scale trjyia| task to identify a quantitative estimation of sotédal er-
distribution between smooth fields like tBep and the extrapo- rors that can be applied tofttirent discretizations of magnetic
lated fields. fields, essentially due to the non-local consequences tizht s
The presence of small scales inside the volume, which a@mors produce. Our goal has been to develop physically mean
induced by the small scales at the boundary, may not be cogful metrics and practical methods that can be used togudg
rectly approximated by the discretization employed inat- whether the solenoidal property is fulfilled withf8aient accu-
lation code, yielding local violation of the solenoidal strain. racy.
However, when the extrapolation from a preprocessed magne-To this aim, we introduced a decomposition of the energy
togram is considered, the extent of the violation of Thonsorof a discretized field into solenoidal and nonsolenoidaticon-
theorem is greatly reduced, even though small scales ane atibns that allowed an unambiguous and numerically wellrehefi
ally increased. By patrtially enforcing force-free compdity estimation of the fect of the divergence in terms of associated
on the bottom boundary, the preprocessing provides thamxtrenergies. Moreover, we introduced a method of parametriz-
olation code with a boundary condition that is more compatibing the divergence that allows for an exploration of the non-
with the force-free equations. Since extrapolation codiesrt  solenoidal &ects.
to construct a solution of the force-free equations thainsib In this way, the numerical verification of Thomson’s theorem
taneously force- and divergence-free, the more compdtiitde offers an operational and quantitative way of checking the reli
boundary, the more consistemie(, force- and divergence-free)ability of energy estimations in numerical computationgcg
the obtained solution. Conversely, when the boundary timmdi the violation of Thomson'’s theorem is solely determinedHoy t
is incompatible with the force-free equation, the reduttbthe presence of magnetic charges, itis at the same time a catarit
Lorentz forces is at the expense of the solenoidal conditipn estimation of the importance of solenoidal errors.
such cases, the divergence of the solution is higher, anchTho We applied our method to six fliérent test cases, covering
son’s theorem is more severely violated. We thus concludke th representative sample of numerical realizations. Of tke s
the incompatibility of the boundary condition with the ferfree test cases considered here, two of them (the dipolar Belsl
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and a snapshot of an MHD simulation of null-point reconnetarger and larger divergence contributions is studied lvgipat-

tion Bynp) presented negligible violations, and one (a force-freeally adding a known divergence to the numerically soldab
current ringBtp) offered only a moderate one that, however, hdigld. In this way, it is possible to monitor théfect of the non-
finite effects on the energy. In the case of an NLFFF extrapolkselenoidal part of the magnetic field and to quantify fi®et in

tion of a preprocessed vector magnetogr&m4pep), the sum of terms of magnetic energy. Our method can be applied to any
the potential energi, and free energ¥; is very close to the discretization of magnetic fieldg,g., in MHD simulations and
total energyE, and one could draw the conclusion that almost in NLFFF extrapolations, to constrain quantitatively esrdue
violation of Thomson’s theorem occurs. However, by sejrggat to violation of the solenoidal property.
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Appendix A: Details of the numerical other hand, since most of the test fields considered in thider
implementation have the highest values of divergence close to the bottomdou
o ) ] ary, only the lower part of the field is changed significantyy b
In the applications presented in this paper we have coreideghe cleaner.
uniform Cartesian grids of resolutioh in all directions, dis- ComputationBs requires numerical computation of an inte-
cretizing a rectangular volunt® (see Sect. 4 for the actual val-4.4| of the typeG(2) = sz f(t) dt, as in Eq. (B.4) forf = V - B.
z

ues ofA and?V in each case). We compute derivatives using t achieve numerical accuracy in the solenoidal proper§.of
standard second-order, centraffeiience operator, and we em t satisfva.G(2) = —f ically. ¢ sat
ploy the relevant one-sidedl&, forward or backward), second-; @ E'US sa 'S.fylzf @ Tatic (z)fmﬁm?ncg 1.8, T“Ifls S;];

order diferences at the boundaries®f The only exception is isfy the numerical formulation of the fundamental theor 0

e computation of the civergenceia, since al et s are [59% SACULE 1 e enployed dcretvaton, Forenme. |
known in a volume that is larger than the seleciédon lateral obtained by the recurrence formulae '

and top boundaries). In this case, Bis; is computed using y

the central dierences also at the location of the lateral and teyn, — 1) 0,

boundaries ofy.
In the computation of volume integrals, the cell volurse G(k) Gk+2)+2Aaf(k+1). O<ksn,-3 (B.6)

is assigned to each internal node of the grid, whereas the ¢ghereG(z) = G(z + kA) = G(K) with k = 0,1,2,--- , (n, — 1),
volume is reduce to half, one fourth, and one eighth for nodggda is the uniform spatial resolution in

on the lateral surfaces, edges, and cornerd/ofrespectively.  The constraint,G(z) = —f(2) in the second-order, central-
Similarly, in the computation of surface integrals, thel seir- difference discretization does not fix the valueagh, — 2). To
faceA? is assigned to each node inside each sid&pivhereas (o that, we require that the divergence of Eq. (B.4) alsosfees
the cell surface is reduced to half and one fourth on edges aidhe bottom boundary.e., (V - Bg)l,—, = 0. Here the second-
corners of each side, respectively. Despite the accuratee@- order divergence operator is computed by using a secoret-ord
tion of integrals, the divergence theorem, Eq. (4), is netired  forward derivative in the-direction, i.e., defining the operator
to hold numerically, a property that requires special téphes, v & = Vyy + 2095 whereVy, = %3y + 99y and @°f)(0) =
like finite-volume diSCfetizationS, to be fulfilled. (_3f(0) + 4f(1) _ f(2))/2A By using the recurrence formula
Eq. (B.6), the condition on the bottom boundary is transfm
into the condition foiG(n, — 2), yielding

n;—2 n;-3
2( S oY ]f(k)+ S [0~ 311 |

even k=2 odd k=1

Appendix B: Divergence cleaner

To construct a numerically solenoidal fieBg] from a field [B]
let us define G(n,—2)=A

Bs= VXA, (B.1)

where fos = Vos - B. Such a numerical trick is only possible if
whereA is the vector potential computed fronin the volume the volume is discretized by an even number of points inzthe
V = [x1, %] X [y1,¥2] X [21,2]. The vector potentiaA can direction, therefore the analysis volumes employed in thiela
be derived as in Valori et al. (2012) using the gadgeA = 0, were chosen to satisfy such a requirement.

yielding the expression

Zo H . .
A=b+ 2Xf Bdz. (B.2) Appendix C: Measures of VB
z

The to_tal divergence of a field can be conveniently _expressed
whereb = (A«(X, Y, Z = 2), Ay(X, Y, Z = ), 0) is any solution of by a single number using the averagé|) over the grid nodes

of the fractional flux
0 = axby - aybx - anz(x, y, Z= 22) . (B.3)

dv (V- B),
A direct substitution of Eq. (B.2) into Eq. (B.1) shows that fi = u (C.1)
. [, dSIBil
Bs=VxA=B+ 2£ (V-B)dz, (B-4)  through the surfacév of a small volumev including the nodeé

(Wheatland et al. 2000). Taking a cubic voxel of side equal to
with the property thaV - Bs = 0. In other words, Eq. (B.4) nat- as the small volume centered on each node, the divergence in
urally separateB into a solenoidal pamBs and a nonsolenoidal the discretized volumé’ of uniform and homogeneous resolu-
one, thus defining a divergence cleanerBorThez-component tion A is then given by
of B is changed throughout the volume except on the top bound-
ary, whereas the— andy-components are unchanged. The am |y = A IV - Bil (C.2)
plitude of the modification t@ at a given height is given by 6N 4~ |Bjl ’
the cumulative ffect of “magnetic charges” above that altitude.

Since only the-component of the field is changed, the divemwherei runs over allN nodes irf). This metric depends on the
gence cleaner changes tkeandy-components of the current,considered volume, so that values are strictly comparatieib
but not thez-component, computed on equal volumes.

Js = J + (By. —0x. 0)f (V-B)dz, (B.5)

therefore the cleaner changes the injected magnetic flurddut
the injected electric current through the bottom layer. O t
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