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ABSTRACT
Quiescent solar prominences are observed to exist within the solar atmosphere for up to several solar rota-

tions. Their eruption is commonly preceded by a slow increase in height that can last from hours to days. This
increase in the prominence height is believed to be due to their host magnetic flux rope transitioning through
a series of neighbouring quasi-equilibria before the main loss-of-equilibrium that drives the eruption. Recent
work suggests that the removal of prominence mass from a stable, quiescent flux rope is one possible cause
for this change in height. However, these conclusions are drawn from observations and are subject to inter-
pretation. Here we present a simple model to quantify the effect of “mass-draining” during the pre-eruptive
height-evolution of a solar flux rope. The flux rope is modeled as a line current suspended within a background
potential magnetic field. We first show that the inclusion of mass, up to 10

12 kg, can modify the height at which
the line current experiences loss-of-equilibrium by up to 14%. Next, we show that the rapid removal of mass
prior to the loss-of-equilibrium can allow the height of the flux rope to increase sharply and without upper bound
as it approaches its loss-of-equilibrium point. This indicates that the critical height for the loss-of-equilibrium
can occur at a range of heights depending explicitly on the amount and evolution of mass within the flux rope.
Finally, we demonstrate that for the same amount of drained mass, the effect on the height of the flux rope is up
to two order of magnitude larger for quiescent than for active region prominences.

Keywords: Sun: filaments, prominences — Sun: fundamental parameters — Sun: atmosphere — Sun: magnetic
fields

1. INTRODUCTION

Coronal mass ejections (CMEs) are complex bundles of
magnetic field and material that erupt from the solar atmo-
sphere out into the heliosphere. A key feature often mea-
sured within their interplanetary counterpart is a rotation of
the magnetic field vector as spacecraft cross the magnetic
structure, a property believed to be indicative of a magnetic
flux rope (e.g., Burlaga 1988; Palmerio et al. 2017; James
et al. 2017). In addition, the existence of a flux rope in the so-
lar atmosphere has often been related to the formation of fil-
ament systems; elongated structures observed in absorption
on the solar disk (Priest et al. 1989; Aulanier et al. 1998).
Filaments are interpreted as strands of dense material sus-
pended in the low-coronal atmosphere. Such structures are
historically identified as prominences when observed above
the limb, and we shall henceforth use the term prominence to

describe these structures, unless otherwise indicated. The ob-
servational signature of the on-disk counterpart, a filament,
provides no immediate evidence for the suspended nature
of the material above the solar surface (van Ballegooijen &
Martens 1989; Martin 1998; Gibson et al. 2006; Régnier et al.
2011). Prominences have been observed for up to several
solar rotations, occasionally within a coronal cavity when a
prominence quasi-parallel to the equator is projected above
the limb. A pre-eruptive flux rope has been suggested to ex-
ist in equilibrium for equally extended periods of time (Rust
2003; Gibson et al. 2004).

Despite being typically stable features within the solar at-
mosphere, the final stages of a prominence’s life are highly
dynamic; the suspended plasma either drains back to the
chromosphere, or is ejected into the heliosphere as the core
of a CME, or some combination of both (Dere et al. 1997;
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Schmahl & Hildner 1977; Régnier et al. 2011). In the erup-
tive case, the sudden destabilisation of these structures is also
indicative of the destabilisation of the host flux rope. The ex-
act causes for the loss-of-stability of a flux rope are under-
stood to depend on the conditions under which the flux rope
formed and the recent evolution of the surrounding magnetic
field (Moore et al. 2001; Lynch et al. 2004; Török & Kliem
2005; Fan & Gibson 2007). Unfortunately, flux ropes are not
directly observable in the solar atmosphere as they are mag-
netic in nature and instrumentation sensitive enough to accu-
rately measure the coronal magnetic field does not yet exist
(although preliminary attempts are being made, e.g., Ba̧k-
Stȩślicka et al. 2013; Fan et al. 2018). Therefore, in order
to effectively study the stability criteria of flux ropes, a com-
bination of observations (e.g., Zuccarello et al. 2014, 2016),
extrapolations (e.g., James et al. 2018), and simulations (e.g.,
Fan 2017) are typically used (see also Cheng et al. 2017, and
references therein). The simulations are often employed to
study the cause of the loss-of-stability of a flux rope in the
lead-up to its eruption, with the observations and extrapola-
tions separately offering information about the pre-eruptive
configuration.

Before the advent of advanced simulations, early work
by van Tend & Kuperus (1978) presented a 2D analytical
model in which the flux rope was approximated as a straight
line current suspended at equilibrium in a background po-
tential magnetic field. Although a simplified setup was em-
ployed, the authors qualitatively demonstrated that increas-
ing the magnitude of the line current causes its height above
the solar surface to increase. This relationship between the
current and height of the line current can be represented with
an equilibrium curve. In addition, they concluded that there
is a point at which an increase in the strength of the line
current would no longer result in a solution on the equilib-
rium curve. At this time, the line current was said to have
experienced ‘loss-of-equilibrium’. Extensions to this model
were employed to quantitatively study the balance of forces
involved with prominences, and the evolution of this bal-
ance prior to an eruption (e.g., Low 1981; Démoulin & Priest
1988; Martens & Kuin 1989; Démoulin et al. 1991; Forbes &
Isenberg 1991). However, authors such as Martens & Kuin
(1989) and Démoulin et al. (1991) noted that the influence of
the gravity term was negligible assuming “typical” values for
prominence mass, and was unlikely to be able to perturb the
equilibrium dominated by the magnetic pressure and tension
forces.

More recently, work has been carried out to take this sim-
ple line-current approach further and formulate more com-
plex, time-dependent magnetohydrodynamic (MHD) simula-
tions (for a more complete review on the state of these MHD
simulations, see Cheng et al. 2017, and references therein).
These models contain more physically realistic initial and

boundary conditions that allow the construction, evolution,
and analysis of a fully 3D flux rope. Importantly, the mod-
ern simulations have aligned with the conclusions of authors
such as Martens & Kuin (1989) and Démoulin et al. (1991)
that the evolution of the magnetic field in and around a flux
rope is assumed to be solely responsible for its evolution in
time (Démoulin 1998). Specifically, this low-beta approx-
imation assumes that the pressure and mass of prominence
plasma suspended by a flux rope is negligible in compari-
son with the magnetic pressure and tension forces of the flux
rope and its surroundings (Titov & Démoulin 1999; Filippov
2018). Indeed, this assumption is featured frequently in three
decades of modern research.

However, novel observations and hydrostatic modeling are
beginning to suggest that mass may be able to influence the
local and global properties of magnetic flux ropes (Low et al.
2003; Petrie et al. 2007; Seaton et al. 2011; Gunár et al. 2013;
Bi et al. 2014; Reva et al. 2017; Jenkins et al. 2018). In partic-
ular, the Shafranov shift as explored in Blokland & Keppens
(2011) details how varying the gravity term in their 2D mag-
netohydrostatic (MHS) model can cause the axis of their flux
rope to decrease the height. Then, the mass-unloading theory
(e.g., Low 1999; Forbes 2000; Klimchuk 2001) has been sug-
gested as one possible cause for the eruption of prominences.
In this theory, a particularly heavy prominence suddenly un-
loads all of its mass, reducing the gravitational force acting
on the host flux rope and causing it to spring off into space
as an eruption.

The study of the role of mass evolution within prominence
eruptions has typically been isolated to a handful of obser-
vational case studies. Seaton et al. (2011) presented stereo-
scopic observations of a prominence erupting from an ac-
tive region in which plasma was observed to unload from the
prominence prior to its expansion in height. The authors con-
cluded that in the absence of additional, contrary evidence,
these observations were an example of a ‘mass-unloading’
eruption driver.

Recently, Jenkins et al. (2018) also presented stereoscopic
observations of a quiescent prominence’s partial eruption in
which ‘mass-draining’ was suggested to have been respon-
sible for the accelerated expansion of the erupting magnetic
flux rope. In this case the drained mass does not ultimately
drive an eruption, it simply modifies the balance of forces
acting on the prominence to a non-negligible degree (see also
Reva et al. 2017). Their conclusion that the mass-draining
accelerated the eruption was reached through a quantitative
estimation based on the Lorentz force equation, specifically
the ratio between the modification of the gravitational force
due to the reduction in mass and the force of the background
magnetic tension restricting the height-evolution of the flux
rope. However, this order of magnitude estimate to the im-
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portance of the mass-draining does not properly account for
the equilibrium conditions of the host flux rope.

Therefore, in this manuscript, we present an extension to
the model developed by van Tend & Kuperus (1978) that en-
ables the study of the role of mass in the evolution of a line
current in quasi-equilibrium. Specifically, we first explore
how the inclusion of mass can modify the stability criteria for
a line current that represents a flux rope suspending a promi-
nence. We then explore how the removal of mass (or “drain-
ing”) from a pre-eruptive line current, can modify the global
height of the line current within the solar atmosphere. The
general model is described in Sections 2 and 3, and applied
in Section 4 to a bipolar background potential magnetic field.
In Section 5, we further constrain the model with measure-
ments made from the observations presented by both Seaton
et al. (2011) and Jenkins et al. (2018). Finally, a discussion
and summary are presented in Section 6.

2. MODEL CONCEPT

Following the formulation outlined in Démoulin &
Aulanier (2010), hereafter DA10, a flux rope is modeled
in cartesian coordinates as a magnetic field generated by
an infinitely long, straight line current I at a given height h
above the photosphere. The justification for the choice of
a straight line current over a curved line current lies in the
assumed property of quiescent prominences being oriented
largely horizontal to the surface. The majority of curvature
may be assumed to be localised at the footpoints of the host
magnetic flux rope that are located far from the center of the
prominence. An “image” line current -I is introduced under
the photosphere that runs anti-parallel to the “real” line cur-
rent. Following van Tend & Kuperus (1978), the additional
image magnetic field beneath the surface results in no mod-
ification to the vertical, z, component of the photospheric
magnetic field. This “image” current acts to increase the
height of the “real” line current. The straight line current
is then added to a background potential magnetic field Bext

that acts to force the line current towards the photosphere. A
cartoon representation of these different field contributions
is shown in Figure 1. The total field has an inverse configu-
ration because of the presence of a flux rope (e.g., similar to
the configuration of Figure 1a within Petrie et al. 2007). The
line current is then in equilibrium if the sum of forces is zero,

Â f = 0 $ fu = fd ) IB�I = IBext (1)

where fu is the sum of the upward magnetic forces, the so-
called hoop force, fd is the sum of the downward magnetic
forces, I (�I) is the real (image) current, �Bext is the hor-
izontal background magnetic field component orthogonal to
the current at height h, and B�I is the strength of the mag-
netic field as a consequence of the image line current. The

I

-I

BI

B-I

Bext

h 

Figure 1. Cartoon diagram of the model set-up. The inverse mag-
netic configuration is formed by the superposition of three fields:
the external potential field Bext (solid-red), and the field generated
by the line current (located at z=h) and its image (located at z=-h),
drawn with solid-black and dashed-grey lines respectively. The line
current at z=h is maintained by the balance of two Lorentz forces,
an upward (hoop) force due to the magnetic field generated by the
image line current, and a downward force from a stabilizing exter-
nal potential field Bext. Model concept is identical to that presented
by van Tend & Kuperus (1978).

image magnetic field B�I is derived from Ampère’s law,
I

B�I · dl = µ0 I,

) B�I =
µ0 I
2pR , (2)

where the strength of the magnetic field B�I is measured at
a point in space that is at a distance/height R = 2h away
from the line current, and µ0 is the permeability of free space
equal to 4p ⇥ 10

�7 in MKS units.
In order to simulate the existence of a prominence within a

flux rope, the van Tend & Kuperus (1978) model is extended
to include mass that is set to exist at the same point as the
line current, i.e., at height h. The inclusion of mass into the
system results in an additional downward force that acts to
further anchor the line current. In equilibrium, Eq. (1) be-
comes,

IB�I = IBext + mg, (3)

where m is the mass of the suspended plasma per unit length
and g is the acceleration due to gravity. g is taken indepen-
dent of h (since h ⌧ r�, where r� is the solar radius) except
where explicitly stated. All quantities in Eq. (3) are defined
positive.
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3. GENERAL EQUATIONS

3.1. Equilibrium Current

Here we will establish the general form of equations that
will be applied to a specific Bext in the following sections.
The force f on the line current, per unit length, is,

f =
µ0 I2

4ph
� IBext � mg, (4)

where Bext is a function of h (as well as other parameters
depending on the selected model). We set Bext > 0 so that
the external magnetic field creates a force oppositely directed
to the hoop force, µ0 I2

/4ph, and an equilibrium exists in the
limit m = 0.

The electric current needed for equilibrium is given by
solving Eq. (4) for I with f = 0,

Ieq,m =
2phBext

µ0

±

s✓
2phBext

µ0

◆2

+
4p

µ0

m g h , (5)

where we have added the lower index m to indicate that the
equilibrium current depends on the mass.

With finite mass, Eq. (5) provides two equilibria corre-
sponding to the sign selection in front of the square root.
With a negative sign selected, Ieq,m < 0, which implies that
both magnetic forces are upward and opposite to the gravity
force in Eq. (4). This case has a vanishing current in the limit
of a vanishing mass and it does not correspond to a force free
equilibrium with a flux rope. Therefore, we consider only the
second case with a positive sign in front of the square root of
Eq. (5),

Ieq,m =
2phBext

µ0

+

s✓
2phBext

µ0

◆2

+
4p

µ0

m g h , (6)

Supposing that Bext(0) is finite, then for small enough h
values such that h ⌧ (µ0 m g/pB2

ext
),

Ieq,m ⇡ 2phBext

µ0

+

s
4p

µ0

m g h . (7)

Then, Ieq,m(h) has a square root dependence with h when h is
small enough and m > 0. This behavior changes to a linear
dependence when m = 0.

With m = 0, Ieq,0(0) = 0, and since Bext typically
decreases faster than 1/h for large h values, Ieq,0(h) =
(2p/µ0) hBext will tend towards zero at large heights. This
implies that Ieq,0(h) has a maximum (at least one) between
small and large heights. However, if m > 0, Ieq,m(h) is dom-
inated by the gravity term at large h values once Bext has suf-
ficiently decreased, then Ieq,m(h) ⇡

p
(4p/µ0)m g h is a

growing function of h for constant g. At even larger h values,
as g is inversely proportional to (r�+ h)2, then Ieq,m(h) will

again tend towards zero, even for large mass values. Never-
theless, for low enough m and h values, Ieq,m(h) will still
have a minimum at h = 0 and large heights, and a maximum
(at least one) somewhere in between. It is the response of
the line current to mass within this region that we focus on
during this study.

3.2. Dependence of the Equilibrium current on Mass

We investigate below the effect of m on Ieq,m keeping all
other quantities fixed,

∂Ieq,m

∂m
= g h

�r
(hBext)

2 +
µ0

p
m g h � 0 . (8)

Increasing the mass m requires that the magnitude of the cur-
rent is increased so as to reach a given height (i.e., to increase
the hoop force).

Next, supposing m g h ⌧ (p/µ0)(hBext)2, a first order
Taylor expansion of Eq. (6) provides,

Ieq,m ⇡ Ieq,0 + m g/Bext . (9)

Then, the equilibrium current is comparatively increased by
adding a term proportional to the mass and to 1/Bext. Since
Bext(h) is typically a decreasing function of h, this implies
that Ieq,m is increasingly separated from Ieq,0 with height.

3.3. Mass-draining

Finally, we will analyse the effect of draining prominence
mass on the host flux rope’s equilibrium height and, possibly,
its eruption. We suppose that the draining is fast enough that
there is a negligible evolution, through e.g., diffusion (e.g.,
van Driel-Gesztelyi et al. 2003), of the vertical component
of the photospheric field distribution. This is modelled with
the image current and implies that the associated potential
field, Bext, is unchanged. We suppose also that this short-
term evolution is done without reconnection. This implies
that the magnetic flux, F, passing below the flux rope bottom
(located at z = h � a, where a is the radius of the flux rope /
line current) and the photosphere (at z = 0) is conserved.

van Tend & Kuperus (1978) suggested that a line current
would experience loss-of-equilibrium if the current magni-
tude exceeded the maximum of the Ieq,0(h) curve, as with
a classical electric circuit. DA10 (see also Démoulin et al.
1991; Lin et al. 2002) expanded on this by imposing a short-
term MHD evolution with flux conservation to study the loss-
of-equilibrium of a flux rope. The hybrid MHD / line current
approach uses pseudo-time long-term evolution of model pa-
rameters, e.g., photospheric flux density f or average coronal
twist T, to overcome the limitations of the classical approach.
The evolution of one of the model parameters in this way al-
lows the construction of a family of constant F curves which
describe the short-term evolutions. The intersection of these
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curves with Ieq,0 details how a flux rope evolves as a function
of the evolving parameter.

Two equilibrium curves, Ieq,m(h) and Ieq,0(h) are shown
in Figure 2 together with five curves of fixed magnetic flux F,
differing from each other as a result of an evolution in, e.g.,
Bext. Assuming that we start with a nearly potential coronal
configuration, the prominence and its flux rope are supposed
to first evolve quasi-statically along the stable equilibrium
curve of Ieq,m(h), with a height growing slowly with time as
a result of the evolution of Bext. At some point during this
evolution, we have supposed that the draining of the full mass
occurs fast enough to keep both Bext and F unchanged, then
the evolution is along the corresponding F = constant curve
towards larger heights. The general form of the F = constant
curve (Eq. (9) of DA10), hereafter defined as Ievol(h) is,

Ievol(h) =
2

Ls

0

@F +
ZZ

S

Bext dy dz

1

A , (10)

where Ls = µ0Dy
p (ln(2h/a) + li/2), li, are the external in-

ductance, and normalised internal inductance, respectively,
and a is the radius of the current channel. For this set-up in
which the current is focused at the edges of the current chan-
nel, li = 0.

The effect of draining the mass depends on the location
where it occurs. If it occurs at point A of Figure 2, or a
nearby one, then a stable equilibrium Ieq,0 exists at the inter-
section with the Ievol flux curve (at point A0). Comparing the
height of stable equilibrium with and without mass linked by
the same Ievol curve, the equilibrium with mass is always at
a lower height (e.g., hA < hA0 ) which is due to the down-
ward gravity force compressing the Bext configuration. As
the draining point is shifted to larger heights, e.g., at point B,
the new equilibrium on Ieq,0 curve is further away, at a larger
height, from the initial one on Ieq,m curve. This is the case
until the point C where the Ievol flux curve only touches the
Ieq,0 equilibrium curve tangentially. Equation (20) of DA10
demonstrates that the equilibrium is linear neutral at this tan-
gent point C0, but it is unstable with the non-linear pertur-
bation term taken into account (graphically the Ievol curve
is extending to the right in the region where the force f is
pointing towards large h values, so away from the equilib-
rium curve).

After the mass-draining occurs at a point such as A, the to-
tal magnetic force will be directed upward, accelerating the
flux rope towards the equilibrium curve Ieq,0. However, this
equilibrium will be reached with a finite kinetic energy, al-
lowing the line current to continue evolving along the Ievol

curve. The line current will then continue on the other side
of the equilibrium point with a change in sign of the total
magnetic force. Finally, at some point, the motion will stop
and reverse direction leading to an oscillation of the flux rope.

hcrit (m>0) h

I

equilibrium
m>0

A
B

C D

ff

B’’

C’
B’

E

equilibrium
m=0

curves		F	=	constant

A’

A’’
hcrit (m=0)

Figure 2. Schema showing the possible evolutions with mass-
draining. The equilibrium curve with m = 0, Ieq,0(h), is shown
with a continuous dark blue line. The equilibrium curve with mass,
Ieq,m(h), is above with a dashed line. The constraint of magnetic
flux conservation, Eq. (12), is shown with the other colored curves
representing different starting points along Ieq,0(h) for draining
mass. If the draining mass starts between points C and E, no equi-
librium can be reached without mass (region shaded in light green),
while if draining is realized before point C (e.g., at point A), an-
other stable equilibrium could be reached. In the region shaded in
pink, the finite kinetic energy accumulated may allow the line cur-
rent to reach the unstable equilibrium without mass (such as point
B00). The small black arrows indicate the direction of the total force
when the line current is slightly shifted away from the equilibrium
curve. The critical height(s) hcrit of the m = 0 (m > 0) line current
is indicated with the vertical (horizontal) black-dash-dotted lines.

This scenario also envisages damped oscillations towards the
Ieq,0 curve as the extra energy is progressively radiated away
by fast MHD waves. Such results have been reported in both
2D and 3D numerical simulations of prominence oscillations
(e.g., Schutgens & Tóth 1999; Zhou et al. 2018, respectively).

Furthermore, the Ievol curve can also cross the other branch
of the Ieq,0 curve past the point C0, such as at points A00 and
B00 in Figure 2. Since this part is unstable (see f arrows in
Figure 2), there is the possibility of an eruption if the system
has sufficient energy to reach this unstable part. This region
is indicated qualitatively with a pink area in Figure 2. Its ex-
tension towards the side with small h values is limited by the
ability of the magnetic force to decrease the kinetic energy
before the unstable region, at larger h values, is reached. We
will not study this aspect any further since it is expected to be
an effect localised to the family of Ievol curves near to point
C0 and this would need a detailed analysis (it depends both
on m and Bext(h)). We only point out that an eruption may
be started, by draining mass, before the line current evolves
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to the limiting curve Ievol that passes the first unstable point,
C0, of the Ieq,0 curve.

3.4. Modification of the Equilibrium Height

In this subsection, we give a quantitative estimate of the
ideas described with Figure 2. Specifically, we analyse the
mass-draining from the equilibrium located at (hm, Im) with
mass m, to the equilibrium located at (h0, I0) without mass.

The total flux passing between the bottom of the flux rope
and the surface is,

F(h) =
µ0 I
2p

ln

✓
2h
a

◆
�
Z h�a

0

Bext(z)dz . (11)

Conserving flux passing below the flux rope per unit length
Dy during the mass-draining requires that F(hm) = F(h0),
hence,

Z hm�a

0

Bext(z)dz � µ0

2p
Im ln(2hm/a)

=
Z h0�a

0

Bext(z)dz � µ0

2p
I0 ln(2h0/a) , (12)

where we suppose that the flux rope radius, a, is small com-
pared to its height, and that a remains unchanged by the
mass-draining to simplify the expressions as evolution in a
has a low effect on the results (similar to the case m = 0

in DA10 where a did not evolve). Equation (12) explicitly
states that the two equilibrium are on the same Ievol(h) curve
(Eq. (10))

We next suppose that the two equilibria (hm, Im) and
(h0, I0) are close enough, so that the mass has a small effect
on the force balance (m g h ⌧ (p/µ0)(hBext)2). We also
take the equilibrium without mass as a reference to express
all terms of the Taylor development and define the variation
quantities: Dh = h0 � hm, DI = I0 � Im. From Figure 2,
Dh > 0 and DI < 0.

With a Taylor development to first order in Dh and DI of
Eq. (12), the conservation of flux imposes the relationship,

Dh
h0

= � µ0

2p
ln(2h0/a)

DI
I0

. (13)

The equilibrium curve without mass satisfies,

0 =
µ0 I2

0

4ph0

� I0Bext(h0) , (14)

and the force balance with mass m satisfies,

D f =
µ0 I2

m

4phm

� ImBext(hm)� m g . (15)

With DI rewritten as a function of Dh with the flux con-
served, Eq. (13), with I0 = (4p/µ0)h0 Bext(h0), the first
order expansion around (h0, I0) of Eq. (15) is,

D f =�m g + Dh
4p

µ0

B2

ext (16)

 
1 +

2p

µ0 ln(2h0/a)
+

∂ ln Bext(h)
∂ ln h

����
h=h0

!
.

With m = 0, Eq. (16) describes the test of stability of the
equilibrium around the point (h0, I0). Next, we introduce the
notations,

n = �∂ ln Bext(h)
∂ ln h

����
h=h0

, (17)

for the negative logarithmic derivative of the external field
component, commonly referred to as the decay index (Bate-
man 1978; Filippov & Den 2001; Török & Kliem 2005; Zuc-
carello et al. 2016), and,

ncrit = 1 +
2p

µ0 ln(2h0/a)
, (18)

which is Eq. (33) of DA10 (with na = 0 since we have a
fixed a value). Then, Eq. (16) is rewritten as,

D f = �m g + Dh
4p

µ0

B2

ext (ncrit � n) . (19)

With m = 0, the equilibrium at (h0, I0) is stable if D f is
oppositely directed to the displacement �Dh from h0 to hm.
This is achieved for n < ncrit, as expected.

Supposing that the extra energy is somehow dissipated,
i.e., D f = 0, Eq. (19) also describes the mass-draining from
the equilibrium at (hm, Im) to the equilibrium at (h0, I0).
This draining implies the shift in height,

Dh =
m g

4p
µ0

B2
ext

(ncrit � n)
, (20)

to the new equilibrium (h0, I0) which exists only for n <
ncrit. This quantifies the graphical description of Figure 2.
In particular, it shows that Dh is proportional to the loaded
mass m and inversely proportional to distance, in terms of
decay index, to the loss-of-equilibrium point (n = ncrit). Fi-
nally, the strength of the external field has a strong effect on
Dh since a factor 10 on Bext decreases Dh by a factor 100
(this factor 10 on Bext is the order of magnitude for the ra-
tio between the field present in active and quiescent promi-
nences for example). We conclude that the draining of a
given mass m could cause the height of the prominence to
increase from a tiny to a very large amount (up to the loss-of-
equilibrium and resulting eruption) depending on precisely
where this draining occurs along the equilibrium path and on
the strength of the external field.

4. RESULTS

4.1. Bipolar Background Field

We begin by expanding on the case investigated in DA10
to explore the effect of including mass on the evolution of the
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Figure 3. Equilibrium curves demonstrating Eq. (24), the relationship between electric current magnitude and height of the line current
suspended within a bipolar background potential magnetic field generated by a 4 G mean surface field. These equilibrium curves are calculated
assuming a range of prominence mass between 10

7 – 10
10 kg Mm�1. The dotted-black line corresponds to no mass within the system,

comparable to the solid-black line in Figure 2c of Démoulin & Aulanier (2010).

line current, suspended within a bipolar background mag-
netic field, up to its loss-of-equilibrium. Here, the bipolar
background magnetic field is supplied by two, infinitely long
polarities at distance ± D from the position of the line cur-
rent (DA10),

Bext = 2fD(p(h2 + D2))�1
, (21)

where f is the magnetic flux per unit length in the invariant
direction. Substituting Eqs. (21) and (2) into (4), we arrive at
the condition for the system in equilibrium with f = 0,

µ0 I2

4ph
� 2fDI

p(h2 + D2)
� mg = 0 . (22)

The equilibrium curve for the massless line current is,

Ieq,0(h)
Ipeak

= Ĩeq,0(h̃) =
2h̃

(h̃2 + 1)
, (23)

where Ieq,0(h) is normalised by its maximum value, Ipeak =
f
p , occurring at height h̃peak = hpeak/D = 1. Note that
Equation (23) corrects a typo of DA10. For the case where a
line current does contain mass, Ĩeq,m(h̃) takes the form sim-
ilar to Eq. (6),

Ĩeq,m(h̃) =
2p2 h̃D

µ0f

 
Bext +

r
(Bext)

2 +
µ0mg
ph̃D

!
. (24)

In Figure 3 we show a comparison between normalised equi-
librium curves of line currents suspended within a “typical”
quiet-Sun region of average surface field strength equal to
4 G and loaded with a range of masses. The properties of
the masses used are presented in Table 1, assuming a typi-
cal quiescent prominence of dimensions: length = 100 Mm,
height = 30 Mm, width = 4 Mm (Labrosse et al. 2010; Xia
et al. 2012).

NH (Total) Mass (Total) Mass (Per unit length)
(cm�3) (kg) (kg Mm�1)
5 ⇥ 107 109 107

5 ⇥ 108 1010 108

5 ⇥ 109 1011 109

5 ⇥ 1010 1012 1010

Table 1. The properties of the masses loaded onto the line currents
presented in Figure 3. It is assumed that all mass within a promi-
nence is cool (low ionisation ratio), therefore NH is the number
density of neutral hydrogen assuming the range of masses within
the second column (Labrosse et al. 2010).

4.2. Effect of Mass on Line Current Equilibrium

Here, we impose the same flux evolution analysis, de-
scribed in Section 3.3, on the equilibrium curves presented
in Figure 3 to study the effect of mass on the equilibrium of
the host line current.

The reference state with fluxes F̃0 and f0 is defined at
the maximum of the Ĩeq,0(h̃) curve (DA10, and references
therein),

F̃0 =
µ0

2p
Ĩpeak ln

 
2h̃peak

ã

!
� 2tan

�1

⇣
h̃peak � ã

⌘
,

(25)
where Ĩpeak is the maximum value of Ĩeq,0(h̃), and ã is the
normalised radius of the line current (ã = a/D = 0.1 here-
after). We readily find Ĩevol(h̃) from Eq. (10),

Ĩevol(h̃) =
F̃ + 2tan

�1
�
h̃ � ã

�

µ0

2p ln

⇣
2h̃
ã

⌘ , (26)

where F̃ = F̃0/ ff.
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Figure 4. The effect of mass on the stability of a line current suspended within a bipolar background potential field. Panel a; intersection
of Ĩeq,0(h̃) and Ĩevol(h̃) with ff = 1 indicating two equilibrium positions, h̃ = 1, 1.33, as in Figure 2c of Démoulin & Aulanier (2010).
Panel b; orange, green, and blue curves correspond to the last point-of-intersect, with ff decreasing, between Ĩeq,m(h̃) and Ĩevol(h̃), with
ff = 0.986, 0.973 and 0.869 for line currents loaded with mass equal to 0, 10

9, and 10
10 kg Mm�1, respectively. The vertical magenta-dotted

lines indicate the h/D value for this last intersection, in each case, between the two Ĩ(h̃) curves. h/D value is seen to increase as more mass
is loaded.

The intersection of Ĩevol(h̃) and Ĩeq,0(h̃) for the case of
ff = 1 for the massless line current is shown in Fig-
ure 4a. The orange curve in Figure 4b then corresponds to
ff = 0.986 (1.4% reduction in f0, the strength of the pho-
tospheric polarities) applied, also, to the case of a massless
line current, indicating a single point of intersection between
the two Ĩ(h̃) curves, at h/D = 1.15. Any further reduction
in ff results in no intersection between the two Ĩ(h̃) curves.
DA10 demonstrate that such a line current experiences an
ideal-MHD instability and an outward force drives the erup-
tion of the line current.

In Figures 3 and 4b it is shown that an increase in the
amount of mass loaded onto the line current results in a shift
in the maximum value of I/Ipeak and its corresponding h/D
value. As with the orange curve, the green and blue curves
are the last point of intersect between Ĩeq,m(h̃) and Ĩevol(h̃)
where a line current is loaded with 10

9 and 10
10 kg Mm�1,

respectively. This implies that the flux of the photospheric
polarity must decrease further than for the massless case
in order for the mass-loaded line current to experience an
ideal-MHD instability. For a line current loaded with 10

9

or 10
10 kg Mm�1, ideal-MHD instability occurs after f has

decreased by 2.7% and 13.1%, respectively, at a height of
h/D = 1.17, 1.32. Therefore, the simple model presented
here appears to demonstrate that a mass-loaded line current
can be significantly anchored as a result of the inclusion of
mass (cf. Blokland & Keppens 2011), requiring additional
current within, photospheric flux decay below, and height for
the line current to experience loss-of-equilibrium.

Fan (2018) recently published the first example in which
a prominence comprised of mass on the order of 10

12 kg
erupted in a fully MHD simulation. Interestingly, the exis-
tence of this prominence was shown to have a significantly
stabilising effect on its host flux rope when compared to an

identical flux rope without prominence formation induced.
Specifically, the prominence was shown to inhibit the initia-
tion of the kink instability prior to a successful eruption. The
work presented here shows that a similar conclusion can also
be reached with the torus instability using significantly sim-
plified conditions.

4.3. Effect of Mass-Draining on the Pre-Eruptive Evolution
of the Line Current

Blokland & Keppens (2011) showed that the inclusion of
mass within their MHS model caused the center of their flux
rope to be pulled downwards i.e., the Shafranov shift. Further
to this, we have established that the inclusion of mass within
the simple model presented by van Tend & Kuperus (1978)
and expanded by DA10, can result in a non-negligible modi-
fication to the equilibrium curves and implies additional sta-
bility. It is therefore reasonable to suggest that the removal of
this mass from a pre-loss-of-equilibrium line current will also
result in a modification to its evolution, as suggested in sev-
eral observational case studies of prominences (e.g., Seaton
et al. 2011; Bi et al. 2014; Reva et al. 2017; Jenkins et al.
2018).

To test this hypothesis and simulate the draining of promi-
nence mass from a flux rope, we first apply the general,
first-order development described in Section 3.3, specifically
Eq. (20), to the specified bipolar background magnetic field
of Eq. (21). The results are presented in Figure 5 as the
dashed-black lines. Dh is larger when hm is closer to the
loss-of-equilibrium point (i.e., n = ncrit). However, Eq. (20)
is derived with a Taylor expansion in Dh, so it cannot de-
scribe large Dh values.

Therefore, we have used the “Chebfun” package (see,
Driscoll et al. 2014) implemented in MATLAB to solve nu-
merically for the intersects between Ĩeq,m(h̃), Ĩeq,0(h̃), and
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Ĩevol(h̃) for a range of values of ff. These solutions are pre-
sented in Figure 5, plotted over the analytical solution for
comparison. Although the main trend is accessible via both
the analytical and numerical solutions, the numerical solution
emphasises the sensitivity of the equilibrium to mass evolu-
tion when the line current is close to its loss-of-equilibrium.

5. IMPLICATIONS FOR OBSERVATIONS

We now move to establish a basic comparison between the
results of the above model and two specific observations of
mass-draining. Our model shows that some of the quantities
may be very sensitive to the value used in their computation,
see e.g., Figure 5 for large hm/D. The model input parame-
ters (filament dimensions, height, mass, and external field as
a function of time) require indirect, often complex methods
to be estimated from observations, and are subject to differ-
ent types of errors. Therefore, our intention is to establish
an order of magnitude indication to the importance of mass-
draining in these two cases, not an exact measure. Further-
more, we find that varying the value of a/D between 0.1 and
0.5 results in modifications to the stability of the line current
of only a few %. Therefore, for this comparison we maintain
the assumption of a the thin flux rope and fix a/D = 0.1.

We first refer to a recent case study by Jenkins et al. (2018)
in which the authors used the column density estimation tech-
nique of Williams et al. (2013) and Carlyle et al. (2014) to
study the draining of mass from an erupting quiet-Sun promi-
nence. According to the authors observations, shortly prior
to the prominence’s eruption the total mass within the field-
of-view reduced by at least 1 ⇥ 1010 kg, equal to 15% of the
initial mass within the field-of-view. The additional proper-
ties of the erupting prominence were estimated from observa-
tions taken using the Atmospheric Imaging Assembly (AIA;
Lemen et al. 2012) on board the Solar Dynamics Observatory
(SDO; Pesnell et al. 2012),

D = 65 Mm

Ly = 260 Mm

BPhot = 4.6 G

f =
pDBPhot

2

dm = 1 ⇥ 10
10

kg

where Ly is the length of the prominence. Specifically, D
is half the width, and Ly the length, of the red-dashed box
in Figure 3b of Jenkins et al. (2018). The value of BPhot is
the average strength of the magnetic field within the bounds
of the red-dashed box in Figure 3a of Jenkins et al. (2018).
The results of the application of these values to the model are
shown in Figure 6.

In the application of the observations to this model we have
set initial mass equal to 9 ⇥ 1010 kg and final mass equal to

Figure 5. The change in the height of a line current due to a range of
mass-draining, assuming a bipolar background potential magnetic
field generated by an average surface field of strength 4 G. Analyt-
ical solutions to Eq. (20) are plotted for each mass as dashed-black
lines. Overplotted on these dashed lines are the solid-coloured lines
representing the numerical solution. The analytical solution works
well for small h and m values, but clearly deviates from the numer-
ical solution at larger values.

8 ⇥ 1010 kg. According to the model, such a mass-loaded
line current would need to reach a height of ⇡ 75 Mm to lose
stability, ⇡ 30 Mm higher than the prominence top was ob-
served; the quiet-Sun prominence was suggested to lose equi-
librium, inferred by the large acceleration, after it had risen to
a height of ⇡ 45 Mm. In fact the comparison between model
and observations cannot be precise because of the approxi-
mate values derived from observations and the simplicity of
the model. Moreover, all of the mass present in the model ex-
ists at the height of the line current, a location representative
of the axis of a flux rope. As it is commonly assumed that
prominence material resides below this height, in the dips of
the magnetic field of a flux rope (e.g., Aulanier et al. 1998;
Gunár & Mackay 2015), we expect the model height cor-
responding to loss-of-equilibrium to always be larger than
any observed prominence height (see also, Zuccarello et al.
2016).

The increase in height observed by Jenkins et al. (2018) af-
ter the prominence underwent mass-draining was > 60 Mm
before leaving the field-of-view. The simple model described
here predicts the maximum possible increase in height for
the same amount of mass-draining to be up to 1.7 Mm, as-
suming the final state is also in equilibrium. However, it is
suggested by the authors that the flux rope associated with
the prominence was at a point of marginal instability when
the mass-draining initiated. Indeed, we have shown that the
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simple model described here predicts the largest increases in
height due to mass-draining to occur as the line current ap-
proaches its loss-of-equilibrium. Hence, the large increase in
the height of the observed prominence (60 Mm) shortly after
the draining of mass could be interpreted as being caused by
the flux rope losing equilibrium and erupting into the helio-
sphere due to the torus instability. The prominence observed
by Jenkins et al. (2018) did successfully erupt and was later
observed as a CME by multiple coronagraphs.

The mass estimates of the prominence material studied by
Jenkins et al. (2018) were derived from observations cap-
tured using the Extreme Ultraviolet Imager (EUVI; Wuelser
et al. 2004) on board the Solar Terrestrial Observatory Be-
hind (STEREO; Kaiser et al. 2008) spacecraft. At the time of
the observations, December 2011, EUVI was capturing high
temporal resolution images in only the 195 Å passband; the
other filters were at a much lower cadence. For this reason,
the column density of the prominence was calculated using
the so-called ‘monochromatic method’, resulting in a lower-
limit estimate to the column density. Therefore, we take the
derived value of total mass and mass-drained as lower-limits,
and in turn all values of Dh to be lower-limit estimates to the
increase in the height of the line current.

Next, we compare to an earlier case study, presented by
Seaton et al. (2011), in which it was concluded that mass-
draining from a prominence rooted within an active region
was responsible for the ⇡ 35 Mm height rise prior to the
eruption of the prominence. The active region that the
eruptive prominence was located in was in its decaying
phase, with an average surface magnetic field strength of
& 100 G according to magnetogram observations taken using
the Michelson Doppler Imager (MDI; Scherrer et al. 1995)
on board the Solar and Heliospheric Observatory (SOHO;
Domingo et al. 1995). Our model can be used to test this
conclusion by assuming the same degree of mass-draining as
was observed by Jenkins et al. (2018), and modifying BPhot

so as to test the sensitivity of the model to a range of surface
fluxes.

In the solar context, higher values of BPhot are associ-
ated with smaller values of D, in turn reducing the critical
height of the flux rope. Indeed, this is a commonly observed
and well studied relationship between prominence height and
magnetic domain (e.g., Rompolt 1990; McCauley et al. 2015;
Filippov 2016, and references therein). However, in order
to meaningfully vary D with BPhot within this model, ad-
ditional assumptions would have to be made. Therefore, to
facilitate a simple comparison between the two observational
case-studies and the additional range of realistic surface flux
values, we opt to compare conditions for a “normalised fila-
ment”, fixing D as in Jenkins et al. (2018) and simply varying
BPhot.

Figure 6. The modification to the height of the line current assum-
ing a draining equal to 1 ⇥ 1010 kg of prominence mass (Jenk-
ins et al. 2018) at a range of photospheric magnetic field strengths.
Quiet-Sun surface field strengths result in a significantly larger
change in height due to mass-draining than field strengths similar
to those observed in active regions.

The results, shown in Figure 6, suggest that increasing the
surface magnetic flux results in a stronger background poten-
tial magnetic field, and reduces the effect that mass-draining
can have on the height change Dh. According to the model,
draining 1 ⇥ 1010 kg from a line current embedded within
a bipolar background potential magnetic field that has a sur-
face magnetic field strength of & 100 G would result in a
very small maximum change to the height of the line current
unless the configuration is very close to loss-of-equilibrium.
It is therefore unlikely that the mass-draining was directly re-
sponsible for the observed ⇡ 35 Mm increase in the height
of the prominence. Nevertheless, as appears to have been the
case in the prominence studied by Jenkins et al. (2018), the
mass-draining may have been responsible for upsetting the
equilibrium towards the non-equilibrium point.

A similar result to this has previously been reported by
Reeves & Forbes (2005), in which the authors concluded
the effect of mass was likely to be negligible in a system re-
stricted by a background field stronger than 6 G. Our result
is complementary to this by providing a quantitative compar-
ison for a range of surface fluxes and masses.

6. DISCUSSION AND SUMMARY

The general cases described in this manuscript detail how
the inclusion of realistic prominence masses and complete
draining of this mass from the line current can have both sta-
bilising and destabilising effects. Returning to Figure 2 for
comparison, a line current at point A, for example, will drain
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total mass and move along the constant F curve to A0, result-
ing in damped oscillations around A. In such a case, the line
current does not experience a loss-of-equilibrium; the drain-
ing of mass has simply allowed the line current to increase
in height to a new equilibrium and further evolution of other
parameters would be required for a successful eruption to oc-
cur. The mass draining can also be partial and can also occur
during the oscillations. Indeed, Zhou et al. (2018) showed
that the oscillation of the prominence in their 3D MHD sim-
ulation resulted in the draining of mass from the structure
due to the periodic increase in height of field lines during the
oscillation. The authors also note that this causes the height
of individual field lines to increase due to the reduction in the
gravitational force, although this is studied locally for a few
field lines.

Considering, now, a line current evolving from C to C0 due
to mass-draining, the line current would become unstable to
an ideal-MHD instability as it reaches point C0, and experi-
ence a loss-of-equilibrium triggered by the draining of mass.

For a line current that drains a partial amount of the total
mass loaded, the height of the line current will increase ac-
cordingly, as has already been discussed in Section 4.3. If
this is realised at point A or B of Figure 2, the line current
will not evolve all the way to point A0 or B0, rather a point on
the constant F curve that is in-between and dependent on the
degree of draining.

Considering point D, a point that is not sampled using
the methods outlined in this manuscript, then the partial
draining of total mass may result in the line current either
reaching a stable equilibrium again or experiencing a loss-
of-equilibrium. In this case, the nature of the line current
post mass-draining would depend on the degree of mass
drained. Graphically, for a line current to experience loss-of-
equilibrium the constant F curve cutting the mass-loaded line
current equilibrium curve at point D would have to touch the
mass-drained equilibrium curve tangentially or not at all. If
we define mdrained as the amount of mass drained and mmin

as the minimum amount of mass-draining required to desta-
bilise a line current at point D, then if mdrained < mmin the
final state of the line current would be in equilibrium. As-
suming no more mass-draining occurred, the additional phys-
ical parameters of the system would be required to evolve
for a successful eruption to occur. It then follows that if
mdrained � mmin the line current would experience loss-
of-equilibrium as a result of the mass-draining.

At point E the line current is already unstable to an ideal-
MHD instability without any draining of mass. If mass drain-
ing was to occur at this point, the draining of total or par-
tial mass would not contribute to the initiation of the loss-of-
equilibrium but would instead contribute an additional accel-
erating force to the erupting flux rope.

Finally, applying specific conditions to the general case, it
is shown that:

• For a line current suspended within a bipolar back-
ground field generated by a surface field of 4 G, the
inclusion of typical prominence masses can increase
the height that the line current experiences an ideal-
MHD instability by up to 14%, indicating that the mass
provides a larger anchoring effect than is typically as-
sumed.

• The draining of the larger masses from a line current
can cause a non-negligible increase in the height of
the line current without upper bound, with the largest
height increase observed as the line current approaches
its loss-of-equilibrium.

• Using the observational measurements of Jenkins et al.
(2018) as the input parameters, it is shown that the
modification to the height of the line current due to
mass-draining is as much as 1.7 Mm. This non-
negligible increase in the height of the line current
effectively demonstrates the ability for mass-draining
to perturb the equilibrium of weak field quiescent flux
ropes.

• Scaling the model for comparison with observations
presented by Seaton et al. (2011), it is shown that
draining mass from a line current suspended in a back-
ground field generated by up to kilogauss surface field
results in only a negligible modification to the height
of the line current.

We have discussed the role that mass plays in the global evo-
lution and eruption of flux ropes, suggesting that it depends
on four main parameters; the strength of the surface field
generating the background potential field, how much mass
is loaded into a flux rope, how much mass drains during its
evolution, and when along a flux rope’s equilibrium curve
the mass drains. The effect of the local evolution of plasma
within prominences is not discussed in this manuscript, i.e.,
the mass-draining that is studied here differs from the mass-
loss due to the Rayleigh-Taylor instability (RTI) that has
been studied extensively in both observations and simula-
tions (e.g., Hillier et al. 2012; Xia & Keppens 2016; Hillier
2018). In addition, Kaneko & Yokoyama (2018) pointed out
that, in their case, the mass-loss from the prominence due
to RTI was balanced by new condensations into the promi-
nence. A parametric study would be required in order to
ascertain the effect of such local evolutions of mass on the
global stability of a flux rope–prominence system.

Finally, we conclude that the role of mass within so-
lar eruptions, particularly those involving quiescent promi-
nences, is greater than has been historically attributed, and
requires a more in-depth analysis.
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