Planet - Star Plasma Interactions

Philippe Zarka

LESIA, Observatoire de Paris/CNRS, Meudon
philippe.zarka@obspm.fr

References:

• Interest of LF radio observations of exoplanets

• Theoretical predictions
 - planetary radio emissions
 - energy sources
 - scaling laws
 - extrapolation to exoplanets

• Conclusion
• Interest of LF radio observations of exoplanets

• Theoretical predictions
 - planetary radio emissions
 - energy sources
 - scaling laws
 - extrapolation to exoplanets

• Conclusion
Obstacles to direct exoplanet detection

\Rightarrow contrast & proximity star/planet

\[\log_{10} N_{\lambda} \text{ photons m}^{-2} \text{s}^{-1} \]

\[\lambda, \mu m \]

\[\text{Sun} \]

\[\text{Earth} \]

\[\text{O}_2 \]

\[\text{H}_2\text{O} \]

\[\text{O}_3 \]

\[\text{CO}_2 \]

\[7 \times 10^6 \]

\[5 \times 10^9 \]

\[\sim 0.1 \text{ arcsec} \]
Atmospheric transparency

Gamma-rays, X-Rays and Ultraviolet Light blocked by the upper atmosphere (best observed from space).

Visible Light observable from Earth, with some atmospheric distortion.

Most of the Infrared spectrum absorbed by atmospheric gasses (best observed from space).

Radio Waves observable from Earth.

Long-wavelength Radio Waves blocked.
Interest of Radio observations

• A low frequencies, thermal spectrum in λ^{-2} (Rayleigh-Jeans)

• A very low frequencies, solar and planetary spectra \neq thermal

• «Plasma» processes \Rightarrow Contrast Sun/Jupiter ~ 1!
Limitations of Radio observations

- Limited angular resolution (λ/D)

- Very bright galactic background ($T_b \sim 10^{3-5}$ K)

- RFI (natural & anthropic origin)

- Ionospheric cutoff ~ 10 MHz,
 perturbations $\leq 30-50$ MHz,
 scintillations IP/IS
Sensitivity of observations

- **Galactic radio background**: $T \sim 1.15 \times 10^8 / \nu^{2.5} \sim 10^{3.5} \text{ K (10-100 MHz)}$

 \rightarrow statistical fluctuations \[\sigma = \frac{2kT}{A_e(b\tau)^{1/2}} \]

 $\rightarrow N = s / \sigma$ \quad with \quad $s = \zeta S_J / d^2$

 \[S_J \sim 10^{-18} \text{ Wm}^{-2}\text{Hz}^{-1} \quad (10^8 \text{ Jy}) \quad \text{à 1 UA} \]

- **Maximum distance for $N\sigma$ detection of a source ζ x Jupiter**:

 \[d_{\text{max}} = \left(\frac{\zeta S_J A}{2NkT} \right)^{1/2}(b\tau)^{1/4} \]

 $\Rightarrow d_{\text{max}} \text{ (pc) } = 5 \times 10^{-8} \left(A_e \zeta \right)^{1/2} f^{5/4} (b\tau)^{1/4} \]
⇒ $\zeta = 1$

<table>
<thead>
<tr>
<th></th>
<th>$b \tau = 10^6$</th>
<th>$b \tau = 2 \times 10^8$</th>
<th>$b \tau = 4 \times 10^{10}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1 MHz, 1 sec)</td>
<td>(3 MHz, 1 min)</td>
<td>(10 MHz, 1 hour)</td>
</tr>
<tr>
<td>$f = 10$ MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$f = 100$ MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$A_e = 10^4$ m²	0.003	0.05	0.01	0.2	0.04	0.7
$A_e = 10^5$ m²	0.01	0.2	0.03	0.6	0.1	2.2
$A_e = 10^6$ m²	0.03	0.5	0.1	2.	0.4	7.

(distances in parsecs)
• Interest of LF radio observations of exoplanets

• Theoretical predictions
 - planetary radio emissions
 - energy sources
 - scaling laws
 - extrapolation to exoplanets

• Conclusion
Solar Wind - Magnetosphere Interaction ...
Aurorae
Radio emissions
Properties of radio emissions

• $f \sim f_{ce}$, $\Delta f \sim f$

• $T_B > 10^{15}$ K

• circular/elliptical polarization (X mode)

• very anisotropic beaming (conical, $\Omega \ll 4\pi$ sr)

• variability /t (bursts, rotation, solar wind...)

• correlation radio / UV

• radiated power: 10^6-10^{11} W
Generation of radio emissions

• **Coherent cyclotron emission**: 2 conditions within sources:
 - low β magnetized plasma ($f_{pe} \ll f_{ce}$)
 - energetic electrons (keV) with non-Maxwellian distribution

\rightarrow high magnetic latitudes
\rightarrow direct emission at $f \sim f_x \approx f_{ce}$

• **Acceleration of electrons**:
 - interactions $B/\text{satellites} \rightarrow E_{\parallel}$
 - MS compressions
 - magnetic reconnections
Strong correlation between Solar Wind (P, V...) and auroral radio emissions
• Interest of LF radio observations of exoplanets

• Theoretical predictions
 - planetary radio emissions
 - energy sources
 - scaling laws
 - extrapolation to exoplanets

• Conclusion
Solar Wind - Magnetosphere Interaction

- Kinetic energy flux on MS cross-section:
 \[P_C \sim N \pi V^2 \pi R_{MP}^2 \]
 \[N = N_0/d^2 \quad N_0 = 5 \text{ cm}^{-3} \text{ m} \sim 1.1 \times m_p \]

- Poynting flux of IMF on MS cross-section:
 \[P_B = \int_{MP} (E \times B/\mu_o).dS \]
 \[E = -V \times B \rightarrow E \times B = VB_{\perp}^2 \rightarrow P_B = B_{\perp}^2/\mu_o V \pi R_{MP}^2 \]

Magnetopause radius \(R_{MP} \) from pressure equilibrium:
\[V \sim c^t e \]
\[N \sim d^{-2} \quad \text{(mass conservation)} \]
\[B_R \sim d^{-2} \quad \text{(magnetic flux conservation)} \]
\[B_\phi \sim d^{-1} \quad (B_R/B_\phi = V/\Omega d) \rightarrow B \sim d^{-1} \]
(behind Jupiter orbit, \(B \sim b_\phi \))

\[\rightarrow B^2 \text{ varies as } NV^2 \text{ thus } P_C \text{ varies as } P_B \]

\[\rightarrow P_C/P_B \sim 170 \text{ beyond } 1 \text{ UA} \]
<table>
<thead>
<tr>
<th>Obstacle</th>
<th>Flow</th>
<th>Weakly/Not magnetized (Solar wind)</th>
<th>Strongly magnetized (Jovian magnetosphere)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weakly/Not magnetized (Venus, Mars, Io)</td>
<td>No Intense Cyclotron Radio Emission</td>
<td>Unipolar interaction \rightarrow Io-induced Radio Emission,</td>
<td></td>
</tr>
<tr>
<td>Strongly magnetized (Earth, Jupiter, Saturn, Uranus, Neptune, Ganymede)</td>
<td>Magnetospheric Interaction \rightarrow Auroral Radio Emissions : E, J, S, U, N,</td>
<td>Dipolar interaction \rightarrow Ganymede-induced Radio Emission</td>
<td></td>
</tr>
</tbody>
</table>
Satellite - $B_{Jupiter}$ interaction
<table>
<thead>
<tr>
<th>Obstacle</th>
<th>Flow</th>
<th>Weakly/Not magnetized</th>
<th>Strongly magnetized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(Solar wind)</td>
<td>(Jovian magnetosphere)</td>
</tr>
<tr>
<td>Weakly/Not magnetized</td>
<td>No Intense Cyclotron Radio Emission</td>
<td>Unipolar interaction \rightarrow Io-induced Radio Emission,</td>
<td></td>
</tr>
<tr>
<td>(Venus, Mars, Io)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strongly magnetized</td>
<td>Magnetospheric Interaction \rightarrow Auroral Radio Emissions : E, J, S, U, N,</td>
<td>Dipolar interaction \rightarrow Ganymede-induced Radio Emission</td>
<td></td>
</tr>
</tbody>
</table>
Dipolar interaction

- Magnetic reconnection
 (e.g. Ganymede-Jupiter)

\[P_d = \varepsilon K V B_\perp^2/\mu_0 \pi R_{MP}^2 \]

Efficiency \(\varepsilon \sim 0.1-0.2 \)

\(K= \sin^4(\theta/2) \) ou \(\cos^4(\theta/2) \) 0 or 1

\[\rightarrow P_d = \varepsilon P_B \]
<table>
<thead>
<tr>
<th>Obstacle</th>
<th>Flow</th>
<th>Weakly/Not magnetized (Solar wind)</th>
<th>Strongly magnetized (Jovian magnetosphere)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weakly/Not magnetized (Venus, Mars, Io)</td>
<td>No Intense Cyclotron Radio Emission</td>
<td>Unipolar interaction → Io-induced Radio Emission,</td>
<td></td>
</tr>
</tbody>
</table>
Unipolar interaction

- Interaction via Alfvén waves & currents
 (e.g. Io-Jupiter)

\[\phi = E \times 2R_{\text{obs}} = V \times B_\perp \times 2R_{\text{obs}} \]

\[P_d = \varepsilon' \frac{V B_\perp^2}{\mu_0 \pi R_{\text{obs}}^2} \]

\[\varepsilon' = (1+M_A^{-2})^{-1/2} \quad M_A \leq \varepsilon' \leq 1 \]

\[\rightarrow P_d = \varepsilon' P_B \]
<table>
<thead>
<tr>
<th>Obstacle</th>
<th>Flow</th>
<th>Weakly/Not magnetized (Solar wind)</th>
<th>Strongly magnetized (Jovian magnetosphere)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weakly/Not magnetized</td>
<td></td>
<td>No Intense Cyclotron Radio Emission</td>
<td>Unipolar interaction \rightarrow Io-induced Radio Emission,</td>
</tr>
<tr>
<td>($Venus$, $Mars$, Io)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strongly magnetized</td>
<td></td>
<td></td>
<td>Dipolar interaction \rightarrow Ganymede-induced Radio Emission</td>
</tr>
<tr>
<td>($Earth$, $Jupiter$, $Saturn$, $Uranus$, $Neptune$, $Ganymede$)</td>
<td>Magnetospheric Interaction \rightarrow Auroral Radio Emissions : E, J, S, U, N,</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Interest of LF radio observations of exoplanets

• Theoretical predictions
 - planetary radio emissions
 - energy sources
 - scaling laws
 - extrapolation to exoplanets

• Conclusion
Radio-kinetic Bode’s law » (auroral emissions)

\[P_{\text{Radio}} \sim \eta_1 \times P_C \quad \text{with} \quad \eta_1 \sim 10^{-5} \]

[Desch and Kaiser, 1984 ; Zarka, 1992]
« Radio-magnetic Bode's law » (auroral emissions)

\[P_{\text{Radio}} \sim \eta_2 \times P_B \quad \text{with} \quad \eta_2 \sim 2 \times 10^{-3} \]
« Generalized radio-magnetic Bode’s law » (all emissions)

\[P_{\text{Radio}} \sim \eta \times P_B \quad \text{with} \quad \eta \sim 2-10 \times 10^{-3} \]
• Interest of LF radio observations of exoplanets

• Theoretical predictions
 - planetary radio emissions
 - energy sources
 - scaling laws
 - extrapolation to exoplanets

• Conclusion
~250 exoplanets (in ~200 systems) 16% with $a \leq 0.05$ UA (10 Rs)

24% with $a \leq 0.1$ UA

→ ~40 « hot Jupiters » with periastron @ ~5-10 R_S

Magnetic field at Solar surface:

→ large-scale ~ 1 G (10^{-4} T)

→ magnetic loops $\sim 10^3$ G,

over a few % of the surface

Magnetic stars: $> 10^3$ G
Modelling of a hot Jupiter (magnetized) orbiting a Solar type star

- Electron density in Solar corona

![Graph showing electron density in Solar corona](image)
• Solar wind speed in the planet's frame
- Interplanetary magnetic field
- Dissipated power per unit area of the obstacle
- Magnetospheric compression
• Total dissipated power on obstacle
• Extrapolation / Radio-kinetic Bode’s law \[P_{\text{Radio}} = P_{\text{Radio-J}} \times 10^3 \] [Farrell et al., 1999, 2004]

• Extrapolation / Radio-magnetic Bode’s law \[P_{\text{Radio}} = P_{\text{Radio-J}} \times 10^5 \] [Zarka et al., 2001, 2005]

except if there is a « saturation » mechanism
Planetary magnetic field decay?

- Radio detection $\rightarrow f > 10$ MHz $\rightarrow B_{\text{max-surface}} \geq 4$ G

- Jupiter: $m = 4.2 \ G R_J^3$, $B_{\text{max-dipole}} = 8.4$ G, $B_{\text{max-surface}} = 14$ G, $f_{\text{max}} = 40$ MHz

- Spin-orbit synchronisation (tidal forces) $\rightarrow \omega \downarrow$

- But $m \propto P_{\text{sid}} \alpha \ -1 \leq \alpha \leq -\frac{1}{2} \rightarrow m \downarrow$ (B decay)?

<table>
<thead>
<tr>
<th>Upper Limit of Magnetic Fields in Hot Jupiters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planet</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>HD 179949ba</td>
</tr>
<tr>
<td>HD 209458b</td>
</tr>
<tr>
<td>τ Boo ba</td>
</tr>
<tr>
<td>OGLE-TR-56b</td>
</tr>
</tbody>
</table>

- Internal structure + convection models

 \rightarrow self-sustained dynamo $\rightarrow m$ could remain \geq a few $G R_J^3$

[Sanchez-Lavega, 2004]
• Unipolar inductor in sub-Alfvénic regime
 (as for Io-Jupiter)
But radio emission possible only if $\frac{f_{pe}}{f_{ce}} \ll 1$

\Rightarrow intense stellar B required ($\kappa = 10-100 \times B_{\text{Sun}}$)

\Rightarrow emission $\geq 30-250$ MHz from 1-2 R_S
Extrapolation / Radio-magnetic Bode's law

\[P_{\text{Radio}} = P_J \times 10^5 \times \left(\frac{R_{\text{exo-ionosphere}}}{R_{\text{magnetosphere}}}\right)^2 \times \left(\frac{B_{\text{star}}}{B_{\text{Sun}}}\right)^2 \]

\[= P_{\text{Radio-J}} \times 10^6 \]
\[\Rightarrow \zeta = 10^5 \]

<table>
<thead>
<tr>
<th>(A_e = 10^4 \text{ m}^2) ((\sim \text{NDA}))</th>
<th>(b \tau = 10^6) (1 MHz, 1 sec)</th>
<th>(b \tau = 2 \times 10^8) (3 MHz, 1 min)</th>
<th>(b \tau = 4 \times 10^{10}) (10 MHz, 1 hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f = 10 \text{ MH}z)</td>
<td>1</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>(f = 100 \text{ MH}z)</td>
<td>16</td>
<td>59</td>
<td>220</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(A_e = 10^5 \text{ m}^2) ((\sim \text{UTR-2}))</th>
<th>(b \tau = 10^6) (1 MHz, 1 sec)</th>
<th>(b \tau = 2 \times 10^8) (3 MHz, 1 min)</th>
<th>(b \tau = 4 \times 10^{10}) (10 MHz, 1 hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f = 10 \text{ MH}z)</td>
<td>3</td>
<td>11</td>
<td>40</td>
</tr>
<tr>
<td>(f = 100 \text{ MH}z)</td>
<td>50</td>
<td>190</td>
<td>710</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(A_e = 10^6 \text{ m}^2) ((\sim \text{LOFAR77}))</th>
<th>(b \tau = 10^6) (1 MHz, 1 sec)</th>
<th>(b \tau = 2 \times 10^8) (3 MHz, 1 min)</th>
<th>(b \tau = 4 \times 10^{10}) (10 MHz, 1 hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f = 10 \text{ MH}z)</td>
<td>9</td>
<td>33</td>
<td>130</td>
</tr>
<tr>
<td>(f = 100 \text{ MH}z)</td>
<td>160</td>
<td>600</td>
<td>2200</td>
</tr>
</tbody>
</table>

(distances in parsecs)
Other published studies ...

- Possibilities for radio scintillations ⇒ burts $P_{\text{radio}} \times 10^2$
 [Farrell et al., 1999]

- Estimates of exoplanetary m (scaling laws - large planets better) $\rightarrow f_{ce}$ & radio flux
 [Farrell et al., 1999; Griessmeier et al., 2004]

- F_x as wind strength estimator
 [Cuntz et al., 2000; Saar et al., 2004, Stevens, 2005]

- Stellar wind modelling (spectral type spectral, activity, stellar rotation)
 [Preusse et al., 2005]

- Time evolution of stellar wind and planetary radius (young systems better)
 [Griessmeier et al., 2004; Stevens, 2005]

- Role of (frequent) Coronal Mass Ejections
 [Khodachenko et al., 2006]

- Application of unipolar inductor model to white dwarfs systems
 [Willes and Wu, 2004, 2005]
• Predictions for the whole exoplanet census
 ➡ radio-kinetic extrapolation

 [Lazio et al., 2004]

 ➡ radio-magnetic + CME extrapolations

 [Griessmeier, Zarka, Spreeuw, 2007]
• Interest of LF radio observations of exoplanets

• Theoretical predictions
 - planetary radio emissions
 - energy sources
 - scaling laws
 - extrapolation to exoplanets

• Conclusion
• The Radio Search for Extrasolar Planets is worth pursuing!

• Objectives

 → Direct detection (planet-star distinction via polarization & periodicity)
 → Planetary rotation period
 → Measurement of $B \Rightarrow$ constraints on scaling laws & internal structure models
 → Comparative magnetospheric physics (star-planet interactions)
 → Discovery tool (eventually) ?

• Ongoing observations at UTR-2, GMRT, VLA

• Future observations with : LOFAR, ALMA, SKA ... and from the Moon ?