UNIVERSITE PIERRE ET MARIE CURIE - PARIS VI Interaction milieux dilués et rayonnement

Effet de saturation de l'absorption.

On étudie une collection de molécules (iode I_2) de concentration N par unité de volume, sous faible pression. Chaque molécule a 2 niveaux d'énergie non-dégénérés, ϵ_a et $\epsilon_b > \epsilon_a$, avec $\epsilon_b - \epsilon_a = h \ \nu_0$. Ces niveaux ont pour populations respectives N_a et N_b , avec $N_a + N_b = N = Cte$.

Le niveau inférieur ε_a est stable, sans relaxation.

Le niveau supérieur ε_b se dépeuple, sous effet de l'émission spontanée et de causes annexes, vers le niveau ε_a . Les vitesses de variation de N_b et N_a qui en résulteraient si ces processus étaient seuls sont:

$$\left(\frac{dN_b}{dt}\right)_{rel} = -\left(\frac{dN_a}{dt}\right)_{rel} = -\frac{N_b}{T_r}$$

Les molécules sont soumises à une onde laser progressive de fréquence v_L , de densité d'énergie U_1 . Le facteur de forme (normalisé à 1) de leur réponse est donné par:

$$g(v) = \frac{1}{\pi \tau} \frac{1}{(v - v_0)^2 + (\frac{1}{\tau})^2}$$

en supposant ici que la vitesse de la molécule est nulle.

1. Faire l'inventaire de toutes les causes de variation de N_a et N_b et en déduire les expressions de $\frac{dN_a}{dt}$ et $\frac{dN_b}{dt}$ en fonction de U_1 , $g(\nu)$, N_a , N_b , T_r et d'un coefficient

d'Einstein B relatif à l'absorption et l'émission induite.

- **2.** En déduire les expressions de N_a et N_b en régime permanent en fonction de U_1 , B, g(v), N, T_r .
- 3. Le coefficient d'absorption des molécules à la fréquence v_L vaut:

$$k(v_L) = \frac{2\pi v_0}{c} \chi'' = B \frac{h v_0}{c} g(v_L) (N_a - N_b)$$

Représenter sommairement les variations de N_b , N_a , $k(v_L)$ en fonction de v_L .

4.a. Quel est le comportement de $k(v_L)$ pour U_1 faible?

Expliquer l'expression "absorption linéaire" utilisée dans ce cas.

4.b. Quel est le comportement de $k(v_L)$ pour U_1 élevé?

Montrer dans ce cas que l'amplitude de $k(v_L)$ diminue, alors que la largeur de la courbe $v_L \mapsto k(v_L)$ croît lorsque U_1 croît.

Ce phénomène est appelé saturation de l'absorption à la fréquence v_L.