

Haute résolution angulaire Inteférométrie optique

Master 2 A&A : instruments et méthodes d'observations

3 novembre 2021

Raphaël Galicher raphael.galicher @ obspm.fr

Plan

Interférences lumineuses

Conditions

LESIA

Observatoire

Cohérence spatiale

Cohérence temporelle

Interférométrie optique en astronomie

Intérêt

Multi-télescopes avec recombinaison co-axiale

Multi-télescopes avec recombinaison multi-axiale

Interférométrie et turbulence

Impact de la turbulence

Méthodes passives et méthodes actives

Filtrage spatial avec fibre monomode (D~r₀)

Interférométrie de speckles (D>r₀)

Exemples d'interféromètres optiques

Synthèse d'ouverture

Interférences lumineuses : conditions nécessaires

Source naturelle

Émission d'ondes lumineuses par atomes est aléatoire et non corrélée en

- fréquence (largeur de raie)
- phase (émission spontanée)
- polarisation
- => Une paquet d'onde n'interfère qu'avec lui-même !

Interféromètre crée deux sources fictives secondaires cohérentes à partir d'une source primaire (l'objet observé)

Condition supplémentaire 1 : si source primaire étendue, la visibilité des franges peut être faible => cohérence spatiale

Condition supplémentaire 2 : si source primaire spectralement large, visibilité des franges peut être faible => cohérence temporelle

Plan

Interférences lumineuses

Conditions

LESIA

Observatoire

Cohérence spatiale

Cohérence temporelle

Interférométrie optique en astronomie

Intérêt

Multi-télescopes avec recombinaison co-axiale

Multi-télescopes avec recombinaison multi-axiale

Interférométrie et turbulence

Impact de la turbulence

Méthodes passives et méthodes actives

Filtrage spatial avec fibre monomode (D~r₀)

Interférométrie de speckles (D>r₀)

Exemples d'interféromètres optiques

Synthèse d'ouverture

1 source ponctuelle à l'infini hors axe inclinée de α 2 trous petits devant leur séparation *B* (diffraction négligée ici)

Champs incidents sur les trous :

Observatoire

LESIA

 $E(M_{1}) = E_{0} \exp(i\vec{k}.\vec{r_{1}} - \omega t) \qquad E(M_{2}) = E_{0} \exp(i\vec{k}.\vec{r_{2}} - \omega t) \qquad \vec{r_{2}} = \vec{r_{1}} + \vec{B}$

•)

1 source ponctuelle à l'infini hors axe inclinée de α 2 trous petits devant leur séparation *B* (diffraction négligée ici)

Champs incidents sur les trous : $E(M_1) = E_0 \exp(i\vec{k}.\vec{r_1} - \omega t) \qquad E(M_2) = E_0 \exp(i\vec{k}.\vec{r_2} - \omega t) \qquad \vec{r_2} = \vec{r_1} + \vec{B}$

Champs en M sur l'écran :

Observatoire

LESIA

$$E(M) = E(M_{1}) \underbrace{\frac{\exp(i\vec{k} \cdot (\vec{r} - \vec{r_{1}}))}{|\vec{r} - \vec{r_{1}}|}}_{E_{1}} + \underbrace{E(M_{2}) \frac{\exp(i\vec{k} \cdot (\vec{r} - \vec{r_{2}}))}{|\vec{r} - \vec{r_{2}}|}}_{E_{2}}$$

Intensh

Trous d'Young et source ponctuelle hors axe

Х M_{\cdot} •) В

1 source ponctuelle à l'infini hors axe inclinée de α 2 trous petits devant leur séparation *B* (diffraction négligée ici)

Champs incidents sur les trous : $E(M_{1}) = E_{0} \exp(i\vec{k}.\vec{r_{1}} - \omega t) \qquad E(M_{2}) = E_{0} \exp(i\vec{k}.\vec{r_{2}} - \omega t) \qquad \vec{r_{2}} = \vec{r_{1}} + \vec{B}$

Champs en M sur l'écran :

Observatoire

LESIA

$$E(M) = E(M_1) \underbrace{\frac{\exp(i\vec{k} \cdot (\vec{r} - \vec{r_1}))}{|\vec{r} - \vec{r_1}|}}_{E_1} + \underbrace{E(M_2) \underbrace{\frac{\exp(i\vec{k} \cdot (\vec{r} - \vec{r_2}))}{|\vec{r} - \vec{r_2}|}}_{E_2}$$
$$I(M) = \langle \Re(E_1)^2 \rangle + \langle \Re(E_2)^2 \rangle + 2\Re(\langle E_1 E_2^* \rangle)$$

4 novembre 2021

8

Trous d'Young et source ponctuelle hors axe

1 source ponctuelle à l'infini hors axe inclinée de α 2 trous petits devant leur séparation *B* •) (diffraction négligée ici)

Champs incidents sur les trous : $E(M_1) = E_0 \exp(i\vec{k}.\vec{r_1} - \omega t)$

Champs en M sur l'écran :

Observatoire

LESIA

$$E(M) = E(M_{1}) \underbrace{\frac{\exp(i\vec{k} \cdot (\vec{r} - \vec{r_{1}}))}{|\vec{r} - \vec{r_{1}}|}}_{E_{1}} + E(M_{2}) \underbrace{\frac{\exp(i\vec{k} \cdot (\vec{r} - \vec{r_{2}}))}{|\vec{r} - \vec{r_{2}}|}}_{E_{2}}$$

$$I(M) = \langle \Re(E_{1})^{2} \rangle + \langle \Re(E_{2})^{2} \rangle + 2 \Re(\langle E_{1}E_{2}^{*} \rangle)$$

$$I(x, \vec{B}) \approx 2I_{0} 1 + \Re\left[\exp\left(i\frac{2\pi}{\lambda}\vec{\alpha} \cdot \vec{B}\right)\exp\left(i\frac{2\pi}{\lambda}\frac{xB}{z}\right)\right] \rangle$$

$$I_{0} = \langle \Re(E_{1})^{2} \rangle = \langle \Re(E_{2})^{2} \rangle$$
Intensite totale
reçue de la source
4 novembre 2021
Raphaël Galicher

1 source étendue à l'infini = superposition de sources ponctuelles

Incohérence des sources => superposition des intensités

$$I(x, \vec{B}) \simeq \int_{source} 2I_0^{source}(\vec{\alpha}) \left(1 + \Re\left(\exp\left(i\frac{2\pi}{\lambda}\vec{\alpha} \cdot \vec{B}\right) \exp\left(i\frac{2\pi}{\lambda}\frac{xB}{z}\right) \right) \right) d^2\vec{\alpha}$$

1 source étendue à l'infini = superposition de sources ponctuelles

 μ_{12} Incohérence des sources => superposition des intensités $I(x, \vec{B}) \simeq \int_{source} 2I_0^{source}(\vec{\alpha}) \left| 1 + \Re \left(\exp \left(i \frac{2\pi}{\lambda} \vec{\alpha} \cdot \vec{B} \right) \exp \left(i \frac{2\pi}{\lambda} \frac{xB}{z} \right) \right) \right| d^2 \vec{\alpha}$ Difference de marche pour une source sur axe $(unite \lambda)$ $I(x, \vec{B}) \simeq \left(\int_{source} 2I_0^{source}(\vec{\alpha}) d^2 \vec{\alpha}\right) \left(1 + \Re \left(\mu_{12}(\vec{B}) \exp \left(i\frac{2\pi}{\lambda}\frac{xB}{z}\right)\right)\right)$ Modulation spatiale (=franges) $\mu_{12}(\vec{B}) = \frac{\int_{source} I_0^{source}(\vec{\alpha}) \exp\left(i\frac{2\pi}{\lambda}\vec{\alpha}.\vec{B}\right) d^2\vec{\alpha}}{\int_{source} I_0^{source}(\vec{\alpha}) d^2\vec{\alpha}}$ Intensité totale reçue de la source par les trous Visibilité complexe des franges dépend de la source !

1 source étendue à l'infini = superposition de sources ponctuelles

 μ_{12} Incohérence des sources => superposition des intensités $I(x, \vec{B}) \simeq \int_{source} 2I_0^{source}(\vec{\alpha}) \left| 1 + \Re \left(\exp \left(i \frac{2\pi}{\lambda} \vec{\alpha} \cdot \vec{B} \right) \exp \left(i \frac{2\pi}{\lambda} \frac{xB}{z} \right) \right) \right| d^2 \vec{\alpha}$ Difference de marche pour une source sur axe $(unite \lambda)$ $I(x, \vec{B}) \simeq \left(\int_{source} 2I_0^{source}(\vec{\alpha}) d^2 \vec{\alpha}\right) 1 + \Re \left(\mu_{12}(\vec{B}) \exp\left(i\frac{2\pi}{\lambda}\frac{xB}{z}\right)\right)$ Modulation spatiale (=franges) $\mu_{12}(\vec{B}) = \frac{\int_{\text{source}} I_0^{\text{source}}(\vec{\alpha}) \exp\left(i\frac{2\pi}{\lambda}\vec{\alpha}.\vec{B}\right) d^2\vec{\alpha}}{\int_{\text{source}} I_0^{\text{source}}(\vec{\alpha}) d^2\vec{\alpha}}$ Transformée de Fourier normalisée Intensité totale reçue de la distribution spatiale de la source par les trous d'intensité de la source (Théorème Zernike – Van Cittert) Visibilité complexe des franges dépend de la source !

Interféromètre stellaire de Michelson

1/ Sélection de deux parties de la surface d'onde provenant d'une source

2/ Recombinaison en configuration Fizeau (trous d'Young)

1ère mesure diamètre Bételgeuse en 1920

4 novembre 2021

Interféromètre stellaire de Michelson et source étendue

Observation d'un objet étendu $O(\vec{\alpha}) = 2I_0^{source}(\vec{\alpha})$ Spectre spatial de l'objet : $\widetilde{O}(\vec{f}) = \underbrace{TF[O](\vec{f})}_{O} = |\widetilde{O}(\vec{f})| \exp(i\Phi_{\widetilde{O}}(\vec{f}))$

$$\mu_{12}(\vec{B}) = \frac{\widetilde{O}(\vec{B}/\lambda)}{\widetilde{O}(\vec{0})}$$

Observatoire LESIA

Transformée de Fourier de *O* calculée en \vec{f}

Modulation spatiale (=franges)

Intensité dans la direction $\vec{\eta}$ sur l'écran $I(\vec{\eta}, \vec{B}) = \widetilde{O}(\vec{0}) + \left| \widetilde{O}\left(\frac{\vec{B}}{\lambda}\right) \right| \cos\left(\frac{2\pi}{\lambda}\vec{\eta}, \vec{B} + \Phi_{\widetilde{O}}\left(\frac{\vec{B}}{\lambda}\right) \right|$ Hypothèse $D_{tel} \to +\infty$

Interféromètre stellaire de Michelson et source étendue

Observation d'un objet étendu $O(\vec{\alpha}) = 2I_0^{source}(\vec{\alpha})$ Spectre spatial de l'objet : $\widetilde{O}(\vec{f}) = \underbrace{TF[O](\vec{f})}_{O} = |\widetilde{O}(\vec{f})| \exp(i\Phi_{\widetilde{O}}(\vec{f}))$

 $\mu_{12}(\vec{B}) = \frac{\widetilde{O}(\vec{B}/\lambda)}{\widetilde{O}(\vec{0})}$

Observatoire LESIA

Transformée de Fourier de *O* calculée en \vec{f}

Modulation spatiale (=franges)

Intensité dans la direction $\vec{\eta}$ sur l'écran Hypothèse $D_{tel} \to +\infty$ $I(\vec{\eta}, \vec{B}) = \widetilde{O}(\vec{0}) + \widetilde{O}\left(\frac{\vec{B}}{\lambda}\right) \cos\left(\frac{2\pi}{\lambda}\vec{\eta}.\vec{B} + \Phi_{\widetilde{O}}\left(\frac{\vec{B}}{\lambda}\right)\right)$

1) **Visibilité des franges** donne le module du spectre spatial de l'objet à la fréquence $\frac{\vec{B}}{2}$

$$V(\vec{B}) = \frac{\left|\widetilde{O}(\vec{B}/\lambda)\right|}{\left|\widetilde{O}(\vec{0})\right|}$$

Visibilité s'annule quand $|\vec{B}|$ de l'ordre de la largeur de cohérence spatiale $\frac{\lambda}{\alpha_0}$ = largeur angulaire de l'objet 2) **Position des franges** donne la phase $\Phi_{\widetilde{O}}\left(\frac{\vec{B}}{\lambda}\right)$ du spectre de l'objet

4 novembre 2021

Utilisation en astronomie

$$I(\vec{\eta}, \vec{B}) = \widetilde{O}(\vec{0}) + \left| \widetilde{O}\left(\frac{\vec{B}}{\lambda}\right) \right| \cos\left(\frac{2\pi}{\lambda}\vec{\eta} \cdot \vec{B} + \Phi_{\widetilde{O}}\left(\frac{\vec{B}}{\lambda}\right) \right)$$

1/ On mesure I pour plusieurs directions d'observations $\vec{\eta}$ et/ou plusieurs bases \vec{B} 2/ On ajuste un modèle d'objet aux données

Exemple : pour une étoile de diamètre angulaire fini α_0 , V s'annule en $B=1,22\frac{\lambda}{\alpha_0}$

Observatoire LESIA

Diamètre de Bételgeuse : mesure de Michelson

Chant, C, 1921, The Journal of the Royal Astronomical Society of Canada « When [the mirrors] about 8-feet apart the fringes showed sings of change and when 10feet apart they vanished. That is, the distance D was 10 feet or say 3000mm. The wavelength of the light was taken to be 0,000555mm. »

« The parallax of Betelgeuse is approximately 0".018. »

Quel est l'ordre de grandeur du diamètre angulaire de Bételgeuse et de son diamètre ?

Observatoire - LESIA

Diamètre de Bételgeuse : mesure de Michelson

Chant, C, 1921, The Journal of the Royal Astronomical Society of Canada « When [the mirrors] about 8-feet apart the fringes showed sings of change and when 10feet apart they vanished. That is, the distance D was 10 feet or say 3000mm. The wavelength of the light was taken to be 0,000555mm. »

« The parallax of Betelgeuse is approximately 0".018. »

Quel est l'ordre de grandeur du diamètre angulaire de Bételgeuse et de son diamètre ?

$$\alpha_0 = 1,22 \frac{\lambda}{B} = 4,66.10^{-2}$$
, $D_0 = 1,22 \frac{\lambda}{Bp} = 2,59 ua = 388 10^6 km$

Plan

Interférences lumineuses

Conditions

LESIA

Observatoire

- Cohérence spatiale
- Cohérence temporelle
- Interférométrie optique en astronomie
 - Intérêt
 - Multi-télescopes avec recombinaison co-axiale
 - Multi-télescopes avec recombinaison multi-axiale
- Interférométrie et turbulence
 - Impact de la turbulence
 - Méthodes passives et méthodes actives
 - Filtrage spatial avec fibre monomode (D~r₀)
 - Interférométrie de speckles (D>r₀)
 - Exemples d'interféromètres optiques
- Synthèse d'ouverture

1 source ponctuelle à l'infini sur axe optique Interférences à deux ondes avec une différence de marche δ

Monochromatique : $I(\delta, \lambda) \simeq 2 I_0^{source}(\lambda) + \Re \left(2 I_0^{source}(\lambda) \exp \left(i \frac{2\pi \delta}{\lambda} \right) \right)$

1 source ponctuelle à l'infini sur axe optique Interférences à deux ondes avec une différence de marche δ

Monochromatique : $I(\delta, \lambda) \simeq 2 I_0^{source}(\lambda) + \Re \left(2 I_0^{source}(\lambda) \exp \left(i \frac{2\pi \delta}{\lambda} \right) \right)$

Polychromatique :
$$I(\delta) \simeq \int_{\Delta\lambda} 2I_0^{source}(\lambda) + \Re\left(2I_0^{source}(\lambda)\exp\left(i\frac{2\pi\delta}{\lambda}\right)\right) d\lambda$$

Observatoire

LESIA

1 source ponctuelle à l'infini sur axe optique
Interférences à deux ondes avec une différence de marche
$$\delta$$

Monochromatique : $I(\delta, \lambda) \simeq 2 I_0^{source}(\lambda) + \Re \left(2 I_0^{source}(\lambda) \exp \left(i \frac{2\pi \delta}{\lambda} \right) \right)$
Polychromatique : $I(\delta) \simeq \int_{\Delta \lambda} 2 I_0^{source}(\lambda) + \Re \left(2 I_0^{source}(\lambda) \exp \left(i \frac{2\pi \delta}{\lambda} \right) \right) d\lambda$
avec $\sigma = 1/\lambda$ $I(\delta) \simeq \int_{\Delta \sigma} 2 I_0^{source}(\sigma) + \Re \left(2 I_0^{source}(\sigma) \exp \left(i 2\pi \sigma \delta \right) \right) d\sigma$

Observatoire

LESIA

1 source ponctuelle à l'infini sur axe optique
Interférences à deux ondes avec une différence de marche
$$\delta$$

Monochromatique : $I(\delta, \lambda) \simeq 2 I_0^{source}(\lambda) + \Re \left(2 I_0^{source}(\lambda) \exp \left(i \frac{2\pi \delta}{\lambda} \right) \right)$
Polychromatique : $I(\delta) \simeq \int_{\Delta \lambda} 2 I_0^{source}(\lambda) + \Re \left(2 I_0^{source}(\lambda) \exp \left(i \frac{2\pi \delta}{\lambda} \right) \right) d\lambda$
avec $\sigma = 1/\lambda$ $I(\delta) \simeq \int_{\Delta \sigma} 2 I_0^{source}(\sigma) + \Re \left(2 I_0^{source}(\sigma) \exp \left(i 2\pi \sigma \delta \right) \right) d\sigma$

$$I(\delta) \simeq 2 \Big(\int_{\Delta\sigma} I_0^{\text{source}}(\sigma) d\sigma \Big) \Big[1 + |\gamma_{12}(\delta)| \cos \big(\Phi_{\gamma_{12}}(\delta) \big) \Big]$$

$$\gamma_{12}(\delta) = \frac{\int_{\Delta\sigma} I_0^{source}(\sigma) \exp(i2\pi\sigma\delta) d\sigma}{\int_{\Delta\sigma} I_0^{source}(\sigma) d\sigma}$$

4 novembre 2021

Observatoire

LESIA

$$I(\delta) \simeq 2 \Big(\int_{\Delta\sigma} I_0^{\text{source}}(\sigma) d\sigma \Big) \Big[1 + |\gamma_{12}(\delta)| \cos \big(\Phi_{\gamma_{12}}(\delta) \big) \Big] \Big|$$

Visibilité = 1 quand $\delta = 0$ (**frange blanche**) Visibilité $\rightarrow 0$ quand $\delta \ge l_c = \frac{1}{\Delta \sigma} = \frac{\lambda^2}{\Delta \lambda}$

Longueur de cohérence temporelle de la source

Calculer la longueur de cohérence de la lumière reçue d'une étoile de spectre plat, observée dans le visible ?

Calculer la longueur de cohérence de la lumière reçue d'une étoile de spectre plat, observée dans le visible ?

$$l_c = \frac{0.6^2}{0.4} = 0.9 \,\mu m \rightarrow \text{ contrôle de la différence de marche à 1µm près !}$$

4 novembre 2021

Observatoire LESIA

Raphaël Galicher

 I_{c}

Utilisation en astronomie

Modulation spatiale

$$I(\delta) \simeq 2 \Big(\int_{\Delta\sigma} I_0^{source}(\sigma) d\sigma \Big) \Big[1 + |\gamma_{12}(\delta)| \cos \big(\Phi_{\gamma_{12}}(\delta) \big) \Big]$$

Degré de cohérence mutuelle (ou temporelle) complexe

Spectrométrie par transformée de Fourier

1/ On mesure I pour plusieurs différences de marche $\,\delta\,$

2/ La transformée de Fourier de *I* fournit le spectre de la source observée

Conclusion : cohérence spatiale et cohérence temporelle

Cohérence spatiale => Distribution spatiale d'intensité de la source

$$\mu_{12}(\vec{B}) = \frac{\int_{source} I_0^{source}(\vec{\alpha}) \exp\left(i\frac{2\pi}{\lambda}\vec{\alpha}.\vec{B}\right) d^2\vec{\alpha}}{\int_{source} I_0^{source}(\vec{\alpha}) d^2\vec{\alpha}}$$

Cohérence temporelle => Spectre de la source

$$\gamma_{12}(\delta) = \frac{\int_{\Delta\sigma} I_0^{source}(\sigma) \exp(i 2 \pi \sigma \delta) d\sigma}{\int_{\Delta\sigma} I_0^{source}(\sigma) d\sigma}$$

4 novembre 2021

Plan

Interférences lumineuses

Conditions

Observatoire LESIA

- Cohérence spatiale
- Cohérence temporelle

Interférométrie optique en astronomie

Intérêt

Multi-télescopes avec recombinaison co-axiale

Multi-télescopes avec recombinaison multi-axiale

Interférométrie et turbulence

Impact de la turbulence

Méthodes passives et méthodes actives

Filtrage spatial avec fibre monomode (D~r₀)

Interférométrie de speckles (D>r₀)

Exemples d'interféromètres optiques

Synthèse d'ouverture

Interférométrie optique en haute résolution angulaire

Haute résolution angulaire avec de petits télescopes

4 novembre 2021

Observatoire LESIA

Recombinaison co-axiale

Observatoire LESIA

Modulation temporelle de l'intensité

Intensité sur l'axe sur un mono-détecteur en fonction du temps en faisant varier δ $\delta = v t$ avec v = vitesse de balayage

 $I(t) = 2 I_0 [1 \pm \cos(2 \pi \sigma v t)]$

(déphasage de π entre les deux sorties)

Ici : recombinaison des télescopes par paire

Recombinaison multi-axiale

Université de Paris

Interféromètre du type trous d'Young

Modulation spatiale de l'intensité

 $\delta = \vec{\eta} \cdot \vec{B} (+Cte)$

Franges modulent la tache de diffraction d'une sous pupille

 $I(\vec{\eta}, \vec{B}) = 2I_D(\vec{\eta}) \left| 1 + V \cos\left(\frac{2\pi}{\lambda} \vec{\eta} \cdot \vec{B} + \Phi\right) \right|$ avec $I_D(\vec{\eta})$ la diffraction par une sous-pupille \vec{n} В 4 novembre 2021 Raphaël Galicher

Plan

Interférences lumineuses

Conditions

Observatoire LESIA

Cohérence spatiale

Cohérence temporelle

Interférométrie optique en astronomie

Intérêt

Multi-télescopes avec recombinaison co-axiale

Multi-télescopes avec recombinaison multi-axiale

Interférométrie et turbulence

Impact de la turbulence

Méthodes passives et méthodes actives

Filtrage spatial avec fibre monomode (D~r₀)

Interférométrie de speckles (D>r₀)

Exemples d'interféromètres optiques

Synthèse d'ouverture

Interférométrie optique et turbulence atmosphérique

B

Fluctuations de la surface d'onde : Si $D < r_o$: déphasage (piston) + basculement Si $D > r_o$: idem + Zernike de hauts ordres

4 novembre 2021

Observatoire LESIA

Hypothèse : pas de piston variable entre les deux télescopes de même pupille $P(\vec{\rho})$ Télescope 1 : phase = Φ_1 Télescope 2 : phase = Φ_2

Pupille de l'interféromètre :

$$\widetilde{P(\vec{\rho})\exp(i\Phi_1(\vec{\rho},t))} + \widetilde{P(\vec{\rho}+\vec{B})\exp(i\Phi_2(\vec{\rho}+\vec{B},t))}$$

Hypothèse : pas de piston variable entre les deux télescopes de même pupille $P(\vec{\rho})$ Télescope 1 : phase = Φ_1 Télescope 2 : phase = Φ_2

Pupille de l'interféromètre : $\widehat{P(\vec{\rho})\exp(i\Phi_1(\vec{\rho},t))} + \widehat{P(\vec{\rho}+\vec{B})\exp(i\Phi_2(\vec{\rho}+\vec{B},t))}$

Fonction de transfert de l'interféromètre = autocorrélation du champ pupillaire $\widetilde{S}(\vec{f},t) = \frac{1}{s} \iint_{\mathbb{R}^2} \Big[P(\vec{\rho}) \exp\{i\Phi_1(\vec{\rho},t)\} + P(\vec{\rho}+\vec{B}) \exp\{i\Phi_2(\vec{\rho}+\vec{B},t)\} \Big] \\ \Big[P(\vec{\rho}+\lambda\vec{f}) \exp\{-i\Phi_1(\vec{\rho}+\lambda\vec{f},t)\} + P(\vec{\rho}+\vec{B}+\lambda\vec{f}) \exp\{-i\Phi_2(\vec{\rho}+\vec{B}+\lambda\vec{f},t)\} \Big] d^2\vec{\rho}$

Observatoire LESIA

Hypothèse : pas de piston variable entre les deux télescopes de même pupille $P(\vec{\rho})$ Télescope 1 : phase = Φ_1 Télescope 2 : phase = Φ_2

Pupille de l'interféromètre : $\widehat{P(\vec{\rho})\exp(i\Phi_1(\vec{\rho},t))} + \widehat{P(\vec{\rho}+\vec{B})\exp(i\Phi_2(\vec{\rho}+\vec{B},t))}$

Fonction de transfert de l'interféromètre = autocorrélation du champ pupillaire $\widetilde{S}(\vec{f},t) = \frac{1}{c} \iint_{\mathbb{R}^2} \left[P(\vec{\rho}) \exp\left(i\Phi_1(\vec{\rho},t)\right) + P(\vec{\rho}+\vec{B}) \exp\left(i\Phi_2(\vec{\rho}+\vec{B},t)\right) \right]$ $\left[P(\vec{\rho}+\lambda\vec{f})\exp\left(-i\Phi_{1}(\vec{\rho}+\lambda\vec{f},t)\right)+P(\vec{\rho}+\vec{B}+\lambda\vec{f})\exp\left(-i\Phi_{2}(\vec{\rho}+\vec{B}+\lambda\vec{f},t)\right)\right]d^{2}\vec{\rho}$ Fonction de transfert du télescope Fonction de structure En longue pose, les **3 termes** de $\langle \tilde{S}(\vec{f}) \rangle$ de la turbulence $\frac{1}{2}\tilde{t}(\vec{f})\left|\exp\left(-\frac{1}{2}D_{\phi_1}(\lambda\vec{f})\right) + \exp\left(-\frac{1}{2}D_{\phi_2}(\lambda\vec{f})\right)\right|$ Autour de $\vec{f} = \vec{0}$ $\frac{1}{2s}\iint_{\mathbb{R}^2} \langle \exp\left(i\left(\Phi_1(\vec{\rho},t) - \Phi_2(\vec{\rho} + \vec{B} + \lambda \vec{f},t)\right)\right) \rangle P(\vec{\rho}) P^*(\vec{\rho} + \vec{B} + \lambda \vec{f}) d^2\vec{\rho}$ Autour de $\vec{f} = -\vec{B}/\lambda$ Autour de $\vec{f} = \vec{B}/\lambda$ $\frac{1}{2s} \iint_{\mathbb{R}^2} \langle \exp\left(i\left(\Phi_1(\vec{\rho} + \vec{B}, t) - \Phi_2(\vec{\rho} + \lambda\vec{f}, t)\right)\right) \rangle P(\vec{\rho} + \vec{B}) P^*(\vec{\rho} + \lambda\vec{f}) d^2\vec{\rho}$ 4 novembre 2021 Raphaël Galicher 38

Perte de visibilité (hors piston)

Si B > r_0 , on suppose Φ_1 et Φ_2 décorrélées et gaussiennes

 σ_{Φ}^2 = variance spatiale de Φ sur la pupille de chaque télescope

Visibilité est multipliée par un terme ≤1, l'énergie cohérente => perte de visibilité

 σ_{Φ}^2 fixée par la performance de l'OA (si OA) ou par la turbulence

si
$$\sigma_{\Phi}^2$$
 est grand $E_c = \exp\left(-\frac{\sigma_{\Phi}^2}{2}\right) < SR$

4 novembre 2021

Observatoire LESIA

Perte de visibilité due au piston

Perte de visibilité supplémentaire de $\exp\left(-\frac{\sigma_{piston}^2}{2}\right)$

Les aberrations différentielles possibles entre les bras de l'interféromètre :

- Piston = différence de marche
- Retard de phase entre les deux polarisations *s* et *p*
- Rotation des plans de polarisation
- Chromatisme du piston => dispersion et perte de visibilité

→ minimiser tous ces termes dès la conception

→ étalonnages indispensables sur des sources quasi-ponctuelles (pour obtenir la FTO de l'interféromètre)

Plan

Interférences lumineuses

Conditions

Observatoire LESIA

Cohérence spatiale

Cohérence temporelle

Interférométrie optique en astronomie

Intérêt

Multi-télescopes avec recombinaison co-axiale

Multi-télescopes avec recombinaison multi-axiale

Interférométrie et turbulence

Impact de la turbulence

Méthodes passives et méthodes actives

Filtrage spatial avec fibre monomode (D~r₀)

Interférométrie de speckles (D>r₀)

Exemples d'interféromètres optiques

Synthèse d'ouverture

Interférométrie optique : méthodes passives et actives

• Petits télescopes ($D < r_o$)

- figer les franges en courte pose puis post-traitement
- ou corriger en temps réel le piston différentiel entre les télescopes (augmentation possible du temps de pose)
- Souvent corriger aussi les basculements de l'onde
- Télescopes tels que $D \sim r_o$
 - en plus, filtrage spatial (par fibre monomode)
- Grands télescopes ($D > r_o$)
 - interférométrie de speckles (Labeyrie)
 - ou correction des hauts ordres par OA incluant le basculement (sans piston) et éventuellement le filtrage spatial
 - enfin corriger le piston différentiel en temps réel (référence de phase)

Filtrage spatial avec fibres monomodes

Pour télescopes $D \sim r_o$

1 / Injection de chaque faisceau dans une fibre monomode

2/ propagation \rightarrow il ne reste que le piston

3/ recombinaison avec coupleur fibré ou en optique intégrée (type co-axial)

$$I(\vec{\eta}, \vec{B}, t) = \widetilde{O}(\vec{0}) + \left| \widetilde{O}\left(\frac{\vec{B}}{\lambda}\right) \right| \cos\left(\frac{2\pi}{\lambda}\vec{\eta}, \vec{B} + \Phi_{\widetilde{O}}\left(\frac{\vec{B}}{\lambda}\right) + \Phi_{atm}(t) \right)$$

4/Figer les franges en courte pose et combiner les images

Plan

Interférences lumineuses

Conditions

Observatoire LESIA

Cohérence spatiale

Cohérence temporelle

Interférométrie optique en astronomie

Intérêt

Multi-télescopes avec recombinaison co-axiale

Multi-télescopes avec recombinaison multi-axiale

Interférométrie et turbulence

Impact de la turbulence

Méthodes passives et méthodes actives

Filtrage spatial avec fibre monomode (D~r₀)

Interférométrie de speckles (D>r₀)

Exemples d'interféromètres optiques

Synthèse d'ouverture

Interférométrie de speckles

Pour télescopes *D* > *r*_o

- Image = champs de tavelures (=speckles)
- 1/ courtes poses pour « geler la turbulence » (i.e les tavelures) $I(\vec{\eta}, \vec{B}, t)$
- 2/ Module carré de la transformée de Fourier de chaque image $|\tilde{I}(\vec{u}, \vec{B}, t)|^2$
- 3/ Moyenne temporelle des modules carrés → spectre de puissance moyen *SP*

$$SP(\vec{f}) = \langle |\tilde{I}(\vec{f},\vec{B},t)|^2 \rangle_t = |\tilde{O}(\vec{f})|^2 \langle |S(\vec{f},\vec{B},t)|^2 \rangle_t$$

Spectre de puissance de l'objet

4 novembre 2021

Spectre de puissance moyen de l'interféromètre Pour une turbulence donnée Étalonné en observant étoile simple Raphaël Galicher

6-26 Aspects du plan focal interférométrique. (*a*) Cohérence parfaite des fronts d'onde sur les deux pupilles. L'interférence se produit dans l'image d'Airy donnée par une pupille unique. (*b*) Cohérence des fronts d'onde sur chaque pupille, limitée par la turbulence atmosphérique (paramètre de Fried r_0) : les franges sont présentes dans chaque tavelure, avec une phase aléatoire. (*c*) Figure d'interférence obtenue entre deux pupilles du Multi Mirror Telescope, distantes de 4.6 m centre-à-centre. $\lambda = 600$ nm. Pose = 1/60 s. (Cliché dù à l'amabilité de E. K. Hege et J. Beckers.) Noter la présence des tavelures contenant des franges.

Plan

Interférences lumineuses

Conditions

Observatoire LESIA

Cohérence spatiale

Cohérence temporelle

Interférométrie optique en astronomie

Intérêt

Multi-télescopes avec recombinaison co-axiale

Multi-télescopes avec recombinaison multi-axiale

Interférométrie et turbulence

Impact de la turbulence

Méthodes passives et méthodes actives

Filtrage spatial avec fibre monomode (D~r₀)

Interférométrie de speckles (D>r₀)

Exemples d'interféromètres optiques

Synthèse d'ouverture

4 novembre 2021

Exemples d'interféromètres optiques

Université de Paris

Keck I et II (Hawaii)

2 télescopes D=10m B=85m

Very Large Telescope (Chili)

4 télescopes D=10m 4 télescopes D'=1,8m B jusqu'à 200m

Chara (Mont Wilson)

6 télescopes D=1m B jusqu'à 330m

Plan

Interférences lumineuses

Conditions

Observatoire LESIA

Cohérence spatiale

Cohérence temporelle

Interférométrie optique en astronomie

Intérêt

Multi-télescopes avec recombinaison co-axiale

Multi-télescopes avec recombinaison multi-axiale

Interférométrie et turbulence

Impact de la turbulence

Méthodes passives et méthodes actives

Filtrage spatial avec fibre monomode (D~r₀)

Interférométrie de speckles (D>r₀)

Exemples d'interféromètres optiques

Synthèse d'ouverture

4 novembre 2021

Deux télescopes : images et FTO (1/3)

2 télescopes Base fixe Objet ponctuel à l'infini

Deux télescopes : images et FTO (2/3)

2 télescopes Base fixe Objet ponctuel à l'infini

Deux télescopes : images et FTO (3/3)

2 télescopes Base fixe Objet ponctuel à l'infini

Rotation Terre \rightarrow **balayage des fréquences spatiales (plan u,v)**

Trois télescopes : images et FTO (1/3)

3 télescopes Bases fixes

- Objet étendu à l'infini
- \rightarrow observations avec plusieurs orientations pour couverture du plan uv

FTO instrument

FTO observations

Reconstruction dans le plan de Fourier de l'Objet

4 novembre 2021

Trois télescopes : images et FTO (1/3)

3 télescopes Bases fixes

- Objet étendu à l'infini
- \rightarrow observations avec plusieurs orientations pour couverture du plan uv

FTO instrument

FTO observations

Reconstruction dans le plan de Fourier de l'Objet

4 novembre 2021

Trois télescopes : images et FTO (3/3)

Attention aux conclusions hâtives ! On ne mesure que ce qu'on peut mesurer et il manque des fréquences spatiales

Transformée de Fourier de l'objet FTO instrument

FTO observations

4 novembre 2021

Fin du cours 2

4 novembre 2021