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ABSTRACT

Context. Relative magnetic helicity is conserved by magneto-hydrodynamic evolution even in the presence of moderate resistivity.
For that reason, it is often invoked as the most relevant constraint on the dynamical evolution of plasmas in complex systems,
such as solar and stellar dynamos, photospheric flux emergence, solar eruptions, and relaxation processes in laboratory plasmas.
However, such studies often indirectly imply that relative magnetic helicity in a given spatial domain can be algebraically split into
the helicity contributions of the composing subvolumes, in other words that it is an additive quantity. A limited number of very
specific applications have shown that this is not the case.
Aims. Progress in understanding the nonadditivity of relative magnetic helicity requires removal of restrictive assumptions in favor
of a general formalism that can be used in both theoretical investigations and numerical applications.
Methods. We derive the analytical gauge-invariant expression for the partition of relative magnetic helicity between contiguous finite
volumes, without any assumptions on either the shape of the volumes and interface, or the employed gauge.
Results. We prove the nonadditivity of relative magnetic helicity in finite volumes in the most general, gauge-invariant formalism,
and verify this numerically. We adopt more restrictive assumptions to derive known specific approximations, which yields a unified
view of the additivity issue. As an example, the case of a flux rope embedded in a potential field shows that the nonadditivity term in
the partition equation is, in general, non-negligible.
Conclusions. The nonadditivity of relative magnetic helicity can potentially be a serious impediment to the application of relative
helicity conservation as a constraint on the complex dynamics of magnetized plasmas. The relative helicity partition formula can
be applied to numerical simulations to precisely quantify the effect of nonadditivity on global helicity budgets of complex physical
processes.
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1. Introduction

Magnetic helicity is a general measure of the complexity of mag-
netic fields that concisely expresses the amount of twist, writhe,
and mutual winding of field lines in a given configuration (El-
sasser 1956; Berger 1999). When applied to magnetized plas-
mas, the concept of helicity acquires the very special role of an
integral of motion. Intuitively, this is because, as Alfvén’s theo-
rem demonstrates, in ideal magneto-hydrodynamics the topol-
ogy of the magnetic field cannot be changed by plasma mo-
tions. As ideal evolution cannot change the field topology, and
therefore the entanglement of the field lines, magnetic helicity
is conserved in dissipationless (ideal) plasmas (Woltjer 1958),
and is almost conserved in mildly collisional ones (Matthaeus &
Goldstein 1982; Berger 1984). From a different perspective, the
inverse cascade that characterizes magnetic helicity (see, e.g.,
Frisch et al. 1975; Alexakis et al. 2006; Müller & Malapaka
2013), as opposed to the direct cascade of magnetic energy to-
wards the small dissipative scales, is often invoked as the under-
lying paradigm behind the appearance of large-scale magnetic
fields (see, e.g., Antiochos 2013). Taken together, the conser-
vation and inverse-cascade properties give magnetic helicity the
unique potential to describe the evolution of magnetized plasma.

The concept of magnetic helicity is very general, and the
wide applicability of magneto-hydrodynamics makes helicity a
cross-disciplinary tool. In the solar context, for instance, it was
applied to topics such as dynamos (Brandenburg & Subramanian
2005), reconnection (Del Sordo et al. 2010), fluxes of helicity
through the photosphere (Pariat et al. 2005; Démoulin & Pariat
2009; Schuck & Antiochos 2019), the distribution of helicity
in the corona (Yeates & Hornig 2016), the initiation of coronal
mass ejections (CMEs; Pariat et al. 2017; Thalmann et al. 2019)
and their link to interplanetary CMEs (Nakwacki et al. 2011;
Temmer et al. 2017), just to name a few examples. All these
type of studies are related to each other in that they treat differ-
ent aspects of the generation and evolution of the solar magnetic
field that are constrained by the conservation of magnetic helic-
ity.

Magnetic helicity is expressed as the volume integral of the
magnetic field and its vector potential (see Eq. (1) below), and
is therefore gauge-dependent, unless the considered volume is
bounded by a magnetic flux surface. Such a requirement is gen-
erally not satisfied by natural plasmas, nor in numerical simu-
lations. In order to overcome this limitation, Berger & Field
(1984) and Finn & Antonsen (1985) introduced the concept of
relative magnetic helicity, where the helicity in an arbitrarily
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shaped finite volume is computed with respect to a reference
field that has specific properties at the boundary. In this way,
the values obtained by the volume integral are made indepen-
dent from the details used in the vector potential computation,
that is, they are gauge-invariant.

Insofar as the different processes involved can be described
by magneto-hydrodynamics, the helicity of the field generated
in the interior of the Sun must be conserved during the buoyant
phase, through its rearrangement during the emergence through
the photospheric layer forming long-lived coronal structures that
finally erupt (see e.g., Priest et al. 2016), to its propagation
through interplanetary space (e.g., Démoulin et al. 2002; Green
et al. 2002; Nindos et al. 2003; Thalmann et al. 2019). In prin-
ciple, a budget of (relative) magnetic helicity can be built that
accounts for the transformation of the magnetic field from the
interior of the Sun up to transient perturbations of interplanetary
CMEs (e.g., Berger & Ruzmaikin 2000; Démoulin et al. 2016).
To exploit such a remarkable property requires the quantitative
separation and comparison of, for example, the helicity emerg-
ing in the corona and the helicity left under the photosphere; or
the helicity ejected as a CME (and probed at the spacecraft posi-
tion) and that left behind on the Sun.

Numerical simulations of different degrees of realism are
available for all those processes. However, there is a princi-
pal difficulty in separating the helicity into subvolume contri-
butions: a limited number of very specific applications (Berger
& Field 1984; Longcope & Malanushenko 2008) have shown
that the sum of the relative helicity in two contiguous subvol-
umes is not simply equal to the helicity of the total volume. In
this sense, relative magnetic helicity is not an algebraically addi-
tive quantity. This is a serious impediment to the exploitation of
the conservation principle in building global budgets of relative
magnetic helicity. In addition, the discussion of the additivity
issue by Berger & Field (1984) applies to volumes that are either
unbounded or bounded by a flux surface, which are conditions
that are not normally satisfied in numerical simulations. Simi-
larly, Longcope & Malanushenko (2008) proposes an extension
of the formalism in Berger & Field (1984) that is intended to be
applied to the finite volumes of numerical simulations, but still
considers a coronal volume that is bounded above by a flux sur-
face. Finally, the choice of gauge made in Berger & Field (1984)
and Longcope & Malanushenko (2008) is only one of the possi-
bilities for discussing the nonadditivity property, and may not be
always available to specific applications where the gauge choice
is limited by other factors (e.g., by numerical precision).

The main goal of this work is to derive general equations for
the additivity of the relative magnetic helicity in finite volumes,
and to provide a gauge-invariant expression for the nonadditive
terms. In particular, the additivity problem is formulated here
as a partition problem between two subvolumes that are con-
tiguous and share a common boundary, such as for example in
the flux emergence process where helicity is transferred from a
sub-photospheric volume to the coronal volume. The generality
of our treatment is such that, on the one hand, it allows us to
identify the reason for the nonadditivity in a general way. On
the other hand, our method can be easily adapted to different
geometries and gauge choices, allowing for straightforward ap-
plications to numerical simulations.

In Sect. 2 we discuss the nature of the additivity problem; we
then derive the general partition equation without any assump-
tions on either the shape of the volumes and interface, or the
employed gauge. Section 3 gives a brief overview of how the
partition equation is modified by the choice of commonly used
gauges, which are then applied in Sect. 4 to derive known ex-

pressions for the partition formula that are used in the literature.
A numerical application to a solution of the force-free equation
is used in Sect. 5 to verify the accuracy of the partition formula
and to test the importance of the nonadditive term with respect
to the helicity of the field. Finally, in Sect. 6 we summarize our
results, discuss their implication for the definition of the relative
magnetic helicity, and propose a number of applications of our
formalism.

2. Partition of helicity between two volumes

2.1. General definitions

As usual, for a magnetic field B and its associated vector poten-
tial A, we define the gauge-dependent magnetic helicity H in a
volumeV as

H (B,V) =
∫

V

A · B dV , (1)

and the gauge-invariant relative magnetic helicity (Finn & An-
tonsen 1985) as

H(B,V) =
∫

V

(

A + Ap

)

·
(

B − Bp

)

dV , (2)

where the field Bp of vector potential Ap satisfies

n̂ · Bp

∣

∣

∣

∂V
= n̂ · B|∂V (3)

on the boundary ∂V, with n̂ the external normal to ∂V. By con-
struction, ∂V is a flux surface for the field Bj = B − Bp. Any
reference field that satisfies Eq. (3), and the solenoidal condition
∇ · Bp = 0, ensures the gauge-invariance of Eq. (2). In this work
we assume that all magnetic fields satisfy the solenoidal condi-
tion exactly. A discussion of the consequences of the violation
of the solenoidal condition in numerical computation of helicity
and energy can be found in Valori et al. (2016) and Valori et al.
(2013), respectively.

In principle, any field that satisfies Eq. (3) can be used as
reference field, with Eq. (2) defining the helicity relative to the
chosen reference field. We adopt the common choice of a po-
tential field as reference field Bp. In this case, Bp is written as a
function of the scalar potential φ as Bp = ∇φ, where φ satisfies
the Laplace equation ∆ φ = 0 inV with the Neumann boundary
condition

n̂ · ∇φ|∂V = n̂ · B|∂V , (4)

such that the gauge-invariance requirement Eq. (3) is satisfied.
Equation (4) uniquely defines Bp in V, and defines φ in V up
to an additive constant. The potential field defined by Eq. (4)
has the minimal energy for the given distribution of the normal
component of the field on the boundary, n̂ · B|∂V, see for exam-
ple Valori et al. (2013). Therefore, this customary choice is not
only convenient in its simplicity, but carries also a deeper phys-
ical meaning of the potential field being the “ground state” for a
given distribution of field on the boundary, especially within the
magneto-hydrodynamical framework; see for example Schuck
& Antiochos (2019). Moreover, if Bp is the potential field in
V, then Bj is the part of the magnetic field that is related to the
presence of currents in V, sometimes referred to as the current-
carrying part of the field. We adopt the potential field as defined
above as reference field in the remainder of the article, but we
explicitly discuss the consequences of this choice on our results,
when relevant.
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Fig. 1. Sketch of the volume splitting: an interface Σ splits the finite
volumeV bounded by ∂V into two subdomains,Va andVb, each one
bounded by the surface ∂Va and ∂Vb, respectively.

The relative magnetic helicity, Eq. (2), can be recast as the
sum of three nongauge-invariant terms:

H(B,V) =H (B,V) −H (Bp,V) +Hmix(B,Bp,V) , (5)

which is the difference between the magnetic helicity of B and
Bp plus a “mixed term” defined as

Hmix(B,Bp,V) =
∫

V

(

Ap · B − A · Bp

)

dV

=

∫

∂V

(

A × Ap

)

· dS , (6)

where dS = n̂ dS is the oriented infinitesimal surface element on
∂V.

2.2. Volume partition

We consider the case of two contiguous volumes of finite size
and V = Va ∪ Vb, such that Va and Vb are bounded by the
surfaces ∂Va and ∂Vb with external normals n̂a and n̂b, respec-
tively. Figure 1 shows a graphical representation of the volumes
involved. The boundary surface of each subvolume can be split
into an interface (Σ) plus a noninterface ( Σ) contribution as

∂Va = Σa ∪ Σa , (7)

∂Vb = Σb ∪ Σb , (8)

with the boundary ∂V of the volumeV given by

∂V = Σa ∪ Σb . (9)

The interfaces Σa and Σb represent the same surface but differ for
the orientation of the normal, n̂a = −n̂b. When the orientation
of the normal is not required, we drop the superscript from Σ. In
order to have a more compact notation, we also introduce

Zab =

{

Za ∀ x ∈ Va

Zb ∀ x ∈ Vb , (10)

where Z is any function or vector defined separately in Va and
Vb.

All volumes are assumed to be simply connected in order to
avoid the difficulties of multi-valued gauge functions, but no as-
sumption is made on the shape of the volumes or of the interface.

No further assumption is made at this point about the geometry
of the system.

For each of the three considered volumes V, Va, and Vb,
the relative magnetic helicity, Eq. (2), can be computed. The
question that we wish to address in this section is: what is the
general relation between the three correspondent relative helicity
values H(B,V), H(B,Va), and H(B,Vb)?

2.3. Difference in the reference fields

The relative helicity Eq. (2) is gauge-invariant because the ref-
erence potential field Bp for the full volume V is defined by
Eq. (4), thus satisfying the gauge-invariance condition Eq. (3).
Similarly, the computation of the relative helicity for the two
subvolumesVa andVb requires that reference fields be defined
such that they fulfil the same condition, Eq. (3), but in each
subvolume separately. In other words, the (potential) reference
fields Ba

p and Bb
p are uniquely defined by ∆ φa = 0 inVa and the

boundary condition

n̂a · ∇φa
∣

∣

∣

∂Va = n̂a · B
∣

∣

∣

∂Va , (11)

and ∆ φb = 0 inVb and the boundary condition

n̂b · ∇φb
∣

∣

∣

∂Vb = n̂b · B
∣

∣

∣

∂Vb , (12)

respectively. We note that, because of the way the volume V is
split, the boundary conditions for the above Laplacian equations
on the noninterface boundaries Σab of Va and Vb are the same
as for Bp (see Fig. 1).

In order to understand the differences between the reference
fields, let us first consider a special case: if n̂ · B = n̂ · Bp on the
interface Σ, then the normal components of Ba

p and Bb
p also match

that of Bp on the interface Σ . It then follows from the uniqueness
of the solution to the Laplace problems that, in this special case,
it is Ba

p = Bp in Va and Bb
p = Bp in Vb. The combined field

Bab
p as defined by Eq. (10) is continuous across Σ, and we have

Bab
p = Bp.

However, for a generic B field, n̂ · B is different from n̂ · Bp
on the interface Σ. Therefore, in the general case, the solutions
of the Laplacian equations inVa andVb provide potential fields
Ba

p and Bb
p that are different from Bp in each of the subvolumes.

Moreover, the transverse components of Ba
p and Bb

p are in gen-
eral different on both sides of the interface Σ. The corresponding
field Bab

p in the full volume V is not fully potential but it con-
tains a current sheet on Σ. As we show in the following section,
this difference between the reference field in V and in the sub-
volumesVa andVb is at the core of the nonadditivity of relative
magnetic helicity.

It is worth noting that the difference between Bp and Ba
p (re-

spectively, Bb
p) inVa (respectively, Vb) is not a consequence of

the choice of potential fields as reference fields. Indeed, the same
difference is to be expected for other nonpotential reference
fields. This is because, on the one hand, the gauge-invariance
condition Eq. (3) needs to be imposed on the interface Σ for the
reference fields of Va and of Vb. On the other hand, Σ is not a
boundary ofV, and therefore the reference field ofV cannot be
specified on Σ. We conclude that, in general, the reference field
Bp inV is not derived from the same information as Ba

p and Bb
p,

and therefore Bp is not simply the juxtaposition of the reference
fields Ba

p inVa and Bb
p inVb. This, and the resulting discontinu-

ity between Ba
p and Bb

p across Σ discussed above, are direct con-
sequences of the property of Eq. (3) that reference fields must
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fulfil in order for the relative magnetic helicity (Eq. (2)) to be
gauge-invariant.

Before we consider the relative helicity, let us first briefly
discuss the consequences of the volume splitting on the magnetic
energy

E (B,V) =
1

2µ0

∫

V

B2 dV , (13)

and the relative (or free) magnetic energy

E(B,V) =
1

2µ0

∫

V

(

B2 − B2
p

)

dV . (14)

By introducing the volume splitting of Sect. 2.2 to the free en-
ergy, we have

E(B,V) − E(B,Va) − E(B,Vb) =
1

2µ0

∫

V

(

(Bab
p )2 − B2

p

)

dV .

(15)

As the right-hand side of Eq. (15) is, in general, nonvanishing,
then the free energy in V is not simply equal to the sum of the
free energies in the composing subvolumes Va and Vb, that is
the free energy is a nonadditive quantity. In particular, the differ-
ence between the reference magnetic fields inVa andVb and the
one in V implies the nonadditivity of the relative energy, while
the energy E is manifestly additive.

2.4. Relative magnetic helicity of contiguous volumes:
general formulation

Without loss of generality, the relative magnetic helicity in V
can be formally written as

H(B,V) = H(B,Va) + H(B,Vb) + δH, (16)

with

δH = H(B,V) − H(B,Va) − H(B,Vb)

= δH − δHp + δHmix, (17)

where we defined

δH =H (B,V) −H (B,Va) −H (B,Vb) (18)

δHp =H (Bp,V) −H (Ba
p,V

a) −H (Bb
p,V

b) (19)

δHmix =Hmix(B,Bp,V) −Hmix(B,Ba
p,V

a)

−Hmix(B,Bb
p,V

b) . (20)

Equation (16) is the result of a simple reorganization that collects
in δH all contributions that make the relative magnetic helicity
a nonadditive quantity and, by grouping similar terms together,
allows for cancelations between them. In Appendix A, we show
that by using Eqs. (1, 6) in Eq. (17), we obtain

δH =

∫

Σ

χ (B · dSa) , (21)

δHp = δH
Coul

p + δH
S ur f

p (22)

where

δH Coul
p =

∫

Va
φa
(

∇ · Aa
p

)

dV +
∫

Vb
φb
(

∇ · Ab
p

)

dV

−

∫

V

φ
(

∇ · Ap

)

dV , (23)

δH
S ur f

p =

∫

∂V

(

φAp − φ
abAab

p

)

· dS

−

∫

Σ

(

φaAa
p − φ

bAb
p

)

· dSa , (24)

and

δHmix =

∫

∂V

(

Aab ×
(

Ap − Aab
p

))

· dS

+

∫

Σ

[

Aa ×
(

Ap − Aa
p

)

− Ab ×
(

Ap − Ab
p

)]

· dSa

−

∫

Σ

χ
(

Bp · dSa
)

, (25)

where we use the notation of Eq. (10) for all fields defined in the
subvolumesVa andVb, and χ is the gauge function defined by

∇χ =
(

Ab − Aa
)

∣

∣

∣

∣

Σ
, (26)

with χ a function of the interface variables only; see Eq. (A.22).
On the interface Σ, the infinitesimal oriented surface was chosen
to be that of dSa. The study of the properties of Eqs. (16 - 25) is
the main focus of this article.

The first and most important result is that Eq. (16) shows in
the most general way that the relative magnetic helicity is not an
algebraically additive quantity: The relative magnetic helicity in
the entire volumeV is not simply the sum of the relative helicity
of the composing subvolumes Va and Vb, but a general non-
vanishing additional term, δH, is present. We note that, because
the left-hand side (LHS) and the first two terms on the right-
hand side (RHS) of Eq. (16) are gauge-invariant, then δH must
be globally gauge-invariant too. Appendix B outlines how to see
this directly from the terms in δH.

The gauge-invariance of Eq. (16) implies that the nonadditiv-
ity of relative magnetic helicity is a general property: a special
gauge that makes the relative helicity additive (or even partition-
able between volumes) does not exist. This does not rule out
that a very special combination of geometry, choice of reference
field, and boundary conditions may exist in which relative mag-
netic helicity is additive, but this is not true in general.

Finally, we note that Eqs. (21 - 25) contain three types of
terms in the representation that we have chosen, namely volume,
interface, and outer boundaries (or noninterface) surface terms.
This formalism allows for a more direct treatment of specific
limits in the following sections, but is by no means the only pos-
sible one. Let us now discuss the individual nonadditivity terms.

2.4.1. δH : Nonadditivity of the magnetic helicity

The nonadditive term δH of Eq. (21) is an interface term that,
for arbitrary B, depends solely on the gauge specification, and
can therefore be eliminated by specific gauge choices for Aa and
Ab that insure χ = 0 on Σ; see Sect. 3.4.

2.4.2. δHp : Nonadditivity of the helicity of the reference
fields

The δHp in Eq. (22) is composed of a volume and surface terms.
The volume term, δH Coul

p contains the Coulomb gauge condi-
tions for the three reference fields, a gauge that can be chosen to
have this term vanish. It is interesting to note that the Coulomb
conditions appear explicitly only in relation to reference fields,
and not for any of the other vector potentials. The same hap-
pens for the time evolution of the relative magnetic helicity in
Eq. (25) of Pariat et al. (2015), and in Eqs. (13,41) regulating
the evolution of the current-carrying and volume-threading rela-
tive magnetic helicity derived by Linan et al. (2018). All these
cases express helicity contributions due to sources in the vector

Article number, page 4 of 14



Valori G. et al.: Additivity of helicity

potentials of the potential fields, and thereby in the helicity of
the reference potential fields.

While δH Coul
p accounts for volume differences, the surface

term δH
S ur f

p in Eq. (24) contains interface and noninterface
contributions that depend on the components of the vector po-
tentials of the reference fields that are normal to the boundaries,
and on the scalar potentials of the same reference fields. Since
the reference fields in V and Va (V and Vb, respectively) do
not represent the same field (see Sect. 2.3), there is no general
gauge relation between the vector potentials Ap and Aa

p (Ap and
Ab

p, respectively) that can be used to simplify these expressions.
The last term in Eq. (24) is an interface term accounting for

the discontinuity of the transverse components in the reference
fields at Σ. As discussed in Sect. 2.3, this term can be seen as the
contribution due to a surface current generated by the disconti-
nuity of the transverse components of Ba

p and Bb
p across Σ; see

also Sect. 4.1.

2.4.3. δHmix : Nonadditivity of the mixed helicity

The first two integrals in Eq. (25) are directly related to the trans-
verse components of the vector potentials at the boundaries. The
additional complication of Eq. (25) with respect to the simpler
Eq. (6) is that such integrals involve cross interactions between
different vector potentials.

The last term in Eq. (25) is similar to that in δH , but in-
volves Bp rather than B, and similar considerations hold. Since,
in general, B and Bp differ on Σ, then the combination of these
two terms is nonzero, and is related to the current-carrying part
of the field, Bj. Unless the gauge choices for Aa and Ab ensure
χ = 0, the only other case where the two terms cancel each other
is when B = Bp on Σ, which, according to the discussion in
Sect. 2.3, is a very special case.

In summary, the nonadditivity of the relative helicity H has
the same origin as that of the relative energy E, a difference of
reference field in each subvolume with the one in the full vol-
ume. This is the case even when the lowest energy state, the
potential field, is selected as reference field. Still, the nonaddi-
tivity terms of H are much more complex than the one for E, as
they also involve the vector potentials.

3. Applications of the partition equation with

specific gauges

Equation (16) is a gauge-invariant, general expression of the rel-
ative helicity partition that does not make any assumption about
the specific gauges and boundary conditions that are used to
compute the vector potentials. Such specifications are however
required for its practical application.

The constraints on the scalar and vector potentials defined
so far derive from the gauge-invariance constraint; see Eq. (3)
and Sect. 2.3. In particular, the scalar potentials are determined
by solving the Poisson problems Eqs. (A.8, A.9) that define φ,
φa, and φb each modulo a constant. The vector potentials must
obey the curl relations with the fields; Eq. (A.2). In addition, the
connection between vector potentials of different volumes is pre-
scribed by Eq. (26) (or, more specifically, Eq. (A.22)). This set
of constraints is not sufficient to determine the vector potentials.

A gauge should be properly defined as the set of equations
and boundary conditions that uniquely determines the scalar and
vector potentials for a given magnetic field B inV. In this sense,
in Sect. 5 we refer to different sets of boundary conditions for the
vector potentials as different gauges. In a more relaxed sense,

we often use the term gauge to mean a group of gauges, such as
when we refer to the “Coulomb gauge”, meaning the ∇ · A = 0
condition only; this is rather a family of gauges, to which addi-
tional boundary conditions must be added to uniquely determine
the vector potentials.

On the condition that they do not conflict with the other
gauge constraints, such additional equations and/or boundary
conditions are arbitrary, and thanks to gauge invariance they do
not affect the outcome of Equation (16).

3.1. Coulomb gauge

Assuming that all three vector potentials are solenoidal, ∇ ·Ap =

∇ · Aa
p = ∇ · A

b
p = 0, then δH Coul

p = 0. In addition, Eq. (A.3)
in conjunction with the Coulomb gauge, restricts the possible
choice of the gauge functions to the class of functions that satisfy
∆χa = ∆χb = 0.

3.2. DeVore-Coulomb gauge

The DeVore gauge (DeVore 2000; Valori et al. 2012; Moraitis
et al. 2018) sets one of the components of the vector potential
equal to zero. For absolute clarity, let us assume that Σ is a plane
parallel to the xy-plane, and set Az = 0, as in Valori et al. (2012).
The main advantage of the DeVore gauge is that it is very accu-
rate and fast to compute numerically (Valori et al. 2016) because
the vector potentials are computed by one-dimensional vertical
integration of the magnetic field starting from one of the bound-
aries. A particularly useful formulation of the DeVore gauge
requires, in addition, that the two-dimensional integration func-
tions appearing in the computation of the vector potential of
the potential field are solenoidal (see Section 5 in Valori et al.
(2012)). In this case, the DeVore gauge ensures that ∇ · Ap = 0,
that is, it is a DeVore-Coulomb gauge for the vector potential.
If the DeVore-Coulomb gauge is adopted for all three vector po-
tentials Ap, Aa

p , and Ab
p, then also in this case δH Coul

p = 0.

3.3. Boundary conditions

Before further analyzing Eq. (16), let us first consider the relative
magnetic helicity in a single volume as given in Eq. (5). A com-
monly used condition that is often used in combination with the
Coulomb gauge for Ap (see e.g., Berger 1999; Thalmann et al.
2011) is that

n̂ × A = n̂ × Ap ; (27)

in other words, the vector potential of field and reference field
have the same tangential components on the boundary of the
considered volume. Such a boundary condition is allowed be-
cause Eq. (27) implies Eq. (3). In this case, Hmix(B,Bp,V) van-
ishes by Eq. (6) and the relative magnetic helicity of Eq. (2) is
equal to the difference between the helicity of the field and the
helicity of the relative reference field, that is,

H(B,V) =H (B,V) −H (Bp,V), (28)

which is the definition of relative helicity predating Eq. (2), used
for example in Berger (1984) and Jensen & Chu (1984). In the
practical computation of vector potentials, Eq. (27) is often indi-
rectly imposed by assuming that A = Ap on ∂V as a boundary
condition for A. However, we stress that the boundary condition
in Eq. (27) is not compatible with the DeVore gauge, as shown
by Eq. (31) of Valori et al. (2012). Similarly, it is not possible,
in general, to have δHmix = 0 in Eq. (25) in this gauge.
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A special boundary condition is when ∂V is a flux surface.
In this case, from n̂ · B = 0, it follows that A can be written as
A = n̂An + ∇⊥χ for some function χ, where ∇⊥ is the gradient
normal to n̂. Then, substituting in Eq. (6), we can extend the∇⊥χ
to a full gradient without changing the integral, and we obtain

Hmix =

∫

∂V

∇ × (χAp) · dS −

∫

∂V

χBp · dS , (29)

where the last term ion the RHS vanishes since, from Eq. (3), ∂V
is also a flux surface of Bp . If the flux surface ∂V is closed, then
the first term on the RHS of Eq. (29) vanishes too, and Hmix=0
in this case. Moreover, since n̂ · B = 0 in Eq. (4), then Bp = 0,
and H(B,V) =H (B,V).

If the boundary condition of Eq. (27) is used in the compu-
tation of the three pairs of vector potentials (A,Ap), (Aa,Aa

p),
and (Ab,Ab

p), then Eq. (20), with Eq. (6) defining Hmix, directly
shows that

Hmix(B,Bp,V) =H
a

mix(B,Ba
p,V

a) =H
b

mix(B,Bb
p,V

b) = 0 ,

(30)

and thus δHmix = 0. The same result can also be obtained di-
rectly from Eq. (25) using Eq. (A.3) to write n̂ × (Aab

p + ∇χ) =
n̂ × Ap.

3.4. Computation of the gauge function χ

The gauge function χ defined by Eq. (26) and appearing in
Eqs. (21, 25) can be computed by direct integration using the
fundamental theorem of calculus for line integrals as

χ(x) = χ(a) +
∫

C(a,x)

(

Ab − Aa
)

· dl , (31)

for any curve C(a, x) on Σ connecting points a to x, with χ(a) = 0
as a general prescription.

In general, the transverse components of Aa and Ab on Σ are
different, and χ is a nonvanishing function of the Σ variables.
However, depending on the gauge, special boundary conditions
on Aa and Ab can be imposed such that χ = 0. We give examples
of such boundary conditions in Sect. 5 for the DeVore gauge.

4. Relation with other approaches

We show in this section how our general formula Eq. (16), in
the proper limits, reproduces relevant results on helicity partition
known from the literature.

4.1. Additivity formula of Berger & Field (1984)

In the second part of their Section 3, Berger & Field (1984)
derive a relative helicity summation equation for two domains,
their Eq. (45), which in our notation reads

H (B,Va) +H (B,Vb) = H(B,Va) + H(B,Vb)

+H (Ba
p,V

a) +H (Bb
p,V

b). (32)

This equation is less general than our Eq. (16) because, first, it
assumes that the combined domain V is magnetically closed;
second, it adopts the definition of relative magnetic helicity
Eq. (28), rather than the more general Eq. (2); and third, Eq. (32)
is an addition formula, rather than a partition one like our

Eq. (16), in the sense that Berger & Field (1984) are not con-
cerned with the general relation to the relative helicity of the to-
tal volume (which indeed does not appear in Eq. (32)). In order
to relate Eq. (32) to our Eq. (16) we then assume that (i) n̂ ·B = 0
on ∂V, (ii) both Aa × n̂ = Ab × n̂ and Aa

p × n̂ = Ab
p × n̂ on the

interface Σ, and (iii) A = Aa in Va and A = Ab in Vb. To see
that Eq. (16) reduces to Eq. (32) under these conditions, note first
that condition (i) implies that Bp = 0 and H(B,V) = H (B,V);
see Sect. 3.3. Adding H(B,V) on both sides of the equation, we
can rewrite Eq. (32) as

δH = δH − δHp. (33)

This would be equivalent to Eq. (16) if δHmix = 0. To see
that this follows from conditions (i) and (ii), we first note that
Hmix(B,Bp,V) = 0 (see Sect. 3.3), so that

δHmix = −

∫

∂Va
Aa × Aa

p · dSa −

∫

∂Vb
Ab × Ab

p · dSb, (34)

= −

∫

∂V

Aab × Aab
p · dS, (35)

where the last step used condition (ii) on Σ. From condition (i)
we have that n̂×Aab = n̂×∇ξ for some function ξ, meaning that

δHmix =

∫

∂V

ξB · dS = 0. (36)

Therefore, Eq. (45) of Berger & Field (1984) is indeed a spe-
cial case of our more general Eq. (16). Finally, we can then
formally adopt condition (iii), which directly results in δH = 0
in Eq. (33). Under the same conditions (i-iii), Berger & Field
(1984) also observe that the relative helicity becomes an additive
quantity if the interface (our Σ) is a planar or spherical surface,
since then H (Ba

p,V
a) =H (Bb

p,V
b) = 0.

4.2. The Longcope & Malanushenko (2008) approach

The approach in Longcope & Malanushenko (2008) addresses
the partition problem explicitly and in this sense is the most
relevant for comparison with the approach presented here. The
definition of relative magnetic helicity adopted by Longcope &
Malanushenko (2008) is that of Eq. (28), with n̂×A = n̂×Ap on
the boundary of each considered (sub-)volume. From the point
of view of the problem formulation, Longcope & Malanushenko
(2008) explicitly focus on macroscopic coronal flux tubes that
have their bases in the photospheric plane (footprints) and are
laterally bounded in the corona by flux surfaces. In our notation,
their coronal flux surfaces are our separation interfaces between
subvolumes, Σ, whereas their photospheric footprints belong to
the Σportion of the boundary of each subvolume.

For each subvolume, in one of the analysed cases, Longcope
& Malanushenko (2008) consider that the reference field is po-
tential and restricted to the subvolume, yielding the additive self-
helicity formula (their Eq. (16)). This case shares the same ap-
proach (and limitations) to the reference potentials as ours; see
discussion in Sect. 2.3. In order to link Eq. (16) in Longcope &
Malanushenko (2008) to our Eqs. (21 - 25), let us restrict their
notation to two subvolumes only. The first term on the LHS of
Eq. (16) in Longcope & Malanushenko (2008) is then the rela-
tive magnetic helicity of the entire coronal volume, that is, the
LHS of our Eq. (16). The second term on the LHS of Eq. (16)
in Longcope & Malanushenko (2008) is the sum of the relative
magnetic helicity of the two composing subvolumes, that is, it is
equal to the first two terms on the RHS of our Eq. (16). Then,
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Fig. 2. Selected field lines of the TD equilibrium depicting the flux
rope (pink) and the surrounding potential field (blue). The two section
planes Σ used in Table 1 are the z = 1 plane (cyan) and the x = 0 plane
(yellow); see Sect. 5 for details. The distribution of the vertical field
component at z = 0 is shown in greyscale at the bottom.

we are left to show under which conditions δHmix in Eq. (25)
is equal to the RHS of Eq. (16) in Longcope & Malanushenko
(2008). First, let us keep δHp in the form given in Eq. (19). Sec-
ond, adopting the assumption that Σ is a flux surface in Eqs. (21,
25) directly yields δH = 0 and

δHmix =

∫

∂Va

(

Aa ×
(

Ap − Aa
p

))

· dSa +

∫

a→b

. . . ,

=

∫

∂Va
Ap ·
(

n̂a × Aa) dS

−

∫

∂Va
Aa

p ·
(

n̂a × Aa) dS +

∫

a→b

. . . , (37)

where the last integral indicates the repetition of all integrals
with index a → b. Since Σ is a flux surface, δHmix vanishes
there; see Sect. 3.1. If we then recall that n̂a × Aa = n̂a × Aa

p on
the photospheric Σboundary, regrouping δHmix and δHp terms,
we have

δH = δHmix + δHp

=

∫

Va

(

Aa
p · B

a
p − Ap · Bp

)

dV +
∫

∂Va

(

Aa
p × Ap

)

· dSa

+

∫

a→b

. . . , (38)

which is the RHS of Eq. (16) in Longcope & Malanushenko
(2008) written in our notation. Therefore, for the special case of
two single subvolumes bounded in the corona by flux surfaces,
Eqs. (21 - 25) reduce to the self-helicity expression of Eq. (16)
in Longcope & Malanushenko (2008).

5. Numerical verification of the partition equation

In this section the partition formula Eq. (16) is verified numer-
ically using the Titov and Démoulin model of a bipolar active
region (Titov & Démoulin 1999, hereafter TD).

5.1. Numerical model

The TD model is a parametric solution of the force-free equa-
tions that consists of a portion of a circular twisted flux rope em-
bedded in a potential field. The specifications of the considered

Cartesian volume and the parameters of the particular solution
employed here are the same as the N=1 case in Table 3 of Valori
et al. (2016), except for the opposite sign of the twist. Figure 2
shows selected field lines depicting the flux rope and the two
sectioning planes discussed below.

The computation of the vector potentials is performed here
using the DeVore gauge Az = 0; see Sect. 3.2, as implemented
in Valori et al. (2012). The method has two parameters, repre-
senting different gauges of the DeVore family, as follows. First,
a one-dimensional integral in the z-direction is involved in the
computation of the vector potentials. This integral can be per-
formed starting from either the bottom (bc=b) or from the top
(bc=t) of the considered volume, corresponding to Eq. (10) and
Eq. (11) of Valori et al. (2012), respectively. Second, two differ-
ent boundary conditions can be used in the computation of the
vector potential at the starting boundary, namely Eqs. (24,25) or
Eq. (41) in Valori et al. (2012). As discussed in Sect. 3.2, the
latter applied to a potential field results in the DeVore-Coulomb
(dVC) gauge. We then use the notation dVC=n (no) and dVC=y
(yes) if, respectively, Eqs. (24,25) or Eq. (41) in Valori et al.
(2012) are used. Therefore, for each vector potential and vol-
ume, a different combination of bc and dVC can be used, effec-
tively testing the gauge dependence of the computed quantities.
There are four possibilities for each of the six vector potentials,
yielding 46 = 4096 possible combinations.

In the following we provide a few representative examples of
the possible gauge combinations for each realization of volume
splitting. For instance, for test number 2 in Table 1, bcAp=[t,t,b]
(respectively, bcA=[t,t,b]) means that the computation of Ap and
Aa

p (respectively, A and Aa) was performed starting from the top
boundary in the volumeV andVa, and from the bottom bound-
ary for Ab

p (respectively, Ab) in the volume Vb. The triplets
dVCAp=dVCA=[y,y,y] mean that Eq.(41) of Valori et al. (2012)
was used for the computation of all vector potentials in the three
volumesV,Va, andVb.

5.2. Numerical verification of Eq. (16)

Table 1 summarizes the results of testing Eq. (16) in two repre-
sentative realizations of volume splitting: in the first one (z = 1,
in cyan in Fig. 2) the interface is a horizontal plane cutting
through the flux rope at approximately the location of the apex
of the flux rope axis. In this realization, most of the flux rope is
contained in the lower subvolume Va, whereas Vb mostly con-
tains potential field. The second realization (x = 0, in yellow in
Fig. 2) is a vertical plane cutting through the flux rope and ap-
proximately containing the flux rope axis. In this realization, the
flux rope is split approximately symmetrically between the two
subvolumes.

In Table 1, H(B,V) and

Hsum ≡ H(B,Va) + H(B,Vb) + δH (39)

are, respectively, the LHS and RHS of Eq. (16), computed inde-
pendently, and

ǫ = 100 ∗ (H(B,V) − Hsum) /H(B,V) (40)

represents the error of the helicity partition formula (Eq. (16)) as
a percentage.

In most of the cases in Table 1, the error ǫ in the partition
formula is less then 1%, which clearly verifies that Eq. (16) is
correct, and that its numerical implementation is extremely accu-
rate. The first three tests in the z = 1 case (test=1,2,3 in Table 1)
show that the error ǫ does not depend on the values of the dVC
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Table 1. Numerical verification of the partition equation

Test Σ H(B,Va) H(B,Vb) δH Hsum H(B,V) ǫ bcAp bcA dVCAp dVCA

1 z=1 6.4022 0.3675 0.3887 7.1584 7.2069 0.67 t t b t t b y n y n y n
2 z=1 6.4101 0.3767 0.3756 7.1625 7.2052 0.59 t t b t t b y y y y y y
3 z=1 6.3943 0.3582 0.3988 7.1514 7.2087 0.79 t t b t t b n n n n n n
4 z=1 6.4101 0.3771 0.3764 7.1637 7.2052 0.58 t t t t t b y y y y y y
5 z=1 6.4045 0.3672 0.3476 7.1193 7.1730 0.75 b b t t t b n n n n n n
6 z=1 6.4218 0.3771 0.3443 7.1433 7.1840 0.57 b b t t t b y y y y y y
7 z=1 6.3943 0.3582 0.3988 7.1514 7.2087 0.79 t t b t t b n n n n n n
8 z=1 6.4220 0.3767 0.2638 7.0625 7.2052 1.98 t t b t b b y y y y y y
9 z=1 6.4047 0.3582 0.2852 7.0481 7.2087 2.23 t t b t b b n n n n n n

10 x=0 0.9215 1.0414 5.2347 7.1976 7.2052 0.11 t t b t t b y y y y y y
11 x=0 0.9215 0.9638 5.3095 7.1948 7.2052 0.14 t t t t t b y y y y y y
12 x=0 0.9215 1.0414 5.2347 7.1976 7.2052 0.11 t t b t t b y y y y y y
13 x=0 0.9662 1.0414 5.1834 7.1910 7.2052 0.20 t t b t b b y y y y y y
14 x=0 0.9720 0.7803 5.3074 7.0596 7.2087 2.07 t t b t b b n n n n n n

Notes. Numerical verification of Eq. (16) using the TD test sliced with a plane Σ. The column Test labels the different test cases; Σ is the plane
interface separatingVa andVb; H(B,Va) and H(B,Vb) are the relative magnetic helicities of the subvolumesVa andVb, respectively, whereas
δH is the nonaddictive term; Hsum and H(B,V) are the RHS and LHS of Eq. (16), respectively; ǫ is the error in percentage between H(B,V) and
Hsum as defined in Eq. (40); bcAp (respectively bcA) is a triplet representing the integration direction for the computation of the vector potential Ap

(respectively A) for the volumeV,Va, andVb, respectively; similarly, dVCAp (respectively dVCA) is a triplet representing the boundary condition
for the computation of the vector potential Ap (respectively A) on bcAp (respectively bcA), for the volumeV,Va, andVb, respectively. See Sect. 5
for additional details.

triplets, that is, it is similar for both the deVore and the deVore-
Coulomb gauges. This remains true for different combinations
of the boundary condition (bc) for the six vector potentials (see
tests 4 to 7 in Table 1). In particular, there is no dependence on
the bc value for the vector potential of the potential field. The ex-
ception is for bcA=b inVa (see tests 8 and 9), where the error ǫ
is around 2%. This gauge corresponds to an upward integration
in the computation of the vector potential Aa, that is, to using
Eq. (10) of Valori et al. (2012) for Aa. In this case, numerical
errors that accumulate in the vertical integration end up affecting
the accuracy of the gauge function χ due to Eq. (31). Such anal-
ysis is confirmed by the x = 0 cases in Table 1 where some of the
tests are repeated for the vertical slice of the volume. Therefore,
Table 1 shows that our implementation of Eq. (16) can account
for the helicity partition with an error typically smaller than 1%.

In order to attain such accuracy, the computation of the gauge
function χ (Eq. (31)), was found to be particularly sensitive. For
that, we computed the line integral in a similar way to that shown
in Appendix 3 of Valori et al. (2013), that is, such that the inte-
gral is the numerical inverse operation of the derivation operator
(in our case, a second-order central difference scheme). If, for
instance, a trapezoidal scheme is used instead, then ǫ can be eas-
ily one order of magnitude larger, or even two in some cases.

In terms of relative magnitude, the values of δH compared
to the total helicity H(B,V), that is with respect to the LHS of
Eq. (16), are only about 6% in the z = 1 case, but as large as
74% in the x = 0 case. This is the first evidence that the rela-
tive importance of the nonadditive term for a given field depends
on how the volume is sliced, and that it can be very significant
indeed.

Within a given case, each line in Table 1 corresponds to a
different combination of bc and dVC for the six vector potentials,
or in other words, to a different gauge. Hence, an estimation
of the error for Eq. (16) in fulfilling gauge-invariance can be
obtained as the standard error of the mean of δH values. Such
a statistical error, relative to the mean of δH, is 5% in the z = 1
case, where δH values are relatively small, and 0.5% for the x =

0 case. Such small variations confirm numerically the gauge-
invariance of Eq. (16) within the gauge-invariant accuracy of the
underlining helicity computation method (see also the accuracy
tests in Valori et al. (2016)).

As anticipated in Sect. 3.2, some of the gauge combinations
in Table 1 would allow for analytical cancelations in Eqs. (21
- 25). For instance, the second and third tests correspond to
the condition Aa

p = Aa = Ab
p = Ab on Σ for identical dVCAp

and dVCA triplets, which would cancel the first interface term in
δHmix of Eq. (25), and set χ = 0 from Eq. (31), yielding δH = 0
in Eq. (21) and canceling the last term in Eq. (25). Similarly,
each time a ‘y’ is present in the dVCAp triplet in Table 1, the
DeVore-Coulomb gauge is imposed on one of the vector poten-
tials, and the corresponding term in δHp should vanish. We ver-
ified that this is indeed the case to high numerical precision, but
the numbers in Table 1 are computed always including all terms
in Eqs. (21 - 25). Therefore, they also account for small numer-
ical errors deriving, for example, from a nonperfect solenoidal
property of the vector potentials.

5.3. Dependence on the interface position

As a first application of the partition formula, Fig. 3 shows the
dependence of the different terms in Eq. (16) as a function of the
position of the interface. With reference to Table 1, the gauge
used for this application is the same as in test number 3, that is,
bcAp=bcA=[t,t,b] and dVCAp=dVCA=[n,n,n].

The top panel of Fig. 3 refers to a case where the interface
is a plane perpendicular to the z-axis. As the interface height
changes from z=0 to z=3, its intersection with the TD flux rope
rises from the legs, through the apex of the axis of the flux rope
at z = 1, until the interface is above the top of the flux rope. To
some extent, this numerical experiment is relevant to the study
of flux emergence, as it simulates, for decreasing z, the ideal-
ized kinematic emergence of a twisted flux tube into the coronal
volume,Vb.
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Fig. 3. Helicity partition, Eq. (16), for the TD volume split with an
interface plane perpendicular to the z-axis (top panel) and to the x-axis
(bottom panel) as a function of the interface position. Symbols are the
same as in Table 1; see also Sect. 5 for details.

As the height of the interface rises (top panel of Fig. 3), the
helicity H(B,Va) of the lower volume Va (orange curve) and
that H(B,Vb) of the upper volumeVb (red curve) evolve almost
perfectly anti-symmetrically: as Va includes more and more of
the flux rope, its helicity H(B,Va) increases, whereas H(B,Vb)
decreases by a comparable amount. When the interface plane
is placed at z = 0.3, the helicity is almost equally distributed
between the two subvolumes. The nonadditive term δH (violet
curve) is always small for all heights of the interface, with a
maximum of 6% of H(B,V) at z ≃ 1. The accuracy of Eq. (16)
is relatively unaffected by the interface position, and Hsum (blue

curve) overlaps H(B,V) (dashed black curve) for all positions
of the interface. On the grounds of this first experiment, one
would be tempted to say that the nonadditivity term δH tends
to be significantly smaller than the helicity of the component
subvolumes.

The bottom panel of Fig. 3 shows a similar experiment to
that of the top panel but with a vertical plane (perpendicular to
the x-axis) that shifts from one side to the other of the flux rope.
The change in the helicity of the subvolumes in this case is very
different, as it involves a significant variation of δH too. As the
interface position moves from x = −3 to x = 0, Va increases
at the expense of Vb. In this interval, H(B,Vb) (red curve) de-
creases by an amount that is equal to the increase in δH (violet
curve), whereas H(B,Va) (orange curve), which contains only
potential field, is zero, until x ≃ −0.3 where it starts rapidly
rising. The TD solution is line-symmetric with respect to the z-
axis, and therefore a symmetric evolution is present for x > 0
in the bottom panel of Fig. 3. Indeed, as the interface moves
through x = 0 towards x = 1, H(B,Va) contains more and more
of the flux rope and its helicity H(B,Va) increases, mostly at
the expense of δH. Symmetrically to the left part of the plot, as
soon as the interface moves out of the flux rope, approximately
at x = 0.3, H(B,Vb) is practically zero.

Contrary to the horizontal slicing case in the top panel of
Fig. 3, in the vertical slicing case in the bottom panel, δH is of
the same order as H(B,V) for a large interval of the slicing po-
sition, and is even several times larger than both H(B,Va) and
H(B,Vb) in the central interval: in this case, the nonadditivity
term δH is almost never negligible. Therefore, depending on the
way a volume is sliced, the relative importance of the nonad-
ditive term δH can vary significantly, and cannot in general be
neglected.

From the discussion in Sect. 2.3 we know that the nonaddi-
tivity is related to the difference between the reference fields in
the subvolumesVa andVb with respect to the reference field in
the full volume V. On the other hand, the position and orienta-
tion of the interface directly determines the boundary conditions
for the reference fields. Therefore, the magnitude of δH in the
two cases in Fig. 3 is possibly determined by the way in which
the boundary conditions for the subvolumes’ reference fields
change as a function of the interface position. However, to vali-
date such a speculation requires studying the different nongauge-
invariant contributions to δH in Eqs. (21 - 25) as a function of
the interface orientation and position, a task that we reserve for
future studies; see Sect. 6.3.

6. Conclusions

6.1. Results

The purpose of this work is to study the nonadditivity of the rel-
ative magnetic helicity in finite volumes, here formulated as a
partition problem between contiguous subvolumes. In particu-
lar:

– We derive in Sect. 2.4 the general equation for the partition
of relative magnetic helicity in a volume of finite size be-
tween two contiguous subvolumes separated by an interface;
Eqs. (21 - 25). The explicit assumption of finiteness of the
considered volume makes the partition equations directly ap-
plicable to numerical simulations. No assumption is made on
the shape of the interface or the (sub)volumes, as long as they
are simply connected. Therefore, Eqs. (21 - 25) can be easily
adapted to different geometries, such as for example spher-
ical wedges and the fully spherical case, taking due care in
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the required periodicity of vector potentials (i.e., barring any
mean field in the periodic direction (Berger 2003)).

– We show in the most general way that relative magnetic he-
licity is not an algebraically additive quantity, and that the
nonadditive term is gauge-invariant. This allows us to link
the nonadditivity to the very definition of helicity as relative
to a reference field; see Sect. 6.2.

We then further apply our general equations to specific
gauges used in previous studies and numerical computations, as
follows.

– In Sect. 3 we analyze the adaptation of the general partition
equations to commonly used gauges (Coulomb and DeVore-
Coulomb) and boundary conditions often used in the compu-
tation of the vector potentials.

– In Sect. 4 we relate our general approach to well-known ref-
erence approaches in the literature, such as those by Berger
& Field (1984) and Longcope & Malanushenko (2008),
which are obtained under more restrictive assumptions on
volumes and gauges. In particular, our approach generalizes
that of Longcope & Malanushenko (2008) in a few aspects,
since all assumptions about the adopted gauge and bound-
ary conditions are relaxed here. In the first place, we use the
definition of relative helicity (Eq. (2)) rather than a simple
difference of helicities (Eq. (28)). Second, the assumption
that subvolumes are bounded by coronal flux surfaces made
in Longcope & Malanushenko (2008) implies that the vol-
ume must be partitioned in a way that the flux is balanced
within the photospheric footprint of each subvolume sepa-
rately. While this might be a natural way of splitting a coro-
nal volume into a collection of photospherically anchored
flux tubes, this might be not an easy task in other types of
simulation where the logical split of volumes would not nec-
essarily be following flux surfaces.

– Finally, we implement and test the accuracy and gauge-
invariance of the partition equation using the family of De-
Vore gauges in Sect. 5, applied to the Titov & Démoulin
(1999) solution of the nonlinear force-free equations. These
preliminary tests, in addition to their verification purposes,
show that the nonadditive term is in general non-negligible,
and that it can be significantly larger than the relative helic-
ity of the component subvolumes in some cases. However,
these tests also show that the magnitude of the nonadditive
term depends on the way the volume is split. Therefore, ap-
plications of our general formalisms can be devised to inves-
tigate under which specific conditions the relative magnetic
helicity may become approximately additive (see Sect. 6.3).

6.2. Discussion

The fundamental reason for the nonadditivity of relative mag-
netic helicity lies in its very definition as relative to a refer-
ence field. The very same condition that is needed to ensure the
gauge-invariance of relative magnetic helicity (Eq. (3)) is also re-
sponsible for the interface discontinuities in the reference fields
that ultimately cause the nonadditivity. This is even more evi-
dent when the effect of the finiteness of the considered volume
must be considered, as in numerical simulations (see, e.g., Val-
ori et al. 2012). We stress that the nonadditive term δH cannot
be interpreted as simply the mutual or linking term between the
subvolumes, for the same reason that the Hmix term in the defi-
nition of the relative magnetic helicity (Eq. (2)) is not the linking
term between the input and reference field.

On the other hand, as mentioned in Sect. 1, there are sev-
eral examples of astrophysical plasmas where the conservation
of magnetic helicity is expected to be key to understanding the
complex processes at a fundamental level, such as the relation
between solar and stellar dynamos and the emergence of mag-
netic flux through the photosphere, the stability of coronal struc-
ture, or the relation between solar eruptions and interplanetary
CMEs. In most of these cases, either because of instrumental
or numerical limitations, the helicity budget involves volumes
that are neither unbounded nor bounded by flux surfaces, and
a general, finite-volume approach is unavoidable. The nonad-
ditivity of relative magnetic helicity in finite volumes that we
analyze in this work poses a serious threat to the applicability
of the conservation of relative magnetic helicity in such funda-
mental processes. At the very least, our work shows that, when
considering the partition of relative magnetic helicity in such ap-
plications, the relative magnitude of its nonadditive part must be
considered.

Therefore, on a general level, it would be desirable to have a
different definition of relative magnetic helicity that has additiv-
ity and gauge-invariance as core requirements, which, according
to the results in this work, is not possible in general. This imped-
iment does not depend on the type of reference field: as shown
in Sect. 2.3, any reference field would lead to the same nonad-
ditivity problem because of the boundary conditions that need to
be imposed on the interface in order to ensure gauge-invariance.

It is worth noting that the additivity problem can be solved
if one is prepared to relax the requirement of gauge invariance
and explicitly fix a gauge in the definition of helicity, as this
dispenses with the need for a reference field. The original mag-
netic helicity H (B,V) is then (trivially) additive between sub-
volumes, whatever the gauge of A. However, for this additivity
to be useful, one ought to be able to compute the helicity of each
subregion locally, whereas in general A must be computed glob-
ally (as, e.g., with the Coulomb gauge). Indeed, this problem can
be avoided if the interfaces between subdomains are planes or
spherical surfaces, because then one can determine a vector po-
tential from B purely by integration within these surfaces. This is
the approach of both Prior & Yeates (2014) and Berger & Hornig
(2018), who describe particular vector potentials for such con-
figurations. In Prior & Yeates (2014), the interfaces are parallel
planes, whereas Berger & Hornig (2018) allow for any spheri-
cal nested surfaces. In both cases, the corresponding H (B,V)
is additive between subvolumes and locally computable. More-
over, these authors show that their gauge choices give a particu-
lar physical interpretation to H (B,V), which is lacking for an
arbitrary choice of gauge.

6.3. Future applications

Case studies may reveal that the nonadditive term is, in fact, al-
most negligible in specific conditions. An example of such a
case is the kinematic emergence of a flux rope shown in Sect. 5
and top panel of Figure 3. On the other hand, the bottom panel of
the same figure shows that this is not true in general. The reason
for such a difference in the magnitude of the nonadditive term
is worthy of further investigation. In other words, there might
be specific arrangements of fields and interfaces for which δH
is indeed nonzero, but still small enough to result in a relative
helicity that is approximately additive.

A straightforward application of Eqs. (21 - 25) is to char-
acterise the time evolution of the partition of helicity between
sub- and super-photospheric volumes in flux emergence simu-
lations such as, for example Leake et al. (2013). Such a study
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can be extended to include dynamo simulations (see, e.g., Brun
& Browning 2017) and the relation to photospheric fluxes (see
e.g., Brandenburg et al. 2017). Similarly, the partition between
the helicity carried by an ejective instability and that remaining
confined at lower altitudes during solar eruptions can be stud-
ied using simulations such as Leake et al. (2014); Pariat et al.
(2015); Török et al. (2018).

On a more theoretical level, our formalism can be used to
study the relation between fluxes at the interface of the parti-
tioned volumes and their relation with helicity conservation (see,
e.g., Pariat et al. 2015). Similarly, the relative magnetic helic-
ity proxy recently introduced by Pariat et al. (2017) was found
to be a good marker of eruptivity potential in both numerical
simulations (Zuccarello et al. 2018) and observed active regions
(Moraitis et al. 2019; Thalmann et al. 2019). The eruptivity
proxy is expressed in terms of the helicity of the current-carrying
part of the field. Intriguingly, the same field appears when com-
bining Eq. (21) and the last term of Eq. (25).

These are only a few examples of applications of our general
approach to the partition of relative magnetic helicity. Such ap-
plications will help us to understand how the conservation of rel-
ative magnetic helicity can be used in practice in the interpreta-
tion of the evolution of complex physical processes in magneto-
hydrodynamics.
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Appendix A: Derivation of the nonadditive terms

To allow for cancelations between terms, we split contributions
from ∂Va (respectively, ∂Vb) into contributions from the inter-
face Σa (respectively, Σb) and contributions from the remaining
noninterface boundaries Σa (respectively, Σb); see Sect. 2.2.

Appendix A.1: Derivation of the δH term

Let us start from Eq. (18):

δH =

∫

V

A · B dV −
∫

Va
Aa · B dV −

∫

Vb
Ab · B dV . (A.1)

The solenoidal condition imposes that the normal component of
B is continuous across Σ (Berger & Field 1984). However, here
we make the more considerable assumption, reasonable in appli-
cations, that the vector potential A is continuous with its deriva-
tives at the interface such that the magnetic field B is continuous
there (i.e., A|Σ ∈ C1 and, hence, B|Σ ∈ C0, at least).

First, we note that
{

B = ∇ × A = ∇ × Aa ∀ x ∈ Va

B = ∇ × A = ∇ × Ab ∀ x ∈ Vb .
(A.2)

Since, e.g., both A and Aa produce the same field in Va, then
from Eq. (A.2) it follows that they can differ from A at most by
the gradient of a scalar function, i.e.,
{

A = Aa + ∇χa ∀ x ∈ Va

A = Ab + ∇χb ∀ x ∈ Vb .
(A.3)

Using the continuity of A and, hence of the RHSs of the above
equations, we can split the first integral in Eq. (A.1) into the sum
of the integrals onVa andVb to obtain

δH =

∫

Va
∇χa · B dV +

∫

Vb
∇χb · B dV , (A.4)

and, by means of Gauss theorem and the solenoidal condition for
B,

δH =

∫

∂Va
χa (B · dSa) +

∫

∂Vb
χb
(

B · dSb
)

. (A.5)
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We now split the surface integrals into interface and noninterface
contributions obtaining

δH =

∫

∂V

χab (B · dS) +
∫

Σa

(

χa − χb
)

B · dSa , (A.6)

where we introduced the notation of Eq. (10) for the gauge func-
tions χa and χb, and we used Eq. (9) in the first integral on the
RHS, and that n̂b = −n̂a on Σb in the second. We anticipate
that the first term on the RHS of Eq. (A.6) cancels with the ho-
mologous term from δHmix by virtue of Eq. (3), and is therefore
omitted from Eq. (21). Then, Eq. (A.6) implies Eq. (21) with
χ = χa − χb.

Appendix A.2: Derivation of the δHp term

The explicit form of Eq. (19) is

δHp =

∫

V

Ap ·Bp dV−
∫

Va
Aa

p ·B
a
p dV−

∫

Vb
Ab

p ·B
b
p dV . (A.7)

This cannot be computed as δH above because, in general, Ba
p

and Bb
p are different from Bp in the volume Va and Vb, respec-

tively. Below, we rather consider explicitly that the reference
fields are all potential in their respective domains and must sat-
isfy the gauge-invariance conditions Eq. (3), that is, they satisfy
{

Bp = ∇φ
n̂ · ∇φ|∂V = n̂ · B|∂V ,

(A.8)

for the reference field inV, and

{

Ba
p = ∇φ

a

n̂a · ∇φa|∂Va = n̂a · B|∂Va
and

{

Bb
p = ∇φ

b

n̂b · ∇φb|∂Vb = n̂b · B|∂Vb ,

(A.9)

for the reference fields inVa andVb, respectively.
Let us now use Eq. (A.8) and Eq. (A.9) and the Gauss theo-

rem in Eq. (19) to readily derive

δHp = δH
Coul

p + δH
S ur f

p , (A.10)

where

δH Coul
p = +

∫

Va
φa
(

∇ · Aa
p

)

dV +
∫

Vb
φb
(

∇ · Ab
p

)

dV

−

∫

V

φ
(

∇ · Ap

)

dV , (A.11)

δH
S ur f

p = −

∫

∂Va
φa
(

Aa
p · dSa

)

−

∫

∂Vb
φb
(

Ab
p · dSb

)

+

∫

∂V

φ
(

Ap · dS
)

. (A.12)

The surface term δH
S ur f

p can be further reorganized by spitting
it into interface and noninterface contributions to obtain

δH
S ur f

p =

∫

∂V

(

φAp − φ
abAab

p

)

· dS

−

∫

Σ

(

φaAa
p − φ

bAb
p

)

· dSa , (A.13)

where, in the last term, we have used that n̂a = −n̂b on Σ and the
notation of Eq. (10) for the scalar potentials φa and φb and the
vector potentials of the potential fields Aa

p and Ab
p.

Appendix A.3: Derivation of the δHmix term

δHmix, Equation (20), can be written in terms of solely surface
integrals using Eq. (6) as

δHmix =

∫

∂V

(

A × Ap

)

· dS −

∫

∂Va

(

Aa × Aa
p

)

· dSa

−

∫

∂Vb

(

Ab × Ab
p

)

· dSb . (A.14)

Using the continuity of A and Ap across Σ and the definitions
of Eqs. (7 - 9), we can split the first integral on ∂V into the
sum over ∂Va and ∂Vb by adding and subtracting the interface
contributions as
∫

∂V

=

∫

Σa
+

∫

Σb
=

∫

∂Va
+

∫

∂Vb
−

∫

Σa

−

∫

Σb

, (A.15)

and, using Eq. (A.3) to eliminate the vector potential A, we have
∫

∂V

(

A × Ap

)

· dS =

∫

∂Va

(

Aa × Ap

)

· dSa +

∫

∂Vb

(

Ab × Ap

)

· dSb

+

∫

∂Va

(

∇χa × Ap

)

· dSa +

∫

∂Vb

(

∇χb × Ap

)

· dSb

−

∫

Σa

((

Aa × Ap

)

−
(

Ab × Ap

))

· dSa

−

∫

Σa

((

∇χa − ∇χb
)

× Ap

)

· dSa . (A.16)

The identity

∇ ×
(

Ap χ
a
)

= χaBp + ∇χ
a × Ap , (A.17)

in ∂Va, and the analogous expression for Ap χ
b in ∂Vb, where

all vector fields satisfy the necessary continuity conditions, can
be now used to re-write the second line in the RHS of Eq. (A.16)
as
∫

∂Va
∇ ×
(

χaAp

)

· dSa +

∫

∂Vb
∇ ×
(

χbAp

)

· dSb

−

∫

∂Va
χa
(

Bp · dSa
)

−

∫

∂Vb
χb
(

Bp · dSb
)

, (A.18)

where the first two terms are identically zero because the curl
of any (sufficiently continuous) vector field is solenoidal, and
the flux through a closed surface of a solenoidal field vanishes.
Substituting back into Eq. (A.14),

δHmix =

∫

∂Va

(

Aa × Ap

)

· dSa +

∫

∂Vb

(

Ab × Ap

)

· dSb

−

∫

∂Va
χa
(

Bp · dSa
)

−

∫

∂Vb
χb
(

Bp · dSb
)

−

∫

Σa

((

Aa × Ap

)

−
(

Ab × Ap

))

· dSa

−

∫

Σa

((

∇χa − ∇χb
)

× Ap

)

· dSa

−

∫

∂Va

(

Aa × Aa
p

)

· dSa −

∫

∂Vb

(

Ab × Ab
p

)

· dSb . (A.19)
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Splitting into interface and noninterface contributions we get

δHmix =

∫

Σa

(

Aa ×
(

Ap − Aa
p

))

· dSa +

∫

Σb

(

Ab ×
(

Ap − Ab
p

))

· dSb

−

∫

Σa

(

Aa × Aa
p

)

· dSa −

∫

Σb

(

Ab × Ab
p

)

· dSb

−

∫

Σa

(

χa − χb
) (

Bp · dSa
)

−

∫

Σa

((

∇χa − ∇χb
)

× Ap

)

· dSa

−

∫

∂V

χab
(

Bp · dS
)

, (A.20)

where the continuity of Bp across Σ was used in the third line of
the RHS and the notation of Eq. (10) for the gauge functions χa

and χb in the last one. Using the notation in Eq. (10) also for
the vector potentials (Aa,Ab) and (Aa

p,A
b
p), and the definition of

Eq. (9), we can formally write

δHmix =

∫

∂V

(

Aab ×
(

Ap − Aab
p

))

· dS

−

∫

Σa

((

Aa × Aa
p

)

−
(

Ab × Ab
p

))

· dSa

−

∫

Σa

(

χa − χb
) (

Bp · dSa
)

+

∫

Σa

((

Aa − Ab
)

× Ap

)

· dSa

−

∫

∂V

χab
(

Bp · dS
)

. (A.21)

In the derivation of Eq. (A.21) from Eq. (A.20) we also used
Eq. (A.3), the definition χ = χa − χb, the relation

∇χ = ∇χa − ∇χb = −(Aa − Ab) , (A.22)

and the continuity of A across Σ. We note that, while χa and χb

are defined in the entire subvolumesVa andVb, respectively, the
gauge function χ and Eq. (A.22) are defined only on the interface
Σ and are a function of the interface variables only.

The last term on the RHS of Eq. (A.21) cancels with the ho-
mologous term in Eq. (A.6) by virtue of Eq. (3), and it is there-
fore omitted from Eq. (25).

Appendix B: Gauge-invariance of the additivity

formula

In this section, we prove the invariance of Eq. (17) with respect
to gauge transformations of the vector potentials . First note that
each of Eqs. (21 - 25) are invariant if we interchange a ↔ b,
since dSa = −dSb on Σ. Hence, it suffices to check gauge in-
variance under gauge changes of A, Ap Aa, and Aa

p. We consider
these gauge transformations in turn:

1. A → A + ∇ψ. We note that A does not explicitly appear
in any of the expressions of Eqs. (21 - 25). However, because
we are not changing Aa or Ab, transforming A→ A+∇ψ corre-
sponds to the change χa → (χa+ψ) and χb → (χb+ψ), as follows
from Eq. (A.3). Since nevertheless these potentials appear only
in the combination χb − χa then δH is invariant with respect to
the transformation.

2. Ap → Ap + ∇ψ. Equation (21) clearly shows that δH
is unchanged by this transformation. From Eq. (22) we have for

δHp that

δHp → δHp −

∫

V

φ∆ψ dV +
∫

∂V

φ∇ψ · dS . (B.1)

Using Gauss theorem twice and Eq. (A.8) we can write the first
integral as
∫

V

φ∆ψ dV =
∫

∂V

φ∇ψ ·dS−

∫

∂V

ψBp ·dS+

∫

V

ψ
(

∇ · Bp

)

dV ,

where the last term vanishes since Bp is solenoidal. Substituting
into Eq. (B.1) we have

δHp → δHp +

∫

∂V

ψBp · dS . (B.2)

Using Eq. (25) and Eqs. (7, 8), the gauge transformation of
δHmix is

δHmix → δHmix+

∫

∂Va
Aa×∇ψ ·dSa+

∫

∂Vb
Ab×∇ψ ·dSb , (B.3)

where the first integral can be written, using Eq. (A.2), as
∫

∂Va
Aa×∇ψ ·dSa =

∫

∂Va
∇×
(

ψAa) ·dSa−

∫

∂Va
ψB ·dSa , (B.4)

where the first integral on the RHS vanishes. A similar expres-
sion can be derived for the second integral in Eq. (B.4), and,
substituting back, we have

δHmix→ δHmix −

∫

∂Va
ψB · dSa −

∫

∂Vb
ψB · dSb

= δHmix −

∫

∂V

ψB · dS , (B.5)

where, in the second line, we have used again Eqs. (7, 8) to
separate the interface from the noninterface contributions, and
dSa = −dSb. Hence, considering Eq. (B.2), Eq. (B.5), and
Eq. (4) we have that overall δH is unchanged by this transfor-
mation.

3. Aa → Aa + ∇ψ. Since we are not changing A, it follows
from Eq. (A.3) that we must transform χa → (χa−ψ). Therefore,
from Equation (21), we have

δH → δH +

∫

Σ

ψB · dSa . (B.6)

Aa does not appear in Eq. (22), hence δHp is unchanged by this
transformation. On the other hand, using Eq. (7) we have that
Eq. (25) transforms as

δHmix → δHmix +

∫

∂Va
∇ψ ×

(

Ap − Aa
p

)

· dSa −

∫

Σ

ψBp · dSa ;

with analogous manipulation as in Eq. (B.4), the first integral
can be rearranged as
∫

∂Va
∇ψ ×

(

Ap − Aa
p

)

· dSa =

∫

∂Va
ψ
(

Bp − Ba
p

)

· dSa

=

∫

Σ

ψ
(

Bp − Ba
p

)

· dSa , (B.7)

where the noninterface contribution vanishes because n̂ · Bp and
n̂ · Ba

p are the same there by virtue of Eq. (4) and Eq. (11). It
follows that

δHmix→ δHmix +

∫

Σ

ψ
(

Bp − Ba
p

)

· dSa −

∫

Σ

ψBp · dSa

= δHmix −

∫

Σ

ψBa
p · dSa , (B.8)
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and therefore, considering Eqs. (B.6, B.8) and Eq. (11), we have
that overall δH is unchanged by this transformation.

4. Aa
p → Aa

p + ∇ψ. Also in this case δH is unchanged by
this transformation. From Eq. (22) we have for δHp that

δHp → δHp +

∫

Va
φa∆ψ dVa −

∫

∂Va
φa∇ψ · dSa , (B.9)

which is similar to Eq. (B.1) but written for (φa,Va) rather than
(φ,V), and with opposite signs of the integrals. With similar
transformations as in Eqs. (B.1 - B.2) we find

δHp → δHp −

∫

∂Va
ψBa

p · dSa . (B.10)

For δHmix, the gauge change implies the transformation

δHmix → δHmix −

∫

∂Va
Aa × ∇ψ · dSa , (B.11)

where Eq. (7) was used. Using Eq. (B.4) we have

δHmix→ δHmix +

∫

∂V

ψB · dSa

= δHmix +

∫

∂V

ψBa
p · dSa , (B.12)

where Eq. (11) was used to obtain the second line. Once again,
δH is unchanged overall.

This completes the proof.
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